Texas Instruments TPS54614EVM 1.8-V SWIFT User Manual

Page 1
  
  
User’s Guide
September 2001 PMP PD & PS
SLVU053
Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty . Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty . Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party , or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Mailing Address:
Texas Instruments Post Office Box 655303 Dallas, Texas 75265
Copyright 2001, Texas Instruments Incorporated
Page 3
EVM IMPORTANT NOTICE
Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation kit being sold by TI is intended for use for ENGINEERING
DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.
Should this evaluation kit not meet the specifications indicated in the EVM Users Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.
Please read the EVM User’s Guide and, specifically, the EVM W arnings and Restrictions notice in the EVM Users Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.
Persons handling the product must have electronics training and observe good laboratory practice standards.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.
Mailing Address:
Texas Instruments Post Office Box 655303 Dallas, Texas 75265
Copyright 2001, Texas Instruments Incorporated
Page 4
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the specified input and output ranges described in the EVM User’s Guide.
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM Users Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 60°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM Users Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.
Mailing Address:
Texas Instruments Post Office Box 655303 Dallas, Texas 75265
Copyright 2001, Texas Instruments Incorporated
Page 5
About This Manual
Trademarks
Preface
Read This First
This users guide describes the characteristics, operation, and use of the TPS54614 1.8-V SWIFT regulator evaluation module (EVM). The users guide includes a schematic diagram and bill of materials.
How to Use This Manual
This document contains the following chapters:
- Chapter 1Inroduction
- Chapter 2Setup and Test Results
- Chapter 3Board Layout
- Chapter 4Schematic and Bill of Materials
FCC Warning
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
Trademarks
SWIFT is a trademark of Texas Instruments.
v
Page 6
vi
Page 7
Contents
Contents
1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Background 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Performance Specification Summary 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Modifications 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Setup and Test Results 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Input/Output Connections 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Efficiency 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Thermal Performance 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Output Voltage Regulation 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Load Transients 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Loop Characteristics 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Output Voltage Ripple 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Input Voltage Ripple 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Start-Up 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Board Layout 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Layout 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Schematic and Bill of Materials 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Schematic 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Bill of Materials 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vii
Page 8
Contents
Figures
2–1 Test Setup Connection Diagram 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Measured Efficiency 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 Measured Board Losses 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 Measured Junction Temperature at 25°C Ambient 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 Measured Case Temperature at 25°C Ambient 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Measured Load Regulation 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Measured Load Transient Response 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 Measured Negative Load Transient Response 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 Measured Loop Gain 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–10 Measured Loop Phase 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–11 Measured Output Voltage Ripple With 3.3-V Input 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–12 Measured Output Voltage Ripple With 5.0-V Input 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–13 Measured Input Ripple Voltage With 3.3-V Input 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–14 Measured Input Ripple Voltage With 5.0-V Input 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–15 Measured Start-Up Waveforms 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Top-Side Assembly 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 Top-Side Layout 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3 Internal Layers Layout 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–4 Bottom Side Layout 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 EVM Schematic 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tables
1–1 Performance Specification Summary 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–2 Modification Table 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 TPS54614 EVM Bill of Materials 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
Page 9
Chapter 1
Introduction
This chapter contains background information for the TPS54614 and support documentation for the TPS54614 EVM evaluation module. The TPS54614 EVM performance specifications are given, as well as modification instructions if different preset output voltages are desired.
Topic Page
1.1 Background 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Performance Specification Summary 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Modifications 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction
1-1
Page 10
Background
1.1 Background
The TPS54614 evaluation module uses the TPS54614 synchronous buck regulator to provide a 1.8-V output. This voltage is maintained over an input range of 3.0 V to 6.0 V, and over a load range of 0 A to 6 A. The TPS54614 EVM circuitry contains only seven electrical components covering an area less than one square inch.
The TPS54614 has two key features that reduce the number of additional components compared to traditional synchronous buck controllers. The first feature is that the MOSFET s are incorporated inside the TPS54614 package. This eliminates the need for external MOSFETs and their associated drivers. The second feature is that the compensation components that stabilize the feedback loop are also incorporated inside the TPS54614 package.
Because the internal compensation of the TPS54614 is fixed, loop stability is assured by the proper selection of an output inductor and output capacitor. For guidelines on selecting an output inductor and output capacitor for a specific application, refer to Texas Instruments application report SLVA105Designing With Internally Compensated SWIFTt Regulators.
1.2 Performance Specification Summary
A summary of the TPS54614EVM performance specifications is provided by Table 1–1. All specifications are given for an ambient temperature of 25°C, unless otherwise noted.
Table 1–1.Performance Specification Summary
Specification Test Conditions Min Typ Max Units
Input voltage range IO = 6 A 3 5 6 V Output voltage set point 1.8 V Output current range 0 > 6 A Line regulation IO = 6 A –5 +5 mV Load regulation VIN = 5 V –9 +9 mV
IO = 1.5 A to 4.5 A, tr = 16 µs
Load transient response
Loop bandwidth VIN = 5 V, IO = 6 A 50 kHz Phase margin VIN = 5 V, IO = 6 A 46 _ Input ripple voltage 270 mV Output ripple voltage 10 18 mV Output rise time 3.6 ms
p
IO = 4.5 A to 1.5 A, tf = 12 µs
–80 mV
50 µs 55 mV 50 µs
PK
PK
pp
PP
Operating frequency 440 550 660 kHz Efficiency VIN = 5 V, IO = 1.5 A 91%
1-2
Page 11
1.3 Modifications
The EVM can be modified for different preset output voltages by using other devices in the TPS5461x family . For output voltages less than 2.5 V, only U1 needs to be changed. For output voltages 2.5 V and higher, the output capacitor (C1) also needs to be changed. T able 1–2 lists the devices required for U1 and C1 for different output voltage options.
Table 1–2.Modification Table
Modifications
Output Voltage
(V)
0.9 TPS54611 Sanyo – 2R5TPB680M
1.2 TPS54612 Sanyo – 2R5TPB680M
1.5 TPS54613 Sanyo – 2R5TPB680M
1.8 TPS54614 Sanyo – 2R5TPB680M
2.5 TPS54615 Sanyo – 4TPB470M
3.3 TPS54616 Sanyo – 4TPB470M
SWIFT Device
(U1)
Output Capacitor
(C1)
Introduction
1-3
Page 12
1-4
Page 13
Chapter 2
Setup and Test Results
This chapter describes how to properly connect, set up, and use the TPS54614 EVM. This chapter also presents the test results for the TPS54614, and covers efficiency, output voltage regulation, load transients, loop response, output ripple, and start-up.
Topic Page
2.1 Input/Output Connections 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Efficiency 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Thermal Performance 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Output Voltage Regulation 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Load Transients 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Loop Characteristics 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Output V oltage Ripple 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Input V oltage Ripple 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Start-Up 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup and Test Results
2-1
Page 14
Input/Output Connections
2.1 Input/Output Connections
The TPS54614 has the following four input/output connections: input, input return, output, and output return. A diagram showing the connection points is shown in Figure 2–1. Connect a power supply capable of supplying 5 A to J1 through a pair of 20 AWG wires. Connect the load to J2 through a pair of 16 AWG wires. Wire lengths should be minimized on both the input and output connections.
Figure 2–1.Test Setup Connection Diagram
NOTE: All wire pairs should be twisted.
2-2
TPS5461x SWIFT Product Family
V
OUT
0.9 V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V Adj
Part Number
TPS54611 TPS54612 TPS54613 TPS54614 TPS54615 TPS54616 TPS54610
TPS54614EVM
SLVP183
REV A
2001
Page 15
2.2 Efficiency
The TPS54614 efficiency peaks at around 1.5 A of load current. At a full 6-A load the efficiency drops to around 83% with a 5-V input source. The efficiency shown in Figure 2–2 is typical for an ambient temperature of 25°C. The efficiency is lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance of the MOSFETs. The total board losses are shown in Figure 2–3. The plots of Figure 2–4 and Figure 2–5 are extended out to current levels where the TPS54614 junction temperature reaches 125°C at 25°C ambient. When operating the TPS54614 past the 6-A maximum current rating, care should be taken to ensure that the maximum junction temperature does not exceed 125°C.
Figure 2–2.Measured Efficiency
95
90
Efficiency
TA = 25°C
85
80
75
Efficency – %
70
65
60
012345678910
Figure 2–3.Measured Board Losses
6
TA = 25°C
5
4
3
VI = 5 V
VI = 3.3 V
IL– Load Current – A
VI = 3.3 V
VI = 5 V
Losses – W
2
1
0
012345678910
IL– Load Current – A
Setup and Test Results
2-3
Page 16
Thermal Performance
2.3 Thermal Performance
The plot in Figure 2–4 shows the junction temperature versus the load current at 25°C ambient temperature. The case temperature is plotted in Figure 2–5. The low junction-to-case thermal resistance of the PWP package, along with a good board layout, helps to keep the junction temperature low at high output currents. With a 3.3-V input source and a 6-A load, the junction temperature is approximately 65°C, while the case temperature is approximately 59°C.
Figure 2–4.Measured Junction Temperature at 25°C Ambient
125
TA = 25°C
C
°
100
VI = 3.3 V
75
VI = 5 V
50
– Junction Temperature –
J
T
25
0
0123456789
IL– Load Current – A
Figure 2–5.Measured Case Temperature at 25°C Ambient
100
TA = 25°C
80
°
60
40
Case Temperature – C
20
0
012345678910
IL– Load Current – A
VI = 3.3 V
10
VI = 5 V
2-4
Page 17
2.4 Output Voltage Regulation
The output voltage load regulation at 25°C is shown in Figure 2–6. The output voltage varies less than 0.3% over the entire input voltage range of 3.3 V to
5.0 V, and load range of 0 A to 6 A.
Figure 2–6.Measured Load Regulation
1.003
1.002
1.001
Output Voltage Regulation
TA = 25°C
Output Voltage
0.999
(Normalized to 3-A Load)
0.998
0.997
1
0123456
IL– Load Current – A
VI = 5 V
VI = 3.3 V
Setup and Test Results
2-5
Page 18
Output Voltage Regulation
2.5 Load Transients
The TPS54614 EVM response to load transients is shown in Figure 2–7 and Figure 2–8. The load transient in Figure 2–7 transitions from 1.5 A to 4.5 A in 16 µs, while the load transient in Figure 2–8 transitions from 4.5 A to 1.5 A in 12 µs. The transient response can be improved at the cost of adding additional capacitance to the output.
Figure 2–7.Measured Load Transient Response
VO (AC) 50 mV/div
IO 2 A/div
Figure 2–8.Measured Negative Load Transient Response
VI = 3.3 V 20 µs/div
VO (AC) 20 mV/div
IO 2 A/div
VI = 3.3 V 20 µs/div
2-6
Page 19
2.6 Loop Characteristics
The loop gain and phase for a 5.0-V input and a 6.0-A load are shown in Figure 2–9 and Figure 2–10. The loop crossover frequency is approximately 50 kHz, and the phase margin is approximately 46°.
Figure 2–9.Measured Loop Gain
50
40
30
20
10
Loop Gain – dB
0
–10
Output Voltage Regulation
–20
10 100 1000 10000 100000
Figure 2–10. Measured Loop Phase
180
135
90
Loop Phase – Degrees
45
0
10 100 1000 10000 100000
f – Frequency – Hz
f – Frequency – Hz
Setup and Test Results
2-7
Page 20
Output Voltage Regulation
2.7 Output Voltage Ripple
The output ripple voltage is plotted in Figure 2–11 for a 3.3-V input, and in Figure 2–12 for a 5.0-V input. The TPS54614 has a typical output voltage ripple of less than 15 mV
Figure 2–11. Measured Output Voltage Ripple With 3.3-V Input
VI = 3.3 V IO = 6 A 1 µs/div
pp
.
IO 10 mV/div
Figure 2–12. Measured Output Voltage Ripple With 5.0-V Input
VI = 5 V IO = 6 A 1 µs/div
VO (AC) 10 mV/div
2-8
Page 21
2.8 Input Voltage Ripple
The input voltage ripple for a 6-A load is shown in Figure 2–13 for a 3.3-V input and in Figure 2–14 for a 5.0-V input. With a 5.0-V input, the ripple is approximately 260 mVpp. The input voltage ripple can be made lower by adding capacitance to the input.
Figure 2–13. Measured Input Voltage Ripple With 3.3-V Input
VI = 3.3 V IO = 6 A 400 ns/div
VI (AC) 100 mV/div
Output Voltage Regulation
Figure 2–14. Measured Input Voltage Ripple With 5.0-V Input
VI = 5 V IO = 6 A 400 ns/div
VI (AC) 100 mV/div
Setup and Test Results
2-9
Page 22
Output Voltage Regulation
2.9 Start-Up
The start-up voltage waveform of the TPS54614 EVM is shown in Figure 2–15. The TPS54614 output begins to rise when the input rises above the 3.0-V startup level. The output voltage then ramps linearly to 1.8 V in 3.6 ms. The start-up time is independent of input voltage and load. The slow start time can be made slower by using an external slow start capacitor (C6).
Figure 2–15. Measured Start-Up Waveforms
VI = 3.3 V IO = 0 A 2 ms/div
V
I
1 V/div
V
O
1 V/div
2-10
Page 23
Chapter 3
Board Layout
This chapter provides the TPS54614 EVM board layout illustrations.
Topic Page
3.1 Layout 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Board Layout
3-1
Page 24
Layout
3.1 Layout
The board layout for the TPS54614 EVM, shown in Figure 3–1 through Figure 3–4, resembles a layer stack-up encountered in a typical application. The top and bottom layers are 1.5 oz. copper, while the two internal layers are 0.5 oz. copper. The circuit components are confined to a small area of the circuit board. The two internal layers are identical and are used as quiet ground planes. The power ground plane is routed on the top layer, and is tied to the quiet (analog) ground planes at the output sense point (test point TP3). A wide power ground plane is used to keep the input ground current from injecting noise between the analog and power grounds. A total of 14 vias are used to tie the thermal land area under the TPS54614 to the internal ground planes and to the thermal plane on the back side of the board. The thermal plane on the back side occupies only the area directly underneath the regulator components, but should be made as large as possible in an actual application.
Figure 3–1.Top-Side Assembly
3-2
TPS5461x SWIFT Product Family
V
OUT
0.9 V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
Adj
Part Number
TPS54611 TPS54612 TPS54613 TPS54614 TPS54615 TPS54616 TPS54610
TPS54614EVM
SLVP183
REV A
2001
Page 25
Figure 3–2.Top-Side Layout
Layout
Board Layout
3-3
Page 26
Layout
Figure 3–3.Internal Layers Layout
3-4
Page 27
Figure 3–4.Bottom-Side Layout
Layout
Board Layout
3-5
Page 28
3-6
Page 29
Chapter 4
Schematic and Bill of Materials
This chapter provides a schematic diagram and bill of materials for the TPS54614 EVM.
Topic Page
4.1 Schematic 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Bill of Materials 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Schematic and Bill of Materials
4-1
Page 30
Schematic
4.1 Schematic
Figure 4–1.EVM Schematic
J3
Enable
GND
PWRGD
1 2 3
VIN
C6
1
0.1 µF
R1 10 k
C3
TPS54614PWP
28
RT
27
FSEL
26
SS/ENA
25
VBIAS
4
PWRGD
3
2
VSENSE
1
AGND
U1
PwrPad
VIN VIN
VIN VIN
VIN
PH PH PH PH
PH PH PH PH PH
BOOT PGND PGND PGND PGND PGND
6 5
19 18 17 16 15
24 23 22 21 20 14 13 12 11 10 9 8 7
C5
10 µF
C2
0.047 µF
+
L1
7.2 µH
TP1
VIN
C4 220 µF
TP2
+
2 1
1 2
C1 680 µF
TP3
J1
VIN GND
TP4
J2
VIN GND
1
Optional
4-2
Page 31
Bill of Materials
4.2 Bill of Materials
Table 4–1.TPS54614 EVM Bill of Materials
Count Ref Des Description Size MFR Part Number
1 C1
1 C2
1 C3
1 C4
1 C5
C6 Open (Unpopulated) 603 1 J1 Terminal block, 2-pin, 6-A, 3,5 mm 1 J2 Terminal block, 2-pin, 15-A, 5,1 mm 1 J3 Header, 3-pin, 100 mil spacing,
1 L1
1 R1 2 TP1,
TP2
Capacitor, POSCAP, 680-µF, 2.5-V, 40-m, 20%
Capacitor, ceramic, 0.047-µF, 25-V, X7R, 10%
Capacitor, ceramic, 0.1-µF, 25-V, X7R, 10%
Capacitor, POSCAP, 220-µF, 10-V, 40 m, 20%
Capacitor, ceramic, 10-µF, 10-V, X5R, 20%
(36-pin strip) Inductor, SMT, 7.2-µH, 7.8-A,
13.5 m Resistor, Chip, 10 kΩ, 1/16-W, 1% Test Point, red, 1mm 0.038 Farnell 240–345
7343 (D) Sanyo 2R5TPB680M
603 Murata GRM39X7R473K25
603 Murata GRM39X7R104K25
7343 (D) Sanyo 10TPB220M
1210 Panasonic ECJ–4YB1A106K
0.27 × 0.25
0.40 × 0.35
0.100 x 3 Sullins PTC36SAAN
0.492 sq Sumida CEP125(H)–7R2
603 Std Std
OST ED1514 OST ED1609
2 TP3,
TP4
1 U1
1 –– Shunt, 100-mil, black 0.100 3M 929950–00 1 NA PWB, 4 layers, 1 1/2 ounce copper
Test Point, black, 1mm 0.038 Farnell 240–333
IC, SWIFT power controller, 1.8-V, 6-A
PWP28 TI TPS54614PWP
3.00 × 3.00
Schematic and Bill of Materials
Any SLVP183
4-3
Page 32
4-4
Page 33
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments: TPS54614EVM-183
Loading...