TMS320F28xx/28xxx DSCs
模拟接口设计综述
应用报告
ZHCA063–2008年5
月
摘要
本应用报告提供了一个
TMS320F28xx/28xxx
数字信号控制器的设计参考指南,主要内容有:模数转
换器的 配置、设 定 相关的 寄 存器、响 应对应的 中断和电 路 板设计参 考等。本 指导书对 于 第一次接 触
TMS320C2000™
数字信号处理器
(DSP)
,和很少使用模拟器件的软件工程师来说是很有用的。本指导书包
含了许多系统设计时需要考虑的难点问题,主要有:采样频率的设定、高效地从数字信号变换到系统数据
存储器的输入通道序列、输入驱动电路和滤波电路、电源供给和校准等。为了更好地利用数字信号控制器
(DSC)——TMS320F28xx/28xxxx
系列中的模数转换器
(ADC)
来进行设计,我们从不同文档中节选许多信息
编成方便的设计指南。相关的代码是在
F280x eZdsp™
开发板上运行的,这些代码也可以广泛作为使用此
ADC
新设计的软件框架。
在本指导书中涉及到的附属项目和源代码在下面的地址中都能下载
:
http://www-s.ti.com/sc/techlit/spraap6.zip
目录
1
简介
2
2
模数转换模块的结构和描述
3
3
模数转换器的准备和运行
4
4 F2823x和F2833x
系列的
DMA
功能和校准功能
12
5
原理图和布线设计
16
6
模数转换器的校准
18
7
附加支持
18
8
参考文献
19
附录
A F280xx和F281x
的差异
20
Pradeep Shinde
图目录
1
模数转换器简化模块图
3
2 TMS320F280xx
芯片的模数转换器引脚连接原理图
5
3
模拟输入引脚的阻抗模式
(F280xx) 5
4
典型的模数转换器输入引脚缓冲/驱动电路
6
5
模数转换器的时钟级联
8
6
连续模式下的同步和采样频率
9
7
通过
PIE
多路使用模数转换器中断
11
8
简化的硬件状态机
14
9
地址控制器
14
10
设计例子
1:
放置器件
17
11
设计例子2:走线/铺铜
17
12
模数转换器转换传递函数关系
18
表目录
A-1 F280xx 和 F281x
外设差异
20
TMS320F28xx/28xxx DSCs
模拟接口设计综述
1ZHCA063–2008年5
月
www.ti.com.cn
TMS320F28xx/28xxx DSCs
模拟接口设计综述
2
ZHCA063–2008年5
月
简介
TMS320F28x DSC’s
具有
16-
通道,
12-
位的模数转换器,可以让设计者像使用多种嵌入式设备一样,直接把
模拟信号连接到处理芯片上。在
TMS320F28xxDSCs
上,增强型
ADC
外设具有12位分辨率,并且能获得每秒
加速到
12.5兆(MSPS)
的采样速度(一般的芯片是
6.25 MSPS和 3.75 MSPS
),并且通过流水线结构可以监控
模拟信号(如图1)。另外的特性,例如16通道的多路复用、自动定序,双采样和保持
(S/H)
电路和多路中断
表,这些都使得使用者在嵌入式控制和数据记录应用中非常方便。为了发挥外设接口的灵活性,必须正确配
置
ADC
,可以通过建立和配置不同的电路得到具体的方法。为了实现最佳性能,必须理解和设置需要的采样
比、利用自动定序器来定位通道,同时进行中断配置以读取结果。本文已经包含了利用
DSP/BIOS™
的软件核
函数(TI为
TMS320™DSP
设计的实时操作系统)的方案,此指导书也讨论了电路板设计的一些问题和系统设
计时需要注意的事项。
TMS320F281x, TMS320F280xx, TMS320F2804x
和较新的
TMS320F2832x
系列上的
ADC
外设基本上具有
相同的结构,而
F280xx和F281x
系列芯片上
ADC
的外设在规格上,具有很少不同的参数,这些在附件A中
都有详细说明。本应用报告采用
F280xx
设备的信息,利用不同的图解走查了相关的设置。附属的代码也是
针对
F280xx
芯片的,但是也可以移植到
F281x
芯片上。更多的细节可以参考
数据转换手册
(SLAA013) [1]
和
TMS320F2809,TMS320F2808,TMS320F2806,TMS320F2802,TMS320F2801,TMS320C2802
,
TMS320C2801和TMS320F2801x DSP
数据手册
(SPRS230) [2]。
如果想得到更多组件信息和寄存器细节可以
参考
TMS320x280x, 2801x, 2804x
模数转换器(
ADC
)参考指南
(SPRU716) [4],
TMS320x2833x
模数转换器
模式
(ADC) Module
(SPRU812) [18]
和
TMS320x281x DSP
模数转换器参考指南
(SPRU060) [5].
更多关于系统
控制和中断参考的信息,可以参考
缓冲运算放大器到
ADC
电路集
(SLOA098) [6]
。
如果你对
ADC
的参数和术语不是很熟悉,那么参考
数字转换器
(SLAA013) [1]
。
1
简介
TMS320F28xx/28xxx DSCs
模拟接口设计综述
3ZHCA063–2008年5
月
www.ti.com.cn
2 Architecture and Description of ADC Module
Ch�Set�(CONV00)
Ch�Set�(CONV01)
Ch�Set�(CONV02)
Ch�Set�(CONV03)
Ch�Set�(CONV07)
State
Pointer
MAX�CONV1
Ch�Set�(CONV08)
Ch�Set�(CONV09)
Ch�Set�(CONV10)
Ch�Set�(CONV11)
Ch�Set�(CONV15)
State
Pointer
MAX�CONV2
Sequence Arbiter
12-Bit A/D
Converter
SOC EOC
S/H-A
S/H-B
MUX
Select
ADCINA0
ADCINA1
ADCINA7
MUX
Select
ADCINB0
ADCINB1
ADCINB7
4
SOC1 EOC1
44
Note:�Possible�values:
Channel�Select�=�0-15
MAX�CONV1�=�0-7
MAX�CONV2�=�0-7
Software
ePWM_SOC_A
External�Pin
(XINT2_ADCSOC)
Start-of-sequence
Trigger
SEQ1 SEQ2
SOC2 EOC2
MUX
12
ADCRESULT0
ADCRESULT1
ADCRESULT7
12
Result
Select
Result
MUX
ADCRESULT8
ADCRESULT9
ADCRESULT15
12
Result
Select
Result
MUX
12
12
Software
ePWM_SOC_B
Start-of-sequence
Trigger
ADC�start�of�conversion�(SOC)�trigger�sources
4
Analog�MUX
www.ti.com
Architecture and Description of ADC Module
Figure 1 illustrates a simplified block diagram of the ADC architecture.
2
模数转换器模块的结构和描述
图1 显示了
ADC
结构的精简模块图
图
1. ADC
结构的精简模块图
2.1
主要模块和它们的功能
两个8通道的多路复用器(A和B)扩展了模拟输入到16位通道,每一个
MUX
模块都有它自己的采样保值电路
(S/
H-A和S/H-B)
,这种双
MUX和S/H
使同时采样成为可能,例如,从A和B模块的每一个通道在同一个实体中采
样,读取电压和电流值,然后计算出瞬时功率。
12
位的
ADC
核是模数转换器的
管路
。序列发生器仲裁保持输入信号与
ADC
相接,包括在同步模式下。
双自动序列发生器
(SEQ1和SEQ2 )
可以随机选择序列,决定哪一个
ADC
通道和
ADC
的核相连接,这样就减少
了重复
ADC
操作带来的
CPU
过热问题。每8个状态的序列发生器在预订的程序单独转换成8个通道,并且序列
发生器1和序列发生器2可以级联形成单16通道的序列发生器。
模数转换模块的结构和描述
www.ti.com.cn
TMS320F28xx/28xxx DSCs
模拟接口设计综述
4
ZHCA063–2008年5
月
可以利用
ADCMAXCONV
寄存器设置每个序列的转换数目(每个序列发生器上限是8个,如果级联的就是
16
)。图1显示了四个不同的外置信号,它们可以作为序列发生器
1(SEQ1)
的开始转换
(SOC)
的触发器,也可
以利用软件或脉冲宽度调制
(PWM)
设置序列发生器
2(SEQ2)
的触发器。
该模块有16个结果寄存器
(ADCRESULT0 – ADCRESULT15)
,这些寄存器在开始转换成系统存储之前,保存
着模数转换器的计数,任何输入通道
(ADCINxx)
,在序列里都可能被分配给每一次转换,这样就可以很方便
重复或者跳过任何通道和通道数在
ADCRESULTn
寄存器中的序列。
每一个序列的结束
(EOS)
都会产生三个不同的中断信号
ADCINT,SEQ1INT和SEQ2INT
,这些中断信号可以
把从结果寄存器中的数据转移到系统存储器中。有关
ADC
的操作的中断服务程序
(ISR)
只有
CPU
可以干涉,
这样在完成转换中就减少了
CPU
的消耗。更多的有关自动转换序列的细节,可以参考
TMS320x280x, 2801x,
2804x DSP
模数转换器参考指南
(SPRU716) [4]
和
TMS320x281x DSP
模数转换器参考指南
(SPRU060) [5].
关键说明
在进行设置之前,首先要审查一下说明,必须确保你对这些数据转换的术语比较熟悉,在这个简短关键要注
意的是,采样频率和输入模拟信号的范围,增益和偏离误差是下一阶段要考虑的重要参数,必须对它们进行
有效地处理才能使系统正常。
在
F280x/F280xx
芯片上的最大采样频率是
12.5/6.25/3.75 MSPS 而F281x
芯片为
12.5 MSPS
。
在
F280x/F2801x
芯片上最大模数转换器的时钟为
25/12.5/6.25 MHz
而在
F281x
芯片上为
25 MHz
输入信号的范围是
0 V to 3.0 V
,偏移误差和增益误差与其它的模数转换器一样。
更多的细节 可 以 参 考 其它详细说明,或参 考 下 列 芯 片的电气部分:
TMS320F2 8 0 9 , TMS320F280 8 ,
TMS320F2806, TMS320F2802, TMS320F2801, TMS320C2802, TMS320C2801, 和TMS320F2801x
DSPs
数据手册
(SPR S230) [2],
TMS3 2 0F2810,T M S320F28 11, T MS320F 2 812 , TMS 3 20C2810,
TMS320C2811,TMS320C2812
数字信号处理数据手册
(SPRS174) [3]
和
TMS320F28335, TMS320F28334,
TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232
数字信号控制数据手册
(SPRS439) [19].
•
•
•
2.2
硬件设置
在
ADC
硬件设计方面,有两个主要的方面:
为了实现
ADC
的一定功能,添加的无源器件。
处理模拟输入信号的电路。在第5部分有许多有关完成原理图和电路板设计的内容
•
•
3.1
ADC
的设定和操作
在这一部分将要讨论设计问题。在硬件方面,需要考虑的是外围被动器件,也就是为了实现一些功能而添加
的器件,同样为实现功能的模拟输入信号与
ADC
输入引脚相连接的问题也是非常重要的。电源供电和外部参
考电压在
3.2.2
部分讨论。
3
模数转换器的准备和运行
TMS320F28xx/28xxx DSCs
模拟接口设计综述
5ZHCA063–2008年5
月
www.ti.com.cn
3.1.1 Required External Components for the ADC
ADCINA[7:0]
ADCINB[7:0]
ADCLO
ADCREFIN
ADCRESEXT
ADCREFP
ADCREFM
V
DD1A18
V
DD2A18
V
SS1AGND
V
SS2AGND
V
DDA2
V
SSA2
V
DDAIO
V
SSAIO
Analog�Input�0�V�to�3�V�with�respect�to ADCLO
Connect�to�analog�ground
Float�or�ground�if�internal�reference�is�used
2.2�µF
(A)
2.2�µF
(A)
22�K�
ADC Analog�Power�Pin�(1.8�V)
ADC Analog�Power�Pin�(1.8�V)
ADCREFP and ADCREFM
should�not�be�loaded�by
external�circuitry
ADC Analog�Ground�Pin
ADC Analog�Ground�Pin
ADC Analog�Power�Pin�(3.3�V)
ADC Analog�Ground�Pin
ADC Analog�Power�Pin�(3.3�V)
ADC Analog�I/O�Ground�Pin
ADC�16-Channel
Analog�Inputs
ADC�External�Current
Bias�Resistor
ADC�Reference�Positive�Output
ADC�Reference�Medium�Output
ADC�Power
ADC Analog�and
Reference�I/O�Power
3.1.2 Analog Input Signal Interface
Source
Signal
AC
R
8
ADCIN0
C
10�pF
p
R
1�k
on
�
C
1.64�pF
h
28x�DSP
Switch
www.ti.com
ADC Set-Up and Operation
Few external components are required for biasing of internal band gap reference and filtering noise on
reference voltage signals. Figure 2, reproduced from F280xx data sheets, shows these parts and their
connections.
Figure 2. ADC Pin Connections for TMS320F280xx
These pins must be connected as shown above. The F281x devices require different values for these
parts (Appendix A).
The next step is to design the hardware interface connecting the input analog signals to the ADCINxx
pins. Note that each input analog signal sees the load from the ADCIN pin as shown in Figure 3. Chis the
sample capacitor and Ronis the ON resistance of the multiplexer path. Cpis the parasitic capacitance
associated with the ADCIN pin.
3.1.1 Required External Components for the ADC
ADCINA[7:0]
ADCINB[7:0]
ADCLO
ADCREFIN
ADCRESEXT
ADCREFP
ADCREFM
V
DD1A18
V
DD2A18
V
SS1AGND
V
SS2AGND
V
DDA2
V
SSA2
V
DDAIO
V
SSAIO
Analog�Input�0�V�to�3�V�with�respect�to ADCLO
Connect�to�analog�ground
Float�or�ground�if�internal�reference�is�used
2.2�µF
(A)
2.2�µF
(A)
22�K�
ADC Analog�Power�Pin�(1.8�V)
ADC Analog�Power�Pin�(1.8�V)
ADCREFP and ADCREFM
should�not�be�loaded�by
external�circuitry
ADC Analog�Ground�Pin
ADC Analog�Ground�Pin
ADC Analog�Power�Pin�(3.3�V)
ADC Analog�Ground�Pin
ADC Analog�Power�Pin�(3.3�V)
ADC Analog�I/O�Ground�Pin
ADC�16-Channel
Analog�Inputs
ADC�External�Current
Bias�Resistor
ADC�Reference�Positive�Output
ADC�Reference�Medium�Output
ADC�Power
ADC Analog�and
Reference�I/O�Power
www.ti.com
ADC Set-Up and Operation
Few external components are required for biasing of internal band gap reference and filtering noise on
reference voltage signals. Figure 2, reproduced from F280xx data sheets, shows these parts and their
connections.
模数转换器需要的外部器件
为了偏置内部带宽间隔的参考和实现参考电压信号的滤波,需要添加一些外部器件。图2,显示了
F280xx
数
据手册中这一部分的连接和器件。
3.1.1
图
2. TMS320F280xx
芯片的
ADC
的引脚连接
这些引脚必须按照上面图来连接,对于
F281x
芯片需要不同的值,在附件A中可以看到。
模拟信号输入接口
这一步是设计输入模拟信号和
ADCINxx
引脚连接的硬件接口,需要注意的是,每一个输入的模拟信号都被看
作是
ADCIN
引脚的负载,如图3所示,
C
h
是
采样
电容,
R
on
是多路复用的导通电阻,
C
p
是和
ADCIN
引脚连接的
寄生电容。
3.1.2
图
3.
模拟输入阻抗模型
(F280xx)
模数转换器的准备和运行
www.ti.com.cn
TMS320F28xx/28xxx DSCs
模拟接口设计综述
6
ZHCA063–2008年5
月
_
+
V
IN
R
IN
C
IN
S1
R
SW
S2
C
SH
V
SH
V
PS
Op Amp
www.ti.com
For every conversion, the S/H switch is closed for a period equivalent to (ACQ_PS + 1) × ADCCLK cycles.
During this period, the sample capacitor Chis charged to the voltage on the ADCIN pin that is connected
through MUX. The source impedance of this analog signal should be as low as possible and remain stable
when it is being sampled. The external driver and filter circuit has to be designed considering the above
circuit and component values. The higher the source impedance, the higher the ACQ_PS (sample time)
value number should be set. The goal is to charge the S/H capacitor to the voltage equal to the VINvalue;
with less than one-half least significant bit (LSB) in error.
It is a good practice to use an op-amp driver circuit for signal conditioning of input analog signals and as a
buffer. It provides low/stable output impedance and can be configured as filter or level shifter; it also
protects the ADC inputs. Figure 4 shows a commonly used ADC driver circuit configuration for DC and
low-frequency signals. The voltage range of an analog signal should be restricted between 0 V and 3.0 V.
Note: First, the analog signals travel through a multiplexer network. Any voltage out of 0 V-3.0 V
range will bias the multiplexer in an undesired way, giving incorrect values for other channels
as long as the out-of-range voltage remains.
For achieving good accuracy, the sample capacitor should be charged to within LSB of the final value.
首先模拟信号穿过多路复用网络,任何超过
0 V-3.0 V
范围的电压会产生不可想象的偏移,只要电
压值超过范围,其他通道的值就是错误的。
注释:
对每一次转换,取样/保持开关在
(ACQ_PS + 1)
×
ADCCLK
时间内是关闭的,在这段时间内,采样电容Ch在
充电,电容上的电压即
ADCIN
引脚上电压,并且这个引脚和
MUX
连接。模拟信号上的源阻抗应该尽量低并且
当开始采样的时候保持稳定。外部驱动和滤波电路必须按照上面的电路和器件的数值来进行设计。源阻抗越
高,就需要把
ACQ_PS(
采样时间)的值设置越高,目的是要改变采样/保持电容的电压和
V
IN
值相等,不过同时
会带来小于
1/2LSB
错误信号。
利用运算放大器驱动电路对输入模拟信号进行处理同时作为缓冲,是一个很好方法,它提供了低而稳定的输
出阻抗,并且可以配置成滤波器或电平移动电路,同时还可以保护
ADC
的输入。图4显示了一般针对直流、
低频信号
ADC
驱动电路的配置,模拟信号的电压范围被严格控制在0V到
3.0 V
。
为了得到准确地好的结果,采样电容应该控制在最终
LSB
值的有效范围内。
运算放大器独立于模数转换器,对采样电容来说是一个低阻抗源,可以配置成一个整体的增益缓冲。外部
R
IN
,
C
IN
引脚形成了低通滤波,独立于
ADC的R
IN
在采样期间是起放大作用的,
CIN
有助于信号的稳定。
V
PS
是上次采样值,理想情况下是零,如果反复采样的话,就可能是上次采样的值。
R
SW
是
MUX
的导通电阻,
在采集时,S1关闭,S2打开。采集电容
CSH(1.64 pF)
通过开关电阻
RSW (1 kW)和RIN (
通常不会超过
50 W)
进行
充电。充电电容按照下面的公式计算。
对于由
RSW 和C
SH
构成的RC电路来说,置位的时间是
9ns
,这个时间远远小于在
12.5MSPS
条件下的最小采样
窗口
40 ns
的时间,然而,这个时间远远大于外部的RC电路所消耗的时间。为了满足
ACQ_PS
或低采样频率,
同时满足设计时采样率的需要,置位时间应该设置为较高的值。
建议的运算放大器采用TI公司的
OPA340和OPA350
,它们由单电源供电,具有很高的精度。
_
+
V
IN
R
IN
C
IN
S1
R
SW
S2
C
SH
V
SH
V
PS
Op Amp
t
V (t) = V ( - e )
c IN
�
www.ti.com
For every conversion, the S/H switch is closed for a period equivalent to (ACQ_PS + 1) × ADCCLK cycles.
During this period, the sample capacitor Chis charged to the voltage on the ADCIN pin that is connected
through MUX. The source impedance of this analog signal should be as low as possible and remain stable
when it is being sampled. The external driver and filter circuit has to be designed considering the above
circuit and component values. The higher the source impedance, the higher the ACQ_PS (sample time)
value number should be set. The goal is to charge the S/H capacitor to the voltage equal to the VINvalue;
with less than one-half least significant bit (LSB) in error.
It is a good practice to use an op-amp driver circuit for signal conditioning of input analog signals and as a
buffer. It provides low/stable output impedance and can be configured as filter or level shifter; it also
protects the ADC inputs. Figure 4 shows a commonly used ADC driver circuit configuration for DC and
low-frequency signals. The voltage range of an analog signal should be restricted between 0 V and 3.0 V.
Note: First, the analog signals travel through a multiplexer network. Any voltage out of 0 V-3.0 V
range will bias the multiplexer in an undesired way, giving incorrect values for other channels
as long as the out-of-range voltage remains.
For achieving good accuracy, the sample capacitor should be charged to within LSB of the final value.
Figure 4. Typical Buffer/Driver Circuit for ADCIN
The op-amp isolates the ADC and acts as a low-impedance source to charge the sample capacitor; it can
be configured as a unity gain buffer. External RINand CINform a low-pass filter. RINisolates the ADC from
the amplifier during sampling; CINhelps in signal stability.
VPSis the residue from a previous sample. Ideally it would be zero, but if you are sampling back-to-back, it
approaches the previously sampled value. RSWis the on-resistance of MUX. During acquisition, S1 is
closed, S2 is open. The sampling capacitor CSH(1.64 pF) is charged through the switch resistor R
SW
(1 kΩ) and RIN(should not exceed 50 Ω, typically). The action of charging the capacitor is shown in
following equation.
软件设置
首先要按照系统的需要,设置
ADC
的相关配置,包括采样频率、选取输入序列通道和
ADC
中断管理等。上述
操作需要通过一些寄存器来设置,附件的代码文件包含了完整的设定程序。
3.2
图
4. ADCIN
典型的缓冲/驱动电路
模数转换器的准备和运行
TMS320F28xx/28xxx DSCs
模拟接口设计综述
7ZHCA063–2008年5
月
www.ti.com.cn
设置
ADC
寄存器
最基础的设置是采样速率、选择/设置自动序列、选择采样的模式、选择开始转换信号和设置序列发生器的通
道。例如第16位结果寄存器存有这样一个值,目的是为了使输入通道按照你想要的顺序,同时为了记住每个
序列需要转换的数量。这一部分讨论了如何设置这些参数,解释了
EOS
的中断,这些中断是为了
CPU
以最小
的代价同步把
ADC
计数从结果寄存器中传到系统数据存储器
(RAM)
中。
ADC
的操作是在后台执行,没有消耗
任何
CPU
,主要是因为自动时钟的功能。如果想得到更详细的
ADC
外设寄存器的信息可以参考
F281x
芯片的
TMS320x281x DSP
模数转换器
(ADC)
参考指南
(SPRU060) [5]
和针对
F280xx
芯片的
TMS320x280x, 2801x,
2804x
模数转换器参考指南
(ADC) (SPRU716) [4]
。
3.2.1
ADC
上电和参考电压的选择
在所有的
F28xx/F28xxx
芯片的复位时,
ADC
内部带隙和参考电路都处于电源关闭状态。
ADC
模块的时钟输入是无效的。带隙是参考电路和模数转换器可以一起上电,在关闭时,可以同时关掉。然
而,对
F281x
芯片,带隙参考需要首先上电,紧接着是
ADC
复位上电。
内部带隙参考电压的电路有百万分之
50 (PPM)/
℃的温度稳定性。如果系统需要更精确的温度变化时,则需要
采用具有很大温度稳定性的外部电压参考源。外部电压参考源电路在转换期间提供了足够的驱动和低噪声环
境,典型的原理图在
TMS320x281x DSP
模数转换器参考指南
(
SPRU060) [5]
,中可以看到。
模数转换器的上电顺序如下:
1.
使能模数转换器时钟。设置
PCLKCR1
寄存器的
ADCENCLK位= 1
。
2.
如果需要,设置外部
V
REF
。
对于
F280xx
设备,
ADCREFIN
输入电压
(1.024 V, 1.500 V, 或 2.048 V)
代替了内部BG电压。内部BG电压是用来
产生
REFP/REFM
信号,在模数转换器转换期间要使用到。
ADCREFSEL
寄存器的两个
REF_SEL
位的值设置如下
:
= 00
内部参考电压(默认
)
= 01
外部参考电压
2.048 V
= 10
外部参考电压
1.500 V
= 11
外部参考电压
1.024 V
F281x
设备:让
EXTREF (ADCCTRL3) = 1
逻辑上不连接
REFP/REFM
,用户可使用外部参考电压。如果
ADCREFP
引脚接
2.0 V,ADCREFM
引脚接
1.0 V, ADCREFP – ADCREFM
之间的电势差应该是
1.00 ± 0.01 V
。
3.2.2
对于
F280xx和F281x
芯片,不管外部参考电压是多少,
ADC
模拟输入的电压范围仍然是
0 V to 3 V
注释:
在
ADC
上电之后,对
F280xx
芯片允许有
5 ms延时 (对F281x
芯片有
10 ms延时)
,这样以便于
REFP
和
REFN
引脚上的外部电容在适当时充电,在这段期间
ADC
的计数是不准确的。
注释:
3. 给ADC
上电,需要设置
ADCTRL3
寄存器中的
ADCBGRFDN和ADCPWDN位= 1
。
模数转换器的准备和运行