Texas Instruments TPS51219 Schematic [ru]

1
2
3
4
12
11
10
9
SW
DH
DL
V5
VREF
GSNS
VSNS
TPS51219RTE
5 6 7 8
PGND
GND
TRIP
COMP
16 15 14 13
BST
EN
MODE
PGOOD
PwrPd
VSNS
GSNS
PGOOD
V5IN
EN
V
OUT
V
IN
UDG-11006
www.ti.com
High Performance, Single-Synchronous Step-Down Controller
with Differential Voltage Feedback
1

FEATURES

23
Differential Voltage Feedback
DC Compensation for Accurate Regulation
Wide Input Voltage Range: 3 V to 28 V
Output Voltage Range: 0.5 V to 2.0 V with
Fixed Options of 1.05 V and 1.00 V
Wide Output Load Range: 0 A to 20 A+
Adaptive On-Time Modulation with Selectable
Control Architecture and Frequency – D-CAPMode at 300 kHz/400 kHz for Fast
Transient Response
– D-CAP2™ Mode at 500 kHz/670 kHz for
Ceramic Output Capacitor
4700 ppm/°C, Low-Side R
R
Accurate Current Sense Option
SENSE
Internal, 1-ms Voltage Servo Softstart
Built-In Output Discharge
Power Good Output
Integrated Boost Switch
Built-In OVP/UVP/OCP
Thermal Shutdown (Non-latched)
3 mm × 3 mm, 16-Pin, QFN (RTE) Package

APPLICATIONS

Notebook Computers
I/O Supplies
Current Sensing
DS(on)
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

DESCRIPTION

The TPS51219 is a small-sized single buck controller with adaptive on-time control. It provides a choice of control modes (D-CAPor D-CAP2) to meet a wide range of system requirements. It is designed for tight DC regulation requirements such as the VCCIO application for Intel®notebooks. The performance and flexibility of the TPS51219 makes it suitable for low output voltage, high current, PC system power rails and similar point-of-load (POL) power supplies. Differential voltage feedback and the voltage compensation function combine to provide high precision power to load devices.
A small package, fixed voltage options and minimal external component count saves cost and space, while a dedicated EN pin and pre-set frequency selections minimize design effort. The skip-mode at light load condition, strong gate drivers, and low-side FET R operation over a broad load range. The external resistor current sense option enables accurate current sensing. The conversion input voltage (the high-side FET drain voltage) ranges from 3 V to 28 V and output voltage ranges from 0.5 V to 2.0 V. The device requires an external 5-V supply.
The TPS51219 is available in a 16-pin, QFN package and is specified for ambient temperature from -40°C to 85°C.
current sensing provides high efficiency
DS(on)
1
2D-CAP, D-CAP2 are trademarks of Texas Instruments. 3Intel is a registered trademark of Intel.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2011, Texas Instruments Incorporated
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
www.ti.com
ORDERING INFORMATION
T
A
PACKAGE PINS
40°C to 85°C Plastic Quad Flat Pack (QFN) 16
ORDERABLE DEVICE OUTPUT MINIMUM
NUMBER SUPPLY QUANTITY
TPS51219RTER Tape and reel 3000 TPS51219RTET Mini-reel 250
(1)
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

(1)
over operating free-air temperature range (unless otherwise noted)
VALUE UNIT
MIN MAX
BST –0.3 36
(3)
BST SW –5 30
Input voltage range
(2)
EN, MODE, TRIP, V5 –0.3 6.0 V COMP, REFIN, VSNS –0.3 3.6 GSNS –0.35 0.35 PGND –0.3 0.3 DH –5 36
(3)
DH
Output voltage range
(2)
DL –0.3 6 V PGOOD –0.3 6
VREF –0.3 3.6 Junction temperature range, T Storage temperature range, T
J
STG
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to the network ground terminal unless otherwise noted. (3) Voltage values are with respect to the SW terminal.
0.3 6
0.3 6
125 °C
55 150 °C
2 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
TPS51219
www.ti.com

RECOMMENDED OPERATING CONDITIONS

Supply voltage V5 4.5 5.5 V
BST –0.1 33.5
(1)
BST SW -3 28
(2)
Input voltage range V
Output voltage range V
T
A
(1) Voltage values are with respect to the SW terminal. (2) This voltage should be applied for less than 30% of the repetitive period.
SW EN, TRIP, MODE –0.1 5.5 REFIN, VSNS, COMP –0.1 3.5 GSNS –0.3 0.3 PGND –0.1 0.1 DH –3 33.5
(1)
DH
(2)
DH DL –0.1 5.5 PGOOD –0.1 5.5 VREF –0.1 3.5 Operating free-air temperature –40 85 °C
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
MIN TYP MAX UNIT
0.1 5.5
4.5 28
0.1 5.54.5 33.5

THERMAL INFORMATION

TPS51219
THERMAL METRIC
θ
θ
θ
ψ
ψ
θ
JA JCtop JB
JT JB
JCbot
Junction-to-ambient thermal resistance Junction-to-case (top) thermal resistance Junction-to-board thermal resistance Junction-to-top characterization parameter Junction-to-board characterization parameter Junction-to-case (bottom) thermal resistance
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as
specified in JESD51-7, in an environment described in JESD51-2a. (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8. (5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7). (6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7). (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(1)
RTE UNITS
16 PINS
(2)
(3)
(4)
(5)
(6)
(7)
48.5
49.5
22.1
0.7
22.1
7.1
°C/W
Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 3
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, VV5= 5 V, V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
SUPPLY CURRENT
I
V5
I
V5SDN
VREF OUTPUT
V
VREF
V
VREF(tol)
I
VREF(ocl)
OUTPUT VOLTAGE
V
VSNS
V
VSNS(tol)
V
REFIN1
V
REFIN1P05
V
OFF_LPCMP
V
COMPCLP
g
M
I
VSNS
I
REFIN
I
VSNS(dis)
SWITCH MODE POWER SUPPLY (SMPS) FREQUENCY
f
SW
t
ON(min)
t
OFF(min)
MOSFET DRIVERS
R
DH
R
DL
t
DEAD
INTERNAL BOOT STRAP SWITCH
V
FBST
I
BSTLK
(1) Ensured by design. Not production tested.
V5 supply current TA= 25°C, No load, VEN= 5 V 560 μA V5 shutdown current TA= 25°C, No load, VEN= 0 V 0.5 2.0 μA
Output voltage I
Output voltage tolerance
Current limit V
VSNS sense voltage V
VSNS regulation voltage tolerance V
= 0 μA wrt GSNS 2.000 V
VREF
0 μA I
VREF
0 μA I
VREF
VREF-GSNS
V
= 0 V 1.000 V
REFIN
= 3.3 V 1.050 V
REFIN
0.5 V V
REFIN
V
= 0 V, 0°C TA≤ 85°C –9 9
REFIN
V
= 0 V, -40°C TA≤ 85°C -14 14
REFIN
= 3.3 V, 0°C TA≤ 85°C –9 9 mV
REFIN
V
= 3.3 V, -40°C TA≤ 85°C -14 14
REFIN
V
= 0.5 V and V
REFIN
REFIN voltage for 1.00-V output 0.3 V REFIN voltage for 1.05-V output 2.2 V Loop comparator offset voltage V
COMP clamp voltage
Error amplifier transconductance V VSNS input current V REFIN input current V
= 1 V, VSNS shorted to COMP -5 5 mV
REFIN
V
= 0 V, V
REFIN
V
= 0 V, V
REFIN
= 0 V 130 μS
REFIN
= 1.05 V -1 1 μA
VSNS
= 0 V –1 1 μA
REFIN
VSNS discharge current VEN= 0 V, V
VIN= 12 V, V
Switching frequency kHz
VIN= 12 V, V VIN= 12 V, V
VIN= 12 V, V Minimum on time DH rising to falling Minimum off time DH falling to rising 320
DH resistance
DL resistance
Dead time ns
Forward voltage V
Source, IDH= –50 mA 1.6 3.0
Sink, IDH= 50 mA 0.6 1.5
Source, IDL= –50 mA 0.9 2.0
Sink, IDL= 50 mA 0.5 1.2
DH-off to DL-on 10
DL-off to DH-on 20
, TA= 25°C, IF= 10 mA 0.1 0.2 V
V5-BST
BST leakage current TA= 25°C, V
www.ti.com
= 0 V, VEN= 5 V (unless otherwise noted)
MODE
< 30 μA, TA= 0°C to 85°C -0.8% 0.8% < 300 μA, TA= –40°C to 85°C -1.2% 1.2%
= 1.7 V 0.4 1.0 mA
2 V V
= 2.0 V -5 5
REFIN
= 0.95 V 0.885 V
VSNS
= 1.05 V 1.115 V
VSNS
= 0.5 V 5 12 mA
VSNS
VSNS VSNS VSNS VSNS
= 1.8 V, V = 1.8 V, V = 1.8 V, V = 1.8 V, V
(1)
= 2.5 V 400
MODE
= 1.67 V 300
MODE
= 0.2 V 670
MODE
= 0.033 V 500
MODE
REFIN
60
V
ns
Ω
= 33 V, VSW= 28 V 0.01 1.5 μA
BST
4 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
over operating free-air temperature range, VV5= 5 V, V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
LOGIC THRESHOLD
I
MODE
V
THMODE
V
LL
V
LH
V
LHYST
I
LLK
SOFT START
t
SS
POWERGOOD COMPARATOR
V
THPG
I
PG
t
PGDLY
t
PGCMPSS
I
PG(leak)
CURRENT DETECTION
I
TRIP
(2)
TC
ITRIP
V
TRIP
V
OCL
V
OCLN
V
RTRIP
V
ZC
(2) Ensured by design. Not production tested.
MODE source current 15.6 16.7 17.8 μA
MODE 0-1 113 143 173
MODE 1-2 253 283 313
MODE 2-3 433 458 483 MODE threshold voltage MODE 3-4 644 667 690 mV
MODE 4-5 914 949 984
MODE 5-6 1329 1369 1409
MODE 6-7 1950 2000 2050 EN low-level voltage 0.5 EN high-level voltage 1.8 V EN hysteresis voltage 0.25 EN input leakage current –1 0 1 μA
Soft-start time Internal soft-start time 1.1 ms
PGOOD in from higher 106% 108% 110%
PGOOD threshold
PGOOD in from lower 90% 92% 94%
PGOOD out to higher 114% 116% 118%
PGOOD out to lower 82% 84% 86% PGOOD sink current V
PGOOD delay time
PGOOD
Delay for PGOOD in 0.8 1.0 1.2 ms
Delay for PGOOD out, with 100 mV over drive 0.25 µs PGOOD start-up delay PGOOD comparator wake-up delay 2.5 ms PGOOD leakage current -1 0 1 µA
TRIP source current TA= 25°C, V TRIP source current temperature
coefficient V
(2)
voltage range R
TRIP
Current limit threshold V
Negative current limit threshold V
R
V
V
V
V
DS(on)
DS(on) TRIP TRIP TRIP TRIP TRIP TRIP
Resistor sense trip voltage Resistor sensing 25 mV Zero cross detection offset 0 mV
MODE
= 0.5 V 3 6 mA
TRIP
sensing 4700 ppm/°C
sensing 0.2 3 V = 3.0 V, R = 1.6 V, R = 0.2 V, R = 3.0 V, R = 1.6 V, R = 0.2 V, R
DS(on) DS(on) DS(on) DS(on) DS(on) DS(on)
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
= 0 V, VEN= 5 V (unless otherwise noted)
= 0.4 V, R
sensing 360 375 390 sensing 190 200 210 mV sensing 20 25 30 sensing –390 –375 –360 sensing –212 –200 –188 mV sensing –30 –25 –20
sensing 9 10 11 μA
DS(on)
Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 5
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
ELECTRICAL CHARACTERISTICS (continued)
over operating free-air temperature range, VV5= 5 V, V
PARAMETER TEST CONDITION MIN TYP MAX UNIT
PROTECTIONS
V
UVLO
V
OVP
t
OVPDLY
V
UVP
t
UVPDLY
t
UVPENDLY
V5 UVLO threshold voltage V
OVP threshold voltage OVP detect voltage 118% 120% 122% OVP propagation delay With 100 mV over drive 370 ns UVP threshold voltage UVP detect voltage 66% 68% 70% UVP delay 1 ms UVP enable delay 1.4 ms
THERMAL SHUTDOWN
T
SDN
Thermal shutdown threshold °C
(3) Ensured by design. Not production tested.
Wake-up 4.2 4.4 4.5 Shutdown 3.7 3.9 4.1
Shutdown temperature Hysteresis
MODE
(3)
= 0 V, VEN= 5 V (unless otherwise noted)
(3)
www.ti.com
140
10
6 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
4
2
3
8
12
11
10
9
VREF
REFIN
GSNS
VSNS
PGOOD
DH
DL
V5
16 15 14 13
1
5 6 7
MODE
EN
BST
SW
PGND
GND
COMP
TRIP
TPS51219
PowerPAD
TM
www.ti.com
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

DEVICE INFORMATION

RTE PACKAGE (TOP VIEW)
PIN FUNCTIONS
PIN
NAME NO.
BST 13 I High-side MOSFET gate driver bootstrap voltage input. Connect a capacitor from the BST pin to the SW pin.
COMP 5 I
DH 11 O High-side MOSFET gate driver output. DL 10 O Low-side MOSFET gate driver output. EN 14 I Enable pin. 3.3-V I/O level, 100 ns de-bounce. Short to GND to disable the device. GND 7 Device analog ground; Connect to a quiet point on the system GND plane GSNS 3 I Voltage sense return tied directly to the GND sense point of the load. Short to GND if remote sense is not used.
MODE 15 I
PGND 8 – PGOOD 16 O Powergood signal open drain output. PGOOD goes high when the output voltage is within the target range.
REFIN 2 I Output voltage setting pin. See the VREF and REFIN, Output Voltage section. SW 12 I/O High-side MOSFET gate driver return. R
TRIP 6 I current sensing if connected to GND through an OCL setting resistor. For R
VSNS 4 I Voltage sense line tied directly to the load voltage sense point. VREF 1 O 2.0-V ±0.8% voltage reference output. V5 9 I 5V power supply input for internal circuits and MOSFET gate drivers. Thermal
pad
I/O DESCRIPTION
Connection for the DC compensation integrator for improved load-line performance. Connect a capacitor from this pin to the VSNS pin (when operating in D-CAP2 mode), or to the positive terminal of the output capacitor (when operating in D-CAP mode). Connect directly to the VSNS pin without capacitor to disable the integrator function.
Connect a resistor to GND to configure switching frequency, control mode and current sense scheme. (See
Table 2)
Synchronous low-side MOSFET gate driver return. Also serve as the current sensing input (+). Connect to the GND pin as close as possible to the device.
current sensing input (–) when using R
DS(on)
Current sense comparator input (-) for resistor current sensing. Or overcurrent threshold setting pin for R
μA at room temperature, TC=4700ppm/°C, is sourced to set the trip voltage.
Thermal pad. Connect directly to system GND plane with multiple vias.
current sensing.
DS(on)
current sensing operation, 10
DS(on)
DS(on)
Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 7
8
12
PGND
SW
OC
ZC
XCON
13
BST
9 V5
PWM
4
REFIN
TRIP
Delay
16 PGOOD
Control Logic
10 mA
+
+
V
REFIN
+ 20%
+
+
2
VSNS
6
11 DH
10 DL
t
ON
One­Shot
UV
OV
V
REFIN
– 32%
14EN
Soft-Start
+
NOC
+
1VREF Reference
7 R
R
Control Mode
On-Time
Current Sense
Selection
16.7 mA
15 MODE
V
REFIN
+8/16%
V
REFIN
– 8/16%
+
+
Discharge
V5OK
+
4.3 V/3.9 V
UVPOVP
COMP 5
+
VBG
5-V UVLO
TPS51219
UDG-11007
EN
3GSNS
7GND
EN
Set_1p05v
Set_adj
Discharge
R
8 R
+
V
REFIN
2.2 V
0.3 V
Set_adj
Set_1p05v
EN
+
+
25 mV
Set_resistor _sensing
Set_resistor _sensing
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

FUNCTIONAL BLOCK DIAGRAM

www.ti.com
8 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
0
200
400
600
800
1000
−50 −25 0 25 50 75 100 125 Junction Temperature (°C)
V5 Supply Current (µA)
VV5 = 5 V VEN = 5 V No Load
0
2
4
6
8
10
−50 −25 0 25 50 75 100 125 Junction Temperature (°C)
V5 Shutdown Current (µA)
VV5 = 5 V VEN = 0 V No Load
0
2
4
6
8
10
12
14
16
−50 −25 0 25 50 75 100 125 Junction Temperature (°C)
Trip Source Current (µA)
VV5 = 5 V V
TRIP
= 0.5 V
50
60
70
80
90
100
110
120
130
140
150
−50 −25 0 25 50 75 100 125 Junction Temperature (°C)
UVP/OVP Threshold (%)
UVP OVP
VV5 = 5 V V
REFIN
= 0 V
1.980
1.985
1.990
1.995
2.000
2.005
2.010
2.015
2.020
0 50 100 150 200 250 300 350 400
VREF Current (µA)
VREF Voltage (V)
VV5 = 5 V TA = 27°C
200
300
400
500
600
700
800
900
6 8 10 12 14 16 18 20 22
Input Voltage (V)
Switching Frequency (kHz)
R
MODE
= 1 k
R
MODE
= 12 k
R
MODE
= 100 k
R
MODE
= 200 k
I
OUT
= 10 A
www.ti.com
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

TYPICAL CHARACTERISTICS

Figure 1. V5 Supply Current vs Junction Temperature Figure 2. V5 Shutdown Current vs Junction Temperature
Figure 3. Current Sense Current vs Junction Temperature Figure 4. OVP/UVP Threshold vs Junction Temperature
Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 9
Figure 5. VREF Load Regulation Figure 6. Switching Frequency vs Input Voltage
0
100
200
300
400
500
600
700
800
0 2 4 6 8 10 12 14 16 18 20
Output Current (A)
Switching Frequency (kHz)
R
MODE
= 100 k VIN = 12 V V
OUT
= 1.05 V
L = 0.56 µH
0
100
200
300
400
500
600
700
800
0 2 4 6 8 10 12 14 16 18 20
Output Current (A)
Switching Frequency (kHz)
R
MODE
= 200 k VIN = 12 V V
OUT
= 1.05 V
L = 0.56 µH
0
100
200
300
400
500
600
700
800
0 2 4 6 8 10 12 14 16 18 20
Output Current (A)
Switching Frequency (kHz)
R
MODE
= 1 k VIN = 12 V V
OUT
= 1.05 V
L = 0.45 µH
0
100
200
300
400
500
600
700
800
0 2 4 6 8 10 12 14 16 18 20
Output Current (A)
Switching Frequency (kHz)
R
MODE
= 12 k VIN = 12 V V
OUT
= 1.05 V
L = 0.36 µH
1.030
1.035
1.040
1.045
1.050
1.055
1.060
1.065
1.070
0 2 4 6 8 10 12 14 16 18 20
1.05−V Output Current (A)
VSNS−GSNS − 1.05−V Output Voltage (V)
R
MODE
= 1 k VIN = 12 V
G001
1.030
1.035
1.040
1.045
1.050
1.055
1.060
1.065
1.070
6 8 10 12 14 16 18 20 22
Input Voltage (V)
VSNS−GSNS − 1.05−V Output Voltage (V)
I
OUT
= 0 A
I
OUT
= 10 A
R
MODE
= 1 k
G001
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
Figure 11 and Figure 12 refer to the application schematic in Figure 33.
Figure 7. Switching Frequency vs Load Current Figure 8. Switching Frequency vs Load Current
www.ti.com

TYPICAL CHARACTERISTICS

Figure 9. Switching Frequency vs Load Current Figure 10. Switching Frequency vs Load Current
10 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
Figure 11. 1.05-V Output Load Regulation Figure 12. 1.05-V Output Line Regulation
0.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
0 2 4 6 8 10
1.00−V Output Current (A)
VSNS−GSNS − 1.00−V Output Voltage (V)
R
MODE
= 1 k VIN = 12 V
G001
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1 10 100
1.05−V Output Current (A)
Efficiency (%)
VIN = 8 V VIN = 12 V VIN = 20 V
R
MODE
= 1 k
0.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
6 8 10 12 14 16 18 20 22
Input Voltage (V)
VSNS−GSNS − 1.00−V Output Voltage (V)
I
OUT
= 0 A
I
OUT
= 10 A
R
MODE
= 1 k
G001
0
10
20
30
40
50
60
70
80
90
100
0.001 0.01 0.1 1 10 100
1.00−V Output Current (A)
Efficiency (%)
VIN = 8 V VIN = 12 V VIN = 20 V
R
MODE
= 1 k
www.ti.com
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011

TYPICAL CHARACTERISTICS

Figure 11, Figure 12, and Figure 13 refer to the application schematic in Figure 33.
Figure 14, Figure 15 and Figure 16, refer to the application schematic in Figure 33 except the parameters
of L1 (0.56 µH), C7 (2 × 330 µF) and Q3 (not used).
Figure 13. 1.05-V Output Efficiency Figure 14. 1.00-V Output Load Regulation
Figure 15. 1.00-V Output Line Regulation Figure 16. 1.00-V Output Efficiency
Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback 11
VIN=20 V
VSNS-GSNS (20 mV/div) offset: 1.05 V
I
OUT
(8 A/div)
offset: 6 A
C
OUT
= 5 x 330 µF(Bulk) + 12 x 22 µF(MLCC)
VIN=20 V
VSNS-GSNS (20 mV/div) offset: 1.00 V
I
OUT
(8 A/div)
C
OUT
= 2 x 330 µF(Bulk) + 12 x 22 µF(MLCC)
EN (5 V/div)
VSNS-GSNS
(500mV/div)
PGOOD (5V/div)
Time (400 µs/div)
I
OUT
= 15A
Time (400 µs/div)
EN (5 V/div)
VSNS-GSNS
(500mV/div)
PGOOD (5V/div)
I
OUT
= 0 A
0.5-V Pre-biased
TPS51219
SLUSAG1B –MARCH 2011– REVISED OCTOBER 2011
Figure 17. 1.05-V Load Transient Response Figure 18. 1.00-V Load Transient Response
www.ti.com

TYPICAL CHARACTERISTICS

12 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated
Figure 19. 1.05-V Startup Waveforms Figure 20. 1.05-V Startup Waveforms (0.5-V Pre-Biased)
Loading...
+ 26 hidden pages