Texas Instruments TNETX3270 User Manual

TNETX3270
ThunderSWITCH24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
D
Ports in a Multiplexed Interface
– Direct Multiplexer Interface to
TNETE2008 – Full and Half Duplex – Half-Duplex Collision-Based Flow
Control – Full-Duplex IEEE Std 802.3x Flow Control – Interoperable Support for IEEE
Std 802.1Q VLAN – Speed, Duplex, and Pause
Autonegotiation With Physical Layer
(PHY) Three 10-/100-Mbit/s Ports – Direct Interface to TNETE2101 – Full and Half Duplex – Half-Duplex Collision-Based Flow
Control – Full-Duplex IEEE Std 802.3x Flow Control – Interoperable Support for IEEE
Std 802.1Q VLAN – Pretagging Support
D
Port Trunking and Load Sharing
D
LED Indication of Port Status
D
SDRAM Interface – Direct Interface to 8-Bit/Word and
16-Bit/Word, 16-Mbit, and 64-Mbit
SDRAMs – 32-Bit-Wide Data Bus
– Up to 32 Mbytes Supported – 83.33-MHz SDRAM Clock – 12-ns (–12) SDRAMs Required
D
Remote Monitoring (RMON) Support – Groups 1, 2, 3, and 9
D
Direct I/O (DIO) Management Interface – Eight Bits Wide – CPU Access to Statistics, Registers, and
Management Information Bases (MIBs) – Internal Network Management Port – Forwards Spanning-Tree Packets to CPU – Serial Media-Independent Interface (MII)
for PHY Control
D
EEPROM Interface for Autoconfiguration (No CPU Required for Nonmanaged Switch)
D
Internal Address-Lookup/Frame-Routing Engine – Interoperable Support for IEEE
Std 802.1Q VLAN – Supports IEEE Std 802.1D Spanning Tree – Thirty-Two Assignable Virtual LANs
(VLANs) – Multiple Forwarding Modes – 2K Total Addresses Supported – Port Mirroring
D
IEEE Std 1149.1 (JTAG) Interface (3.3-V Signals)
D
2.5-V Process With 3.3-V-Drive I/O
D
Packaged in 240-Terminal Plastic Quad Flatpack
TAP
(JTAG)
SDRAM
Controller
EEPROM Interface
CPU
Interface
LED
Interface
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TI and ThunderSWITCH are trademarks of Texas Instruments Incorporated. Ethernet is a trademark of Xerox Corporation. Secure Fast Switching is a trademark of Cabletron Systems, Inc. Port-trunking and load-sharing algorithms were contributed by Cabletron Systems, Inc. and are derived from, and compatible with, Secure Fast Switching.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Manager
Address
Compare
Queue
Network
Statistics
Logic
Statistics
Storage
MIB
Data Path
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC)
MUX
MUX
MUX
MII MII MII
Copyright 1999, Texas Instruments Incorporated
Eight Ports (00–07) 10 Mbit/s
Eight Ports (08–15) 10 Mbit/s
Eight Ports (16–23) 10 Mbit/s
Three Ports (24–26) 10/100 Mbit/s
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
TNETX3270 ThunderSWITCH24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
description
The TNETX3270 provides highly integrated switching solutions that allow network designers to lower overall system costs. Based on Texas Instruments (TI) ThunderSWITCH architecture, the TNETX3270 design integrates 24 full-duplex 10-Mbit/s ports and 3 full-duplex 10-/100-Mbit/s ports, as well as an address-lookup engine, all in a single 240-pin package. All ports on the TNETX3270 are designed to support multiple addresses, cut-through or store-and-forward modes of operation, and VLAN. The 10-/100-Mbit/s ports have media-independent interface (MII)-compatible interfaces and can be configured to work as MII uplinks to high-speed switching fabrics. All three of the 10-/100-Mbit/s ports can be logically combined into a single high-performance uplink channel that can be used to provide up to 600-Mbit/s switch-to-switch connections.
The TNETX3270 incorporates an internal content-addressable memory (CAM) capable of supporting 2,048 end stations from a single switch. In addition, the device supports 32 user-configurable VLAN-broadcast domains (IEEE Std 802.1Q), which allows IEEE Std 802.1P priority support interoperability , IEEE Std 802.3X full-duplex flow control, and a collision-based flow-control scheme. The TNETX3270 also integrates an EEPROM interface that allows the device to be initialized and configured without the added expense of a CPU. All of these features on chip greatly reduce the number of external components required to build a switch.
The internal address-lookup engine (IALE) supports up to 2K unicast/multicast and broadcast addresses and up to 32 IEEE Std 802.1Q VLANs. For interoperability, each port can be programmed as an access port or non-access port to recognize VLAN tags and transmit frames with VLAN tags to other systems that support VLAN tagging. The IALE performs destination- and source-address comparisons and forwards unknown source- and destination-address packets to ports specified via programmable masks.
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
Description 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PGV Package Terminal Layout 4. . . . . . . . . . . . . . . . . . . . . . . . . .
TNETX3270 Interface Block Diagram 5. . . . . . . . . . . . . . . . . . . .
Terminal Functions 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIO Register Groups 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interface Description 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIO Interface 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiving/Transmitting Management Frames 18. . . . . . . .
State of DIO Signals During Hardware Reset 18. . . . . . . .
Network Management Port 19. . . . . . . . . . . . . . . . . . . . . . . .
MII Serial Management Interface (PHY Management) 22. . .
10-Mbit/s and 10-/100-Mbit/s MAC Interface 22. . . . . . . . . . . .
Receive Control 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Giant (Long) Frames 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Frames 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Filtering of Frames 23. . . . . . . . . . . . . . . . . . . . . . .
Data Transmission 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Control 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adaptive Performance Optimization
(APO) (Transmit Pacing) 23. . . . . . . . . . . . . . . . . . . . . . . . .
Interframe Gap Enforcement 23. . . . . . . . . . . . . . . . . . . . . .
Backoff 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Versus Transmit Priority 24. . . . . . . . . . . . . . . . . .
Uplink Pretagging 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Interface 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interaction of EEPROM Load With the SIO Register 28. .
Summary of EEPROM Load Outcomes 28. . . . . . . . . . . . .
Compatibility With Future Device Revisions 28. . . . . . . . .
JTAG Interface 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HIGHZ instruction 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Interface 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lamp Test 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multi-LED Display 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Configurations 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10-Mbit/s MAC Interfaces (Ports 00–23) 30. . . . . . . . . . . . . . .
10-/100-Mbit/s MAC Interfaces (Ports 24–26) 34. . . . . . . . . . .
10-/100-Mbit/s Port Configuration 34. . . . . . . . . . . . . . . . . .
10-/100-Mbit/s Port Configuration
in a Nonmanaged Switch 35. . . . . . . . . . . . . . . . . . . . . . . . .
10-/100-Mbit/s Port Configuration
in a Managed Switch 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TNETX3270
ThunderSWITCH24/3 ETHERNET SWITCH
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Contents
SDRAM Interface 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SDRAM-Type and Quantity Indication 38. . . . . . . . . . . . . . . . .
Initialization 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Refresh 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame Routing 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VLAN Support 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE Std 802.1Q Headers – Reception 40. . . . . . . . . . . . . . . .
IEEE Std 802.1Q Headers – Transmission 40. . . . . . . . . . . . .
Address Maintenance 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spanning-Tree Support 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aging Algorithms 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frame-Routing Determination 41. . . . . . . . . . . . . . . . . . . . . . . .
Port Mirroring 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port Trunking/Load Sharing 45. . . . . . . . . . . . . . . . . . . . . . . . . .
Flow Control 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collision-Based Flow Control 46. . . . . . . . . . . . . . . . . . . . . . . . .
IEEE Std 802.3 Flow Control 46. . . . . . . . . . . . . . . . . . . . . . . . .
Internal Wrap Test 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duplex Wrap Test 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port Mirroring 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Copy to Uplink 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Operating Conditions 51. . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Measurement Information 52. . . . . . . . . . . . . . . . . . . . . .
Test Measurement 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10-Mbit/s Interface (Ports 00–23) 53. . . . . . . . . . . . . . . . . . . . . . . . . .
10-/100-Mbit/s MAC Interface 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SDRAM Interface 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIO/DMA Interface 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial MII Management Interface 60. . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Interface 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Interface 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-Up OSCIN and RESET 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical Data 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
TNETX3270 ThunderSWITCH24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
PGV PACKAGE
(TOP VIEW)
DD26 DD27 DD28
V
DD(2.5V)
DD29 DD30 DD31
GND DCAS DRAS
DW
V
DD(3.3V)
DCLK
GND
DA00 DA01
V
DD(2.5V)
DA02 DA03 DA04
GND
DA05 DA06 DA07 DA08 DA09 DA10
GND
DA11
DA12
V
DD(2.5V)
DA13
TH0RENEG
GND
TH0TXD0 TH0TXD1 TH0TXD2 TH0TXD3 TH0TXEN
GND
TH0SYNC
TH0CLK TH0COL
TH0CRS
V
DD(2.5V)
TH0RXDV TH0RXD0 TH0RXD1
V
DD(3.3V)
TH0RXD2 TH0RXD3
TH0LINK
TH1RENEG
TH1TXD0
GND
TH1TXD1 TH1TXD2
V
DD(2.5V)
TH1TXD3
TH1TXEN
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
DD25
180
1
DD(2.5V)
DD24VDD23
DD22
GND
DD21
DD20
175
179
178
177
176
174
173
5
2346789
DD15
DD14
167
DD(2.5V)
V
165
166
15
DD13
164
DD(3.3V)
V
DD12
163
162
DD11
161
20
GND
160
DD10
159
DD09
158
DD08
DD07
157
25
156
DD06
GND
155
154
DD05
153
DD04
V
152
DD(2.5V)
DD03
DD02
150
151
149
GND
148
DD01
147
DD00
SRXRDY
145
146
35
STXRDY
SAD1
SAD0
144
143
142
GND
141
40
SINT
140
SRDY
SCS
139
138
V
DD(3.3V)
DD19
DD18
DD17
DD16
V
170
172
171
169
168
10
1112131416171819212223242627282930313233343637383941424344464748495152535456575859
DD(2.5V)
SDATA7
SDATA6
135
137
136
45
GND
134
DD(3.3V)
V
SDATA5
133
132
SDATA4
131
50
SDATA3
130
SDATA2
129
GND
128
SDATA1
127
SDATA0
126
55
DD(2.5V)
SRNW
V
125
124
V
SDMA
123
122
DD(3.3V)
MDCLK
121 120 119 118 117 116 115 114 113 112
111 110 109 108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
60
MDIO MRESET V
DD(2.5V)
ECLK EDIO RESET LEDDATA LEDCLK OSCIN TRST TDI V
DD(3.3V)
TDO TMS TCLK V
DD(2.5V)
M26FORCE10 M26FORCEHD M26LINK M26RXER GND M26RXDV M26RXD3 M26RXD2 M26RXD1 M26RXD0 GND M26RCLK M26CRS V
DD(2.5V)
M26COL M26TXER GND M26TXEN M26TXD3 M26TXD2 M26TXD1 M26TXD0 M26TCLK GND M25FORCE10 M25FORCEHD M25LINK V
DD(2.5V)
M25RXER M25RXDV GND M25RXD3 V
DD(3.3V)
M25RXD2 M25RXD1 M25RXD0 GND M25RCLK M25CRS M25COL V
DD(2.5V)
M25TXER M25TXEN M25TXD3
DD(2.5V)
TH1CRS
V
GND
TH1RXD0
TH1RXD1
TH1RXDV
TH1CLK
TH1COL
TH1SYNC
4
DD(3.3V)
TH1RXD2
TH1RXD3
V
GND
TH1LINK
TH2RENEG
DD(2.5V)
TH2TXD0
TH2TXD1
V
TH2TXD2
TH2TXD3
TH2TXEN
TH2CLK
TH2COL
TH2SYNC
TH2CRS
TH2RXD0
TH2RXDV
TH2RXD1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DD(2.5V)
V
TH2RXD2
TH2RXD3
GND
TH2LINK
M24TCLK
M24TXD0
M24TXD1
M24TXD2
GND
M24TXD3
M24TXEN
M24COL
M24CRS
M24TXER
DD(2.5V)
V
M24RCLK
M24RXD0
M24RXD1
M24RXD2
M24RXD3
M24RXDV
M24LINK
M24RXER
24FORCEHD
GND
DD(2.5V)
V
M25TCLK
M25TXD0
M24FORCE10
M25TXD1
M25TXD2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
JTAG
Test Access
Port (TAP)
DRAM
Port
EEPROM
Port
SDATA7–SDATA0
CPU
Interface
LED
Activity
Port
Serial
MII
Interface
Miscellaneous
Functions
xx is the port number that is being monitored.
TRST
TMS
TCLK
TDI
TDO
DD31–DD0 DA12–DA0
DCLK DRAS DCAS
DW
ECLK
EDIO
SAD1–SAD0
SRNW
SCS
SRDY
SDMA
SINT
STXRDY
SRXRDY
LEDDATA
LEDCLK
MDCLK
MDIO
MRESET
OSCIN
RESET
SDRAM
Controller
EEPROM Interface
CPU
Interface
LED
Interface
MII
TAP
Queue
Manager
Address
Compare
Network
Statistics
Logic
Statistics
Storage
MIB
Data Path
Controller (MAC)
Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC)
Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC) Controller (MAC)
Controller (MAC)
Controller (MAC)
Controller (MAC)
MII
MII
MII
MUX MUX MUX
TH0CLK TH0TXD3–TH0TXD0 TH0TXEN TH0COL TH0CRS TH0SYNC TH0RXD3–TH0RXD0 TH0RXDV TH0LINK TH0RENEG
TH1CLK TH1TXD3–TH1TXD0 TH1TXEN TH1COL TH1CRS TH1SYNC TH1RXD3–TH1RXD0 TH1RXDV TH1LINK TH1RENEG
TH2CLK TH2TXD3–TH2TXD0 TH2TXEN TH2COL TH2CRS TH2SYNC TH2RXD3–TH2RXD0 TH2RXDV TH2LINK TH2RENEG
MxxTCLK MxxTXD3–MxxTXD0 MxxTXEN MxxTXER MxxCOL MxxCRS MxxRCLK MxxRXD3–MxxRXD0 MxxRXDV MxxRXER MxxFORCE10 MxxFORCEHD MxxLINK
Eight Ports (00–07) 10 Mbit/s
Eight Ports (08–15) 10 Mbit/s
Eight Ports (16–23) 10 Mbit/s
Three Ports
(24–26) 10/100 Mbit/s
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
ThunderSWITCH 24/3 ETHERNET SWITCH
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999

TNETX3270
Figure 1. TNETX3270 Interface Block Diagram
PRODUCT PREVIEW
TNETX3270
I/O
DESCRIPTION
ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions
10-Mbit/s MAC multiplexed interface (ports 00–23) is multiplexed into three groups (TH0, TH1, and
222
2
23
223
3
24
224
5
25
232
13 32
213 233
15
231 230 228 227
11 10
9 7
INTERNAL
RESISTOR
I Pullup
I Pulldown
I Pulldown
I Pulldown
O None
I Pullup
Interface clock. Eight ports are supported on each interface and use this common 20-MHz clock.
Interface collision sense. Assertion of THxCOL† during half-duplex operation indicates network collision on the current port. Additionally, during full-duplex operation, transmission of new frames does not start if this terminal is asserted.
Interface carrier sense. THxCRS† indicates a frame carrier signal is being received on a current port.
Interface link presence. THxLINK† indicates the presence of the connection on a port.
– Low = no link – High = link good
Interface renegotiate. A 1-0-1 sequence output on THxRENEG causes flow control and half/full duplex for a port to be renegotiated with its companion physical-layer (PHY) device. These THxRENEG
Interface receive data. The receive data nibble from the current port is synchronous to THxCLK. When the THxRXDV signal is 1, the receive data terminals contain valid information. THxRXD0 is the least significant bit and THxRXD3 is the most significant bit. These signals also are used to report the channel state to the MAC.
terminals connect to IFFORCEHD on TNETE2008.
TH2) of eight ports
TERMINAL
NAME NO.
TH0CLK TH1CLK TH2CLK
TH0COL TH1COL TH2COL
TH0CRS TH1CRS TH2CRS
TH0LINK TH1LINK TH2LINK
TH0RENEG TH1RENEG TH2RENEG
TH0RXD3 TH0RXD2 TH0RXD1 TH0RXD0
TH1RXD3 TH1RXD2 TH1RXD1 TH1RXD0
TH2RXD3 TH2RXD2 TH2RXD1 TH2RXD0
TH0TXEN TH1TXEN TH2TXEN
TH0SYNC TH1SYNC TH2SYNC
THx = TH0, TH1, and TH2
Internal resistors are provided to pull signals to known values. System designers should determine if additional pullups or pulldowns are required in their system.
30 29 28 27
219 240
O None Interface transmit enable. THxTXEN indicates valid transmit data on THxTXD.
21
221
1
22
I Pullup
Interface synchronize. THxSYNC is used to synchronize the port traffic between the media-access controller (MAC) and PHY. When THxSYNC is a 1, the current MAC-to-PHY path is the multiplexer interface TH0, and the PHY-to-MAC path is the multiplexer interface TH2. THxSYNC is sampled by the MAC on the falling edge of THxCLK.
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
I/O
DESCRIPTION
I/O
DESCRIPTION
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions (Continued)
10-Mbit/s MAC multiplexed interface (ports 00–23) is multiplexed into three groups (TH0, TH1, and
20 19 18 16
6
26
42 65 90
43 66 92
54 80
104
52 78
102
53 79
103
44 67 93
(continued)
INTERNAL RESISTOR
Interface transmit data. The transmit data nibble for the current port is synchronous to
O None
I Pulldown
THxCLK. When THxTXEN is asserted, these signals carry data. THxTXD3–THxTXD0 are used during renegotiation to convey flow-control and duplex configuration requests to the PHY. THxTXD0 is the least significant bit and THxTXD3 is the most significant bit.
Interface receive data valid. When THxRXDV is a 1, it indicates that the THxRXD lines contain valid data.
INTERNAL RESISTOR
Collision sense. Assertion of MxxCOL in half-duplex signal indicates a network collision
I Pulldown
I Pulldown Carrier sense. MxxCRS indicates a frame carrier signal is being received.
§
I/O
I/O
Pullup
I Pulldown
Pullup
I Pullup Receive clock. Receive clock source from the attached PHY or PMI device.
on that port. In full-duplex operation, transmission of new frames does not start if this terminal is asserted.
Speed selection (force 10 Mbit/s is active low)
– If pulled low by either the TNETX3270 or a PHY, the port operates at 10 Mbit/s. – If not pulled low by either the TNETX3270 or a PHY , the internal pullup resistor holds this signal high and the port operates at 100 Mbit/s. An external 4.7-kpullup resistor connected to V
Connection status. MxxLINK indicates the presence of a port connection.
– If MxxLINK = 0, there is no link. – If MxxLINK = 1, the link is good.
Duplex selection (force half duplex is active low)
– If pulled low by either the TNETX3270 or the PHY, the port operates at half duplex. – If not pulled low by either the TNETX3270 or the PHY , the internal pullup resistor holds this signal high and the port operates at full duplex. An external 4.7-k pullup resistor connected to V
DD(3.3V)
DD(3.3V)
may be required, depending on the system layout.
may be required, depending on the system layout.
TH2) of eight ports
TERMINAL
NAME NO.
TH0TXD3 TH0TXD2 TH0TXD1 TH0TXD0
TH1TXD3 TH1TXD2 TH1TXD1 TH1TXD0
TH2TXD3 TH2TXD2 TH2TXD1 TH2TXD0
TH0RXDV TH1RXDV TH2RXDV
THx = TH0, TH1, and TH2
218 217 216 215
239 237 236 234
226
10-/100-Mbit/s MAC interface (ports 24–26)
TERMINAL
NAME NO.
M24COL M25COL M26COL
M24CRS M25CRS M26CRS
M24FORCE10 M25FORCE10 M26FORCE10
M24LINK M25LINK M26LINK
M24FORCEHD M25FORCEHD M26FORCEHD
M24RCLK M25RCLK M26RCLK
xx = ports 24, 25, and 26
§
Not a true bidirectional terminal. It can only be actively pulled down (open drain).
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
TNETX3270
I/O
DESCRIPTION
ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions (Continued)
10-/100-Mbit/s MAC interface (ports 24–26) (continued)
TERMINAL
NAME NO.
M24RXD3 M24RXD2 M24RXD1 M24RXD0
M25RXD3 M25RXD2 M25RXD1 M25RXD0
M26RXD3 M26RXD2 M26RXD1 M26RXD0
M24RXDV M25RXDV M26RXDV
M24RXER M25RXER M26RXER
M24TCLK M25TCLK M26TCLK
M24TXD3 M24TXD2 M24TXD1 M24TXD0
49 48 47 46
73 71 70 69
98 97 96 95
50 75 99
51 76
101
33 56 82
38 37 36 35
INTERNAL RESISTOR
Receive data (nibble receive data from the attached PHY or PMI device). Data on these
I Pullup
I Pulldown
I Pulldown Receive error. MxxRXER indicates a coding error on received data.
I Pullup Transmit clock. Transmit clock source from the attached PHY or PMI device.
signals is synchronous to MxxRCLK. MxxRXD0 is the least significant bit and MxxRXD3 is the most significant bit.
Receive data valid. When high, MxxRXDV indicates valid data is present on the MxxRXD3–MxxRXD0 lines.
M25TXD3 M25TXD2 M25TXD1 M25TXD0
M26TXD3 M26TXD2 M26TXD1 M26TXD0
M24TXEN M25TXEN M26TXEN
M24TXER M25TXER M26TXER
xx = ports 24, 25, and 26
61 60
O None
59 57
86 85 84 83
39 62
O None Transmit enable. MxxTXEN indicates valid transmit data on MxxTXD3–MxxTXD0.
87 41
63
O None
89
Transmit data (nibble transmit data). When MxxTXEN is asserted, these signals carry transmit data. Data on these signals is synchronous to MxxTCLK. MxxTXD0 is the least significant bit and MxxTXD3 is the most significant bit.
Transmit error . MxxTXER allows coding errors to be propagated across the MII. MxxTXER is taken high when an under-run in the transmit FIFO for port xx occurs and causes fill data to be transmitted (MxxTXER is low otherwise). MxxTXER is asserted at the end of an under-running frame, enabling the device to force a coding error .
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
I/O
DESCRIPTION
SDRAM interface
TERMINAL
NAME NO.
DA13 DA12 DA11 DA10 DA09 DA08 DA07 DA06 DA05 DA04 DA03 DA02 DA01 DA00
DCAS
DCLK DD31
DD30 DD29 DD28 DD27 DD26 DD25 DD24 DD23 DD22 DD21 DD20 DD19 DD18 DD17 DD16 DD15 DD14 DD13 DD12 DD11 DD10 DD09 DD08 DD07 DD06 DD05 DD04 DD03 DD02 DD01 DD00
DRAS DW
212 210 209 207 206 205 204 203 202 200 199 198 196 195
189 O None
193 O None 187
186 185 183 182 181 180 179 177 176 174 173 172 171 170 168 167 166 164 162 161 159 158 157 156 155 153 152 150 149 147 146
190 O None SDRAM row address strobe. DRAS, with DCAS and DW, supplies the SDRAM commands. 191 O None SDRAM write select. DW, with DRAS and DCAS, supplies the SDRAM commands.
O None
I/O Pullup
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions (Continued)
INTERNAL RESISTOR
SDRAM address bus (time-multiplexed bank, row, and column address). The address bus DA13–DA00 also provides the SDRAM mode register initialization value. DA13 is the most significant bit and DA00 is the least significant bit.
SDRAM column address strobe. DCAS, in conjunction with DRAS and DW, determines the SDRAM commands.
SDRAM clock (83.33-MHz clock to the SDRAMs). SDRAM commands, addresses, and data are sampled by the SDRAM on the rising edge of this clock.
SDRAM data bus (bidirectional bus used to carry SDRAM data). DD31–DD00 also output status information to indicate buffer operation type and port number . Internal pullup resistors are provided. DD31 is the most significant bit and the DD00 is the least significant bit.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
TNETX3270
I/O
DESCRIPTION
ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions (Continued)
host DIO interface
TERMINAL
NAME NO.
SAD1 SAD0
SCS
SDMA
SDATA7 SDATA6 SDATA5 SDATA4 SDATA3 SDATA2 SDATA1 SDATA0
SINT
SRDY
SRNW
SRXRDY
STXRDY
143 142
138 I Pullup DIO chip select. When low, SCS indicates a DIO port access is valid.
123 I Pullup
136 135 133 131 130 129 127 126
140 O None
139 O Pullup
125 I Pullup
145 O None
144 O None
INTERNAL RESISTOR
I Pullup DIO address bus. SAD1 and SAD0 select the internal host registers, when SDMA is high.
DIO DMA select. When low, SDMA modifies the behavior of the DIO interface to allow it to operate with an external DMA controller. The SAD0 and SAD1 terminals are not used to select the internal host register for the access. Instead, the DIO address to access is provided by the DMA address register, and one of two host register addresses is selected according to DMAinc in the Syscontrol register.
– If DMAinc = 1, accesses are the DIOdatainc register and DMAaddress increments after each access. – If DMAinc = 0, accesses are the DIOdata register, and DMAaddress does not increment after each address.
I/O Pullup
DIO data interface bus (byte-wide bidirectional DIO port). SDATA7 is the most significant bit and SDATA0 is the least significant bit.
DIO interrupt line (interrupt to the attached microprocessor). The interrupt originating event is stored in the Int register.
DIO ready signal
– When low during reads, SRDY – When low during writes, SRDY high. SRDY
DIO read not write
– When high, read operation is selected. – When low, write operation is selected.
Network management port, receive ready. When high, SRXRDY indicates that the network management port’s RX buffers are empty and the network management port is able to receive a frame.
Network management port, transmit ready. STXRDY indicates that at least one frame buffer is available to be read by the management CPU.
– It outputs as a 1 if any of the end-of-frame (EOF) bits, start-of-frame (SOF) bits, or one of the bits in NMTxcontrol is set to 1. – Otherwise, it outputs 0.
is driven high for one clock cycle before placing the output in high impedance.
indicates to the host when data is valid to be read.
indicates when data has been received after SCS is taken
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
I/O
DESCRIPTION
I/O
DESCRIPTION
I/O
DESCRIPTION
I/O
DESCRIPTION
Terminal Functions (Continued)
serial MII management PHY interface
TERMINAL
NAME NO.
MDCLK
MDIO
MRESET
121 O/High Z Pullup
120 I/O Pullup
119 O/High Z Pullup
EEPROM interface
TERMINAL
NAME NO.
ECLK
EDIO
117 O None EEPROM data clock.
116 I/O Pullup
INTERNAL RESISTOR
INTERNAL RESISTOR
EEPROM data I/O. An external pulldown resistor may be required for proper operation. Since this terminal has an internal pullup, it can be left unconnected if no EEPROM is present. The EEPROM is optional if a management CPU is present.
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Serial MII management data clock. MDCLK can be disabled (high impedance) through the use of the SIO register.
Serial MII management data I/O. MDIO can be disabled, placed in high Z, through the SIO register. An external 4.7-k pullup resistor , conected to V rise-time requirements.
Serial MII management reset. MRESET can be disabled (high impedance) through the use of the SIO register. If connected to a PHY device, an external pullup resistor is recommended.
DD(3.3V)
, is needed to meet the
LED interface
TERMINAL
NAME NO.
LEDCLK LEDDATA
113 O None LED clock (serial shift clock for the LED status data) 114 O None
JTAG interface
TERMINAL
NAME NO.
TCLK
TDI
TDO
TRST
TMS
106 I Pullup
110 I Pullup
108 O None
111 I Pullup
107 I Pullup
INTERNAL RESISTOR
LED data (serial LED status data). LEDDATA is active low . All LED information (port link, activity status, software status, flow status, and fault status) is sent via this serial interface.
INTERNAL RESISTOR
T est clock. TCLK is used to clock state information, test instructions, and test data into and out of the device during operation of the test port.
Test data input. TDI is used to serially shift test data and test instructions into the device during operation of the test port. An internal pullup resistor is provided on TDI to ensure JT AG compliance.
T est data output. TDO is used to serially shift test data and test instructions out of the device during operation of the test port.
T est reset. TRST is used for asynchronous reset of the test-port controller . An internal pullup resistor is provided to ensure JTAG compliance. If the test port is not used, an external pulldown resistor of 10 k may be used to disable the test-port controller.
T est mode select. TMS is used to control the state of the test-port controller. An internal pullup resistor is provided on TMS to ensure JTAG compliance.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
TNETX3270
I/O
DESCRIPTION
DESCRIPTION
ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Terminal Functions (Continued)
miscellaneous
TERMINAL
NAME NO.
OSCIN RESET
112 I None Master system clock input (83.33-MHz input clock) 115 I None Reset. RESET is synchronous and, therefore, the system clock must be operational during reset.
power interface
NAME NO.
8, 14, 34, 40, 55, 68, 74, 81, 88, 94, 100,
GND
V
DD(3.3V)
V
DD(2.5V)
128, 134, 141, 148, 154, 160, 175, 188,
12, 72, 109, 122, 132, 163, 169, 192, 229 None
105, 118, 124, 137, 151, 165, 178,
INTERNAL RESISTOR
TERMINAL
194, 201, 208, 214, 220, 235
4, 17, 31, 45, 58, 64, 77, 91,
184, 197, 211, 225, 238
INTERNAL RESISTOR
None
None 2.5-V supply voltage. Power for the core.
Ground. GND is the 0-V reference for the device. All GND terminals must be connected.
3.3-V supply voltage. Power for the input, output, and I/O terminals.
summary of signal terminals by signal group function
PORT DESCRIPTION
LED 2 1 2 10-Mbit/s port 16 3 48 10-/100-Mbit/s port 19 3 57 DIO 17 1 17 EEPROM interface 2 1 2 DRAM interface 50 1 50 Miscellaneous 2 1 2 JTAG 5 1 5 Serial MII management 3 1 3
Total signals 186
Assigned terminals 186 V
DD(3.3V)
V
DD(2.5V)
GND 25 Total terminals 240
NUMBER OF
SIGNALS
SUMMARY
MULTIPLIER TOTAL
9
20
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DIO register groups
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Table 1. Internal Register and Statistics Memory Map
LOADABLE
REGISTERS
Port configuration Yes Yes 0x0000:0x002F Spanning tree Yes Yes 0x0030:0x007F Trunking Yes Yes 0x0080:0x0088 VLAN No Yes 0x0089:0x03FF Port status No No 0x0400:0x043F Address configuration No No 0x0440:0x08FF Port statistics No No 0x0900:0xFFFF
USING 24C02
EEPROM?
LOADABLE
USING 24C08
EEPROM?
DIO
ADDRESS
RANGE
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
TNETX3270 ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Table 2. Detailed DIO Register Map
BYTE 3 BYTE 2 BYTE 1 BYTE 0
Port1control Port0control 0x0000 Port3control Port2control 0x0004 Port5control Port4control 0x0008 Port7control Port6control 0x000C
Port9control Port8control 0x0010 Port11control Port10control 0x0014 Port13control Port12control 0x0018 Port15control Port14control 0x001C Port17control Port16control 0x0020 Port19control Port18control 0x0024 Port21control Port20control 0x0028 Port23control Port22control 0x002C Port25control Port24control 0x0030
Reserved Port26control 0x0034 Reserved Reserved 0x0038:0x003F
Reserved UnkVLANport Mirrorport Uplinkport 0x0040
Reserved Aging threshold 0x0044
Reserved 0x0048:0x004F
Nlearnports 0x0050
Txblockports 0x0054
Rxuniblockports 0x0058
Rxmultiblockports 0x005C
Unkuniports 0x0060
Unkmultiports 0x0064
Unksrcports 0x0068
UnkVLANintports 0x006C
Reserved 0x0070:0x007F Trunkmap3 T runkmap2 Trunkmap1 Trunkmap0 0x0080 Trunkmap7 Trunkmap6 Trunkmap5 Trunkmap4 0x0084
Reserved Trunkports 0x0088
Reserved 0x008C:0x009F
Devcode Reserved SIO Revision 0x00A0
Reserved 0x00A4:0x00DF
RAMsize Reserved IOBcontrol 0x00E0
Reserved 0x00E4
Pausetime100 Pausetime10 0x00E8
Reserved 0x00EC
Reserved Flowthreshold 0x00F0
Reserved LEDcontrol 0x00F4
Syscontrol Statcontrol 0x00F8
DIO
ADDRESS
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Table 2. Detailed DIO Register Map (Continued)
BYTE 3 BYTE 2 BYTE 1 BYTE 0
Reserved (for EEPROM CRC) 0x00FC
VLAN0ports 0x0100 VLAN1ports 0x0104 VLAN2ports 0x0108 VLAN3ports 0x010C VLAN4ports 0x0110 VLAN5ports 0x0114 VLAN6ports 0x0118 VLAN7ports 0x011C VLAN8ports 0x0120
VLAN9ports 0x0124 VLAN10ports 0x0128 VLAN11ports 0x012C VLAN12ports 0x0130 VLAN13ports 0x0134 VLAN14ports 0x0138 VLAN15ports 0x013C VLAN16ports 0x0140 VLAN17ports 0x0144 VLAN18ports 0x0148 VLAN19ports 0x014C VLAN20ports 0x0150 VLAN21ports 0x0154 VLAN22ports 0x0158 VLAN23ports 0x015C VLAN24ports 0x0160 VLAN25ports 0x0164 VLAN26ports 0x0168 VLAN27ports 0x016C VLAN28ports 0x0170 VLAN29ports 0x0174 VLAN30ports 0x0178 VLAN31ports 0x017C
Reserved 0x0180:0x02FF VLAN1QID VLAN0QID 0x0300 VLAN3QID VLAN2QID 0x0304 VLAN5QID VLAN4QID 0x0308 VLAN7QID VLAN6QID 0x030C VLAN9QID VLAN8QID 0x0310
VLAN11QID VLAN10QID 0x0314 VLAN13QID VLAN12QID 0x0318 VLAN15QID VLAN14QID 0x031C
DIO
ADDRESS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
TNETX3270 ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Table 2. Detailed DIO Register Map (Continued)
BYTE 3 BYTE 2 BYTE 1 BYTE 0
VLAN17QID VLAN16QID 0x0320 VLAN19QID VLAN18QID 0x0324 VLAN21QID VLAN20QID 0x0328 VLAN23QID VLAN22QID 0x032C VLAN25QID VLAN24QID 0x0330 VLAN27QID VLAN26QID 0x0334 VLAN29QID VLAN28QID 0x0338 VLAN31QID VLAN30QID 0x033C
Reserved 0x0340:0x037F Port1Qtag Port0Qtag 0x0380 Port3Qtag Port2Qtag 0x0384 Port5Qtag Port4Qtag 0x0388 Port7Qtag Port6Qtag 0x038C Port9Qtag Port8Qtag 0x0390
Port11Qtag Port10Qtag 0x0394 Port13Qtag Port12Qtag 0x0398 Port15Qtag Port14Qtag 0x039C Port17Qtag Port16Qtag 0x03A0 Port19Qtag Port18Qtag 0x03A4 Port21Qtag Port20Qtag 0x03A8 Port23Qtag Port22Qtag 0x03AC Port25Qtag Port24Qtag 0x03B0
Reserved Port26Qtag 0x03B4
Reserved 0x03B8:0x03FF
Port1status Port0status 0x0400 Port3status Port2status 0x0404 Port5status Port4status 0x0408 Port7status Port6status 0x040C
Port9status Port8status 0x0410 Port11status Port10status 0x0414 Port13status Port12status 0x0418 Port15status Port14status 0x041C Port17status Port16status 0x0420 Port19status Port18status 0x0424 Port21status Port20status 0x0428 Port23status Port22status 0x042C Port25status Port24status 0x0430
Reserved Port26status 0x0434
Reserved 0x0438:0x043F
DIO
ADDRESS
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
Table 2. Detailed DIO Register Map (Continued)
BYTE 3 BYTE 2 BYTE 1 BYTE 0
Findnode<23–16> Findnode<31–24> Findnode<39–32> Findnode<47–40> 0x0440
FindVLAN Findcontrol Findnode<7–0> Findnode<15–8> 0x0444
Findport 0x0448
Newnode<23–16> Newnode<31–24> Newnode<39–32> Newnode<47–40> 0x044C
Reserved Newnode<7–0> Newnode<15–8> 0x0450
NewVLAN Newport 0x0454
Addnode<23–16> Addnode<31–24> Addnode<39–32> Addnode<47–40> 0x0458
AddVLAN Adddelcontrol Addnode<7–0> Addnode<15–8> 0x045C
Addport 0x0460
Agednode<23–16> Agednode<31–24> Agednode<39–32> Agednode<47–40> 0x0464
AgedVLAN Agedport Agednode<7–0> Agednode<15–8> 0x0468
Delnode<23–16> Delnode<31–24> Delnode<39–32> Delnode<47–40> 0x046C
DelVLAN Delport Delnode<7–0> Delnode<15–8> 0x0470
Agingcounter Numnodes 0x0474
Reserved 0x0478:0x07FF
Reserved DMAaddress 0x0800 Reserved Int 0x0804 Reserved Intenable 0x0808
Systest Freestacklength 0x080C
RAMaddress 0x0810
Reserved RAMdata 0x0814
Reserved NMRxcontrol 0x0818 Reserved NMTxcontrol 0x081C
Reserved NMdata 0x0820
Reserved 0x0824:0x3FFF
TNETX3270 reset: reinitializes the TNETX3270 0x4000:0x5FFF
Reserved 0x6000:0x7FFF
Port and network management port statistics 0x8000:8DFF
Reserved 0x8E00:8FFF
TX pause, RX pause, and security-violation counters 0x9000:0x91BF
Reserved 0x91C0:0x9FFF
Unknown unicast destination addresses 0xA000
Unknown multicast destination addresses 0xA004
Unknown source address 0XA008
Reserved 0xA00C:0xFFFF
DIO
ADDRESS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
TNETX3270 ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
interface description
DIO interface
The DIO interface is a general-purpose interface that can be used with a wide range of microprocessor or computer systems. The interface supports external DMA controllers.
This interface can be used to configure the TNETX3270 using an optional attached CPU (or EEPROM), and to access statistics registers. In addition, this allows access to an internal network management (NM) port that can be transferred between the CPU and the TNETX3270 to support spanning tree, SNMP, and RMON. Either the CPU can read and write packets directly under software control or an external DMA controller can be used to improve performance.
When accessing the statistics values from the DIO port, it is necessary to perform four 1-byte DIO reads to obtain the full 32-bit counter. Counters always should be read in ascending byte-address order (0, 1, 2, 3). To prevent the counter being updated while reading the four bytes, the entire 32-bit counter value is transferred to a holding register when byte 0 is read.
receiving/transmitting management frames
Frames originating within the host are written to the NM port via the NMRxcontrol and NMdata registers. Once a frame has been fully written, it is then received by the switch and routed to the destination port(s).
Frames that were routed to this port from any of the switch ports are placed in a queue until the host is ready to read them via the NMTxcontrol and NMdata registers. They then are effectively transmitted out of the switch.
SDMA
can be used to transmit or receive management frames (the SAD1–SAD0 pins are ignored when SDMA is asserted) (see Table 3). When SDMA is asserted, the switch uses the value in the DMAaddress register instead of the DIO address registers to access frame data (this also can be used to access the switch statistics). STXRDY and SRXRDY, the interrupts, freebuffs, eof, sof, and iof mechanisms can be used, as desired, to prevent unwanted stalls on the DIO bus during busy periods.
Table 3. DMA Interface Signals
SIGNAL DESCRIPTION
SDMA Automatically sets up DIO address using the DMAaddress register STXRDY Indicates that at least one data frame buffer can be read by the management CPU SRXRDY Indicates that the management CPU can write a frame of any size up to 1535 bytes
state of DIO signals during hardware reset
The CPU can perform a hardware reset by writing to an address in the range 0x4000–0x5FFF (writes to a DMA address in this range have no effect on reset). This is equivalent to asserting the hardware RESET hardware reset, the output and bidirectional DIO pins behave as shown in Table 4.
Table 4. DIO Interface During Hardware Reset
DIO INTERFACE
SIGNAL
SDATA7–SDATA0 High impedance. Resistively pulled up. SRDY High impedance. Resistively pulled up. SRXRDY Driven high STXRDY Driven low
STATE DURING HARDWARE RESET
pin. During
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TNETX3270
ThunderSWITCH 24/3 ETHERNET SWITCH
WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
network management port
Frames can be received or transmitted via the DIO interface using a built-in port, the network management (NM) port.
Frames originating within the host are written to this port via the NMRxcontrol and NMdata registers. Once a frame has been fully written, it is then received by the switch and routed to the destination port(s).
Frames that were routed to this port from any of the switch’s ports queue until the host is ready to read them via the NMTxcontrol and NMdata registers. They are then effectively transmitted out of the switch.
IEEE Std 802.1Q VLAN headers on the NM port
Frames received from the host via the NM port are required to contain a valid IEEE Std 802.1Q header. Frames that do not contain a valid header are incorrectly routed. They may be corrupted at the transmission port(s), as the header-stripping process does not verify that the four bytes after the source address are actually a valid header because they always are a valid header under all other circumstances.
When a frame is transmitted to the NM port, no header-stripping occurs, so the frame contains one, or possibly two headers, depending on how the frame was originally received.
full-duplex NM port
The NM port can intermix reception and transmission as desired. The direction of the NMdata access (i.e., read or write) determines whether a byte is removed from the transmit queue or added to the receive queue. The DIO interface is half duplex since it can do only a read or write at one time.
NM bandwidth and priority
The NM port is capable of transferring a byte to or from NMdata once every five cycles, so the burst rate of this port approximates eight bits per 60 ns (or 133 Mbit/s). This can be sustained between the DIO port and the NM port’s dedicated transmit or receive buffers.
However, the NM port is prioritized lower than the other ports between its receive and transmit buf fers and the external memory system so that at periods of high activity , the NM port does not cause frames to be dropped on the other ports. STXRDY and SRXRDY, the interrupts and freebuffs, EOF , SOF, and interior-of-frame (IOF) mechanisms can be used as desired to prevent unwanted stalls on the DIO bus during busy periods.
The burst rate is unaffected by traffic on other ports.
interrupt processing
There are two interrupts available on the NM port. The interrupt process uses RXRDY and the nmrx interrupts to indicate when the receive FIFO is empty. This
indicates that the NM port is ready to accept a frame of any length (up to 1536 bytes). If the host needs to download a sequence of frames, it can use the freebuffs field to indicate space availability .
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
TNETX3270 ThunderSWITCH 24/3 ETHERNET SWITCH WITH 24 10-MBIT/S PORTS AND 3 10-/100-MBIT/S PORTS
SPWS043B – NOVEMBER 1997 – REVISED APRIL 1999
frame format on the NM port
The frame format on the NM port differs slightly from a standard Ethernet frame format. The key differences are: the frame always contains an IEEE Std 802.1Q header in the four bytes following the source address (see Figure 2). The TPID (tag protocol identifier or ethertype) field, however , is used in the switch for other purposes, so a frame transmitted out of the switch on the NM port does not have the IEEE Std 802.1Q TPID of 81–00 (ethertype constant) value in these two bytes.
The first TPID byte output contains:
D
The frame source port number in the least significant bits. This allows the frame source port number to be carried within the frame, which is useful for processing BPDUs, for example.
D
A cyclic redundancy check (CRC) type indicator (crctype) in the most significant bit (bit 7).
If crctype = 1, then the CRC word in the frame excludes the IEEE Std 802.1Q header.
If crctype = 0, then the CRC word in the frame includes the IEEE Std 802.1Q header. This CRC word is
for a regular IEEE Std 802.1Q frame format with the value in the IEEE Std 802.1Q TPID of 81–00 (ethertype constant) in the TPID field. Because the internal frame format uses the TPID field for other purposes in the manner being described, it is necessary to insert the IEEE Std 802.1Q TPID of 81–00 (ethertype constant) value into the TPID field if the frame needs to be restored to a normal IEEE Std 802.1Q frame format, which passes a CRC check.
T o provide a CRC word, which includes the header , the NM port generates a new CRC word as the frame is being read out. It simultaneously checks the existing CRC in the frame and, if an error is found, ensures that the final byte of the newly generated CRC is corrupted to contain an error, too. The CRC word is deliberately corrupted if the header parity protection (described in the following) indicates an error in the header. In either case, the pfe bit also is set to 1 after the final byte of the frame has been read from NMdata.
If the frame was received on a port other than the NM port, then the crctype bit is set if an IEEE Std 802.1Q tag header was inserted into the frame during ingress.
If crctype = 1, a header was inserted.
If crctype = 0, a header was not inserted (crctype also is 0 if the frame VLAN ID was 0x000 and was
replaced by the port VLANID (PVID) from the PortxQtag register).
In an IEEE Std 802.1D-compliant application, the header simply can be removed from the frame to produce a headerless frame with a correct CRC word.
All other bits in the byte are reserved and are 0.
The second TPID byte output contains:
D
Odd-parity protection bits for the other three bytes in the tag header
D
Bit 5 protects the first byte of the TPID field (i.e., the one containing crctype and source port number).
D
Bit 6 protects the first byte of the VLAN ID field.
D
Bit 7 protects the second byte of the VLAN ID field.
D
All other bits in the byte are reserved and are 0.
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Loading...
+ 45 hidden pages