APPLICATION CIRCUIT
PGND
ROUT-
PV
DD
RHPIN
RLINEIN
RIN
V
DD
LIN
LLINEIN
LHPIN
PV
DD
LOUT-
1
ROUT+
SE/BTL
HP/LINE
VOLUME
SEDIFF
SEMAX
AGND
BYPASS
FADE
SHUTDOWN
LOUT+
PGND
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
C
S
C
i
V
DD
Right HP
Audio Source
C
i
C
i
C
S
C
i
C
i
C
i
C
S
Power Supply
Right Line
Audio Source
Left Line
Audio Source
Left HP
Audio Source
Power Supply
V
DD
100 kΩ
100 kΩ
C
C
In From DAC
or
Potentiometer
(DC Voltage)
C
(BYP)
System
Control
C
C
Right
Speaker
Left
Speaker
Headphone
s
1 kΩ
1 kΩ
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Volume [Pin 21] - V
DC VOLUME CONTROL
SE Volume,
SEDIFF [Pin 20] = 0 V
SE Volume,
SEDIFF [Pin 20] = 1 V
Volume - dB
BTL Volume
BTL Volume (dB) ∝ Volume (V)
SE Volume (dB) ∝ Volume (V) - SEDIFF
(V)
3-W STEREO AUDIO POWER AMPLIFIER
WITH ADVANCED DC VOLUME CONTROL
FEATURES DESCRIPTION
• Advanced DC Volume Control With 2-dB
Steps
From -40 dB to 20 dB
– Fade Mode
– Maximum Volume Setting for SE Mode
– Adjustable SE Volume Control
Referenced to BTL Volume Control
• 3 W Into 3- Ω Speakers
• Stereo Input MUX
• Differential Inputs
APPLICATIONS
• Notebook PC
• LCD Monitors
• Pocket PC
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
The TPA6011A4 is a stereo audio power amplifier
that drives 3 W/channel of continuous RMS power
into a 3- Ω load. Advanced dc volume control
minimizes external components and allows BTL
(speaker) volume control and SE (headphone) volume control. Notebook and pocket PCs benefit from
the integrated feature set that minimizes external
components without sacrificing functionality.
To simplify design, the speaker volume level is
adjusted by applying a dc voltage to the VOLUME
terminal. Likewise, the delta between speaker volume
and headphone volume can be adjusted by applying
a dc voltage to the SEDIFF terminal. To avoid an
unexpected high volume level through the
headphones, a third terminal, SEMAX, limits the
headphone volume level when a dc voltage is applied. Finally, to ensure a smooth transition between
active and shutdown modes, a fade mode ramps the
volume up and down.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2002–2004, Texas Instruments Incorporated
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
AVAILABLE OPTIONS
T
A
40 ° C to 85 ° C TPA6011A4PWP
(1) The PWP package is available taped and reeled. To order a taped
and reeled part, add the suffix R to the part number
(e.g., TPA6011A4PWPR).
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
V
SS
V
I
T
A
T
J
T
stg
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Supply voltage, VDD, PV
DD
Input voltage -0.3 V to VDD+0.3 V
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range -40 ° C to 85 ° C
Operating junction temperature range -40 ° C to 150 ° C
Storage temperature range -65 ° C to 150 ° C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 ° C
PACKAGE
24-PIN TSSOP (PWP)
(1)
(1)
UNIT
-0.3 V to 6 V
PACKAGE
RECOMMENDED OPERATING CONDITIIONS
V
SS
V
IH
V
IL
T
A
Supply voltage, VDD, PV
High-level input voltage
Low-level input voltage
Operating free-air temperature -40 85 ° C
DISSIPATION RATING TABLE
TA≤ 25 ° C DERATING FACTOR TA= 70 ° C TA= 85 ° C
POWER RATING ABOVE TA= 25 ° C POWER RATING POWER RATING
PWP 2.7 mW 21.8 mW/ ° C 1.7 W 1.4 W
DD
SE/ BTL, HP/ LINE, FADE 0.8 × V
SHUTDOWN 2 V
SE/ BTL, HP/ LINE, FADE 0.6 × V
SHUTDOWN 0.8 V
MIN MAX UNIT
4.0 5.5 V
DD
DD
V
V
2
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
ELECTRICAL CHARACTERISTICS
TA= 25 ° C, V
| V
| Output offset voltage (measured differentially)
OO
PSRR Power supply rejection ratio V
| IIH| 1 µA
| IIL| V
I
DD
I
DD
I
DD(SD)
OPERATING CHARACTERISTICS
TA= 25 ° C, V
P
O
THD+N Total harmonic distortion + noise PO= 1 W, RL= 8 Ω , f = 20 Hz to 20 kHz <0.4%
V
OH
V
OL
V
(Bypass
)
B
OM
Z
I
= PV
DD
= 5.5 V (unless otherwise noted)
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V
= 5.5 V, Gain = 0 dB, SE/ BTL = 0 V 30 mV
DD
V
= 5.5 V, Gain = 20 dB, SE/ BTL = 0 V 50 mV
DD
= PV
DD
High-level input current (SE/ BTL, FADE, HP/ LINE, V
SHUTDOWN, SEDIFF, SEMAX, VOLUME) VI= V
Low-level input current (SE/ BTL, FADE, HP/ LINE,
SHUTDOWN, SEDIFF, SEMAX, VOLUME)
Supply current, no load mA
Supply current, max power into a 3- Ω load SHUTDOWN = 2 V, RL= 3 Ω , 1.5 A
DD
DD
V
DD
SHUTDOWN = 2 V
V
DD
SHUTDOWN = 2 V
V
DD
= 4.0 V to 5.5 V -42 -70 dB
DD
= PV
= 5.5 V,
DD
= PV
DD
DD
= PV
= 5.5 V, VI= 0 V 1 µA
DD
= PV
= 5.5 V, SE/ BTL = 0 V,
DD
= PV
= 5.5 V, SE/ BTL = 5.5 V,
DD
= 5 V = PV
, SE/ BTL = 0 V,
DD
6.0 7.5 9.0
3.0 5 6
PO= 2 W, stereo
Supply current, shutdown mode SHUTDOWN = 0.0 V 1 20 µA
= PV
DD
= 5 V, RL= 3 Ω , Gain = 6 dB (unless otherwise noted)
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output power W
High-level output voltage RL= 8 Ω , Measured between output and V
THD = 1%, f = 1 kHz 2
THD = 10%, f = 1 kHz, V
= 5.5 V 3
DD
DD
700 mV
Low-level output voltage RL= 8 Ω , Measured between output and GND 400 mV
Bypass voltage (Nominally VDD/2) Measured at pin 17, No load, V
= 5.5 V 2.65 2.75 2.85 V
DD
Maximum output power bandwidth THD = 5% >20 kHz
Supply ripple rejection ratio f = 1 kHz, Gain = 0 dB, C
Noise output voltage BTL 36 µV
f = 20 Hz to20 kHz, Gain = 0 dB,
C
= 0.47 µF
(BYP)
= 0.47 µF
(BYP)
BTL -63 dB
SE -57 dB
Input impedance (see Figure 26 ) VOLUME = 5.0 V 14 k Ω
RMS
RMS
3
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
PGND
ROUT-
PV
DD
RHPIN
RLINEIN
RIN
V
DD
LIN
LLINEIN
LHPIN
PV
DD
LOUT-
ROUT+
SE/BTL
HP/LINE
VOLUME
SEDIFF
SEMAX
AGND
BYPASS
FADE
SHUTDOWN
LOUT+
PGND
PWP PACKAGE
(TOP VIEW)
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
Terminal Functions
TERMINAL
NAME NO.
PGND 1, 13 - Power ground
LOUT- 12 O Left channel negative audio output
PV
DD
LHPIN 10 I Left channel headphone input, selected when HP/ LINE is held high
LLINEIN 9 I Left channel line input, selected when HP/ LINE is held low
LIN 8 I Common left channel input for fully differential input. AC ground for single-ended inputs.
V
DD
RIN 6 I Common right channel input for fully differential input. AC ground for single-ended inputs.
RLINEIN 5 I Right channel line input, selected when HP/ LINE is held low
RHPIN 4 I Right channel headphone input, selected when HP/ LINE is held high
ROUT- 2 O Right channel negative audio output
ROUT+ 24 O Right channel positive audio output
SHUTDOWN 15 I Places the amplifier in shutdown mode if a TTL logic low is placed on this terminal
FADE 16 I
BYPASS 17 I Tap to voltage divider for internal midsupply bias generator used for analog reference
AGND 18 - Analog power supply ground
SEMAX 19 I Sets the maximum volume for single ended operation. DC voltage range is 0 to VDD.
SEDIFF 20 I Sets the difference between BTL volume and SE volume. DC voltage range is 0 to VDD.
VOLUME 21 I Terminal for dc volume control. DC voltage range is 0 to VDD.
HP/ LINE 22 I
SE/ BTL 23 I
LOUT+ 14 O Left channel positive audio output.
I/O DESCRIPTION
3, 11 - Supply voltage terminal for power stage
7 - Supply voltage terminal
Places the amplifier in fade mode if a logic low is placed on this terminal; normal operation if a logic high is
placed on this terminal
Input MUX control. When logic high, RHPIN and LHPIN inputs are selected. When logic low, RLINEIN and
LLINEIN inputs are selected.
Output MUX control. When this terminal is high, SE outputs are selected. When this terminal is low, BTL
outputs are selected.
4
FUNCTIONAL BLOCK DIAGRAM
Power
Management
32-Step
Volume
Control
MUX
Control
R
MUX
RHPIN
ROUT+
SHUTDOWN
ROUT-
PV
DD
PGND
V
DD
BYPASS
AGND
LOUT+
LOUT-
RLINEIN
RIN
HP/LINE
VOLUME
SEDIFF
SEMAX
FADE
_
+
HP/LINE
_
+
_
+
BYP
_
+
BYP
BYP
EN
SE/BTL
L
MUX
_
+
HP/LINE
_
+
_
+
BYP
_
+
BYP
BYP
EN
SE/BTL
SE/BTL
LHPIN
LLINEIN
LIN
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
NOTE: All resistor wipers are adjusted with 32 step volume control.
5
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
Table 1. DC Volume Control (BTL Mode, V
FROM (V) TO (V)
0.00 0.26 -85
0.33 0.37 -40
0.44 0.48 -38
0.56 0.59 -36
0.67 0.70 -34
0.78 0.82 -32
0.89 0.93 -30
1.01 1.04 -28
1.12 1.16 -26
1.23 1.27 -24
1.35 1.38 -22
1.46 1.49 -20
1.57 1.60 -18
1.68 1.72 -16
1.79 1.83 -14
1.91 1.94 -12
2.02 2.06 -10
2.13 2.17 -8
2.25 2.28 -6
2.36 2.39 -4
2.47 2.50 -2
2.58 2.61 0
2.70 2.73 2
2.81 2.83 4
2.92 2.95 6
3.04 3.06 8
3.15 3.17 10
3.26 3.29 12
3.38 3.40 14
3.49 3.51 16
3.60 3.63 18
3.71 5.00 20
(1) For other values of VDD, scale the voltage values in the table by a factor of VDD/5.
(2) Tested in production. Remaining gain steps are specified by design.
VOLUME (PIN 21)
(1)
= 5 V)
DD
GAIN OF AMPLIFIER
(Typ)
(2)
(2)
(2)
6
Table 2. DC Volume Control (SE Mode, V
DD
SE_VOLUME = VOLUME - SEDIFF or SEMAX
FROM (V) TO (V)
0.00 0.26 -85
0.33 0.37 -46
0.44 0.48 -44
0.56 0.59 -42
0.67 0.70 -40
0.78 0.82 -38
0.89 0.93 -36
1.01 1.04 -34
1.12 1.16 -32
1.23 1.27 -30
1.35 1.38 -28
1.46 1.49 -26
1.57 1.60 -24
1.68 1.72 -22
1.79 1.83 -20
1.91 1.94 -18
2.02 2.06 -16
2.13 2.17 -14
2.25 2.28 -12
2.36 2.39 -10
2.47 2.50 -8
2.58 2.61 -6
2.70 2.73 -4
2.81 2.83 -2
2.92 2.95 0
3.04 3.06 2
3.15 3.17 4
3.26 3.29 6
3.38 3.40 8
3.49 3.51 10
3.60 3.63 12
3.71 5.00 14
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
(1)
= 5 V)
GAIN OF AMPLIFIER
(Typ)
(2)
(2)
(2)
(2)
(1) For other values of VDD, scale the voltage values in the table by a factor of VDD/5.
(2) Tested in production. Remaining gain steps are specified by design.
7
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
20 20 k 100 1 k 10 k
VDD = 5 V
RL = 3 Ω
Gain = 20 dB
BTL
PO = 1.75 W
PO = 0.5 W
PO = 1 W
THD+N − Total Harmonic Distortion + Noise (BTL) − %
f − Frequency − Hz
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
20 20 k 50 100 200 500 1 k 2 k 5 k 10 k
PO = 0.25 W
PO = 1.5 W
PO = 1 W
f − Frequency − Hz
THD+N − Total Harmonic Distortion + Noise (BTL) − %
VDD = 5 V
RL = 4 Ω
Gain = 20 dB
BTL
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
TYPICAL CHARACTERISTICS
Table of Graphs
THD+N Total harmonic distortion plus noise (BTL)
THD+N Total harmonic distortion plus noise (SE) vs Output power 9
Closed loop response 11, 12
I
CC
P
P
Supply current
Power Dissipation vs Output power 17, 18
D
Output power vs Load resistance 19, 20
O
Crosstalk vs Frequency 21, 22
HP/ LINE attenuation vs Frequency 23
PSRR Power supply ripple rejection (BTL) vs Frequency 24
PSRR Power supply ripple rejection (SE) vs Frequency 25
Z
V
Input impedance vs BTL gain 26
I
Output noise voltage vs Frequency 27
n
vs Frequency 1, 2 3
vs Output power 6, 7, 8
vs Frequency 4, 5
vs Output voltage 10
vs Temperature 13
vs Supply voltage 14, 15, 16
FIGURE
TOTAL HARMONIC DISTORTION + NOISE (BTL) TOTAL HARMONIC DISTORTION + NOISE (BTL)
8
vs vs
FREQUENCY FREQUENCY
Figure 1. Figure 2.
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
20
20 k 50 100 200 500 1 k 2 k 5 k 10 k
f − Frequency − Hz
THD+N − Total Harmonic Distortion + Noise (SE) − %
PO = 75 mW
VDD = 5 V
RL = 32 Ω
Gain = 14 dB
SE
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
20 20 k 50 100 200 500 1 k 2 k 5 k 10 k
PO = 1 W
VDD = 5 V
RL = 8 Ω
Gain = 20 dB
BTL
f − Frequency − Hz
THD+N − Total Harmonic Distortion + Noise (BTL) − %
PO = 0.25 W
PO = 0.5 W
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
20 20 k 50 100 200 500 1 k 2 k 5 k 10 k
f − Frequency − Hz
THD+N − Total Harmonic Distortion + Noise (SE) − %
VO = 1 V
RMS
VDD = 5 V
RL = 10 kΩ
Gain = 14 dB
SE
PO − Output Power − W
THD+N − Total Harmonic Distortion + Noise (BTL) − %
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
0.01 10 0.1 1
f = 20 kHz
f = 1 kHz
f = 20 Hz
VDD = 5 V
RL = 3 Ω
Gain = 20 dB
BTL
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
TOTAL HARMONIC DISTORTION + NOISE (BTL) TOTAL HARMONIC DISTORTION + NOISE (SE)
vs vs
FREQUENCY FREQUENCY
Figure 3. Figure 4.
TOTAL HARMONIC DISTORTION + NOISE (SE) TOTAL HARMONIC DISTORTION + NOISE (BTL)
vs vs
FREQUENCY OUTPUT POWER
Figure 5. Figure 6.
9
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
5 0.02 0.05 0.1 0.2 0.5 1 2
PO − Output Power − W
THD+N − Total Harmonic Distortion + Noise (BTL) − %
1 kHz
20 kHz
VDD = 5 V
RL = 8 Ω
Gain = 20 dB
BTL
20 Hz
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
5 0.02 0.05 0.1 0.2 0.5 1 2
PO − Output Power − W
THD+N − Total Harmonic Distortion + Noise (BTL) − %
1 kHz
20 kHz
20 Hz
VDD = 5 V
RL = 4 Ω
Gain = 20 dB
BTL
10
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
0 500 m 1 1.5 2
VO − Output Voltage − rms
THD+N − Total Harmonic Distortion + Noise (SE) − %
1 kHz
20 kHz
20 Hz
VDD = 5 V
RL = 10 kΩ
Gain = 14 dB
SE
10
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10 m 200 m 50 m 100 m
PO − Output Power − W
THD+N − Total Harmonic Distortion + Noise (SE) − %
1 kHz
20 kHz
20 Hz
VDD = 5 V
RL = 32 Ω
Gain = 14 dB
SE
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
TOTAL HARMONIC DISTORTION + NOISE (BTL) TOTAL HARMONIC DISTORTION + NOISE (BTL)
vs vs
OUTPUT POWER OUTPUT POWER
Figure 7. Figure 8.
TOTAL HARMONIC DISTORTION + NOISE (SE) TOTAL HARMONIC DISTORTION + NOISE (SE)
vs vs
OUTPUT POWER OUTPUT VOLTAGE
10
Figure 9. Figure 10.
150
120
90
60
30
0
−30
−80
−70
−60
−50
−40
−30
−20
−10
0
10
20
30
40
10 100 1 k 10 k 100 k 1 M
−180
−150
−120
−90
−60
180
Gain
Phase
VDD = 5 Vdc
RL = 8 Ω
Mode = BTL
Gain = 0 dB
f − Frequency − Hz
Closed Loop Gain − dB
Phase − Degrees
150
120
90
60
30
0
−30
−80
−70
−60
−50
−40
−30
−20
−10
0
10
20
30
40
10 100 1 k 10 k 100 k 1 M
−180
−150
−120
−90
−60
180
Gain
Phase
VDD = 5 Vdc
RL = 8 Ω
Mode = BTL
Gain = 20 dB
f − Frequency − Hz
Closed Loop Gain − dB
Phase − Degrees
0
1
2
3
4
5
6
7
8
9
10
−40 −25 5 20 35 50 65 95 −10 110 125
− Supply Current − mA
TA − Free-Air Temperature − ° C
I
DD
VDD = 5 V
Mode = BTL
SHUTDOWN = V
DD
80
−1
0
1
2
3
4
5
6
7
8
9
10
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Mode = BTL
SHUTDOWN = V
DD
VDD − Supply Voltage − V
T
A
= 125° C
T
A
= 25° C
T
A
= −40° C
− Supply Current − mA
I
DD
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
CLOSED LOOP RESPONSE CLOSED LOOP RESPONSE
Figure 11. Figure 12.
TPA6011A4
SUPPLY CURRENT SUPPLY CURRENT
FREE-AIR TEMPERATURE SUPPLY VOLTAGE
Figure 13. Figure 14.
vs vs
11
0
50
100
150
200
250
300
350
400
450
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Mode = SD
SHUTDOWN = 0 V
VDD − Supply Voltage − V
− Supply Current −
I
DD
T
A
= 125° C
T
A
= 25° C
T
A
= −40° C
nA
1
2
3
4
5
6
7
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Mode = SE
SHUTDOWN = V
DD
VDD − Supply Voltage − V
− Supply Current − mA I
DD
T
A
= 125° C
T
A
= 25° C
T
A
=−40°C
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
PO − Output Power − W
− Power Dissipation (PER CHANNEL) − W P
D
VDD = 5 V
BTL
4 Ω
8 Ω
3 Ω
0
20
40
60
80
100
120
140
160
180
200
0 100 150 200 250 300 50
8 Ω
16 Ω
32 Ω
PO − Output Power − mW
VDD = 5 V
SE
− Power Dissipation (PER CHANNEL) − mW P
D
TPA6011A4
SLOS392A – FEBRUARY 2002 – REVISED JULY 2004
SUPPLY CURRENT SUPPLY CURRENT
vs vs
SUPPLY VOLTAGE SUPPLY VOLTAGE
Figure 15. Figure 16.
POWER DISSIPATION (PER CHANNEL) POWER DISSIPATION (PER CHANNEL)
vs vs
OUTPUT POWER OUTPUT POWER
12
Figure 17. Figure 18.