Texas Instruments TPS51640A, TPS59640, TPS59641 Schematic [ru]

TPS51640
VCC_CPU
VCC_GFX
Processor
3-phase CPU
Controller
IMVP-7
1-phase GPU
Controller
TPS51601 FET Driver
CPU Power Stage
TPS51601 FET Driver
Internal
FET Driver
Internal
FET Driver
GPU Power Stage
UDG-11062
TPS51640A, TPS59640, TPS59641
www.ti.com
SLUSAQ2 –JANUARY 2012
Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+Step-Down Controller for
IMVP-7 V
1

FEATURES

2
Intel IMVP-7 Serial VID (SVID) Compliant
with Two Integrated Drivers
CORE
Supports CPU and GPU Outputs
CPU Channel 1, 2, or 3 Phase
Single-Phase GPU Channel
Full IMVP-7 Mobile Feature Set Including
Digital Current Monitor
8-Bit DAC with 0.250-V to 1.52-V Output Range
Optimized Efficiency at Light and Heavy Loads
V
V
Overshoot Reduction (OSR)
CORE
Undershoot Reduction (USR)
CORE
Accurate, Adjustable Voltage Positioning
8 Independent Frequency Selections per
Channel (CPU/GPU)
Patent Pending AutoBalancePhase Balancing
Selectable 8-Level Current Limit
3-V to 28-V Conversion Voltage Range
Two Integrated Fast FET Drivers w/Integrated
Boost FET
Internal Driver Bypass Mode for Use with DrMOS Devices
Small 6 × 6 , 48-Pin, QFN, PowerPAD Package

DESCRIPTION

The TPS51640A, TPS59640 and TPS59641 are dual-channel, fully SVID compliant IMVP-7 step-down controllers with two integrated gate drivers. Advanced control features such as D-CAP+ architecture with overlapping pulse support (undershoot reduction, USR) and overshoot reduction (OSR) provide fast transient response, lowest output capacitance and high efficiency. All of these controllers also support single-phase operation for light loads. The full compliment of IMVP-7 I/O is integrated into the controllers including dual PGOOD signals, ALERT and VR_HOT. Adjustable control of V and voltage positioning round out the IMVP-7 features. In addition, the controllers' CPU channel includes two high-current FET gate drivers to drive high-side and low-side N-channel FETs with exceptionally high speed and low switching loss. The TPS51601 or TPS51601A driver is used for the third phase of the CPU and the GPU channel.
The BOOT voltage (V
) on the TPS51640A and
BOOT
TPS59640 is 0 V. The TPS59641 is specifically designed for a V
level of 1.1 V.
BOOT
These controllers are packaged in a space saving, thermally enhanced 48-pin QFN. The TPS51640A is rated to operate from –10°C to 105°C. The TPS59640 and TPS59641 are rated to operate from –40°C to 105°C.
CORE
slew rate

APPLICATIONS

IMVP-7 V Battery, NVDC or 3 V/5 V/12 V rails
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2D-CAP+, PowerPAD, D-CAP are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Applications for Adapter,
CORE

SIMPLIFIED APPLICATION

Copyright © 2012, Texas Instruments Incorporated
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
www.ti.com
(1)(2)
Green (RoHS and
no Sb/Br)
250
2500
V
T
A
PACKAGE PINS ECO PLAN
BOOT
–10°C to 105°C 0
Plastic Quad Flat
Pack (QFN)
–40°C to 105°C
1.1
ORDERING INFORMATION
(V) NUMBER MEDIA QUANTITY
0 48 Tape-and-reel
ORDERABLE TRANSPORT MINIMUM
TPS51640ARSLT 250 TPS51640ARSLR 2500
TPS59640RSLT 250 TPS59640RSLR 2500
TPS59641RSLT
TPS59641RSLTR
(3)
(3)
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com. (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. (3) Product preview. Not currently available.

ABSOLUTE MAXIMUM RATINGS

(1)(2)
over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
VBAT –0.3 32 CSW1, CSW2 –6.0 32 V CDH1 to CSW1; CDH2 to CSW2; CBST1 to CSW1; CBST2 to CSW2 –0.3 6.0
Input voltage
CTHERM, CCOMP, CF-IMAX, GF-IMAX, GCOMP, GTHERM, V5DRV, V5
COCP-I, CCSP1, CCSP2, CCSP3, CCSN1, CCSN2, CCSN3, CVFB, CGFB, V3R3, VR_ON, VCLK, VDIO, SLEWA, GGFB, GVFB, GCSN, –0.3 3.6 GCSP, GOCP-I,
PGND –0.3 0.3 VREF –0.3 1.8
Output voltage CPGOOD, ALERT, VR_HOT, GPGOOD, CIMON, GIMON –0.3 3.6 V
CPWM3, CSKIP, GPWM, GSKIP, CDL1, CDL2 –0.3 6.0
Electrotatic discharge
Operating junction temperature, T Storage temperature, T
stg
(HBM) QSS 009-105 (JESD22-A114A) 1.5 kV (CDM) QSS 009-147 (JESD22-C101B.01) 500 V
J
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to the network ground terminal unless otherwise noted.
–0.3 6.0
-40 125 °C
-55 150 °C
V
2 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
TPS51640A, TPS59640, TPS59641
www.ti.com

THERMAL INFORMATION

THERMAL METRIC
θ
JA
θ
JCtop
θ
JB
ψ
ψ
θ
JCbot
JT JB
Junction-to-ambient thermal resistance 31.7 Junction-to-case (top) thermal resistance 19.8 Junction-to-board thermal resistance 7.1 Junction-to-top characterization parameter 0.3 Junction-to-board characterization parameter 7.1 Junction-to-case (bottom) thermal resistance 2.1
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(1)

RECOMMENDED OPERATING CONDITIONS

MIN TYP MAX UNIT
VBAT –0.1 28 CSW1, CSW2 –3.0 30 CDH1 to CSW1; CDH2 to CSW2; CBST1 to CSW1; CBST2 to
CSW2 V5DRV, V5 4.5 5.5 V3R3 3.1 3.5
Input voltage CCOMP, GCOMP –0.1 2.5 V
CTHERM, GTHERM 0.1 3.6 CF-IMAX, GF-IMAX, COCP-I, GOCP-I 0.1 1.7 CCSP1, CCSP2, CCSP3, CCSN1, CCSN2, CCSN3, CVFB, CGFB,
GGFB, GVFB, GCSN, GCSP, VR_ON, VCLK, VDIO, SLEWA, –0.1 3.5 PGND –0.1 0.1 VREF –0.1 1.72
Output voltage V
CIMON, GIMON –0.1 V CPGOOD, ALERT, VR_HOT, GPGOOD, –0.1 V CPWM3, CSKIP, GPWM, GSKIP, CDL1, CDL2, –0.1 V
Operating free air temperature, T
A
TPS59640,TPS59641 –40 105
TPS51460A –10 105
0.1 5.5
0.1 1.7
SLUSAQ2 JANUARY 2012
TPS51640A
TPS59640 TPS59641
RSL
48 PINS
UNITS
°C/W
VREF
V3R3
V5
°C
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 3
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012

ELECTRICAL CHARACTERISTICS

over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY: CURRENTS, UVLO AND POWER-ON RESET
I
V5-4
I
V5-3
I
V5-2
I
V5-PS3
I
V5STBY
V
UVLOH
V
UVLOL
I
V3R3
I
V3R3SBY
V
3UVLOH
V
3UVLOL
V5 supply current CPU: 3-phase active GPU: 1-phase active
V5 supply current CPU: 2-phase active GPU: 1-phase active
V5 supply current CPU: 1-phase IV5+ I active GPU: 1-phase active
V5 supply current CPU: 3-phase active GPU: 1-phase active
V5DRV standby current VR_ON = ‘LO’, IV5+ I V5 UVLO 'OK' Threshold Ramp up, VR_ON=’HI’, 4.25 4.4 4.5 V V5 UVLO fault threshold Ramp down, VR_ON = ’HI’, 3.95 4.2 4.3 V V3R3 supply current SVID bus idle, VR_ON = ‘HI’ 0.5 1.0 mA V3R3 standby current VR_ON = ‘LO’ 10 µA V3R3 UVLO 'OK' threshold Ramp up, VR_ON=’HI’, 2.5 2.9 3.0 V V3R3 UVLO fault threshold Ramp down, VR_ON = ’HI’, 2.4 2.7 2.8 V
IV5+ I VR_ON = HI
IV5+ I VR_ON = HI, V
VR_ON = HI, V IV5+ I
VR_ON = HI, SetPS = PS3 5.1 mA (Note: 3-phase CPU goes to 1-phase in PS3)
REFERENCES: DAC, VREF, VBOOT AND DRVL DISCHARGE FOR BOTH CPU AND GPU
V
BOOT
V
VIDSTP
Boot voltage
VID step size 5 mV
0.25 V I
V
DAC1
xVFB tolerance no load active
xPU_CORE
0.25 V I
xPU_CORE
–40°C TA≤ 105°C
1.000V V I
V
DAC4
V
VREF
V
VREFSRC
V
VREFSNK
V
DLDQ
xVFB tolerance above 1 V VID
VREF Output 4.5 V VV5≤ 5.5 V, I VREF output source 0 µA I VREF output sink –500 µA I DRVL discharge threshold Soft-stop transistor turns on at this point. 200 300 mV
xPU_CORE
1.000V V I
xPU_CORE
–40°C TA≤ 105°C
VOLTAGE SENSE: xVFB AND xGFB FOR BOTH CPU AND GPU
I
xVFB
I
xGFB
A
GAINGND
xVFB input bias current V xGFB input bias current V
xVFB xVFB
xGFB/GND gain 1 V/V
CURRENT MONITOR
V
CiMONLK
V
CIMONLO
V
CIMONMID
V
CIMONHI
Zero level current output Σ∆CS = 0 mV, AIMON = 12 × (1+1.27) 35 mV Low level current output Σ∆CS = 15.6 mV, AIMON = 12 × (1+1.27) 425 mV Mid level current output Σ∆CS = 31.1 mV, AIMON = 12 × (1+1.27) 850 mV High level current output Σ∆CS = 62.3 mV, AIMON = 12 × (1+1.27) 1700 mV
ZERO-CROSSING
V
Zx
Inductor zero crossing threshold voltage
, V
V5DRV
, V
V5DRV
, V
V5DRV
, V
V5DRV
xVFB
= 0 A, 0°C TA≤ 85°C
xVFB
= 0 A, –6 8.3
xVFB
= 0 A, 0°C TA≤ 85°C
xVFB
= 0 A, –0.65% 1.0%
VREF
VREF
=2 V, V =2 V, V
V5DRV
VDAC
VDAC
CCSP3
VDAC
CCSP3
VDAC
= 5.0 V; V
< V
xVFB
< V
xVFB
=3.3 V
< V
xVFB
= V
CCSP2
< V
xVFB
V5DRV
< (V
< (V
< (V
< (V
V3R3
VDAC
VDAC
VDAC
= 3.3 V
VDAC
= 3.3 V; V
+ 100 mV),
+ 100 mV),
+ 100 mV),
+ 100 mV),
TPS59640
TPS51640A
TPS59641 1.1
0.995V,
0.995V,
TPS51640A –5 5
TPS59640 TPS59641
1.520 V,
1.520 V,
TPS51640A –0.5% 0.5%
TPS59640 TPS59641
= 0 A 1.70 V
VREF
500 µA 4 0.1 mV
0 µA 0.1 4 mV
=0 V 20 40 µA
xGFB
=0 V -40 -20 µA
xGFB
xGFB
= V
PGND
= V
, V
GND
xVFB
6.0 9.0 mA
5.5 mA
4.9 mA
10 20 µA
0 V
0 mV
www.ti.com
= V
CORE
mV
4 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
TPS51640A, TPS59640, TPS59641
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CURRENT SENSE: OVERCURRENT, ZERO CROSSING, VOLTAGE POSITIONING AND PHASE BALANCING
R
= 20 kΩ
xOCP-I
R
= 24 kΩ
xOCP-I
R
= 30 kΩ
xOCP-I
R
= 39 kΩ
xOCP-I
V
OCPP
V
IMAX
I
CS
I
xVFBDQ
G
M-DROOP
I
BAL_TOL
A
CSINT
OCP voltage (valley current limit)
R
= 56 kΩ
xOCP-I
R
= 75 kΩ
xOCP-I
R
= 100 kΩ
xOCP-I
R
= 150 kΩ
xOCP-I
IMAX values both channels
V
IMAX_MIN
V
IMAX
V
IMAX_MAX
= 133 mV, value of xIMAX,
= V
REF
= 653mV, value of xIMAX 98 A CS pin input bias current CSPx and CSNx –1.0 0.2 1.0 µA xVFB input bias current,
discharge
Droop amplifier transconductance
Internal current share tolerance –3% +3%
End of soft-stop, xVFB = 100mV 90 125 180 µA
xVFB = 1 V µS
(V
– V
(V
CSP1 CSP3
– V
CSN1
CSN3
Internal current sense gain Gain from CSPx – CSNx to PWM comparator 11.65 12.00 12.30 V/V
V5DRV
× I
MAX
) = (V ) = V
= 5.0 V; V
/ 255
– V
CSP2
OCPP_MIN
CSN2
V3R3
= 3.3 V; V
xGFB
= V
PGND
= V
TPS51640A 5.1 7.0 9.7
TPS59640 TPS59641
4.6 7.0 9.7
TPS51640A 8.1 10.0 12.6
TPS59640 TPS59641
7.6 10.0 13.1
TPS51640A 12.1 14.0 16.7
TPS59640 TPS59641
11.6 14.0 17.2
TPS51640A 17.1 19.0 21.7
TPS59640 TPS59641
16.6 19.0 22.2
TPS51640A 23.1 25.0 27.9
TPS59640 TPS59641
22.6 25.0 28.4
TPS51640A 29.7 32.0 35.0
TPS59640 TPS59641
29.2 32.0 35.5
TPS51640A 37.9 40.0 43.3
TPS59640 TPS59641
37.4 40.0 43.8
TPS51640A 46.8 49.0 52.6
TPS59640 TPS59641
46.2 49.0 53.1
TPS51640A 486 497 518
TPS59640 TPS59641
480 497 518
) =
SLUSAQ2 –JANUARY 2012
, V
xVFB
= V
CORE
GND
mV
20 A
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 5
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
ELECTRICAL CHARACTERISTICS (continued)
over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TIMERS: SLEW RATE, ISLEW, ADDR, ON-TIME AND I/O TIMING
V
t
STARTUP1
SL
STRTSTP
SL
SET
t
PGDDGLTO
t
PGDDGLTU
t
TON_CPU
Start-up time time from VR_ON until the controller responds to 5 ms
xVFB slew soft-start / soft-stop 1.25 1.50 1.75 mV/µs
Slew rate setting V
xPGOOD deglitch time 5 100 µs
xPGOOD deglitch time 150 500 µs
CPU on-time RCF=39 kΩ, V
BOOT
SVID commands SLEWRATE = 12mV/µs, VR_ON goes HI,
VR_ON goes LO = Soft-stop VSLEWA 0.30V (Also disables SVID CLK timer) 10.0 12.0 14.5 V
SLEWA
V
SLEWA
0.75 V V
SLEWA
V
SLEWA
V
SLEWA
V
SLEWA
V
SLEWA
Time from xVFB out of +220 mV VDAC boundary to xPGOOD low.
Time from xVFB out of –315 mV VDAC boundary to xPGOOD low.
RCF=20 kΩ, V (250 kHz)
RCF=24 kΩ, V (300 kHz)
RCF=30 kΩ, V (350 kHz)
(400 kHz)
RCF=56 kΩ, V (450 kHz)
RCF=75 kΩ, V (500 kHz)
RCF=100 kΩ, V RCF=150 kΩ, V
V5DRV
> 0 V, SLEWRATE = 12 mV/µs, no faults,
= 0.4 V 3.5 4.0 5.0 = 0.6 V 7.5 8.5 9.5
0.85 V 10.0 12.0 14.5
SLEWA
= 1.0 V 16 mV/µs = 1.2 V 20 = 1.4 V 23 = 1.6 V 26 2.50 V 26
=12 V, V
BAT
=12 V, V
BAT
=12 V, V
BAT
=12 V, V
BAT
=12 V, V
BAT
=12 V, V
BAT
BAT BAT
= 5.0 V; V
=12 V, V =12 V, V
= 3.3 V; V
V3R3
DAC
=1.1 V
TPS51640A 270 327 375
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 225 272 320
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 185 235 280
TPS59640 TPS59641
=1.1 V ns
DAC
TPS51640A 160 207 252
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 140 185 231
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 120 167 212
TPS59640 TPS59641
=1.1 V (550 kHz) 109 152 198
DAC
=1.1 V (600 kHz) 105 140 177
DAC
xGFB
= V
PGND
= V
GND
265 327 380
220 272 325
180 235 285
155 207 262
134 185 241
115 167 217
, V
xVFB
= V
www.ti.com
CORE
6 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
TPS51640A, TPS59640, TPS59641
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TIMERS: SLEW RATE, ISLEW, ADDR, ON-TIME AND I/O TIMING (Continued)
RGF=20 kΩ, V (275 kHz)
RGF=24 kΩ, V (330 kHz)
RGF=30 kΩ, V (385 kHz)
t
TON_GPU
t
MIN
t
VCCVID
t
VRONPGD
t
PGDVCC
t
VRTDGLT
R
SFTSTP
PROTECTION: OVP, UVP PGOOD, VR_HOT, FAULTS OFFAND INTERNAL THERMAL SHUTDOWN
V
OVPH
V
PGDH
V
PGDL
V
THERM
I
THRM
TH
INT
TH
HYS
GPU on-time
RGF=39 kΩ,V (440 kHz)
RGF=56 kΩ, V (495 kHz)
RGF=75 kΩ, V RGF=100 kΩ, V RGF=150 kΩ, V
Controller minimum off time Fixed value 150 200 ns
ACK of SetVID-x command to start of voltage
VID change to xVFB change
(1)
ramp VR_ON low to xPGOOD low 20 50 100 ns xPGOOD low to xVFB change
(1)
VR_HOT# deglitch time 0.2 0.7 ms Soft-stop transistor resistance Connect to CVFB, GVFB 550 770 1100 Ω
Fixed OVP voltage threshold voltage
xPGOOD high threshold 190 220 245 mV
xPGOOD low threshold –348 –315 –280 mV
VCSN1 or VGCSN > V
Measured at the xVFB pin wrt/VID code,
device latches OFF
Measured at the xVFB pin wrt/VID code,
device latches OFF
bit0 of xTHERM register = high 757 783 808
bit1 of xTHERM register also is high 651 680 707
bit2 of xTHERM register also is high 611 638 663
bit3 of xTHERM register also is high 570 598 623 IMVP-7 thermal bit voltage
definition
bit4 of xTHERM register also is high 531 559 583
bit5 of xTHERM register also is high 496 523 548
bit6 of xTHERM register also is high,
ALERT goes low
bit7 of XTHERM register also is high,
VR_HOT goes low
CDLx goes low, CDHx goes low 373 410 425 THERM current Leakage current –5 5 µA Internal controller thermal
Shutdown Controller thermal SD
hysteresis
(1)
(1)
Latch off controller 155 °C
Cooling required before converter can be reset 20 °C
V5DRV
BAT
BAT
BAT
BAT
BAT
BAT
BAT BAT
= 5.0 V; V
=12 V, V
=12 V, V
=12 V, V
=12 V, V
=12 V, V
=12 V, V
=12 V, V =12 V, V
OVPH
DAC
V3R3
=1.1 V
= 3.3 V; V
TPS51640A 315 347 388
TPS59640
xGFB
= V
TPS59641
DAC
=1.1V
TPS51640A 251 287 330
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 215 245 287
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 180 216 252
TPS59640 TPS59641
DAC
=1.1 V
TPS51640A 160 190 223
TPS59640 TPS59641
=1.1 V (550 kHz) 145 171 210
DAC
=1.1 V (605 kHz) 120 156 205
DAC
=1.1 V (660 kHz) 100 150 201
DAC
for 1 µs, DRVL ON 1.68 1.72 1.77 V
SLUSAQ2 –JANUARY 2012
= V
, V
PGND
GND
xVFB
= V
CORE
310 347 393
246 287 335
210 245 292 ns
175 216 257
155 190 228
2 µs
100 ns
461 488 513
428 455 481
mV
(1) Specified by design. Not production tested.
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 7
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
ELECTRICAL CHARACTERISTICS (continued)
over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOGIC (VCLK, VDIO, ALERT, VR_HOT, VR_ON) INTERFACE PINS: I/O VOLTAGE AND CURRENT
R
RSVIDL
R
RPGDL
I
VRTTLK
V
IL
V
IH
V
HYST
V
VR_ONL
V
VR_ONH
I
VR_ONH
Open drain pull down resistance 4 8 13 Ω Open drain pull down resistance xPGOOD pull-down resistance at 0.31 V 36 50 Open drain leakage current -2 0.2 2 µA Input logic low 0.45 V
Input logic high 0.65 V Hysteresis voltage
(1)
VR_ON logic low 0.3 V VR_ON logic high 0.8 V I/O 3.3 V leakage Leakage current , V
OVERSHOOT AND UNDERSHOOT REDUCTION (OSR/USR) THRESHOLD SETTING
V
OSR
V
USR
V
OSR_OFF
V
OSRHYS
OSR voltage set mV
USR voltage set mV
OSR OFF setting V OSR/USR voltage hysteresis
(2) Specified by design. Not production tested.
VDIO, ALERT, VR_HOT, pull-down resistance at
0.31 V
VR_HOT, xPGOOD, Hi-Z leakage,
apply 3.3-V in off state
VCLK, VDIO
R
= 20 kΩ 106
xSKIP
R
= 24 kΩ 156
xSKIP
R
= 30 kΩ 207
xSKIP
R
= 39 kΩ 257
xSKIP
R
= 56 kΩ 308
xSKIP
R
= 75 kΩ 409
xSKIP
R
= 100 kΩ 510
xSKIP
R
= 150 kΩ 610
xSKIP
R
= 20 kΩ 40
xSKIP
R
= 24 kΩ 60
xSKIP
R
= 30 kΩ 75
xSKIP
R
= 39 kΩ 115
xSKIP
R
= 56 kΩ 153
xSKIP
R
= 75 kΩ 190
xSKIP
R
= 100 kΩ 230
xSKIP
R
150 kΩ = OFF
xSKIP
at start up 100 300 mV
xSKIP
(2)
All settings 20%
V5DRV
= 5.0 V; V
= 1.1 V 10 25.0 µA
VR_ON
V3R3
= 3.3 V; V
xGFB
= V
PGND
= V
, V
GND
xVFB
0.05 V
www.ti.com
= V
CORE
8 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
TPS51640A, TPS59640, TPS59641
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
over recommended free-air temperature range, VV5= V (Unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DRIVERS: HIGH-SIDE, LOW-SIDE, CROSS CONDUCTION PREVENTION AND BOOST RECTIFIER
(V
– V
R
DRVH
DRVH ON resistance Ω
(V
(V
(V
V
I
DRVH
t
DRVH
R
DRVL
I
DRVL
t
DRVL
t
NONOVLP
R
DS(on)
I
BSTLK
DRVH sink/source current
(3)
DRVH transition time CDHx 10% to 90% or 90% to 10%, C
DRVL ON resistance Ω
DRVL sink/source current
(3)
DRVL transition time ns
Driver non overlap time ns
BST on-resistance (V BST switch leakage current V
CDHx
V
CDHx
HIState, (V
LOState, (V
V
CDLx
V
CDLx
V
CDLx
V
CDLx
V
CSWx
CDLx falls to 1 V to CDHx rises to 1 V 13 25
VBST
PWM and SKIP OUTPUT: I/O Voltage and Current
V
PWML
V
PWMH
V
SKIPL
V
SKIPH
V
PW(leak)
xPWMy output low level 0.7 V xPWMy output high level 4.2 V SKIP output low level 0.7 V xSKIP output high level 4.2 V xPWM leakage Tri-state, V = 5 V 0.1 µA
(3) Specified by design. Not production tested.
CBSTx VBST
CBSTx DRVH
V5DRV
CSWx
– V
VDRVH
– V
CSWx
– VLL) = 0.25 V = 2.5 V, (V = 2.5 V, (V
= 2.5 V, Source 2.7 A = 2.5 V, Sink 6 A 90% to 10%, C 10% to 90%, C
falls to 1 V to V
– V
VBST
= 34 V, V
V5DRV
= 5.0 V; V
V3R3
= 3.3 V; V
xGFB
) = 5 V, HIstate,
) = 0.25 V
) = 5 V, LOstate,
– V
) = 5 V, Source 2.2 A
CSWx
– V
) = 5 V, Sink 2.2 A
CSWx
= 3 nF
CDHx
) = 0.25 V 0.9 2 )= 0.2 V 0.4 1
PGND
= 3 nF 15 40 = 3 nF 15 40
rises to 1 V 13 25
V5DRV
VDRVL
CBSTx CBSTx
V
V
VDRVL
CDLx CDLx
CDLx
), IF= 5 mA 5 10 20 Ω
=28 V 0.1 1 µA
CSWx
= V
PGND
SLUSAQ2 –JANUARY 2012
= V
, V
xVFB
= V
GND
1.2 2.5
0.8 2.5
15 40 ns 15 40 ns
CORE
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
36
35
34
33
32
31
30
29
28
27
26
25
48
47
46
45
44
43
42
41
40
39
38
37
CTHERM
COCP-I
CIMON
CCSP1
CCSN1
CCSN2
CCSP2
CCSP3
CCSN3
CVFB
CCOMP
CGFB
CF-IMAX
VREF
V3R3
VR_ON
CPGOOD
VCLK
ALERT
VDIO
VR_HOT
SLEWA
GPGOOD
GF-IMAX
CPWM3
CSKIP
GPWM
GSKIP
GTHERM
GOCP-I
GIMON
GCSP
GCSN
GCOMP
GVFB
GGFB
V5
CDH1
CBST1
CSW1
CDL1
V5DRV
PGND
CDL2
CSW2
CBST2
CDH2
VBAT
TPS51640A
TPS59640 TPS59641
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
www.ti.com

DEVICE INFORMATION

RSL PACKAGE
48 PINS
(TOP VIEW)

PIN FUNCTIONS

PIN
NAME NO.
ALERT 19 O SVID interrupt line, open drain. Route between VCLK and VDIO to prevent cross-talk. CBST1 46 I Top N-channel FET bootstrap voltage input for CPU phase 1. CBST2 39 I Top N-channel bootstrap voltage input for CPU phase 2. CCSN1 5 CCSN2 6 I CCSN3 9 CCOMP 10 O Output of GM error amplifier for the CPU converter. A resistor to VREF sets the droop gain. CCSP1 4 CCSP2 7 I or inductor DCR sense network. Tie CCSP3, 2 or 1 (in that order) to V3R3 to disable the phase. Tie CCSP1 to CCSP3 8 CDH1 47 O Top N-channel FET gate drive output for CPU phase 1. CDH2 38 O Top N-channel FET gate drive output for CPU phase 2. CDL1 44 O Synchronous N-channel FET gate drive output for CPU phase 1. CDL2 41 O Synchronous N-channel FET gate drive output for CPU phase 2.
10 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
I/O DESCRIPTION
Negative current sense inputs for the CPU converter. Connect to the most negative node of current sense resistor or inductor DCR sense network. CCSN1 has a secondary OVP comparator.
Positive current sense inputs for the CPU converter. Connect to the most positive node of current sense resistor V3R3 to run the GPU converter only.
www.ti.com
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
PIN
NAME NO.
I/O DESCRIPTION
Voltage divider to VREF. A resistor to GND sets the operating frequency of the CPU converter. The voltage level
CF-IMAX 13 I sets the maximum operating current of the CPU converter. The IMAX value is an 8-bit A/D where V
I
/ 255. Both are latched at start-up.
MAX
CGFB 12 I
CIMON 3 O
COCP-I 2 I
Voltage sense return tied for the CPU converter. Tie to GND with a 10-Ω resistor to close feedback when the microprocessor is not in the socket.
Analog current monitor output for the CPU converter. V 220-nF capacitor to GND for stability.
Resistor to GND (R voltage divider to CIMON. Resistor ratio sets the IMON gain (see CIMON pin description).
) selects 1 of 8 OCP levels (per phase, latched at start-up) of the CPU converter. Also,
COCP
= ΣVCS× ACS × (1 + R
CIMON
CIMON/RCOCP
= V
IMAX
REF
). Connect a
CPGOOD 17 O IMVP-7_PWRGD output for the CPU converter. Open-drain. CSW1 45 I/O Top N-channel FET gate drive return for CPU phase 1. CSW2 40 I/O Top N-channel FET gate drive return for CPU phase 2. CPWM3 36 O PWM control for the external driver, 5V logic level.
CSKIP 35 O
CTHERM 1 I/O
CVFB 11 I
Skip mode control of the external driver for the CPU converter. A logic HI = FCCM, LO = SKIP. R to GND selects 1 of 8 OSR/USR levels. 0.1 V < V
< 0.3 V at start-up turns OSR off.
CSKIP
Thermal sensor connection for the CPU converter. A resistor connected to VREF forms a divider with an NTC thermistor connected to GND.
Voltage sense line tied directly to V feedback when µP is not in the socket. The soft-stop transistor is on this pin
of the CPU converter. Tie to V
CORE
with a 10-Ω resistor to close
CORE
Negative current sense input for the GPU converter. Connect to the most negative node of current sense resistor
GCSN 28 I or inductor DCR sense network. GCSN has a secondary OVP comparator and includes the soft-stop pull-down
transistor.
GCSP 29 I
Positive current sense input for the GPU converter. Connect to the most positive node of current sense resistor or inductor DCR sense network. Tie to V3R3 to disable the GPU converter.
GCOMP 27 O Output of gMerror amplifier for the GPU converter. A resistor to VREF sets the droop gain. GGFB 25 I
Voltage sense return tied for the GPU converter. Tie to GND with a 10-Ω resistor to close feedback when the microprocessor is not in the socket.
24 I Voltage divider to VREF. R to GND sets the operating frequency of the GPU converter. The voltage level sets
GF-IMAX the maximum operating current of the GPU converter. The IMAX value is an 8-bit A/D where V
I
/ 255. Both are latched at start-up.
MAX
GIMON
GOCP-I
30 O Analog current monitor output for the GPU converter. V
220-nF capacitor to GND for stability.
31 I Voltage divider to GIMON. Resistor ratio sets the IMON gain (see GIMON pin). Resistor to GND (R
1 of 8 OCP levels (per phase, latched at start-up) of the GPU converter.
GIMON
= V
ISENSE
× (1 + R
GIMON/RGOCP
= V
IMAX
REF
). Connect a
GOCP
×
) selects
GPGOOD 23 O IMVP-7_PWRGD output for the GPU converter. Open-drain. GPWM 34 O PWM control for the external driver, 5-V logic level.
GSKIP
GTHERM
GVFB
33 O Skip mode control of the external driver for the GPU converter, 5-V logic level. Logic HI = FCCM, LO = SKIP. R
to GND selects 1 of 8 OSR/USR levels. 0.1 V < V
< 0.3 V at start-up turns OSR off.
GSKIP
32 I/O Thermal sensor input for the GPU converter. A resistor connected to VREF forms a divider with an NTC
thermistor connected to GND.
26 I Voltage sense line tied directly to V
when the microprocessor is not in the socket. The soft-stop transistor is on this pin
of the GPU converter. Tie to V
GFX
with a 10-Ω resistor to close feedback
GFX
PGND 42 Synchronous N-channel FET gate drive return. SLEWA
V5
V5DRV
22 I The voltage at start-up sets 1 of 7 slew rates for both converters. The SLOW rate is SLEWRATE/4. Soft-start
and soft-stop rates are SLEWRATE/8. This value is latched at start-up. Tie to GND to disable SCLK timer.
48 I 5-V power input for analog circuits; connect through resistor to 5-V plane and bypass to GND with 1 µF ceramic
capacitor
43 I Power input for the gate drivers; connected with an external resistor to V5F; decouple with a 2.2 µF ceramic
capacitor.
V3R3 15 I 3.3-V power input; bypass to GND with 1 µF ceramic cap. VBAT
37 I Provides VBAT information to the on-time circuits for both converters. A 10-kΩ series resistor protects the
adjacent pins from inadvertent shorts due to solder bridges or mis-probing during test. VCLK 18 I SVID clock. 1-V logic level. VDIO 20 I/O SVID digital I/O line. 1-V logic level. VREF 14 O 1.7-V, 500-µA reference. Bypass to GND with a 0.22-µF ceramic capacitor.
×
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 11
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
www.ti.com
PIN
NAME NO.
VR_ON 16 I IMVP-7 VR enable; 1V I/O level; 100-ns de-bounce. Regulator enters controlled soft-stop when brought low. VR_HOT PAD GND Thermal pad and analog circuit reference; tie to a quiet area in the system ground plane with multiple vias.
I/O DESCRIPTION
21 O IMVP-7 thermal flag open drain output active low. Typically pulled up to 1-V logic level through 56 Ω. Fall time
< 100 ns. 1-ms de-glitch using consecutive 1-ms samples.
12 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
0.80
0.85
0.90
0.95
1.00
1.05
Output Voltage (V)
VIN= 9 V VIN= 20 V Nominal
Specified Maximum
Specified Minimum
V
VID
= 1.05 V
0 10 20 90 100
Output Current (A)
30 40 50 70 8060
0.500
0.525
0.575
0.600
0.625
0.675
0.700
0 2 4 18 20
Output Current (A)
Output Voltage (V)
6 8 10 14 1612
VIN= 9 V VIN= 20 V Nominal
Specified Maximum
Specified Minimum
V
VID
= 0.6 V
0.550
0.650
65
75
80
85
90
Efficiency (%)
V
VID
= 0.6 V
70
VIN= 9 V VIN= 20 V
0 2 4 18 20
Output Current (A)
6 8 10 14 1612
65
75
80
85
90
95
Efficiency (%)
V
VID
= 1.05 V
70
VIN= 9 V VIN= 20 V
0 10 20 90 100
Output Current (A)
30 40 50 70 8060
0
100
150
200
350
400
Frequency (Hz)
50
0 10 20 90 100
Output Current (A)
30 40 50 70 8060
RCF= 24 kW
PS0, V
VID
= 1.05 V, VIN= 9 V
PS0, V
VID
= 1.05 V, VIN= 20 V
PS1, V
VID
= 1.05 V, VIN= 20 V
PS1, V
VID
= 1.05 V, VIN= 9 V
250
300
www.ti.com
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
TYPICAL CHARACTERISTICS
3-Phase Configuration, 94-A CPU
Figure 1. Output Voltage vs. Load Current in PS0 Figure 2. Output Voltage vs. Load Current in PS1
Figure 3. Efficiency vs. Load Current in PS0 Figure 4. Efficiency vs. Load Current in PS1
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 13
Figure 5. Frequency vs Load-Current (PS0 and PS1) Figure 6. Switching Ripple in PS0, VIN= 20 V
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
TYPICAL CHARACTERISTICS
3-Phase Configuration, 94-A CPU (continued)
Figure 7. Start-Up and PGOOD Figure 8. Soft-Stop
(TPS51640A and TPS59640 Only)
www.ti.com
Figure 9. Load Transient, VIN= 9 V, Load step = 66 A Figure 10. Load Transient, VIN= 20 V, Load step = 66 A
Figure 11. Load Insertion, VIN= 9 V, Load step = 66 A Figure 12. Load Release, VIN= 20 V, Load step = 66 A
14 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
100 1000 10000 100000 1000000
−50
−40
−30
−20
−10
0
10
20
30
40
50
−225
−180
−135
−90
−45
0
45
90
135
180
225
Frequency (Hz)
Magnitude (dB)
Phase (°)
Gain Phase
3−Phase CPU V
OUT
= 1.05 V
I
OUT
~ 20 A
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
0.0045
-80
-60
-40
-20
0
20
40
60
80
100 1 k 10 k 100 k 1 M
Frequency (Hz)
Z
OUT
Magnitude (W)
Z
OUT
Phase (°)
Magnitude Target Phase
CPU
3-Phase
www.ti.com
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
TYPICAL CHARACTERISTICS
3-Phase Configuration, 94-A CPU (continued)
Figure 13. Dynamic VID: SetVID-Slow/SetVID-Slow Figure 14. Dynamic VID: SetVID-Fast/SetVID-Fast
Figure 15. SetVID-Decay/SetVID-Fast Figure 16. PS Change PS0 to PS1 Toggle
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 15
Figure 17. CPU Bode Plot Figure 18. Output Impedance
0.80
0.85
0.90
0.95
1.00
1.05
1.10
Output Voltage (V)
0 10 20
Output Current (A)
30 40 50 60
V
VID
= 1.05 V
VIN= 9 V VIN= 20 V Nominal
Specified Maximum
Specified Minimum
65
75
80
85
90
95
Efficiency (%)
70
0 5 10 50 55
Output Current (A)
15 20 25 40 4535
VIN= 9 V VIN= 20 V
V
VID
= 1.05 V
30
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
TYPICAL CHARACTERISTICS
2-Phase Configuration, 53-A CPU
Figure 19. Output Voltage Vs. Load Current in PS0 Figure 20. Efficiency Vs. Load Current in PS0
www.ti.com
Figure 21. Switching Ripple in PS0 (Persistence), Figure 22. Switching Ripple in PS0 (Persistence),
16 Submit Documentation Feedback Copyright © 2012, Texas Instruments Incorporated
Figure 23. Switching Ripple in PS0, VIN= 9 V Figure 24. Switching Ripple in PS0, VIN= 20 V
VIN= 9 V VIN= 20 V
www.ti.com
TPS51640A, TPS59640, TPS59641
SLUSAQ2 –JANUARY 2012
TYPICAL CHARACTERISTICS
2-Phase Configuration, 53-A CPU (continued)
Figure 25. Load Transient, VIN= 9 V, Load Step = 43 A Figure 26. Load Transient, VIN= 20 V, Load Step = 43 A
Figure 27. Load Insertion, VIN= 9 V, Load Step = 43 A, Figure 28. Load Release, VIN= 20 V, Load Step = 43 A,
Figure 29. Load Insertion, VIN= 9 V, Load Step = 43 A, Figure 30. Load Release,VIN= 20 V, Load Step = 43 A,
OSR/USR Setting 39 kΩ (Reduced Output Capacitance) OSR/USR Setting 39 kΩ (Reduced Output Capacitance)
Copyright © 2012, Texas Instruments Incorporated Submit Documentation Feedback 17
OSR/USR Setting 150 kΩ) OSR/USR Setting 150 kΩ)
Loading...
+ 38 hidden pages