Texas Instruments TPA3251 User Manual

User's Guide
SLAU751–November 2017

TPA3251 Evaluation Module

1 Quick Start (BTL Mode)..................................................................................................... 3
2 Setup By Mode............................................................................................................... 5
3 Hardware Configuration ................................................................................................... 10
4 EVM Design Documents ................................................................................................. 14
1 TPA3251 Evaluation Module............................................................................................... 1
2 EVM Board (Top Side)...................................................................................................... 3
3 EVM Board (Bottom Side) .................................................................................................. 3
4 AIB Input: THD+N vs Frequency .......................................................................................... 5
5 AIB Input: THD+N vs Power ............................................................................................... 5
6 Molex™ Input: THD+N vs Frequency .................................................................................... 5
7 Molex Input: THD+N vs Power ............................................................................................ 5
8 RCA Input: THD+N vs Frequency ........................................................................................ 5
9 RCA Input: THD+N vs Power ............................................................................................. 5
SLAU751–November 2017
Submit Documentation Feedback
Figure 1. TPA3251 Evaluation Module
Contents
List of Figures
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
1
www.ti.com
10 AIB Input: THD+N vs Frequency .......................................................................................... 7
11 AIB Input: THD+N vs Power ............................................................................................... 7
12 Molex Input: THD+N vs Frequency ....................................................................................... 8
13 Molex Input: THD+N vs Power ............................................................................................ 8
14 RCA Input: THD+N vs Frequency ........................................................................................ 8
15 RCA Input: THD+N vs Power ............................................................................................. 8
16 AIB Input: THD+N vs Frequency .......................................................................................... 9
17 AIB Input: THD+N vs Power ............................................................................................... 9
18 Molex Input: THD+N vs Frequency ..................................................................................... 10
19 Molex Input: THD+N vs Power .......................................................................................... 10
20 RCA Input: THD+N vs Frequency ....................................................................................... 10
21 RCA Input THD+N vs Power ............................................................................................. 10
22 EVM Power Tree........................................................................................................... 13
23 BTL LC Frequency Response ........................................................................................... 13
24 SE LC Frequency Response ............................................................................................. 13
25 TPA3251 EVM Top Composite Assembly .............................................................................. 14
26 TPA3251 EVM Bottom Composite Assembly .......................................................................... 15
27 TPA3251EVM Board Dimensions........................................................................................ 16
28 TPA3251EVM Schematic 1............................................................................................... 17
29 TPA3251EVM Schematic 2............................................................................................... 18
30 TPA3251EVM Schematic 3 ............................................................................................... 18
1 Jumper Configurations (BTL Mode)....................................................................................... 4
2 Mode Selection Pins ........................................................................................................ 5
3 Jumper Configurations (2.1 BTL Mode) .................................................................................. 6
4 Jumper Configuration (PBTL Mode) ...................................................................................... 7
5 Jumper Configuration (SE Mode).......................................................................................... 9
6 Fault and Clip Overtemperature Status ................................................................................. 10
7 Frequency Adjust Master Mode Selection .............................................................................. 11
8 Overcurrent Protection Selection......................................................................................... 11
9 AIB Connector (J28) Pinout............................................................................................... 12
10 TPA3251EVM Bill of Materials ........................................................................................... 19
Trademarks
PurePath is a trademark of Texas Instruments. CoilCraft is a trademark of Coilcraft, Incorporated. Molex is a trademark of Molex, LLC. All other trademarks are the property of their respective owners.
List of Tables
2
TPA3251 Evaluation Module
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com

1 Quick Start (BTL Mode)

This section describes the necessary hardware, connections, configuration, and steps to quick start the EVM into bridge-tied load (BTL) mode with stereo audio playing out of two speakers.

1.1 Required Hardware

The EVM requires the following hardware:
TPA3251EVM (AMPS030-001) power supply 18-V to 36-V DC, 15 A
Two 2-to 8-, 100-W speakers or resistor loads
Four speaker or banana cables
RCA input cables
Analog output audio source

1.2 Connections and Board Configuration

Figure 2 and Figure 3 show both sides of the EVM board.
Quick Start (BTL Mode)
Figure 2. EVM Board (Top Side) Figure 3. EVM Board (Bottom Side)
The steps for making the connections are as follows:
1. Set S1 to the RESET position.
2. Set the power supply to 36 V (18-V to 38-V range) and current to 10 A (5-A to 14-A range).
3. Connect the power supply to the TPA3251EVM positive terminal to PVDD (J1-RED) and negative terminal to GND (J1-BLACK).
4. Connect the positive side of the left channel load to the TPA3251EVM OUTA (J9-RED) terminal.
5. Connect the negative side of the left channel load to the TPA3251EVM OUTB (J9-BLACK) terminal.
6. Connect the positive side of the right channel load to the TPA3251EVM OUTC (J2-RED) terminal.
7. Connect the negative side of the right channel load to the TPA3251EVM OUTD (J2-BLACK) terminal.
8. Be careful not to mix up PVDD, OUTA, and OUTC because the colors are the same (RED).
9. Input configuration:
a. Single-ended (SE) inputs: Set J4 and J19 to SE and set J26, J27, J34, and J35 to RCA.
a. Connect the RCA male jack to the female RCA jack input A/AB (J3-RED). b. Connect the RCA male jack to the female RCA jack input C/CD (J18-WHITE) .
b. Differential inputs: Set J4 and J19 to DIFF and set J26, J27, J34, and J35 to RCA
a. Connect the positive RCA male jack to the female RCA jack input A/AB (J3-RED) and connect
the negative RCA male jack to the female RCA jack input B (J14-BLACK).
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
3
Quick Start (BTL Mode)
b. Connect the positive RCA male jack to the female RCA jack input C/CD (J18-RED) and
connect the negative RCA male jack to the female RCA jack input D (J15-BLACK).
c. Analog-Input Board (AIB) input: Set J26, J27, J34, and J35 to AIB.
10. Power up the power supply after correctly making all the connections. The 3.3-V and 12-V LEDs (GREEN) then illuminate.
11. Set S1 to the NORMAL position.
12. The CLIP_OTW (ORANGE) and FAULT (RED) LEDs must be off if the audio source is off.
Table 1 lists the jumper configurations in BTL mode.
www.ti.com
Table 1. Jumper Configurations (BTL Mode)
Jumper Setting Configuration for BTL
J29 IN PVDD to 15-V BUCK J32 IN 12-V LDO to 12-V TERM J33 IN 3.3-V LDO to 3.3-V TERM J36 IN 12-V LDO to GVDD J16 3 to 4 MASTER MODE 600kHz J22 IN OUTA CAP SHUNT J23 IN OUTB CAP SHUNT J24 IN OUTC CAP SHUNT J25 IN OUTD CAP SHUNT
J5 2 to 3 M1-L J6 2 to 3 M2-L J7 OUT PBTL SELECT INC J8 OUT PBTL SELECT IND
J4 1 to 2 INA/B SE INPUT J19 1 to 2 INC/D SE INPUT J26 1 to 2 INC-SEL RCA J27 1 to 2 IND-SEL RCA J34 1 to 2 INA-SEL RCA J35 1 to 2 INB-SEL RCA J21 OUT C_START
4
TPA3251 Evaluation Module
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
Frequency (Hz)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D013
1 W 20 W 75 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100200
0.001
0.01
0.1
1
10
D004
Frequency (Hz)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D010D010
1 W 20 W 75 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100 200
0.001
0.01
0.1
1
10
D001
www.ti.com

2 Setup By Mode

The user can configure the TPA3251EVM for four different output operations. The 2.0 BTL configuration is the default set up of the TPA3251EVM as described in Section 1.2. The remaining three configurations are 2.1 BTL plus two SE outputs, 0.1 PBTL output, and 4.0 SE outputs.
Setup By Mode
Table 2. Mode Selection Pins
Mode Pins
M2 M1
Input Mode Output Configuration Description
0 0 2N + 1 2 x BTL Stereo BTL output configuration 0 1 2N-1N + 1 1 x BTL + 2 × SE 2.1 BTL + SE mode 1 0 2N + 1 1 × PBTL Parallel BTL configuration; connect INPUT_C

2.1 BTL Mode (Two-Speaker Output)

This mode is the same as described in Section 1.
2.1.1 Performance Data (BTL Mode)
All measurements are taken at an audio frequency = 1 kHz, PVDD_X = 36 V, RL = 4 , fS = 600 kHz, ROC = 22 k, Output filter: L = 7 μH, C = 0.68 µF, with AES17 + AUX-0025 measurement filters.
Figure 4. AIB Input: THD+N vs Frequency Figure 5. AIB Input: THD+N vs Power
Figure 6. Molex™ Input: THD+N vs Frequency Figure 7. Molex Input: THD+N vs Power
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
5
Frequency (Hz)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D016
1 W 20 W 75 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100 200
0.001
0.01
0.1
1
10
D007
Setup By Mode
Figure 8. RCA Input: THD+N vs Frequency Figure 9. RCA Input: THD+N vs Power

2.2 BTL MODE (Three-Speaker Output)

OUTC and OUTD are the SE output channels and OUTA and OUTB are the BTL channels for 2.1 operations. OUTC and OUTD can only be in DIFF input mode.
1. Set J6 to L and J5 to H.
2. Remove jumpers J24 and J25.
3. Connect the positive side of the left channel load to OUTC (J2- RED) terminal and the negative side of the left channel load to the GND (J20) terminal.
4. Connect the positive side of the right channel load to OUTD (J2-BLACK) terminal and the negative side of the right channel load to the GND (J20) terminal.
5. Connect the positive terminal to OUTA (J9-RED) and the negative terminal to OUTB (J9-BLACK).
6. Set the J19 jumper position to DIFF.
7. Input configuration:
a. SE inputs: Connect the RCA male jack to the female RCA jack input A/AB (J3-RED) and set the J4
jumper positions to SE. Set J26, J27, J34, and J35 to RCA.
b. Differential inputs: Connect the positive RCA male jack to the female RCA jack input A/AB ( J3-
RED) and connect the negative RCA male jack to the female RCA jack input B (J14-BLACK) and set the J4 jumper positions to DIFF. Set J26, J27, J34, and J35 to RCA.
c. AIB inputs: Set J26, J27, J34, and J35 to AIB.
www.ti.com

2.3 PBTL Mode (One-Speaker Output)

This mode uses all four half bridges for a mono output, allowing for the maximum power output from the device across one load.
6
TPA3251 Evaluation Module
Table 3. Jumper Configurations (2.1 BTL Mode)
Jumper Setting Comment
J29 IN PVDD to 15-V BUCK J32 IN 12-V LDO to 12-V TERM J33 IN 3.3-V LDO to 3.3-V TERM J36 IN 12-V LDO to GVDD J16 3 to 4 MASTER MODE 600kHz J22 IN OUTA CAP SHUNT J23 IN OUTB CAP SHUNT J24 OUT OUTC CAP SHUNT J25 OUT OUTD CAP SHUNT
J5 1 to 2 M1 – H J6 2 to 3 M2 – L J7 OUT PBTL SELECT INC
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com
2.3.1 Connections and Board Configuration
1. Set J6 to H and J5 to L.
2. Connect the positive side of the load to OUTA (J9-RED) and OUTC (J2-RED) terminals (OUTA and OUTC shorted).
3. Connect the negative side of the load to OUTB (J9-BLACK) and OUTD (J2-BLACK) terminals (OUTB and OUTD shorted).
4. Install PBTL jumpers J7 and J8 (pulls input C and input D to GND).
5. Input configuration:
a. SE inputs: Connect the RCA male jack to the female RCA jack input A/AB (J3-RED) and set the J4
jumper positions to SE. Set J26, J27, J34, and J35 to RCA.
b. Differential inputs: Connect the positive RCA male jack to the female RCA jack input A/AB (J3-
RED) and connect the negative RCA male jack to the female RCA jack input B (J14-BLACK). Set the J4 jumper position to DIFF, and set J26, J27, J34, and J35 to RCA.
c. AIB input: Set J26, J27, J34, and J35 to AIB.
Table 4. Jumper Configuration (PBTL Mode)
Jumper Setting Comment
J29 IN PVDD to 15-V BUCK J32 IN 12-V LDO to 12-V TERM J33 IN 3.3-V LDO to 3.3-V TERM J36 IN 12-V LDO to GVDD J16 3 to 4 MASTER MODE 600kHz J22 IN OUTA CAP SHUNT J23 IN OUTB CAP SHUNT J24 IN OUTC CAP SHUNT J25 IN OUTD CAP SHUNT
J5 2 to 3 M1 – L J6 1 to 2 M2 – H J7 IN PBTL SELECT INC – GND J8 IN PBTL SELECT IND – GND
J4 1 to 2 INA/B SE INPUT J19 1 to 2 INC/D SE INPUT J26 1 to 2 INC-SEL RCA J27 1 to 2 IND-SEL RCA J34 1 to 2 INA-SEL RCA J35 1 to 2 INB-SEL RCA J21 OUT C_START
(1)
INA and INB are the inputs for PBTL, and INC and IND are grounded for PBTL operation.
Setup By Mode
(1)
2.3.2 Performance Data (PBTL Mode)
All measurements are taken at an audio frequency = 1 kHz, PVDD_X = 36 V, RL = 4 , fS = 600 kHz, ROC = 22 k, Output filter: L = 7μH, C = 0.68 µF, with AES17 + AUX-0025 measurement filters.
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
7
Frequency (Hz)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D017
1 W 50 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100 200
0.001
0.01
0.1
1
10
D008
Frequency (%)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D014
1 W 50 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100 200
0.001
0.01
0.1
1
10
D005
Frequency (Hz)
THD+N (%)
0.0001
0.001
0.01
0.1
1
10
20 200 2000 20000
D011
1 W 50 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100 200
0.001
0.01
0.1
1
10
D002D002
Setup By Mode
Figure 10. AIB Input: THD+N vs Frequency Figure 11. AIB Input: THD+N vs Power
Figure 12. Molex Input: THD+N vs Frequency Figure 13. Molex Input: THD+N vs Power
www.ti.com
Figure 14. RCA Input: THD+N vs Frequency Figure 15. RCA Input: THD+N vs Power

2.4 SE Mode (Four-Speaker Output)

1. Set J6 to H and J5 to H.
2. Remove jumpers J22, J23, J24, and J25.
3. Connect the positive side of the load to the OUTA (J9-RED) terminal and the negative side of the load to the GND (J11) terminal.
4. Connect the positive side of the load to the OUTB (J9-BLACK) terminal and the negative side of the load to the GND (J11) terminal.
5. Connect the positive side of the load to the OUTC (J2-RED) terminal and the negative side of the load to the GND (J20) terminal.
6. Connect the positive side of the load to the OUTD (J2-BLACK) terminal and the negative side of the load to the GND (J20) terminal.
7. Set both J4 and J19 jumpers position to DIFF.
8
8. Input configuration:
a. Differential inputs: Set J26, J27, J34, and J35 to RCA.
i. Connect the male RCA jack to the female RCA jack input A/AB (J3-RED) for the OUTA
TPA3251 Evaluation Module
speaker.
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com
Setup By Mode
ii. Connect the male RCA jack to the female RCA jack input B (J14-BLACK) for the OUTB
speaker.
iii. Connect the male RCA jack to the female RCA jack input C/CD (J18-WHITE) for the OUTC
speaker.
iv. Connect the male RCA jack to the female RCA jack input D (J15-BLUE) for the OUTD
speaker.
b. AIB input: Set J26, J27, J34, and J35 to AIB.
Table 5. Jumper Configuration (SE Mode)
Jumper Setting Comment
J29 IN PVDD to 15-V BUCK J32 IN 12-V LDO to 12-V TERM J33 IN 3.3-V LDO to 3.3-V TERM J36 IN 12-V LDO to GVDD J16 3 to 4 MASTER MODE 600kHz J22 OUT OUTA CAP SHUNT J23 OUT OUTB CAP SHUNT J24 OUT OUTC CAP SHUNT J25 OUT OUTD CAP SHUNT
J5 1 to 2 M1 – H J6 1 to 2 M2 – H J7 OUT PBTL SELECT INC J8 OUT PBTL SELECT IND
J4 2 to 3 INA/B DIFF INPUT J19 2 to 3 INC/D DIFF INPUT J26 1 to 2 INC-SEL RCA J27 1 to 2 IND-SEL RCA J34 1 to 2 INA-SEL RCA J35 1 to 2 INB-SEL RCA J21 IN C_START
NOTE: The performance of the TPA3251EVM/TPA3251D2DDV is dependent on the power supply.
Design the power supply with margins that can deliver the required power. Some low­frequency applications can require additional bulk capacitance. Replacing the bulk capacitors on the TPA3251EVM with 3300 µF or more capacitance can be necessary depending on the power supply used.
2.4.1 Performance Data (SE Mode)
All measurements are taken at audio frequency = 1 kHz, PVDD_X = 36 V, RL = 4 , fS = 600 kHz, ROC = 22 k, Output filter: L = 7 μH, C = 0.68 µF, with AES17 + AUX-0025 measurement filters.
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
9
Frequency (Hz)
THD+N (%)
0.001
0.01
0.1
1
10
50
20 200 2000 20000
D018
1 W 10 W 30 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100
0.001
0.01
0.1
1
10
D009
Frequency (Hz)
THD+N (%)
0.001
0.01
0.1
1
10
50
20 200 2000 20000
D015
1 W 10 W 30 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100
0.001
0.01
0.1
1
10
D006D006
Frequency (Hz)
THD+N (%)
0.001
0.01
0.1
1
10
50
20 200 2000 20000
D012
1 W 10 W 30 W
Power (W)
THD+N (%)
0.01 0.1 1 10 100
0.001
0.01
0.1
1
10
D003
Hardware Configuration
Figure 16. AIB Input: THD+N vs Frequency Figure 17. AIB Input: THD+N vs Power
Figure 18. Molex Input: THD+N vs Frequency Figure 19. Molex Input: THD+N vs Power
www.ti.com
Figure 20. RCA Input: THD+N vs Frequency Figure 21. RCA Input THD+N vs Power

3 Hardware Configuration

3.1 Indicator Overview (OTW_CLIP and FAULT)

The TPA3251EVM is equipped with LED indicators that illuminate when the FAULT or CLIP_OTW pin (or both) goes low. See Table 6 and TPA3251 175-W Stereo, 350-W Mono PurePath™ Ultra-HD Analog-
Input Class-D Amplifier for more details on which events trigger the pins to go low.
FAULT OTW_CLIP Description
0 0 0 0 OLP or UVP; junction temperature higher than 125°C (overtemperature warning)
10
0 1 OLP or UVP; junction temperature lower than 125°C 1 0 Junction temperature higher than 125°C (overtemperature warning) 1 1 Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)
TPA3251 Evaluation Module
Table 6. Fault and Clip Overtemperature Status
Overtemperature (OTE), overload (OLP), or undervoltage (UVP) junction temperature higher than 125°C (overtemperature warning)
SLAU751–November 2017
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com

3.2 PWM Frequency Adjust

The TPA3251EVM offers a hardware-trimmed oscillator frequency by through the external control of the FREQ_ADJ pin. Use the frequency adjust to reduce interference problems while using a radio receiver tuned within the AM band and change the switching frequency from nominal values to lower values (see
Table 7). Choose these values such that the nominal- and the lower-value switching frequencies together
result in the fewest cases of interference throughout the AM band. Select the oscillator frequency based on the value of the FREQ_ADJ resistor connected to GND in master mode.
Table 7. Frequency Adjust Master Mode Selection
Mode Switching Frequency Resistor to GND Pin Configuration
MASTER MODE 600 kHz 600 kHz 10 kΩ 3 to 4 MASTER MODE 500 kHz 500 kHz 20 kΩ 5 to 6 MASTER MODE 450 kHz 450 kHz 30 kΩ 7 to 8
For slave-mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to 3.3 V. This action configures the OSC_I/O pins as inputs, which are to be slaved from an external differential clock. In a master and slave system, interchannel delay is automatically set up between the switching phases of the audio channels, which can be illustrated by no idle channels switching at the same time. This setup does not influence the audio output; rather, only the switch timing to minimize noise coupling between audio channels through the power supply. In turn, this process optimizes audio performance and results in better operating conditions for the power supply. The interchannel delay is setup for a slave device depending on the polarity of the OSC_I/O connection, such that slave mode 1 is selected by connecting OSC_I/O of the master device in phase with OSC_I/O of the slave device (+ to + and – to –), while slave mode 2 is selected by connecting the OSC_I/Os out of phase (+ to – and – to +).
Hardware Configuration

3.3 TPA3251EVM Overcurrent Adjust

The TPA3251EVM offers the ability for the user to change the current limit by changing R13 as well as having two different protection modes, Cycle by Cycle Current Control (CB3C) and Latching Shutdown (Latched OC). For CB3C operations, the resistance must be a value of 22 kΩ to 30 kΩ. For Latched OC operations, the resistance must be a value of 47 kΩ to 64 kΩ. By default, the resistor R13 is 22 kΩ.
Table 8 shows a few resistance values and their corresponding OC threshold and OC protection mode.
Table 8. Overcurrent Protection Selection
OC_ADJ Resistor
Value
22 kΩ CB3C 16.3 A 24 kΩ CB3C 15.1 A 27 kΩ CB3C 13.5 A 30 kΩ CB3C 12.3 A 47 kΩ Latched OC 16.3 A 51 kΩ Latched OC 15.1 A 56 kΩ Latched OC 13.5 A 64 kΩ Latched OC 12.3 A
Protection Mode OC Threshold

3.4 TPA3251EVM Single-Ended and Differential Inputs

The TPA3251EVM supports both differential and SE inputs. For SE inputs, set either the J4 or J19 jumper (or both) to the SE position so that the TPA3251EVM uses the NE5532 operational amplifier (op amp) to convert the SE input signal to differential to properly drive the differential inputs of the TPA3251 device. Use input RCA jack J3 to provide INA and INB inputs. Use RCA jack J18 to provide INC and IND inputs with SE inputs. For differential input operation, set either the J4 or J19 jumpers (or both) to the DIFF position. The TPA3251EVM uses the NE5532 to buffer the differential input signal to the differential inputs of the TPA3251 device. Use input RCA jack J3 to provide INA, RCA jack J14 to provide INB, RCA jack J18 to provide INC, and RCA jack J15 to provide IND with differential inputs.
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
11
Hardware Configuration
NOTE: The SE input settings on the TPA3251EVM must only be used for channels with output
configuration BTL or PBTL, not SE. For SE output configuration, the user must set either jumper J4 or J19 (or both) for that channel to the DIFF position so that the input signal INx is mapped directly to OUTx.

3.5 Input Connectors

The TPA3251EVM supports three different input connectors. J3, J14, J15, and J18 are RCA connectors; J10 and J12 are Molex connectors; and J28 is the AIB connector with J30 being the AIB alignment connection. Table 9 shows the AIB pinout in detail.
www.ti.com
Table 9. AIB Connector (J28) Pinout
Pin
No.
1 Amp Out A Speaker-level output from audio class-D EVM (SE or one side of BTL) O 2 Amp Out B Speaker-level output from audio class-D EVM (SE or one side of BTL) O
3 PVDD 4 GND Ground reference between audio plug-in module and audio class-D EVM
5 NC 6 NC 7 3.3 V 3.3-V supply from EVM; used for powering audio plug-in module O 8 3.3 V 3.3-V supply from EVM; used for powering audio plug-in module O
9 12 V 12-V supply from EVM; used for powering audio plug-in module O 10 EN and Reset Assert enable and reset control for audio class-D EVM (active low) I 11 Analog IN_A Analog audio input A (analog in EVM), Master I2S bus (digital in EVM) I 12 NC 13 Analog IN_B Analog audio input B (analog in EVM), bit clock I2S bus (digital in EVM) I
14 CLIP_OTW 15 Analog IN_C Analog audio input C (analog in EVM), frame clock I2S bus (digital in EVM) I
16 FAULT Fault detection from audio Class-D EVM (active low) O 17 Analog IN_D Analog audio Input D (analog in EVM), data in I2S bus (digital in EVM) I 18 NC 19 NC 20 NC 21 GND Ground reference between audio plug-in module and audio class-D EVM 22 GND Ground reference between audio plug-in module and audio class-D EVM 23 NC 24 NC 25 NC 26 NC 27 Amp Out C Speaker-level output from audio class-D EVM (SE or one side of BTL) O 28 Amp Out D Speaker-level output from audio class-D EVM (SE or one side of BTL) O
Function Description
PVDD voltage supply from audio Class-D EVM (variable voltage depending on Class-D EVM use)
Clipping detection, overtemperature warning, or both from audio class-D EVM (active low)
Audio EVM Input
or Output
O
O
12
TPA3251 Evaluation Module
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
cut off
1 1
2 L C 2 7 H .68 F
S u S P u P
J36 GVDD
J33 3.3 V
15 V
12 V
www.ti.com

3.6 EVM Power Tree

The EVM power section is self-contained with all the necessary onboard voltages generated from the main PVDD (J1) power input. The PVDD is reduced to 15 V and then used to generate the remaining required board voltages of 12 V, 5 V, and 3.3 V. Low-dropout linear regulators (LDOs) generate supplies going to the TPA3221 device itself to reduce the chance of extra added noise. LEDs are provided on the 5-V and 3.3-V supplies so that the user can verify that the EVM is powered (see Figure 22).

3.7 LC Filter Overview

Included near the output of the TPA3251 device are four output LC filters. These output filters filter the pulse-width modulation (PWM) output, leaving only the audio content at high power, which is fed to the speakers. The board uses a CoilCraft™ 7-µH inductor and a 0.68-µF film capacitor to form this LC filter. Using the equations listed in LC Filter Design Application Report , the low-pass filter cutoff is calculated as follows in Equation 1:
Hardware Configuration
Figure 22. EVM Power Tree
Figure 23. BTL LC Frequency Response Figure 24. SE LC Frequency Response

3.8 Post-Filter Feedback (PFFB)

The TPA3251EVM has the footprints available to implement post filter feedback to improve the audio performance of the TPA3251 amplifier. For more details on benefits and implementation, see TPA324x
and TPA325x Post-Filter Feedback .
(1)
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
13
Hardware Configuration

3.9 Reset Circuit

The TPA3251EVM includes RESET supervision so that the TPA3251 device remains in reset until all the power rails are up and stable. The RESET supervisor also ensures that the device is put into reset if one of the power rails experiences a brownout. This circuit combined with the RESET switch (S1) help ensure that the TPA3251 can be placed in reset easily as needed or automatically if there is a power supply issue.

3.10 Op Amp versus Direct Drive

The op amps are used to change a single-ended input into a differential input. By default, the gain of the op amps are set for unity gain; however, this can be modified to increase or decrease the gain through the op amps. One way to bypass the op amps for a more direct connection is using the AIB.

4 EVM Design Documents

This section contains the TPA3251EVM board layout, schematics, and bill of materials (BOM).

4.1 TPA3251EVM Board Layouts

Figure 25 and Figure 26 illustrate the EVM board layouts.
www.ti.com
14
TPA3251 Evaluation Module
Figure 25. TPA3251 EVM Top Composite Assembly
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com
EVM Design Documents
Figure 26. TPA3251 EVM Bottom Composite Assembly
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
15
EVM Design Documents

4.2 TPA3251EVM Board Layouts

Figure 27 shows the EVM board dimensions.
www.ti.com
Figure 27. TPA3251EVM Board Dimensions
16
TPA3251 Evaluation Module
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
1
2
3
4
8
U6A
NE5532ADR
5
6
7
4
8
U6B
NE5532ADR
10.0k
R27
10.0k
R20
10.0k
R21
GND
10.0k
R25
22pF
C65
22pF
C57
VMID
1 2 3
J19
IN C/D
SE
DIFF
1
2
3
4
8
U5A
NE5532ADR
5
6
7
4
8
U5B
NE5532ADR
10.0k
R42
10.0k
R7
10.0k
R8
GND
10.0k
R41
22pF
C23
22pF
C18
1 2 3
J4
INA/B
SE
DIFF
100k
R48
10µF
C20
10µF
C71
10µF
C62
10µF
C66
1 2 3
J10
INPUT SE A SE AB DIFF A+
INPUT SE B DIFF A-
INPUT SE D DIFF C-
GND
INA
INB
OUTA
OUTB
+12V-OA
+12V-OA
INC
IND
OUTC
OUTD
RCA INPUT
LEFT+
RCA INPUT
LEFT-
RCA INPUT
RIGHT-
To DUT
To DUT
From DUT
INB-RCA
IND-RCA
1 2 3
J12
INA-RCA
INB-AIB
INA-AIB
100k
R43
100k
R9
100k
R45
INPUT SE C SE CD DIFF C+
RCA INPUT
RIGHT+
INC-RCA
GND
PBTL
SELECT
AUDIO
BOARD
INC-AIB IND-AIB
INB-AIB
INA-AIB
FROM DUT
CLIP_OTW FAULT
J30
GND
ALIGNMENT HEADER
AIB
RESET-SW
RESET
1.00k
R53
INTERFACE
22pFC73 DNP
DNP
18.0k
R47
DNP
DNP
22pF
C74
DNP
DNP
18.0k
R49
DNP
DNP
22pFC75 DNP
DNP
22pF
C76
DNP
DNP
To DUT
To DUT
From DUT
0R64 DNP
DNP
0
R63 DNP
DNP
0R66 DNP
DNP
0
R65 DNP
DNP
SPKA-OUT
SPKB-OUT
SPKC-OUT SPKD-OUT
SPKA-OUT
SPKC-OUT
RST-AIB
0
R67
DNP
DNP
3.3V
GND GND
3.3V
+12V
PVDD
10µF
C17
10µF
C28
10µF
C55
10µF
C63
123
J34 INA-SEL
IN-A_RCA
123
J35 INB-SEL
IN-B_RCA
IN-C_RCA
IN-D_RCA
INB-SEL
GROUND
ROUTED
<-
VMID
VMID
VMID
SPKD-OUT
SPKB-OUT
IND-AIB
INC-AIB
123
J26 INC-SEL
123
J27 IND-SEL
0
R4
0R12
0R36
0R44
INA-SEL
10.0k
R46
GND
1 2
J7
INC
1 2
J8
IND
GND
AGND1
NT1
Net-Tie
NT2
Net-Tie
AGND2
AGND1
AGND1
AGND2
AGND2
AGND2
AGND1
2.00kR11 DNP
DNP
GND
220pF
C26
DNP
DNP
2.00kR14 DNP
DNP
GND 220pF
C37
DNP
DNP
2.00kR18 DNP
DNP
GND
220pF
C45
DNP
DNP
2.00kR22 DNP
DNP
GND 220pF
C61
DNP
DNP
18.0k
R50
DNP
DNP
18.0k
R51
DNP
DNP
1 3 56
4
2
7 910
8
12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27
J28
0
R52
0R59
0R60
0
R62
INC-SEL
IND-SEL
1
2 3
J3
INA/AB
1
2 3
J14
INB
1
2 3
J18
INC/CD
1
2 3
J15
IND
Copyright © 2017, Texas Instruments Incorporated
www.ti.com

4.3 TPA3251 EVM Schematics

Figure 28 through Figure 30 illustrate the TPA3251EVM schematics.
EVM Design Documents
SLAU751–November 2017
Submit Documentation Feedback
Figure 28. TPA3251EVM Schematic 1
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
17
IN1OUT
3
GND
2
TAB
4
U2
LM2940IMP-12/NOPB
GND
1A
D1
0.047µF
C1
0.1uF
C13
GND
4700pF
C12
182k
R2
5600pF
C7
0.47µF
C8
0.1uF
C9
GND GND
GND
GND
GND
+12V
47µF
C5
10µF
C38
GND
GND GND
100µF
C10
4.99k
R39
1.00k
R40
GND
GND
3A
D3
GND
GND
VCC
9
SS
7
SW
1
FB
6
RTN
5
VIN
10
BST
2
RON/SD
8
DAP
11
ISEN
3
SGND
4
U1
LM5010ASD/NOPB
PVDD
0.1µF 50V
C2
GND GND
2.2µF 50V
C4
PVDD
GND
1µF 50V
C3
0.01µF 50V
C11
RANGE 18V-36V
47µF 50V
C39
+15V
+12V
360
R34
GND
Green
D5
3.3V
3.3V
3.3V
Hi Current Shunt
+15V
J29 PVDD-IN
J32 12V
J33
3.3V
1.50k
R58
GND
Green
D6
12V
+12V
15V-VR
4.7µF
C6
100µH 1.5A
L1
OUTPUT
2
GND
1
IN
3
OUTPUT
4
U3
TLV1117-33IDCY
10.0k
R38
VMID
0.1uF
C51
GND GND
10µF
C53
10µF
C70
0.1uF
C72
+12V-OA
0.1uF
C15
GND GND
10µF
C16
+12V
GND
10µF
C81
10uH 0.8A
L6
10.0k
R37
+12V-OA
10µF
C89
0.1uF
C90
10µF
C91
12V-VR
3.3V-VR
GND GNDGND GND
NT3
Net-Tie
GND
J1
J31
RESET
Q2
+12V
GND
Orange
D2
OTW
+12V
GND GND
CLIP_OTW
MONITORS
100
R33
100
R35
FAULT
7uH 6.5A
L2
MA5173
0.68µF
C24
GND
1000pF
C25
DNP
DNP
GND
0.68µF
C35
GND GND
0.68µF
C43
GND GND
0.68µF
C59
GND GND
GND
PVDD
GND
GND
PVDD
OUT_A
OUT_B
OUT_C
0.033µF
C27
GND
1µF
C32
GND
GNDGND
0.033µF
C29
0.033µF
C52
0.033µF
C54
RESET
VBG
1 2
J21
GND
0.01µF
C49
GND GND
1µFC40
0.1uF
C14
GND
0
R3
GVDD_AB
0.1uF
C22
3.3
R6
GND
1 2 3
J6
3.3V
1 2 3
J5
3.3V
M1
M2
GND
GND
M1 M2
INPUT_A
INPUT_B
INPUT_A
INPUT_B
INPUT_C
INPUT_D
GND
3.3V
SLAVEMODE
10.0kR15
20.0k
R16
30.0k
R17
MASTERMODE MASTERMODE AM1 MASTERMODE AM2
GND
FREQUENCY
22.0k
R13
ADJUST
OUT_D
C_START
INPUT_D
INPUT_C
47k
R24
1.00k
R29
1.00k
R31
0.1µF
C68
GND
100pF
C64
100
R23
GND
100pF
C58
100
R19
GND
100pF
C30
100
R10
GND
100pF
C19
100
R5
GND
MODE PIN SELECTION
M2 M1
0
1
0
1
0
1
0
1
INPUT MODE OUTPUT DESCRIPTION
2N + 1
2N/1N + 1
2N + 1
1N + 1
2xBTL
1xBTL + 2xSE
1xPBTL
4xSE
STEREO BTL OUTPUT, AD MODE
2.1 BTL + SE MODE, AD MODE
PARALLEL BTL OUTPUT, AD MODE
SINGLE ENDED OUTPUT, AD MODE
3.3V
IN = SE
OUT = BTL
1µF
C33
1µF
C47
1µF
C48
1000pF
C36
DNP
DNP
1000pF
C44
DNP
DNP
1000pF
C60
DNP
DNP
HEATSINK
GND Black
J20
GNDCD
OUT_A
OUT_B
OUT_C
OUT_D
OUTA
OUTB
OUTC
OUTD
Black
J11
GNDAB
12 34 56 78
J16
OA
OB
OC
OD
GND
1µFC77 DNP
DNP
3.30R54 DNP
DNP
GND
1µFC78 DNP
DNP
1µFC79 DNP
DNP
1µF
C80
DNP
DNP
TP13
RESET
TP14
FAULT
TP1
CLIP_OTW
TP6
GND
TP2
PWMA
TP7
PWMC
TP5
PWMB
TP9
PWMD
TP4
PVDD-AB
TP8
PVDD-CD
TP3
OUTA
TP10
OUTB
TP11
OUTC
TP12
OUTD
Hi Current Shunt
GND
GND
6
4
5
13
S1
RESET
GND
0.1uF
C67
GND
0.1uF
C82
J13
DNP
DNP
FAULT
0
R30
3.30k
R26
GND
GND
7uH 6.5A
L3
MA5173
7uH 6.5A
L4
MA5173
7uH 6.5A
L5
MA5173
PVDD
100k
R61
0.1uF
C69
GND
GVDD_CD
0
R1
1µF
C83
1µF
C84
GND
VDD
GVDD_AB
VDD
GVDD_CD
3.3V
FAULT
CLIP_OTW
GND
OSCILLATOR
SYNC
INTERFACE
4
1
2
3
J17
0.47µF
C50
47k
R28
MODE
SELECTION
GND
1
GND
2
MR
5
RESET
3
VDD
4
U7
TPS3802K33DCKR
GND
1500µF
C21
1500µF
C34
1500µF
C42
1500µF
C56
2200µF
C31
2200µF
C46
Hi Current Shunt
Hi Current Shunt
Hi Current Shunt
3.30R55 DNP
DNP
3.30R56 DNP
DNP
3.30
R57
DNP
DNP
Q1
1µF
C41
TP26
FREQ_ADJ
DNP
TP25
M1
DNP
TP24
OC-ADJ
DNP
TP20
INA
DNP
TP21
INB
DNP
TP22
INC
DNP
TP23
IND
DNP
TP18
DVDD
DNP
TP19
AVDD
DNP
TP15
GVDD-AB
DNP
TP16
VDD
DNP
TP17
GVDD-CD
DNP
TP27
VBG
DNP
INA
INB
INC
IND
FROM
ANALOG
FRONT END
OUTA
TO
ANALOG
FRONT END
OUTB OUTC OUTD
CLIP_OTW
FAULT
RESET-SW
TO AIB
CONNECTOR
RESET-SW
OC_IOP
OC_IOM
VDD-RST
AVDD
14
BST_A
44
BST_B
43
BST_C
24
BST_D
23
VBG
20
C_START
15
DVDD
11
FAULT
19
FREQ_ADJ
8
GND
12
GND
13
GND
25
GND
26
GND
33
GND
34
GND
41
GND
42
GVDD_AB
1
GVDD_CD
22
INPUT_A
5
INPUT_B
6
INPUT_C
16
INPUT_D
17
M1
3
M2
4
OC_ADJ
7
OC_IOM
9
OC_IOP
10
CLIPOTW
21
OUT_A
39
OUT_A
40
OUT_B
35
OUT_C
32
OUT_D
27
OUT_D
28
PVDD_AB
36
PVDD_AB
37
PVDD_AB
38
PVDD_CD
29
PVDD_CD
30
PVDD_CD
31
RESET
18
VDD
2
U4
TPA3251D2DDVR
Red
D4
FAULT
GND
1µF
C85
DNP
DNP
1µF
C86
DNP
DNP
J36 +12V
+12V GVDD GVDD
GVDD
GVDD
GVDD
J9
J2
J22
J23
J24
J25
8.87k
R32
Copyright © 2017, Texas Instruments Incorporated
EVM Design Documents
www.ti.com
18
TPA3251 Evaluation Module
Figure 29. TPA3251EVM Schematic 2
Figure 30. TPA3251EVM Schematic 3
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com
EVM Design Documents

4.4 TPA3251EVM Bill of Materials

Table 10 lists the TPA3251EVM BOM.
Table 10. TPA3251EVM Bill of Materials
Designator Quantity Value Description Package Reference Part Number Manufacturer
!PCB1 1 Printed Circuit Board AMPS030 Any C1 1 0.047uF C2, C9, C13, C15, C51,
C68, C72, C90 C3 1 1uF
C4 1 2.2uF
C5 1 47uF
C6 1 4.7uF
C7 1 5600pF
C8, C50 2 0.47uF
C10 1 100uF
C11 1 0.01uF
C12 1 4700pF C14, C22, C67, C69,
C82 C16, C53, C70, C81,
C89, C91 C17, C28, C55, C63 4 10uF
C18, C23, C57, C65 4 22pF
C19, C30, C58, C64 4 100pF C20, C38, C62, C66,
C71 C21, C34, C42, C56 4 1500uF C24, C35, C43, C59 4 0.68uF CAP, Film, 0.68 µF, 250 V, +/- 5%, TH 18x9x17.5mm B32652A3684J EPCOS Inc C27, C29, C52, C54 4 0.033uF
C31, C46 2 2200uF C32, C33, C47, C48,
C83, C84 C39 1 47uF
C40, C41 2 1uF
C49 1 0.01uF D1 1 100V Diode, Schottky, 100 V, 1 A, SMA SMA B1100-13-F Diodes Inc.
D2 1 Orange LED, Orange, SMD LED_0805 LTST-C170KFKT Lite-On D3 1 100V Diode, Schottky, 100 V, 3 A, SMA SMA SK310A-TP D4 1 Red LED, Red, SMD Red 0805 LED LTST-C170KRKT Lite-On
D5, D6 2 Green LED, Green, SMD LED_0805 LTST-C171GKT Lite-On H1, H2, H3, H4, H5 5 H6, H7 2 MACHINE SCREW PAN PHILLIPS M3 M3 Screw RM3X8MM 2701 APM HEXSEAL H8, H9, H10, H11, H12 5 HEX STANDOFF 4-40 ALUMINUM 3/4"
HEATSINK 1 Heat Sink, Vertical Heatsink ATS-TI1OP-519-C1-R3
8 0.1uF
5 0.1uF
6 10uF
5 10uF
6 1uF
CAP, CERM, 0.047 µF, 25 V, +/- 10%, X7R, 0402
CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0603
CAP, CERM, 1 µF, 50 V, +/- 10%, X7R, 0603
CAP, CERM, 2.2 µF, 50 V, +/- 10%, X7R, 0805
CAP, AL, 47 µF, 16 V, +/- 20%, 0.36 ohm, SMD
CAP, CERM, 4.7 µF, 25 V, +/- 10%, X7R, 1206
CAP, CERM, 5600 pF, 50 V, +/- 10%, X7R, 0603
CAP, CERM, 0.47 µF, 25 V, +/- 10%, X7R, 0603
CAP, AL, 100 µF, 6.3 V, +/- 20%, 0.7 ohm, SMD
CAP, CERM, 0.01 µF, 50 V, +/- 10%, X7R, 0603
CAP, CERM, 4700 pF, 50 V, +/- 10%, X7R, 0603
CAP, CERM, 0.1uF, 50V, +/-10%, X7R, 0603
CAP, CERM, 10 µF, 16 V, +/- 10%, X5R, 0805
CAP, CERM, 10 µF, 16 V, +/- 10%, X7R, 1206
CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, 0603
CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0603
CAP, AL, 10 µF, 16 V, +/- 20%, 1.35 ohm, SMD
CAP, AL, 1500 µF, 63 V, +/- 20%, 0.03 ohm, AEC-Q200 Grade 2, TH
CAP, CERM, 0.033 µF, 50 V, +/- 10%, X7R, 0603
CAP, AL, 2200 µF, 50 V, +/- 20%,
0.023 ohm, TH CAP, CERM, 1 µF, 50 V, +/- 10%, X7R,
1206 CAP, AL, 47 µF, 50 V, +/- 20%, 0.68
ohm, SMD CAP, CERM, 1 µF, 16 V, +/- 10%, X7R,
0603 CAP, CERM, 0.01 µF, 50 V, +/- 10%,
X7R, 0603
MACHINE SCREW PAN PHILLIPS 4-40Machine Screw, 4-40,
0402
0603 C0603C104K5RACTU Kemet
0603 UMK107AB7105KA-T Taiyo Yuden
0805
SMT Radial D EEE-FK1C470P Panasonic
1206
0603
0603
SMT Radial C EEE-FK0J101UR Panasonic
0603 C0603C103K5RACTU Kemet
0603 C0603X472K5RACTU Kemet
0603 C0603C104K5RACTU Kemet
0805 EMK212BJ106KG-T Taiyo Yuden
1206
0603
0603
SMT Radial B EEE-FK1C100R Panasonic
Dia 18mm EEU-FC1J152 Panasonic
0603
Dia 18mm EEU-FC1H222 Panasonic
1206
SMT Radial E EEE-FK1H470P Panasonic
0603
0603
1/4 inch
HEX STANDOFF 4-40 ALUMINUM 3/4"
GRM155R71E473KA88 D
C2012X7R1H225K125A C
GRM31CR71E475KA88 L
GRM188R71H562KA01 D
GRM188R71E474KA12 D
GRM31CR71C106KAC 7L
GRM1885C1H220JA01 D
GRM1885C1H101JA01 D
GRM188R71H333KA61 D
GRM31MR71H105KA88 L
GRM188R71C105KA12 D
GRM188R71H103KA01 D
PMSSS 440 0025 PH B&F Fastener Supply
2204 Keystone
MuRata
TDK
MuRata
MuRata
MuRata
MuRata
MuRata
MuRata
MuRata
MuRata
MuRata
MuRata
Micro Commercial Components
Advanced Thermal Solutions
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
19
EVM Design Documents
www.ti.com
Table 10. TPA3251EVM Bill of Materials (continued)
Designator Quantity Value Description Package Reference Part Number Manufacturer
J1, J2, J9 3 Dual Binding Posts with Base, 2x1, TH J3 1 RCA Jack, Vertical, Red, TH RCA JACK, RED RCJ-022 CUI Inc.
J4, J19, J26, J27, J34, J35
J5, J6 2 1x3 Header, 100mil, 3x1, Gold, TH PBC03SAAN PBC03SAAN J7, J8, J21, J29, J30,
J32, J33, J36 J10, J12 2 Header, 2.54 mm, 3x1, TH J11, J20 2 Binding Post, BLACK, TH 11.4x27.2mm 7007 Keystone J14 1 RCA Jack, Vertical, Black, TH
J15 1 RCA Jack, Vertical, Blue, TH
J16 1 Header, 100mil, 4x2, Tin, TH Header, 4x2, 100mil, Tin PEC04DAAN
J17 1 J18 1 RCA Jack, Vertical, White, TH RCA JACK, WHITE RCJ-023 CUI Inc.
J22, J23, J24, J25, J31 5 JUMPER TIN SMD 6.85x0.97x2.51 mm S1911-46R Harwin J28 1 Receptacle, 100mil, 14x2, Gold, TH 14x2 Receptacle SSW-114-01-G-D Samtec
L1 1 100uH
L2, L3, L4, L5 4 7uH
L6 1 10uH Q1, Q2 2 60V MOSFET, N-CH, 60 V, 0.17 A, SOT-23 SOT-23 2N7002-7-F Diodes Inc.
R1, R3, R30 3 0 RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale R2 1 182k RES, 182 k, 1%, 0.125 W, 0805 0805 ERJ-6ENF1823V Panasonic R4, R12, R36, R44 4 0 RES, 0, 5%, 0.125 W, 0805 0805 ERJ-6GEY0R00V Panasonic R5, R10, R19, R23,
R33, R35 R6 1 3.3 RES, 3.3, 5%, 0.1 W, 0603 0603 CRCW06033R30JNEA Vishay-Dale R7, R8, R20, R21, R25,
R27, R37, R38, R41, R42
R9, R43, R45, R48, R61 5 100k RES, 100 k, 1%, 0.063 W, 0402 0402 CRCW0402100KFKED Vishay-Dale R13 1 22.0k RES, 22.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0722KL Yageo America R15 1 10.0k RES, 10.0 k, 1%, 0.1 W, 0603 0603 CRCW060310K0FKEA Vishay-Dale R16 1 20.0k RES, 20.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0720KL Yageo America R17 1 30.0k RES, 30.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0730KL Yageo America R24, R28 2 47k RES, 47 k, 5%, 0.1 W, 0603 0603 RC0603JR-0747KL Yageo America R26 1 3.30k RES, 3.30 k, 1%, 0.1 W, 0603 0603 RC0603FR-073K3L Yageo America R29, R31 2 1.00k RES, 1.00 k, 1%, 0.1 W, 0603 0603 CRCW06031K00FKEA Vishay-Dale R32 1 8.87k RES, 8.87 k, 1%, 0.1 W, 0603 0603 CRCW06038K87FKEA Vishay-Dale R34 1 360 RES, 360, 5%, 0.063 W, 0402 0402 CRCW0402360RJNED Vishay-Dale R39 1 4.99k RES, 4.99 k, 1%, 0.063 W, 0402 0402 CRCW04024K99FKED Vishay-Dale R40 1 1.00k RES, 1.00 k, 1%, 0.063 W, 0402 0402 CRCW04021K00FKED Vishay-Dale R46 1 10.0k RES, 10.0 k, 1%, 0.063 W, 0402 0402 CRCW040210K0FKED Vishay-Dale R52, R59, R60, R62 4 0 RES, 0, 5%, 0.25 W, 1206 1206 CRCW12060000Z0EA Vishay-Dale R53 1 1.00k RES, 1.00 k, 1%, 0.1 W, 0402 0402 ERJ-2RKF1001X Panasonic R58 1 1.50k RES, 1.50 k, 1%, 0.063 W, 0402 0402 CRCW04021K50FKED Vishay-Dale S1 1 Switch, SPDT, On-On, 2 Pos, TH Switch, 7x4.5mm 200USP1T1A1M2RE E-Switch SH1, SH2, SH3, SH4,
SH5, SH6, SH7, SH8, SH9, SH10, SH11, SH12, SH13, SH14, SH15, SH16, SH17, SH18
6 Header, 100mil, 3x1, Gold, TH PBC03SAAN PBC03SAAN
8 Header, 100mil, 2x1, Gold, TH
Header (friction lock), 100mil, 4x1, Gold, TH
Inductor, Shielded Drum Core, Ferrite, 100 µH, 1.5 A, 0.165 ohm, SMD
Inductor, Toroid, Powdered Iron, 7 µH,
6.5 A, 0.0215 ohm, TH Inductor, Wirewound, 10 µH, 0.8 A,
0.204 ohm, SMD
6 100 RES, 100, 1%, 0.1 W, 0603 0603 CRCW0603100RFKEA Vishay-Dale
10 10.0k RES, 10.0 k, 0.1%, 0.1 W, 0603 0603 RT0603BRD0710KL Yageo America
18 1x2 Shunt, 100mil, Gold plated, Black Shunt 969102-0000-DA 3M
Dual Binding Posts with Base, 2x1, TH
Sullins 100mil, 1x2, 230 mil above insulator
Header, 2.54mm, 3x1, TH
RCA Jack, Vertical, Black, TH
RCA Jack, Vertical, Blue, TH
Header 4x1 keyed 0022112042 Molex
SMD 7447714101 Wurth Elektronik
28.6x12.3mm MA5173-AE Coilcraft 2-Pin SMD, Body 4 x 4
mm, Height 1.2 mm
6883 Pomona Electronics
Sullins Connector Solutions
Sullins Connector Solutions
PBC02SAAN
22-11-2032 Molex
RCJ-021 CUI Inc.
RCJ-025 CUI Inc.
NRS4012T100MDGJV Taiyo Yuden
Sullins Connector Solutions
Sullins Connector Solutions
20
TPA3251 Evaluation Module
Copyright © 2017, Texas Instruments Incorporated
SLAU751–November 2017
Submit Documentation Feedback
www.ti.com
EVM Design Documents
Table 10. TPA3251EVM Bill of Materials (continued)
Designator Quantity Value Description Package Reference Part Number Manufacturer
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14
U1 1
U2 1
U3 1
U4 1
U5, U6 2
U7 1
C25, C36, C44, C60 0 1000pF
C26, C37, C45, C61 0 220pF
C73, C74, C75, C76 0 22pF
C77, C78, C79, C80 0 1uF
C85, C86 0 1uF FID1, FID2, FID3, FID4,
FID5, FID6 J13 0 Header, 100mil, 2x1, Gold, TH R11, R14, R18, R22 0 2.00k RES, 2.00 k, 1%, 0.1 W, 0603 0603 CRCW06032K00FKEA Vishay-Dale
R47, R49, R50, R51 0 18.0k RES, 18.0 k, 1%, 0.1 W, 0603 0603 RC0603FR-0718KL Yageo America R54, R55, R56, R57 0 3.30 RES, 3.30, 1%, 0.25 W, 1206 1206 ERJ-8RQF3R3V Panasonic R63, R64, R65, R66 0 0 RES, 0, 5%, 0.1 W, 0603 0603 CRCW06030000Z0EA Vishay-Dale R67 0 0 RES, 0, 5%, 0.125 W, 0805 0805 ERJ-6GEY0R00V Panasonic
14 Grey Test Point, Multipurpose, Grey, TH
High Voltage 1A Step Down Switching Regulator, 10-pin LLP, Pb-Free
1A Low Dropout Regulator, 4-pin SOT­223, Pb-Free
FIXED LOW-DROPOUT VOLTAGE REGULATOR, DCY0004A
175W Stereo / 350W Mono PurePath(TM) Ultra-HD, Analog-In Class-D Amplifier, DDV0044D (TSSOP-
44) Dual Low-Noise Operational Amplifier,
10 to 30 V, 0 to 70 degC, 8-pin SOIC (D0008A), Green (RoHS & no Sb/Br)
ULTRA-SMALL SUPPLY VOLTAGE SUPERVISORS, DCK0005A
CAP, CERM, 1000 pF, 50 V, +/- 5%, C0G/NP0, 1206
CAP, CERM, 220 pF, 50 V,+/- 5%, C0G/NP0, 0603
CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, 0603
CAP, CERM, 1 µF, 50 V, +/- 10%, X7R, 1206
CAP, CERM, 1 µF, 100 V, +/- 10%, X7R, 1206
0
Fiducial mark. There is nothing to buy or mount.
Grey Multipurpose Testpoint
SDC10A LM5010ASD/NOPB Texas Instruments
MP04A LM2940IMP-12/NOPB Texas Instruments
DCY0004A TLV1117-33IDCY Texas Instruments
DDV0044D TPA3251D2DDVR Texas Instruments
D0008A NE5532ADR Texas Instruments
DCK0005A TPS3802K33DCKR Texas Instruments
1206
0603
0603
1206
1206
Fiducial N/A N/A Sullins 100mil, 1x2, 230
mil above insulator
5128 Keystone
GRM3195C1H102JA01 D
GRM1885C1H221JA01 D
GRM1885C1H220JA01 D
GRM31MR71H105KA88 L
GRM31CR72A105KA01 L
PBC02SAAN
MuRata
MuRata
MuRata
MuRata
MuRata
Sullins Connector Solutions
SLAU751–November 2017
Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated
TPA3251 Evaluation Module
21
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES
Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non­compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments: TPA3251EVM
Loading...