Texas Instruments TMX320DM6467ZUT, TMS320DM6467 Datasheet

www.ti.com
TMS320DM6467
Digital Media System-on-Chip

1 Digital Media System-on-Chip (DMSoC)

1.1 Features

High-Performance Digital Media SoC ARM926EJ-S Core
594-MHz C64x+™ Clock Rate Support for 32-Bit and 16-Bit (Thumb® – 297-MHz ARM926EJ-S™ Clock Rate – Eight 32-Bit C64x+ Instructions/Cycle – 4752 C64x+ MIPS – Fully Software-Compatible With C64x /
ARM9™
Advanced Very-Long-Instruction-Word (VLIW)
TMS320C64x+™ DSP Core – Eight Highly Independent Functional Units
Six ALUs (32-/40-Bit), Each Supports
Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
Two Multipliers Support Four 16 x 16-Bit
Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
Load-Store Architecture With Non-Aligned
Support – 64 32-Bit General-Purpose Registers – Instruction Packing Reduces Code Size – All Instructions Conditional – Additional C64x+™ Enhancements
Protected Mode Operation
Exceptions Support for Error Detection
and Program Redirection
Hardware Support for Modulo Loop
Operation
C64x+ Instruction Set Features
Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions – Additional Instructions to Support Complex
Multiplies
C64x+ L1/L2 Memory Architecture
32K-Byte L1P Program RAM/Cache (Direct
Mapped) – 32K-Byte L1D Data RAM/Cache (2-Way
Set-Associative) – 128K-Byte L2 Unified Mapped RAM/Cache
(Flexible RAM/Cache Allocation)
Mode) Instruction Sets
DSP Instruction Extensions and Single
Cycle MAC – ARM® Jazelle® Technology – EmbeddedICE-RT™ Logic for Real-Time
Debug
ARM9 Memory Architecture
16K-Byte Instruction Cache – 8K-Byte Data Cache – 32K-Byte RAM – 8K-Byte ROM
Embedded Trace Buffer™ (ETB11™) With 4KB
Memory for ARM9 Debug
Endianness: Little Endian for ARM and DSP
Dual Programmable High-Definition Video
Image Co-Processor (HDVICP) Engines – Supports a Range of Encode, Decode, and
Transcode Operations
H.264, MPEG2, VC1, MPEG4 SP/ASP
Video Port Interface (VPIF)
Two 8-Bit SD (BT.656), Single 16-Bit HD
(BT.1120), or Single Raw (8-/10-/12-Bit)
Video Capture Channels – Two 8-Bit SD (BT.656) or Single 16-Bit HD
(BT.1120) Video Display Channels
Video Data Conversion Engine (VDCE)
Horizontal and Vertical Downscaling – Chroma Conversion (4:2:2 4:2:0)
Two Transport Stream Interface (TSIF)
Modules (One Parallel/Serial and One Serial Only) – TSIF for MPEG Transport Stream – Simultaneous Synchronous or
Asynchronous Input/Output Streams – Absolute Time Stamp Detection – PID Filter With 7 PID Filter Tables – Corresponding Clock Reference Generator
(CRGEN) Modules for System Time-Clock
Recovery
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.
All trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
Copyright © 2007, Texas Instruments Incorporated
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
External Memory Interfaces (EMIFs)
32-Bit DDR2 SDRAM Memory Controller
With 256M-Byte Address Space (1.8-V I/O)
Asynchronous16-Bit Wide EMIF (EMIFA)
With 128M-Byte Address Reach
Flash Memory Interfaces
NOR (8-/16-Bit-Wide Data) – NAND (8-/16-Bit-Wide Data)
Enhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels) – Programmable Default Burst Size
10/100/1000 Mb/s Ethernet MAC (EMAC)
IEEE 802.3 Compliant (3.3-V I/O Only) – Supports MII and GMII Media Independent
Interfaces
Management Data I/O (MDIO) Module
USB Port With Integrated 2.0 PHY
USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host
(Mini-Host, Supporting One External Device)
32-Bit, 33-MHz, 3.3 V Peripheral Component
Interconnect (PCI) Master/Slave Interface – Conforms to PCI Specification 2.3
Two 64-Bit General-Purpose Timers (Each
Configurable as Two 32-Bit Timers)
One 64-Bit Watch Dog Timer
Three Configurable UART/IrDA/CIR Modules
(One With Modem Control Signals) – Supports up to 1.8432 Mbps UART – SIR and MIR (0.576 MBAUD) – CIR With Programmable Data Encoding
One Serial Peripheral Interface (SPI) With Two
Chip-Selects
Master/Slave Inter-Integrated Circuit (I2C
Bus™)
Two Multichannel Audio Serial Ports (McASPs)
One Four Serializer Transmit/Receive Port – One Single DIT Transmit Port for S/PDIF
32-Bit Host Port Interface (HPI)
VLYNQ™ Interface (FPGA Interface)
Two Pulse Width Modulator (PWM) Outputs
ATA/ATAPI I/F (ATA/ATAPI-6 Specification)
Up to 33 General-Purpose I/O (GPIO) Pins
(Multiplexed With Other Device Functions)
On-Chip ARM ROM Bootloader (RBL)
Individual Power-Saving Modes for ARM/DSP
Flexible PLL Clock Generators
IEEE-1149.1 (JTAG) Boundary-
Scan-Compatible
529-Pin Pb-Free BGA Package
(ZUT Suffix), 0.8-mm Ball Pitch
0.09- µ m/7-Level Cu Metal Process (CMOS)
3.3-V and 1.8-V I/O, 1.2-V Internal
Applications:
Video Encode/Decode/Transcode/Transrate – Digital Media – Networked Media Encode/Decode – Video Imaging – Video Infrastructure – Video Conferencing
2 Digital Media System-on-Chip (DMSoC) Submit Documentation Feedback
www.ti.com
TMS320DM6467
Digital Media System-on-Chip

1.2 Description

The TMS320DM6467 (also referenced as DM6467) leverages TI’s DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices.
The DM6467 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the DM6467 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core incorporates:
A coprocessor 15 (CP15) and protection module
Data and program Memory Management Units (MMUs) with table look-aside buffers.
Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual
index virtual tag (VIVT).
The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set.
Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.
With performance of up to 4752 million instructions per second (MIPS) at a clock rate of 594 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2376 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4752 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732).
The DM6467 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with
Submit Documentation Feedback Digital Media System-on-Chip (DMSoC) 3
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 33-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467 and the network. The DM6467 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.
The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467 to easily control peripheral devices and/or communicate with host processors.
The DM6467 also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The DM6467 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
4 Digital Media System-on-Chip (DMSoC) Submit Documentation Feedback
www.ti.com

1.3 Functional Block Diagram

JTAG Interface
System Control
PLLs/Clock
Generator
Input
Clock(s)
Power/Sleep
Controller
Pin
Multiplexing
ARM Subsystem
ARM926EJ-S CPU
16 KB
I-Cache
32 KB RAM
8 KB
D-Cache
8 KB ROM
DSP Subsystem
C64x+t DSP CPU
32 KB
L1 Pgm
128 KB L2 RAM
32 KB
L1 Data
High Definition Video-Imaging
Coprocessor
(HDVICP0)
Switched Central Resource (SCR)
Peripherals
EDMA I2C SPI
UART
Serial Interfaces
DDR2
Mem Ctlr
(16b/32b)
Async EMIF/
NAND/
SmartMedia
ATA
Program/Data Storage
Watchdog
Timer
PWM
System
General­Purpose
Timer
USB 2.0
PHY
VLYNQ
EMAC
With
MDIO
Connectivity
HPI
McASP
Video
Port I/F
PCI
(33 MHz)
TSIF
High Definition Video-Imaging
Coprocessor
(HDVICP1)
Figure 1-1 shows the functional block diagram of the device.
TMS320DM6467
Digital Media System-on-Chip
Figure 1-1. TMS320DM6467 Functional Block Diagram
Submit Documentation Feedback Digital Media System-on-Chip (DMSoC) 5
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Contents
1 Digital Media System-on-Chip (DMSoC) ............ 1
1.1 Features .............................................. 1
1.2 Description ............................................ 3
1.3 Functional Block Diagram ............................ 5
2 Device Overview ......................................... 7
2.1 Device Characteristics ................................ 7
2.2 Device Compatibility .................................. 9
2.3 ARM Subsystem ...................................... 9
2.4 DSP Subsystem ..................................... 13
2.5 Memory Map Summary ............................. 18
2.6 Pin Assignments .................................... 22
2.7 Terminal Functions .................................. 29
2.8 Device Support ...................................... 75
2.9 Documentation Support ............................. 77
3 Device Configurations ................................. 78
3.1 System Module Registers ........................... 78
3.2 Power Considerations ............................... 80
3.3 Clock Considerations ................................ 83
3.4 Boot Sequence ...................................... 91
3.5 Configurations At Reset ............................. 97
3.6 Configurations After Reset ......................... 100
3.7 Multiplexed Pin Configurations ..................... 108
3.8 Device Initialization Sequence After Reset ........ 130
3.9 Debugging Considerations ......................... 131
4 System Interconnect ................................. 132
5 Device Operating Conditions ....................... 133
5.1 Absolute Maximum Ratings Over Operating Case
Temperature Range (Unless Otherwise Noted) ... 133
5.2 Recommended Operating Conditions ............. 134
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Temperature (Unless Otherwise Noted) ........... 135
6 Peripheral Information and Electrical
Specifications ......................................... 137
6.1 Parameter Information ............................. 137
6.2 Recommended Clock and Control Signal Transition
Behavior ............................................ 138
6.3 Power Supplies .................................... 139
6.4 External Clock Input From DEV_MXI/DEV_CLKIN
and AUX_MXI/AUX_CLKIN Pins .................. 146
6.5 Clock PLLs ......................................... 149
6.6 Enhanced Direct Memory Access (EDMA3)
Controller ........................................... 157
6.7 Reset ............................................... 177
6.8 Interrupts ........................................... 188
6.9 External Memory Interface (EMIF) ................. 194
6.10 Video Port Interface (VPIF) ........................ 203
6.11 Transport Stream Interface (TSIF) ................. 211
6.12 Clock Recovery Generator (CRGEN) .............. 221
6.13 Video Data Conversion Engine (VDCE) .......... 224
6.14 Peripheral Component Interconnect (PCI) ......... 227
6.15 Ethernet MAC (EMAC) ............................. 234
6.16 Management Data Input/Output (MDIO) .......... 244
6.17 Host-Port Interface (HPI) Peripheral ............... 246
6.18 USB 2.0 ............................................ 254
6.19 ATA Controller ..................................... 265
6.20 VLYNQ ............................................. 280
6.21 Multichannel Audio Serial Port (McASP0/1)
Peripherals ......................................... 284
6.22 Serial Peripheral Interface (SPI) ................... 297
6.23 Universal Asynchronouse Receiver/Transmitter
(UART) ............................................. 310
6.24 Inter-Integrated Circuit (I2C) ....................... 317
6.25 Pulse Width Modulator (PWM) ..................... 321
6.26 Timers .............................................. 323
6.27 General-Purpose Input/Output (GPIO) ............. 326
6.28 IEEE 1149.1 JTAG ................................. 329
7 Mechanical Packaging and Orderable
Information ............................................. 332
7.1 Thermal Data for ZUT .............................. 332
7.1.1 Packaging Information ............................. 332
6 Contents Submit Documentation Feedback
www.ti.com

2 Device Overview

2.1 Device Characteristics

Table 2-1 provides an overview of the TMS320DM6467 SoC. The table shows significant features of the
device, including the capacity of on-chip RAM, peripherals, internal peripheral bus frequency relative to the C64x+ DSP, and the package type with pin count.
Peripherals Not all peripherals pins are
available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
TMS320DM6467
Digital Media System-on-Chip
Table 2-1. Characteristics of the DM6467 Processor
HARDWARE FEATURES DM6467
DDR2 Memory Controller DDR2 (16/32-bit bus width) Asynchronous EMIF (EMIFA)
EDMA
Timers separate 32-bit timers)
UART control)
SPI 1 (supports 2 slave devices) I2C 1 (Master/Slave)
Multichannel Audio Serial Port (McASP) one DIT transmit only with 1 serializer for S/PDIF
10/100/1000 Ethernet MAC with Management Data Input/Output (MDIO)
VLYNQ 1 General-Purpose Input/Output Port (GPIO) Up to 33 pins PWM 2 outputs ATA 1 (ATA/ATAPI-6) PCI 1 (32-bit, 33 MHz) HPI 1 (16-/32-bit multiplexed address/data)
Configurable Video Port Interface (VPIF) 1 8-/10-/12-bit raw video capture channel and
Transport Stream Interface (TSIF) 1 with serial-only input and output
USB 2.0 Size (Bytes) 248KB RAM, 8KB ROM
Organization
Asynchronous (8/16-bit bus width) RAM, Flash
(NOR, NAND)
64 independent channels
8 QDMA channels
2 64-Bit General Purpose (each configurable as 2
1 64-Bit Watchdog
3 (with SIR, MIR, CIR support and RTS/CTS flow
(UART0 Supports Modem Interface)
2 (one transmit/receive with 4 serializers,
output)
1 (with MII/GMII Interface)
2 8-bit BT.656 capture channels or
1 16-bit Y/C capture channel or
2 8-bit BT.656 display channels or
1 16-bit Y/C display channel
MPEG transport stream interface
1 with 8-bit parallel or serial input and output
Each with corresponding clock recovery generator
(CRGEN) for external VCXO control.
High- and Full-Speed Device
High-, Full-, and Low-Speed Host
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
128KB Unified Mapped RAM/Cache (L2)
ARM
16KB I-cache
8KB D-cache
32KB RAM
8KB ROM
Submit Documentation Feedback Device Overview 7
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Table 2-1. Characteristics of the DM6467 Processor (continued)
HARDWARE FEATURES DM6467
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) TBD C64x+ Megamodule Revision ID Register (MM_REVID[15:0])
Revision (address location: 0x0181 2000) JTAG BSDL_ID
CPU Frequency MHz DM6467 - 594
Cycle Time ns DM6467 - 594
Voltage
PLL Options
BGA Package 19 x 19 mm 529-Pin BGA (ZUT) Process Technology µ m 0.09 µ m
Product Status
(1) PRODUCT PREVIEW information concerns experimental products (designated as TMX) that are in the formative or design phase of
development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
(1)
JTAGID Register See Section 6.28.1 , JTAG ID (JTAGID) Register (address location: 0x01C4 0028) Description(s)
Core (V) 1.2 V (-594) I/O (V) 1.8 V, 3.3 V DEV_CLKIN frequency multiplier
(27-MHz reference) AUX_CLKIN frequency multiplier
(24/48-MHz reference)
Product Preview (PP), Advance Information (AI), PP or Production Data (PD)
x1 (Bypass), x14 to x30 (-594)
x1 (Bypass), x14 to x32 (-594)
TBD
DSP 594 MHz
ARM926 297 MHz
DSP 1.68 ns
ARM926 3.37 ns
Device Overview8 Submit Documentation Feedback
www.ti.com
TMS320DM6467
Digital Media System-on-Chip

2.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C64x+ DSP core is code-compatible with the C6000™ DSP platform and supports features of the
C64x DSP family.

2.3 ARM Subsystem

The ARM Subsystem is designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is responsible for configuration and control of the device; including the DSP Subsystem, the VPSS Subsystem, and a majority of the peripherals and external memories.
The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian operation
Co-Processor 15 (CP15)
MMU
16KB Instruction cache
8KB Data cache
Write Buffer
32KB Internal Tightly-Coupled Memory (TCM) RAM (32-bit wide access)
8KB Internal ROM (ARM bootloader for non-EMIFA boot options)
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt Controller
PLL Controller
Power and Sleep Controller (PSC)
System Module

2.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
Separate instruction and data Caches
Write buffer
Separate instruction and data Tightly-Coupled Memories (TCMs) [internal RAM] interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
Submit Documentation Feedback Device Overview 9
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com

2.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Tightly-Coupled Memories (TCMs), Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.

2.3.3 MMU

The ARM926EJ-S MMU provides virtual memory features required by operating systems such as Linux®, Windows® CE, Ultron®, ThreadX®, etc. A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are:
1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10

2.3.4 Caches and Write Buffer

The size of the Instruction Cache is 16KB, Data cache is 8KB. Additionally, the Caches have the following features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables.
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
Device Overview10 Submit Documentation Feedback
www.ti.com

2.3.5 Tightly Coupled Memory (TCM)

ARM internal RAM is provided for storing real-time and performance-critical code/data and the Interrupt Vector table. ARM internal ROM enables non-EMIFA boot options, such as NAND and UART. The RAM and ROM memories interfaced to the ARM926EJ-S via the tightly coupled memory interface that provides for separate instruction and data bus connections. Since the ARM TCM does not allow instructions on the D-TCM bus or data on the I-TCM bus, an arbiter is included so that both data and instructions can be stored in the internal RAM/ROM. The arbiter also allows accesses to the RAM/ROM from extra-ARM sources (e.g., EDMA or other masters). The ARM926EJ-S has built-in DMA support for direct accesses to the ARM internal memory from a non-ARM master. Because of the time-critical nature of the TCM link to the ARM internal memory, all accesses from non-ARM devices are treated as DMA transfers.
Instruction and Data accesses are differentiated via accessing different memory map regions, with the instruction region from 0x0000 through 0x7FFF and data from 0x10000 through 0x17FFF. The instruction region at 0x0000 and data region at 0x8000 map to the same physical 32-KB TCM RAM. Placing the instruction region at 0x0000 is necessary to allow the ARM Interrupt Vector table to be placed at 0x0000, as required by the ARM architecture. The internal 32-KB RAM is split into two physical banks of 16KB each, which allows simultaneous instruction and data accesses to be accomplished if the code and data are in separate banks.

2.3.6 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.
TMS320DM6467
Digital Media System-on-Chip

2.3.7 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the DM6467 also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The DM6467 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.

2.3.8 ARM Memory Mapping

The ARM memory map is shown in Section 2.5 , Memory Map Summary of this document. The ARM has access to memories shown in the following sections.
2.3.8.1 ARM Internal Memories
The ARM has access to the following ARM internal memories:
32KB ARM Internal RAM on TCM interface, logically separated into two 16KB pages to allow simultaneous access on any given cycle if there are separate accesses for code (I-TCM bus) and data (D-TCM) to the different memory regions.
8KB ARM Internal ROM
2.3.8.2 External Memories
The ARM has access to the following external memories:
DDR2 Synchronous DRAM
Asynchronous EMIF / NOR Flash / NAND Flash
ATA
Submit Documentation Feedback Device Overview 11
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
2.3.8.3 DSP Memories
The ARM has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
2.3.8.4 ARM-DSP Integration
DM6467 ARM and DSP integration features are as follows:
DSP visibility from ARM’s memory map, see Section 2.5 , Memory Map Summary, for details
Boot Modes for DSP - see Device Configurations section, Section 3.4.1 , DSP Boot, for details
ARM control of DSP boot / reset - see Device Configurations section, Section 3.4.2.4 , ARM Boot, for
details
ARM control of DSP isolation and powerdown / powerup - see Section 3 , Device Configurations, for details
ARM & DSP Interrupts - see Section 6.8.1 , ARM CPU Interrupts, and Section 6.8.2 , DSP Interrupts, for details

2.3.9 Peripherals

The ARM9 has access to all of the peripherals on the DM6467 device.

2.3.10 PLL Controller (PLLC)

The ARM Subsystem includes the PLL Controller. The PLL Controller contains a set of registers for configuring DM6467’s two internal PLLs (PLL1 and PLL2). The PLL Controller provides the following configuration and control:
PLL Bypass Mode
Set PLL multiplier parameters
Set PLL divider parameters
PLL power down
Oscillator power down
The PLLs are briefly described in this document in the Clocking section. For more detailed information on the PLLs and PLL Controller register descriptions, see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP8 ).

2.3.11 Power and Sleep Controller (PSC)

The ARM Subsystem includes the Power and Sleep Controller (PSC). Through register settings accessible by the ARM9, the PSC provides two levels of power savings: peripheral/module clock gating and power domain shut-off. Brief details on the PSC are given in Section 6.3 , Power Supplies. For more detailed information and complete register descriptions for the PSC, see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP8 ).

2.3.12 ARM Interrupt Controller (AINTC)

The ARM Interrupt Controller (AINTC) accepts device interrupts and maps them to either the ARM’s IRQ (interrupt request) or FIQ (fast interrupt request). The ARM Interrupt Controller is briefly described in this document in the Interrupts section. For detailed information on the ARM Interrupt Controller, see the
TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP8 ).
Device Overview12 Submit Documentation Feedback
www.ti.com

2.3.13 System Module

The ARM Subsystem includes the System module. The System module consists of a set of registers for configuring and controlling a variety of system functions. For details and register descriptions for the System module, see Section 3 , Device Configurations and see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP8 ).

2.3.14 Power Management

DM6467 has several means of managing power consumption. There is extensive use of clock gating, which reduces the power used by global device clocks and individual peripheral clocks. Clock management can be utilized to reduce clock frequencies in order to reduce switching power. For more details on power management techniques, see Section 3 , Device Configurations, Section 6 , Peripheral and Electrical Specifications, and see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP8 ).
DM6467 gives the programmer full flexibility to use any and all of the previously mentioned capabilities to customize an optimal power management strategy. Several typical power management scenarios are described in the following sections.

2.4 DSP Subsystem

The DSP Subsystem includes the following features:
C64x+ DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
128KB Unified Mapped RAM/Cache (L2)
Little endian
TMS320DM6467
Digital Media System-on-Chip

2.4.1 C64x+ DSP CPU Description

The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-1 . The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C64x+ CPU extends the performance of the C64x core through enhancements and new features. Each C64x+ .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.
Submit Documentation Feedback Device Overview 13
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+ compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C64x+ CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
TMS320C64x Technical Overview (literature number SPRU395)
Device Overview14 Submit Documentation Feedback
www.ti.com
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320DM6467
Digital Media System-on-Chip
Figure 2-1. TMS320C64x+™ CPU (DSP Core) Data Paths
Submit Documentation Feedback Device Overview 15
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007

2.4.2 DSP Memory Mapping

The DSP memory map is shown in Section 2.5 , Memory Map Summary. Configuration of the control registers for DDR2, EMIFA, and ARM Internal RAM is supported by the ARM. The DSP has access to memories shown in the following sections.
2.4.2.1 ARM Internal Memories
The DSP has access to the 32KB ARM Internal RAM on the ARM D-TCM interface (i.e., data only).
2.4.2.2 External Memories
The DSP has access to the following External memories:
DDR2 Synchronous DRAM
Asynchronous EMIF / NOR Flash
ATA
2.4.2.3 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
2.4.2.4 C64x+ CPU
The C64x+ core uses a two-level cache-based architecture. The Level 1 Program memory/cache (L1P) consists of 32 KB memory space that can be configured as mapped memory or direct mapped cache. The Level 1 Data memory/cache (L1D) consists of 32 KB that can be configured as mapped memory or 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 128 KB RAM memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 2-2 shows a memory map of the C64x+ CPU cache registers for the device.
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
Table 2-2. C64x+ Cache Registers
Device Overview16 Submit Documentation Feedback
www.ti.com
TMS320DM6467
Digital Media System-on-Chip
Table 2-2. C64x+ Cache Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 - 0x0184 803C MAR0 - MAR15 Reserved (corresponds to byte address 0x0000 0000 - 0x0FFF FFFF)
0x0184 8040 MAR16
0x0184 8044 - 0x0184 80FC MAR17 - MAR63 Reserved (corresponds to byte address 0x1100 0000 - 0x3FFF FFFF)
0x0184 8100 MAR64 Reserved (corresponds to byte address 0x4000 0000 - 0x40FF FFFF) 0x0184 8104 MAR65 Reserved (corresponds to byte address 0x4100 0000 - 0x41FF FFFF)
0x0184 8108 - 0x0184 8124 MAR66 - MAR73 0x0184 8128 - 0x0184 812C MAR74 - MAR75 Reserved (corresponds to byte address 0x4A00 0000 - 0x4BFF FFFF) 0x0184 8130 - 0x0184 813C MAR76 - MAR79 0x0184 8140 - 0x0184 81FC MAR80 - MAR127 Reserved (corresponds to byte address 0x5000 0000 - 0x7FFF FFFF) 0x0184 8200 - 0x0184 82FC MAR128 - MAR191 0x0184 8300 - 0x0184 83FC MAR192 - MAR255 Reserved (corresponds to byte address 0xC000 0000 - 0xFFFF FFFF)
Memory Attribute Registers for ARM TCM (corresponds to byte address 0x1000 0000 - 0x10FF FFFF)
Memory Attribute Registers for EMIFA (corresponds to byte address 0x4200 0000 - 0x49FF FFFF)
Memory Attribute Registers for VLYNQ (corresponds to byte address 0x4C00 0000 - 0x4FFF FFFF)
Memory Attribute Registers for DDR2 (corresponds to byte address 0x8000 0000 - 0xBFFF FFFF)

2.4.3 Peripherals

The DSP has access/controllability of the following peripherals:
HDVICP0/1
EDMA
McASP0/1
2 Timers (Timer0 and Timer1) that can each be configured as 1 64-bit or 2 32-bit timers

2.4.4 DSP Interrupt Controller

The DSP Interrupt Controller accepts device interrupts and appropriately maps them to the DSP’s available interrupts. The DSP Interrupt Controller is briefly described in this document in the Interrupts section. For more detailed on the DSP Interrupt Controller, see the TMS320C64x+ DSP Megamodule Reference Guide (literature number SPRU871 ).
Submit Documentation Feedback Device Overview 17
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007

2.5 Memory Map Summary

Table 2-3 shows the memory map address ranges of the device. Table 2-4 depicts the expanded map of
the Configuration Space (0x0180 0000 through 0x0FFF FFFF). The device has multiple on-chip memories associated with its two processors and various subsystems. To help simplify software development a unified memory map is used where possible to maintain a consistent view of device resources across all bus masters.
Device Overview18 Submit Documentation Feedback
www.ti.com
TMS320DM6467
Digital Media System-on-Chip
Table 2-3. Memory Map Summary
START END SIZE EDMA/
ADDRESS ADDRESS (Bytes) PERIPHERAL
0x0000 0000 0x0000 3FFF 16K ARM RAM0
0x0000 4000 0x0000 7FFF 16K ARM RAM1
0x0000 8000 0x0000 FFFF 32K ARM ROM (Instruction) 0x0001 0000 0x0001 3FFF 16K ARM RAM0 (Data) 0x0001 4000 0x0001 7FFF 16K ARM RAM1 (Data) 0x0001 8000 0x0001 FFFF 32K ARM ROM (Data) 0x0002 0000 0x000F FFFF 896K 0x0010 0000 0x003F FFFF 3M 0x0040 0000 0x004F FFFF 1M 0x0050 0000 0x005F FFFF 1M Reserved 0x0060 0000 0x006F FFFF 1M 0x0070 0000 0x007F FFFF 1M 0x0080 0000 0x0080 FFFF 64K 0x0081 0000 0x0081 7FFF 32K Reserved TBD (MPPA Disable) Reserved 0x0081 8000 0x0083 7FFF 128K L2 RAM/Cache 0x0083 8000 0x008F FFFF 800K Reserved 0x0090 0000 0x0092 FFFF 192K 0x0093 0000 0x009F FFFF 832K 0x00A0 0000 0x00DF FFFF 4M 0x00E0 0000 0x00E0 7FFF 32K L1P RAM/Cache 0x00E0 8000 0x00EF FFFF 992K Reserved 0x00F0 0000 0x00F0 7FFF 32K L1D RAM/Cache Reserved 0x00F0 8000 0x017F FFFF 9184K Reserved
0x0180 0000 0x01BB FFFF 3840K 0x01BC 0000 0x01BC 0FFF 4K ARM ETB Memory 0x01BC 1000 0x01BC 17FF 2K ARM ETB Registers 0x01BC 1800 0x01BC 18FF 256 ARM IceCrusher 0x01BC 1900 0x01BC 1BFF 768 Reserved 0x01BC 1C00 0x01BF FFFF 249K 0x01C0 0000 0x0FFF FFFF 228M CFG Bus Peripherals CFG Bus Peripherals CFG Bus Peripherals ü
0x1000 0000 0x1000 FFFF 64K Reserved
0x1001 0000 0x1001 3FFF 16K ARM RAM0 (Data) ARM RAM0 (Data) ü ü ü ü ü ü ü
0x1001 4000 0x1001 7FFF 16K ARM RAM1 (Data) ARM RAM1 (Data) ü ü ü ü ü ü ü
0x1001 8000 0x1001 FFFF 32K ARM ROM (Data) ARM ROM (Data) ü ü ü ü ü ü ü
0x1002 0000 0x10FF FFFF 16256K
0x1100 0000 0x113F FFFF 4M Reserved
0x1140 0000 0x114F FFFF 1M
0x1150 0000 0x115F FFFF 1M Reserved Reserved
0x1160 0000 0x116F FFFF 1M
0x1170 0000 0x117F FFFF 1M
0x1180 0000 0x1180 FFFF 64K
0x1181 0000 0x1181 7FFF 32K Reserved TBD (MPPA Disable) Reserved
0x1181 8000 0x1183 7FFF 128K L2 RAM/Cache L2 RAM/Cache L2 RAM/Cache ü ü ü ü ü
0x1183 8000 0x118F FFFF 800K Reserved Reserved Reserved
0x1190 0000 0x11DF FFFF 5M 0x11E0 0000 0x11E0 7FFF 32K L1P RAM/Cache L1P RAM/Cache L1P RAM/Cache ü ü ü ü ü 0x11E0 8000 0x11EF FFFF 992K Reserved Reserved Reserved
0x11F0 0000 0x11F0 7FFF 32K L1D RAM/Cache L1D RAM/Cache L1D RAM/Cache ü ü ü ü ü
(Instruction)
(Instruction)
Reserved
ARM C64x+
Reserved Reserved
CFG Space
Video TSIF
Port (0/1)
MASTER PERIPHERAL ACCESSIBILITY
VDCE EMAC HPI PCI USB VLYNQ ATA
(2)
(2)
ü
(1)
(2)
ü
(1) These peripherals have their own DMA engine or master port interface to the DMSoC system bus and do not use the EDMA for data
transfers. The ü symbol indicates that the peripheral has a valid connection through the device switch fabric to the memory region identified in the EDMA access column.
(2) The HPI's, PCI's, and VLYNQ's access to the configuration bus peripherals is limited, see Table 2-4 , Configuration Memory Map
Summary for the details.
Submit Documentation Feedback Device Overview 19
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Table 2-3. Memory Map Summary (continued)
START END SIZE EDMA/
ADDRESS ADDRESS (Bytes) PERIPHERAL
0x11F0 8000 0x11FF FFFF 992K Reserved Reserved Reserved
0x1200 0000 0x1FFF FFFF 224M
0x2000 0000 0x2000 7FFF 32K DDR2 Control DDR2 Control DDR2 Control
0x2000 8000 0x2000 FFFF 32K EMIFA Control EMIFA Registers EMIFA Registers
0x2001 0000 0x2001 7FFF 32K VLYNQ Control VLYNQ Registers VLYNQ Registers
0x2001 8000 0x200F FFFF 928K Reserved Reserved Reserved
0x2010 0000 0x2FFF FFFF 255M
0x3000 0000 0x3FFF FFFF 256M PCI Data PCI Data PCI Data
0x4000 0000 0x403F FFFF 4M Reserved Reserved Reserved
0x4040 0000 0x4043 FFFF 256K
0x4044 0000 0x4047 FFFF 256K
0x4048 0000 0x404B FFFF 256K 0x404C 0000 0x404F FFFF 256K
0x4050 0000 0x405F FFFF 1M
0x4060 0000 0x4063 FFFF 256K Reserved Reserved Reserved
0x4064 0000 0x4067 FFFF 256K
0x4068 0000 0x406B FFFF 256K 0x406C 0000 0x406F FFFF 256K
0x4070 0000 0x41FF FFFF 25M
0x4200 0000 0x43FF FFFF 32M EMIFA Data ( CS2)
0x4400 0000 0x45FF FFFF 32M EMIFA Data ( CS3)
0x4600 0000 0x47FF FFFF 32M EMIFA Data ( CS4)
0x4800 0000 0x49FF FFFF 32M EMIFA Data ( CS5) 0x4A00 0000 0x4BFF FFFF 32M Reserved Reserved Reserved 0x4C00 0000 0x4FFF FFFF 64M VLYNQ (Remote Data) VLYNQ (Remote Data) VLYNQ (Remote Data) ü ü ü ü ü ü ü
0x5000 0000 0x7FFF FFFF 768M Reserved Reserved Reserved
0x8000 0000 0x8FFF FFFF 256M DDR2 Memory DDR2 Memory DDR2 Memory
0x9000 0000 0x9FFF FFFF 256M Reserved Reserved Reserved 0xA000 0000 0xBFFF FFFF 512M Reserved Reserved Reserved 0xC000 0000 0xFFFF FFFF 1G Reserved Reserved Reserved
ARM C64x+
Registers Registers Registers
Registers
Registers
(3)
EMIFA Data ( CS2)
(3)
EMIFA Data ( CS3)
(3)
EMIFA Data ( CS4)
(3)
EMIFA Data ( CS5)
Controller Controller Controller
(3)
EMIFA Data ( CS2)
(3)
EMIFA Data ( CS3)
(3)
EMIFA Data ( CS4)
(3)
EMIFA Data ( CS5)
(3)
(3)
(3)
(3)
Video TSIF
Port (0/1)
MASTER PERIPHERAL ACCESSIBILITY
VDCE EMAC HPI PCI USB VLYNQ ATA
ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü
ü ü ü ü ü ü ü ü ü
(3) EMIFA CS0 and CS1 are not functionally supported on the DM6467, and therefore, are not pinned out.
(1)
Device Overview20 Submit Documentation Feedback
www.ti.com
TMS320DM6467
Digital Media System-on-Chip
Table 2-4. Configuration Memory Map Summary
START END SIZE
ADDRESS ADDRESS (Bytes)
0x0180 0000 0x0180 FFFF 64K C64x+ Interrupt Controller 0x0181 0000 0x0181 0FFF 4K C64x+ Powerdown Controller 0x0181 1000 0x0181 1FFF 4K C64x+ Security ID 0x0181 2000 0x0181 2FFF 4K C64x+ Revision ID 0x0182 0000 0x0182 FFFF 64K C64x+ EMC 0x0183 0000 0x0183 FFFF 64K Reserved 0x0184 0000 0x0184 FFFF 64K C64x+ Memory System
0x0185 0000 0x01BB FFFF 3520K Reserved 0x01BC 0000 0x01BC 00FF 256 0x01BC 0100 0x01BC 01FF 256 ARM ETB Memory 0x01BC 0200 0x01BC 0FFF 3.5K 0x01BC 1000 0x01BC 17FF 2K ARM ETB Registers 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher 0x01BC 1900 0x01BF FFFF 255744 Reserved 0x01C0 0000 0x01C0 FFFF 64K EDMA CC EDMA CC 0x01C1 0000 0x01C1 03FF 1K EDMA TC0 EDMA TC0 0x01C1 0400 0x01C1 07FF 1K EDMA TC1 EDMA TC1 0x01C1 0800 0x01C1 0BFF 1K EDMA TC2 EDMA TC2 0x01C1 0C00 0x01C1 0FFF 1K EDMA TC3 EDMA TC3 0x01C1 1000 0x01C1 1FFF 4K Reserved Reserved 0x01C1 2000 0x01C1 23FF 1K Video Port 0x01C1 2400 0x01C1 27FF 1K Reserved Reserved 0x01C1 2800 0x01C1 2FFF 2K VDCE 0x01C1 3000 0x01C1 33FF 1K TSIF0 0x01C1 3400 0x01C1 37FF 1K TSIF1 0x01C1 3800 0x01C1 9FFF 26K Reserved Reserved 0x01C1 A000 0x01C1 A7FF 2K PCI Control Registers 0x01C1 A800 0x01C1 FFFF 22K Reserved Reserved 0x01C2 0000 0x01C2 03FF 1K UART0 ü ü ü 0x01C2 0400 0x01C2 07FF 1K UART1 ü ü ü 0x01C2 0800 0x01C2 0BFF 1K UART2 ü ü ü 0x01C2 0C00 0x01C2 0FFF 1K Reserved Reserved ü ü ü 0x01C2 1000 0x01C2 13FF 1K I2C ü ü ü 0x01C2 1400 0x01C2 17FF 1K Timer0 Timer0 ü ü ü 0x01C2 1800 0x01C2 1BFF 1K Timer1 Timer1 ü ü ü 0x01C2 1C00 0x01C2 1FFF 1K Timer2 (Watchdog) Timer2 (Watchdog) ü ü ü 0x01C2 2000 0x01C2 23FF 1K PWM0 ü ü ü 0x01C2 2400 0x01C2 27FF 1K PWM1 ü ü ü 0x01C2 2800 0x01C2 5FFF 14K Reserved Reserved ü ü ü 0x01C2 6000 0x01C2 63FF 1K CRGEN0 ü ü ü 0x01C2 6400 0x01C2 67FF 1K CRGEN1 ü ü ü 0x01C2 6800 0x01C3 FFFF 102K Reserved Reserved ü ü ü 0x01C4 0000 0x01C4 07FF 2K System Module System Module ü ü ü 0x01C4 0800 0x01C4 0BFF 1K PLL Controller 1 PLL Controller 1 ü ü ü 0x01C4 0C00 0x01C4 0FFF 1K PLL Controller 2 PLL Controller 2 ü ü ü 0x01C4 1000 0x01C4 1FFF 4K Power and Sleep Controller Power and Sleep Controller ü ü ü 0x01C4 2000 0x01C4 7FFF 24K Reserved Reserved ü ü ü 0x01C4 8000 0x01C4 83FF 1K ARM Interrupt Controller Reserved ü ü ü 0x01C4 8400 0x01C6 3FFF 111K Reserved Reserved ü ü ü
Reserved
ARM/EDMA C64x+
Reserved
MASTER PERIPHERAL
ACCESSIBILITY
HPI PCI VLYNQ
Submit Documentation Feedback Device Overview 21
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Table 2-4. Configuration Memory Map Summary (continued)
START END SIZE
ADDRESS ADDRESS (Bytes)
0x01C6 4000 0x01C6 5FFF 8K USB2.0 Registers / RAM ü ü ü 0x01C6 6000 0x01C6 67FF 2K ATA ü ü ü 0x01C6 6800 0x01C6 6FFF 2K SPI ü ü ü 0x01C6 7000 0x01C6 77FF 2K GPIO ü ü ü 0x01C6 7800 0x01C6 7FFF 2K HPI HPI ü ü ü 0x01C6 8000 0x01C7 FFFF 96K Reserved Reserved ü ü ü 0x01C8 0000 0x01C8 0FFF 4K EMAC Control Registers ü ü ü 0x01C8 1000 0x01C8 1FFF 4K EMAC Control Module Registers ü ü ü 0x01C8 2000 0x01C8 3FFF 8K EMAC Control Module RAM ü ü ü 0x01C8 4000 0x01C8 47FF 2K MDIO Control Registers ü ü ü 0x01C8 4800 0x01D0 0FFF 498K Reserved Reserved ü ü ü 0x01D0 1000 0x01D0 13FF 1K McASP0 Registers McASP0 Registers ü ü ü 0x01D0 1400 0x01D0 17FF 1K McASP0 Data Port McASP0 Data Port ü ü ü 0x01D0 1800 0x01D0 1BFF 1K McASP1 Registers McASP1 Registers ü ü ü 0x01D0 1C00 0x01D0 1FFF 1K McASP1 Data Port McASP1 Data Port ü ü ü 0x01D0 2000 0x01DF FFFF 1016K Reserved Reserved ü ü ü 0x01E0 0000 0x01FF FFFF 2M Reserved Reserved ü ü ü
0x0200 0000 0x021F FFFF 2M Reserved Reserved
0x0220 0000 0x023F FFFF 2M Reserved Reserved
0x0240 0000 0x0FFF FFFF 220M Reserved Reserved
ARM/EDMA C64x+
Reserved
MASTER PERIPHERAL
ACCESSIBILITY
HPI PCI VLYNQ

2.6 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. For more information on pin muxing, see Section 3.7 , Multiplexed Pin Configurations, of this document.
Device Overview22 Submit Documentation Feedback
www.ti.com

2.6.1 Pin Map (Bottom View)

V
SS
V
SS
GP[4]/
STC_CLKIN
VP_DOUT1/
BTMODE1
VP_DOUT6/
DSPBOOT
VP_DOUT5/
PCIEN
VP_DOUT14/
TS1_PSTIN
VP_DOUT9/
TS1_ENAO
V
SS
AHCLKR0
GP[3]/
AUDIO_CLK0
TOUT1U
VP_DOUT0/
BTMODE0
VP_DOUT3/
BTMODE3
VP_DOUT7
VP_DOUT15/
TS1_DIN
ACLKX0 ACLKR0
AMUTEIN0
GP[2]/
AUDIO_CLK1
TOUT1L
TINP0U
VP_DOUT4/
CS2BW
VP_DOUT12/
TS1_WAITO
AHCLKX0
AMUTE0
AFSR0 AFSX0
TOUT2
TINP1L
TINP0L
VP_DOUT2/
BTMODE2
ACLKX1 AHCLKX1
AXR0[3] AXR0[2]
GP[0]
RESET
TOUT0U TOUT0L
SPI_CLK
AXR1[0]
AXR0[0] AXR0[1]
GP[1]
V
SS
DV
DD33
DV
DD33
VLYNQ_
CLOCK
VLYNQ_
SCRUN
SPI_CS1
SDA SCL
DV
DD33
CV
DD
VLYNQ_TXD1 VLYNQ_TXD2 VLYNQ_TXD3
SPI_CS0
SPI_EN
1 2
AC
AB
AA
Y
W
V
U
T
MTCLK
VLYNQ_RXD2 VLYNQ_RXD3 VLYNQ_TXD0 SPI_SOMI
MTXD7 GMTCLK
VLYNQ_RXD1 VLYNQ_RXD0 SPI_SIMO
MTXD3 MTXD4
MTXD5
MTXD6
R
P
N
3 4 5 6 7 8
1 2 3 4 5 6 7 8
AC
AB
AA
Y
W
V
U
T
R
P
N
V
SS
V
SS
DV
DD33
CV
DD
CV
DD
DV
DD33
V
SS
V
SS
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
A B C
D E F
Figure 2-2 through Figure 2-7 show the bottom view of the package pin assignments in six quadrants (A,
B, C, D, E, and F).
TMS320DM6467
Digital Media System-on-Chip
Figure 2-2. Pin Map [Section A]
Submit Documentation Feedback Device Overview 23
www.ti.com
PRODUCT PREVIEW
A B C
D E F
VP_CLKIN3/
TS1_CLKO
VP_CLKO3/
TS0_CLKO
TS1_CLKIN
UCTS0/
USD0
VP_CLKIN0
VP_DIN4/
TS0_DOUT4/
TS1_WAITO
VP_DIN0/
TS0_DOUT0
VP_DIN8/
TS0_DIN0
VP_DOUT8/ TS1_WAITIN
VP_DOUT11/
TS1_DOUT
UDSR0/
TS0_PSTO/
GP[37]
V
SS
URXD0/
TS1_DIN
VP_DIN5/
TS0_DOUT5/
TS1_EN_WAITO
VP_DIN1/
TS0_DOUT1
VP_DIN9/
TS0_DIN1
VP_CLKO2
VP_DOUT10/
TS1_PSTO
UDCD0/
TS0_WAITIN/
GP[38]
DV
DD33
URTS0/ UIRTX0/
TS1_EN_WAITO
VP_DIN6/
TS0_DOUT6/
TS1_PSTIN
VP_DIN2/
TS0_DOUT2
VP_DIN10/
TS0_DIN2
VP_DOUT13/
TS1_EN_WAITO
VP_CLKIN2
URIN0/
GP[8]/
TS1_WAITIN
UDTR0/
TS0_ENAO/
GP[36]
UTXD0/
URCTX0/
TS1_PSTIN
VP_DIN7/
TS0_DOUT7/
TS1_DIN
VP_DIN3/
TS0_DOUT3
VP_DIN11/ TS0_DIN3
DV
DD33
CV
DD
9 10
AC
AB
AA
Y
W
V
U
T
R
P
N
11 12 13 14 15 16
9 10 11 12 13 14 15 16
AC
AB
AA
Y
W
V
U
T
R
P
N
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
CV
DD
CV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Figure 2-3. Pin Map [Section B]
Device Overview24 Submit Documentation Feedback
www.ti.com
VP_DIN12/
TS0_DIN4
VP_DIN15_
VP_VSYNC/
TS0_DIN7
TS0_CLKIN
URTS2/
UIRTX2/
TS0_PSTIN/
GP[41]
UCTS2/USD2/
CRG0_VCXI/
GP[42]/
TS1_PSTO
V
SS
VP_DIN13_
FIELD/
TS0_DIN5
VP_CLKIN1
UTXD1/
URCTX1/
TS0_DOUT7/
GP[24]
V
SS
DDR_D[23]
VP_DIN14_
VP_HSYNC/
TS0_DIN6
URTS1/ UIRTX1/
TS0_WAITO/
GP[25]
UTXD2/URCTX2/
CRG1_PO/
GP[40]/
CRG0_PO
DV
DDR2
DDR_D[28] DDR_D[21] DDR_D[20]
UCTS1/USD1/
TS0_EN_WAITO/
GP[26]
URXD1/
TS0_DIN7/
GP[23]
DDR_D[31] DDR_D[29] DDR_D[22]
DDR_DQM[2]
PWM0/
CRG0_PO/
TS1_ENAO
17 18
AC
AB
AA
Y
W
V
U
T
R
P
N
19 20 21 22 23
17 18 19 20 21 22 23
AC
AB
AA
Y
W
V
U
T
R
P
N
A B C
D E F
PWM1/
TS1_DOUT
V
SS
DDR_D[30] DV
DDR2
V
SS
DDR_DQS[2]
DDR_D[19]DDR_DQS[2]DDR_DQS[3]DDR_DQM[3]V
SS
V
SS
DDR_DQS[3] DDR_D[27]DV
DDR2
DDR_D[24]
DDR_D[18]DDR_D[16]V
SS
V
SS
DV
DDR2
V
SS
DV
DDR2
DDR_A[10]DDR_D[17]DDR_D[26]
DDR_D[25]
DV
DDR2
DDR_DQGATE2 DDR_A[1]DDR_A[3]DDR_DQGATE3
DDR_A[12]
DDR_BA[2] DDR_VREFV
SS
DV
DDR2
DDR_A[14]DDR_A[9]DDR_A[5]DDR_A[7]DDR_BA[0]V
SS
V
SS
V
SS
V
SS
DV
DD33
DV
DDR2
V
SS
URXD2/
CRG1_VCXI/
GP[39]/
CRG0_VCXI
V
SS
V
SS
TMS320DM6467
Digital Media System-on-Chip
Figure 2-4. Pin Map [Section C]
Submit Documentation Feedback Device Overview 25
www.ti.com
PRODUCT PREVIEW
MTXD0
MTXEN
MCRS
MCOL
MRCLK MRXD7
MRXD6
V
SS
MRXD4
MRXD3
MRXD2
MRXDV
RFTCLK
MRXD1
MRXER
MDIO
MDCLK
DV
DD33
1 2
L
K
J
H
G
F
E
D
C
B
A
3 4 5 6 7 8
1 2 3 4 5 6 7 8
L
K
J
H
G
F
E
D
C
B
A
A B C
D E F
DV
DD33
PCI_AD0/
HD0/
EM_D0
PCI_AD2/
HD2/
EM_D2
PCI_AD4/
HD4/
EM_D4
V
SS
DV
DD33
CV
DD
V
SS
V
SS
PCI_AD9/
HD9/
EM_D9
PCI_CBE0
ATA_CS0//
GP[33]/
EM_A[18]
PCI_AD6/
HD6/
EM_D6
PCI_AD3/
HD3/
EM_D3
PCI_AD1/
HD1/
EM_D1
PCI_AD13/
HD13/
EM_D13
PCI_AD15/
HD15/
EM_D15
PCI_AD11/
HD11/
EM_D11
PCI_PAR/
/HAS
EM_DQM0
PCI_IDSEL/
HDDIR/
EM_R/W
PCI_AD18/
DD2/
HD18/
EM_A[2]
PCI_TRDY/
HHWIL/
EM_A[16]/(ALE)
PCI_AD7/
HD7/
EM_D7
PCI_AD5/
HD5/
EM_D5
PCI_AD10/
HD10/
EM_D10
PCI_AD8/
HD8/
EM_D8
PCI_AD12/
HD12/
EM_D12
PCI_AD24/
DD8/
HD24/
EM_A[8]
PCI_AD20/
DD4/
HD20/
EM_A[4]
PCI_FRAME
HINT//
EM_BA[0]
PCI_STOP
EM_WE
/
HCNTL0/
PCI_AD26/
DD10/ HD26/
EM_A[10]
PCI_CBE2
HDS2
EM_CS2
/
/
PCI_CBE1
ATA_CS1//
GP[32]/
EM_A[19]
PCI_AD14/
HD14/
EM_D14
PCI_PERR
HCS
EM_DQM1
/
/
PCI_AD22/
DD6/
HD22/
EM_A[6]
PCI_AD16/
DD0/
HD16/
EM_A[0]
PCI_AD21/
DD5/
HD21/
EM_A[5]
PCI_AD29/
DD13/ HD29/
EM_A[13]
PCI_AD17/
DD1/
HD17/
EM_A[1]
PCI_SERR
HDS1
EM_OE
/
/
V
SS
PCI_DEVSEL/
HCNTL1/
EM_BA[1]
PCI_AD25/
DD9/
HD25/
EM_A[9]
PCI_AD23/
DD7/
HD23/
EM_A[7]
PCI_AD31/
DD15/ HD31/
EM_A[15]
V
SS
PCI_AD27/
DD11/
HD27/
EM_A[11]
PCI_CBE3
W
EM_CS3
/
HR/ /
PCI_AD19/
DD3/
HD19/
EM_A[3]
PCI_IRDY
HRDY//
EM_A[17]/(CLE)
RSV2RSV1
MTXD1 MTXD2
M
M
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
DV
DD33
DV
DD33
V
SS
MRXD5
V
SS
DV
DD33
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD33
V
SS
MRXD0
DV
DD33
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Device Overview26 Submit Documentation Feedback
Figure 2-5. Pin Map [Section D]
www.ti.com
A B C
D E F
V
SS
DV
DD33
9 10
L
K
J
H
G
F
E
D
C
B
A
11 12 13 14 15 16
9 10 11 12 13 14 15 16
L
K
J
H
G
F
E
D
C
B
A
RSV7
TRST
TDI
GP[6]
TMS
AUX_CV
DD
DEV_CV
DD
DEV_DV
SS
DIOR
BSY5
/
GP[19]/
EM_WAIT5/
(RDY/ )
DA0/
GP[17]/
EM_A[20]
PCI_GNT
DMACK
EM_CS4
/
/
GP[12]/
PCI_AD28/
DD12/ HD28/
EM_A[12]
IORDY/
GP[21]/ EM_WAIT3/ (RDY/ )BSY3
AUX_DV
DD18
DEV_DV
DD18
RSV5
TDO
AUX_DV
SS
RTCK
PCI_RST/
DA2/
GP[13]/
EM_A[22]
PCI_AD30/
DD14/ HD30/
EM_A[14]
PCI_INTA
BSY2
/
EM_WAIT2/
(RDY0/ )
DEV_V
SS
PLL1V
SS
CLKOUT0
TCLK
INTRQ/ GP[18]/
EM_A[23]
PCI_REQ
EM_CS5
/
DMARQ/
GP[11]/
GP[5]
PLL1V
DD18
EMU1
PLL2V
SS
V
SS
DEV_MXO
EMU0
GP[7]
/
GP[20]/ EM_WAIT4/ (RDY/ )
DIOW
BSY4
PCI_CLK/
GP[10]
DA1/
GP[16]/
EM_A[21]
M
M
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
V
SS
CV
DD
CV
DD
V
SS
DEV_MXI/
DEV_CLKIN
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
PLL2V
DD18
TMS320DM6467
Digital Media System-on-Chip
Submit Documentation Feedback Device Overview 27
Figure 2-6. Pin Map [Section E]
www.ti.com
PRODUCT PREVIEW
DDR_A[2]
DDR_CLK
DDR_ZP
DDR_WE
DDR_CAS
V
SS
DV
DDR2
DDR_RAS
DV
DDR2
DDR_A[11]
DDR_DQGATE0 DDR_CS DDR_DQGATE1 DDR_A[4] DDR_A[8]
DDR_D[7] DDR_A[13] DDR_D[15]
DDR_A[0]
DV
DDR2
17 18
L
K
J
H
G
F
E
D
C
B
A
19 20 21 22 23
17 18 19 20 21 22 23
L
K
J
H
G
F
E
D
C
B
A
A B C
D E F
DV
DDR2
DDR_D[4] DDR_D[6] DDR_D[13] DDR_D[14]
DDR_D[12]DDR_DQM[1]DDR_D[5]DDR_DQM[0]V
SS
USB_V
DDA3P3
DDR_DQS[0] DV
DDR2
V
SS
DDR_D[1]
DDR_D[11]USB_V
DD1P8
USB_
V
DDA1P2LDO
USB_R1POR V
SS
DDR_DQS[1]DDR_DQS[1]DDR_DQS[0]
DDR_D[2]
USB_V
SSREF
DDR_D[8]DDR_D[10]DDR_D[0]
DDR_D[3]
USB_
DRVVBUS/
GP[22]
DDR_D[9]
V
SS
DV
DDR2
RSV4RSV3USB_DNUSB_DPV
SS
AUX_MXO
V
SS
AUX_MXI/
AUX_CLKIN
RSV6
AUX_V
SS
V
SS
DDR_ODT0
V
SS
V
SS
DDR_A[6]
DDR_CLKDDR_ZN DDR_CKE
DDR_BA[1]
V
SS
M
M
V
SS
V
SS
DV
DDR2
V
SS
DV
DDR2
V
SS
V
SS
V
SS
V
SS
V
SS
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
Figure 2-7. Pin Map [Section F]
28 Device Overview Submit Documentation Feedback
www.ti.com

2.7 Terminal Functions

TMS320DM6467
Digital Media System-on-Chip
The terminal functions tables (Table 2-5 through Table 2-32 ) identify the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type, whether the pin has any internal pullup or pulldown resistors, and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pin, and see the Device
Configurations section of this data manual.
Submit Documentation Feedback Device Overview 29
www.ti.com
PRODUCT PREVIEW
TMS320DM6467 Digital Media System-on-Chip
SPRS403 – DECEMBER 2007
SIGNAL
NAME NO.
ARM Boot Mode configuration bits. These pins are multiplexed between ARM boot mode and the Video Port Interface (VPIF). At reset, the boot mode inputs BTMODE[3:0] are sampled to determine the ARM boot configuration. See below the boot modes set by these inputs. For more details on the types of boot modes, see the Section 3.4.1 , Boot Modes. After reset, these pins are Video port data outputs 3 through 0 (VP_DOUT[3:0]).
VP_DOUT0/ IPD
BTMODE0 DV
VP_DOUT1/ IPD
BTMODE1 DV
VP_DOUT2/ IPD
BTMODE2 DV
VP_DOUT3/ IPD
BTMODE3 DV
VP_DOUT4/ IPD
CS2BW DV
VP_DOUT5/ IPD
PCIEN DV
TYPE
AB5 I/O/Z
AC4 I/O/Z
Y8 I/O/Z
AB6 I/O/Z 1110 SPI Boot
AA7 I/O/Z
AC6 I/O/Z
VP_DOUT6/ IPD The DSP is booted by the ARM when DSPBOOT = 0.
DSPBOOT DV
VP_DOUT7 AB7 I/O/Z resistor.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
AC5 I/O/Z
Table 2-5. BOOT Terminal Functions
(1)
(2) (3)
OTHER
BOOT
BTMODE[3:0] ARM Boot Mode
0000 Emulation Boot (PCIEN = 0) 0001 Reserved
DD33
DD33
DD33
DD33
DD33
DD33
DD33
IPD
DV
DD33
0010 or
0011 or
0100 0101 Reserved
0110 I2C Boot 0111 NAND Flash Boot (PCIEN = 0) [error if PCIEN = 1] 1000 UART0 Boot 1001 Reserved 1010 VLYNQ Boot 1011 EMAC Boot
1100 - 1101 Reserved
1111 Reserved
DEVICE CONTROL
EMIFA CS2 space data bus width. This pin is multiplexed between EMIFA control and the VPIF. At reset, the input state is sampled to set the EMIFA data bus width for the CS2 (boot) chip select region.
For an 8-bit-wide EMIFA data bus, CS2BW = 0. For a 16-bit-wide EMIFA data bus, CS2BW = 1.
After reset, this pin is video port data output 4 (VP_DOUT4). PCI Enable. This pin is multiplexed between PCI Control and the VPIF. At reset, the
input state is sampled to enable/disable the PCI interface pin multiplexing. Note: When PCI boot mode is not used, for proper device operation out of reset PCIEN must be "0".
0 = PCI pin function is disabled; EMIFA or HPI pin function enabled 1 = PCI pin function is enabled
After reset, this pin is video port data output 5 (VP_DOUT5).­DSP boot source bit. This pin is multiplexed between DSP boot and the VPIF. At
reset, the input state is sampled to set the DSP boot source DSPBOOT.
The DSP boots from EMIFA when DSPBOOT = 1 (and ARM HPI or PCI boot mode is not selected).
After reset, this pin is video port data output 6 (VP_DOUT6). At reset, for proper device operation, this pin must be pulled down via an external
After reset, this pin is video port data output 7 (VP_DOUT7).
HPI Boot (16-Bit width) (if PCIEN = 0) PCI Boot without auto-initialization (if PCIEN = 1)
HPI Boot (32-Bit width) (if PCIEN = 0) PCI Boot with auto-initialization (if PCIEN = 1)
EMIFA Direct Boot (ROM/NOR) (PCIEN = 0) [error if PCIEN = 1; defaults to UART0]
DESCRIPTION
Device Overview30 Submit Documentation Feedback
Loading...
+ 305 hidden pages