Texas instruments TMS320DM6467T Data Manual

TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
TMS320DM6467T
Digital Media System-on-Chip
Check for Samples: TMS320DM6467T

1 Digital Media System-on-Chip (DMSoC)

1.1 Features

• High-Performance Digital Media SoC – 1-GHz C64x+™ Clock Rate – 500-MHz ARM926EJ-S™ Clock Rate – Eight 32-Bit C64x+ Instructions/Cycle – 8000 C64x+ MIPS – Fully Software-Compatible With C64x /
ARM9™
– Industrial Temperature Devices Available
• Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+™ DSP Core
– Eight Highly Independent Functional Units
Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock • Embedded Trace Buffer™ (ETB11™) With 4KB Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Memory for ARM9 Debug Results) per Clock Cycle
– Load-Store Architecture With Non-Aligned
Support – 64 32-Bit General-Purpose Registers – Instruction Packing Reduces Code Size Transcode Operations – All Instructions Conditional H.264, MPEG2, VC1, MPEG4 SP/ASP – Additional C64x+™ Enhancements • 150-MHz Video Port Interface (VPIF)
Protected Mode Operation – Two 8-Bit SD (BT.656), Single 16-Bit HD
Exceptions Support for Error Detection and Program Redirection
Hardware Support for Modulo Loop Operation
• C64x+ Instruction Set Features – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions – Additional Instructions to Support Complex
Multiplies
• C64x+ L1/L2 Memory Architecture – 32K-Byte L1P Program RAM/Cache (Direct
Mapped)
– 32K-Byte L1D Data RAM/Cache (2-Way
Set-Associative)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testingof all parameters.
– 128K-Byte L2 Unified Mapped RAM/Cache
(Flexible RAM/Cache Allocation)
• ARM926EJ-S Core – Support for 32-Bit and 16-Bit (Thumb®
Mode) Instruction Sets
– DSP Instruction Extensions and Single Cycle
MAC – ARM® Jazelle® Technology – EmbeddedICE-RT™ Logic for Real-Time
Debug
• ARM9 Memory Architecture – 16K-Byte Instruction Cache – 8K-Byte Data Cache – 32K-Byte RAM – 8K-Byte ROM
• Endianness: Little Endian for ARM and DSP
• Dual Programmable High-Definition Video Image Co-Processor (HDVICP) Engines
– Supports a Range of Encode, Decode, and
(BT.1120), or Single Raw (8-/10-/12-Bit) Video Capture Channels
– Two 8-Bit SD (BT.656) or Single 16-Bit HD
(BT.1120) Video Display Channels
• Video Data Conversion Engine (VDCE) – Horizontal and Vertical Downscaling – Chroma Conversion (4:2:24:2:0)
• Two Transport Stream Interface (TSIF) Modules (One Parallel/Serial and One Serial Only)
– TSIF for MPEG Transport Stream – Simultaneous Synchronous or
Asynchronous Input/Output Streams – Absolute Time Stamp Detection – PID Filter With 7 PID Filter Tables – Corresponding Clock Reference Generator
(CRGEN) Modules for System Time-Clock
Recovery
Copyright © 2009–2010, Texas Instruments Incorporated
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
• External Memory Interfaces (EMIFs) – CIR With Programmable Data Encoding – Up to 400-MHz 32-Bit DDR2 SDRAM Memory • One Serial Peripheral Interface (SPI) With Two
Controller With 512M-Byte Address Space Chip-Selects (1.8-V I/O)
– Asynchronous16-Bit Wide EMIF (EMIFA)
With 128M-Byte Address Reach
Flash Memory Interfaces – NOR (8-/16-Bit-Wide Data) – NAND (8-/16-Bit-Wide Data)
• Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
– Programmable Default Burst Size
• 10/100/1000 Mb/s Ethernet MAC (EMAC) – IEEE 802.3 Compliant (3.3-V I/O Only) – Supports MII and GMII Media Independent
Interfaces
– Management Data I/O (MDIO) Module
• USB Port With Integrated 2.0 PHY – USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host
(Mini-Host, Supporting One External Device)
• 32-Bit, 66-MHz, 3.3 V Peripheral Component Interconnect (PCI) Master/Slave Interface
– Conforms to PCI Specification 2.3
• Two 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
• One 64-Bit Watch Dog Timer
• Three Configurable UART/IrDA/CIR Modules (One With Modem Control Signals)
– Supports up to 1.8432 Mbps UART – SIR and MIR (0.576 MBAUD)
• Master/Slave Inter-Integrated Circuit (I2C Bus™)
• Two Multichannel Audio Serial Ports (McASPs) – One Four Serializer Transmit/Receive Port – One Single DIT Transmit Port for S/PDIF
• 32-Bit Host Port Interface (HPI)
• VLYNQ™ Interface (FPGA Interface)
• Two Pulse Width Modulator (PWM) Outputs
• ATA/ATAPI I/F (ATA/ATAPI-6 Specification)
• Up to 33 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)
• On-Chip ARM ROM Bootloader (RBL)
• Individual Power-Saving Modes for ARM/DSP
• Flexible PLL Clock Generators
• IEEE-1149.1 (JTAG) Boundary­Scan-Compatible
• 529-Pin Pb-Free BGA Package (ZUT Suffix), 0.8-mm Ball Pitch
• 0.09-mm/7-Level Cu Metal Process (CMOS)
• 3.3-V and 1.8-V I/O, 1.3-V Internal
• Applications: – Video Encode/Decode/Transcode/Transrate – Digital Media – Networked Media Encode/Decode – Video Imaging – Video Infrastructure – Video Conferencing
• Community Resources – TI E2E CommunityTI Embedded Processors Wiki
2 Digital Media System-on-Chip (DMSoC) Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

1.2 Description

The TMS320DM6467T (also referenced as DM6467T) leverages TI’s DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices.
The DM6467T enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the DM6467T provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core incorporates:
A coprocessor 15 (CP15) and protection module
Data and program Memory Management Units (MMUs) with table look-aside buffers.
Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT).
The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set.
SPRS605B–JULY 2009–REVISED JULY 2010
Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.
With performance of up to 8000 million instructions per second (MIPS) at a clock rate of 1 GHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 8000 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732).
The DM6467T also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6467T core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
The peripheral set includes: a configurable video port; a 10/100/1000 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; a 4-bit transfer/4-bit receive VLYNQ interface; an inter-integrated circuit (I2C) Bus interface; a multichannel audio serial port (McASP0) with 4 serializers; a secondary multichannel audio serial port (McASP1) with a single transmit serializer; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; a configurable 32-bit host port interface (HPI); up to 33-pins of general-purpose input/output (GPIO) with
Copyright © 2009–2010, Texas Instruments Incorporated Digital Media System-on-Chip (DMSoC) 3
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART/IrDA/CIR interfaces with modem interface signals on UART0; 2 pulse width modulator (PWM) peripherals; an ATA/ATAPI-6 interface; a 66-MHz peripheral component interface (PCI); and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6467T and the network. The DM6467T EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode; and 1000Base-TX (1 Gbps) in full-duplex mode with hardware flow control and quality of service (QOS) support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.
The PCI, HPI, I2C, SPI, USB2.0, and VLYNQ ports allow the DM6467T to easily control peripheral devices and/or communicate with host processors.
The DM6467T also includes a High-Definition Video/Imaging Co-processor (HDVICP) and Video Data Conversion Engine (VDCE) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the HDVICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative.
www.ti.com
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The DM6467T has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
4 Digital Media System-on-Chip (DMSoC) Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
JTAGInterface
SystemControl
PLLs/Clock
Generator
Input
Clock(s)
Power/Sleep
Controller
Pin
Multiplexing
ARMSubsystem
ARM926EJ-SCPU
16KB
I-Cache
32KBRAM
8KB
D-Cache
8KBROM
DSP Subsystem
C64x DSP CPU
32KB
L1Pgm
128KBL2RAM
32KB
L1Data
HighDefinition
Video-Imaging
Coprocessor
(HDVICP0)
SwitchedCentralResource(SCR)
Peripherals
EDMA
I2C SPI
UART
SerialInterfaces
DDR2 MemCtlr (16b/32b)
AsyncEMIF/
NAND/
SmartMedia
ATA
Program/DataStorage
Watchdog
Timer
PWM
System
General­Purpose
Timer
USB2.0
PHY
VLYNQ
EMAC
With
MDIO
Connectivity
HPI
McASP
Video
PortI/F
PCI
(66MHz)
TSIF
HighDefinition
Video-Imaging
Coprocessor
(HDVICP1)
CRGEN VDCE
TMS320DM6467T
www.ti.com

1.3 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the device.
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Digital Media System-on-Chip (DMSoC) 5
Figure 1-1. TMS320DM6467T Functional Block Diagram
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
1 Digital Media System-on-Chip (DMSoC) ............ 1 7.1 Parameter Information ............................ 140
1.1 Features .............................................. 1
1.2 Description ........................................... 3
1.3 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Overview ........................................ 9
3.1 Device Characteristics ............................... 9
3.2 Device Compatibility ................................ 11
3.3 ARM Subsystem .................................... 11
3.4 DSP Subsystem .................................... 15
3.5 Memory Map Summary ............................. 20
3.6 Pin Assignments .................................... 24
3.7 Terminal Functions ................................. 31
3.8 Device Support ..................................... 79
3.9 Documentation Support ............................ 81
4 Device Configurations ................................ 82
4.1 System Module Registers .......................... 82
4.2 Power Considerations .............................. 84
4.3 Clock Considerations ............................... 87
4.4 Boot Sequence ..................................... 94
4.5 Configurations At Reset ........................... 100
4.6 Configurations After Reset ........................ 103
4.7 Multiplexed Pin Configurations .................... 111
4.8 Debugging Considerations ........................ 133
5 System Interconnect ................................ 135
6 Device Operating Conditions ...................... 136
6.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted)
..................................................... 136
6.2 Recommended Operating Conditions ............. 137
6.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Temperature (Unless Otherwise Noted) .......... 138
7 Peripheral Information and Electrical
Specifications ......................................... 140
7.2 Recommended Clock and Control Signal Transition
Behavior ........................................... 141
7.3 Power Supplies .................................... 142
7.4 External Clock Input From DEV_MXI/DEV_CLKIN
and AUX_MXI/AUX_CLKIN Pins .................. 150
7.5 Clock PLLs ........................................ 154
7.6 Enhanced Direct Memory Access (EDMA3)
Controller .......................................... 163
7.7 Reset .............................................. 183
7.8 Interrupts .......................................... 194
7.9 External Memory Interface (EMIF) ................ 200
7.10 DDR2 Memory Controller ......................... 207
7.11 Video Port Interface (VPIF) ....................... 220
7.12 Transport Stream Interface (TSIF) ................ 228
7.13 Clock Recovery Generator (CRGEN) ............. 238
7.14 Video Data Conversion Engine (VDCE) .......... 241
7.15 Peripheral Component Interconnect (PCI) ........ 244
7.16 Ethernet MAC (EMAC) ............................ 250
7.17 Management Data Input/Output (MDIO) .......... 260
7.18 Host-Port Interface (HPI) Peripheral .............. 262
7.19 USB 2.0 [see Note] ............................... 270
7.20 ATA Controller ..................................... 280
7.21 VLYNQ ............................................ 295
7.22 Multichannel Audio Serial Port (McASP0/1)
Peripherals ........................................ 300
7.23 Serial Peripheral Interface (SPI) .................. 312
7.24 Universal Asynchronouse Receiver/Transmitter
(UART) ............................................ 327
7.25 Inter-Integrated Circuit (I2C) ...................... 334
7.26 Pulse Width Modulator (PWM) .................... 338
7.27 Timers ............................................. 340
7.28 General-Purpose Input/Output (GPIO) ............ 343
7.29 IEEE 1149.1 JTAG ................................ 346
8 Mechanical Packaging and Orderable
Information ............................................ 349
8.1 Thermal Data for ZUT ............................. 349
8.2 Packaging Information ............................ 349
6 Contents Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

2 Revision History

This data manual revision history highlights the technical changes made to the SPRS605A device-specific data manual to make it an SPRS605B revision.
Scope: Applicable updates to the DM646xT DMSoC device family, specifically relating to the TMS320DM6467T device (Silicon Revision 3.0) which is now in the production data (PD) stage of development have been incorporated.
USB 2.0 is now supported on -1G devices.
Added, for clarification, the DDR2 Memory Controller speed of 400 MHz
SEE ADDITIONS/MODIFICATIONS/DELETIONS
Global
Section 3.1 Table 3-1, Characteristics of the DM6467T Processor
Device Characteristics
Section 3.5 Table 3-3, Memory Map Summary
Memory Map Summary
Section 3.7 Table 3-6, Oscillator/PLL Terminal Functions
Terminal Functions
Section 3.8 Figure 3-8, Device Nomenclature
Device Support
Section 6 Section 6.2, Recommended Operating Conditions
Device Operating Conditions
Section 7 Section 7.1.3, Timing Parameters and Board Routing Analysis
Peripheral Information and Electrical Specifications
Section 7.4.1 Figure 7-7, 33.3-MHz System Oscillator
Clock Input Option 1—Crystal
Section 7.4.2 Figure 7-9, 1.8-V LVCMOS-Compatible Clock Input
Clock Input Option 2—1.8-V LVCMOS-Compatible Clock Input Updated/ Changed figure
USB 2.0 is now supported on -1G devices. All references have been updated.
Added, for clarification, the device-specific DDR2 Memory Controller speeds of 400 MHz
Updated/Changed hardware features, peripherals, DDR2 Memory Controller
Updated/Changed hardware features, peripherals, USB 2.0
Updated/ Changed associated USB 2.0 footnote
Updated/ Changed PCI Master Peripheral Accessibility for address range 0x2000 0000 to 0x2000 7FFF
Updated/ Changed C64x+ PCI Data access to address range 0x3000 0000 to 0x3FFF FFFF
Removed associated USB 2.0 footnote
Table 3-4, Configuration Memory Map Summary
Updated/ Changed C64x+ Timer2 access to address range 0x01C2 1C00 to 0x01C2 1FFF
Updated/ Changed C64x+ PLL Controller1 access to address range 0x01C4 0800 to 0x01C4 0BFF
Updated/ Changed C64x+ PLL Controller2 access to address range 0x01C4 0C00 to 0x01C4 0FFF
Updated/ Changed HPI, PCI, and VLYNQ Master Peripheral Accessibility for address range 0x01D0 2000 to 0x01DF FFFF
Updated/ Changed HPI, PCI, and VLYNQ Master Peripheral Accessibility for address range 0x01E0 0000 to 0x01FF FFFF
Updated/ Changed DEV_CVDDdescription
Updated/ Changed AUX_CVDDdescription
Table 3-10, DDR2 Memory Controller Terminal Functions
Updated/ Changed DDR_ZP tolerance from ±0.5% to ±5%
Updated/ Changed DDR_ZN tolerance from ±0.5% to ±5%
Updated figure
Updated/ Changed DDR_ZP tolerance from ±0.5% to ±5%
Updated/ Changed DDR_ZN tolerance from ±0.5% to ±5%
Updated/ Changed second paragraph
Updated/ Changed figure
Figure 7-8, 24-MHz Auxiliary Oscillator
Updated/ Changed figure
Updated/ Changed figure
Figure 7-10, 1.8-V LVCMOS-Compatible Clock Input
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Revision History 7
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
SEE ADDITIONS/MODIFICATIONS/DELETIONS
Section 7.10.1 Table 7-31, Switching Characteristics Over Recommended Operating Conditions for DDR2 Memory Controller
DDR2 Memory Controller Electrical Data/Timing
Section 7.15.3 Removed PCI Configuration Register table
PCI Peripheral Register Description(s)
Section 7.19 Updated Note
USB 2.0
Section 7.29 Updated/ Changed fourth paragraph
IEEE 1149.1 JTAG
Added frequency parameter for clarification
www.ti.com
8 Revision History Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010

3 Device Overview

3.1 Device Characteristics

Table 3-1 provides an overview of the TMS320DM6467T SoC. The table shows significant features of the
device, including the capacity of on-chip RAM, peripherals, internal peripheral bus frequency relative to the C64x+ DSP, and the package type with pin count.
Table 3-1. Characteristics of the DM6467T Processor
HARDWARE FEATURES DM6467T
DDR2 Memory Controller DDR2 (Up to 400-MHz, 16/32-bit bus width) Asynchronous EMIF (EMIFA)
EDMA
Timers separate 32-bit timers)
UART control)
SPI 1 (supports 2 slave devices) I2C 1 (Master/Slave)
Multichannel Audio Serial Port (McASP) one DIT transmit only with 1 serializer for S/PDIF
10/100/1000 Ethernet MAC with Management Data Input/Output (MDIO)
Peripherals Not all peripherals pins are General-Purpose Input/Output Port (GPIO) Up to 33 pins
available at the same time (for more detail, see the Device Configurations section).
VLYNQ 1
PWM 2 outputs ATA 1 (ATA/ATAPI-6) PCI 1 (32-bit, 66 MHz) HPI 1 (16-/32-bit multiplexed address/data)
VDCE Clock Recovery Generator (CRGEN) 1
Power Sleep Controller (PSC) 1 (peripheral/module clock gating)
150-MHz Configurable Video Port Interface (VPIF) 1 8-/10-/12-bit raw video capture channel and
Transport Stream Interface (TSIF) 1 with serial-only input and output
USB 2.0
(1)
Asynchronous (8/16-bit bus width) RAM, Flash
(NOR, NAND)
64 independent channels
8 QDMA channels
2 64-Bit General Purpose (each configurable as 2
1 64-Bit Watchdog
3 (with SIR, MIR, CIR support and RTS/CTS flow
(UART0 Supports Modem Interface)
2 (one transmit/receive with 4 serializers,
output)
1 (with MII/GMII Interface)
1 [horizontal and vertical downscaling,
chroma conversion (4:2:24:2:0)]
2 8-bit BT.656 capture channels or
1 16-bit Y/C capture channel or
2 8-bit BT.656 display channels or
1 16-bit Y/C display channel
MPEG transport stream interface
1 with 8-bit parallel or serial input and output
Each with corresponding clock recovery generator
(CRGEN) for external VCXO control.
High- and Full-Speed Device
High-, Full-, and Low-Speed Host
(1) USB2.0 is not supported on -1G parts that are dated prior to May 1, 2010. See the TMS320DM6467T Silicon Errata (Literature Number:
SPRZ307) for more details on how to decode the date from package markings.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 9
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-1. Characteristics of the DM6467T Processor (continued)
HARDWARE FEATURES DM6467T
Size (Bytes) 248KB RAM, 8KB ROM
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
On-Chip Memory
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1000 C64x+ Megamodule Revision ID Register (MM_REVID[15:0])
Revision (address location: 0x0181 2000) JTAG BSDL_ID
CPU Frequency MHz
Cycle Time ns
Voltage Core (V) 1.3 V (-1G)
PLL Options DEV_CLKIN frequency multiplier (PLLC2)
BGA Package 19 x 19 mm 529-Pin BGA (ZUT) Process Technology mm 0.09 mm
Product Status
(2) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(2)
Organization
JTAGID Register See Section 7.29.1, JTAG ID (JTAGID) Register (address location: 0x01C4 0028) Description(s)
I/O (V) 1.8 V, 3.3 V (-1G) DEV_CLKIN frequency multiplier (PLLC1)
(Between 27 – 35-MHz range)
(Between 27 – 35-MHz range) AUX_CLKIN frequency 24/48-MHz reference
Product Preview (PP), Advance Information (AI), PD or Production Data (PD)
128KB Unified Mapped RAM/Cache (L2) ARM
16KB I-cache
8KB D-cache
32KB RAM
8KB ROM
0x0000
DSP 1 GHz (-1G)
ARM926 500 MHz(-1G)
DSP 1.0 ns (-1G)
ARM926 2.0 ns (-1G)
x1 (Bypass), x14 to x32 (-1G)
x1 (Bypass), x14 to x32 (-1G)
10 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

3.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C64x+ DSP core is code-compatible with the C6000™ DSP platform and supports features of the
C64xT DSP family.

3.3 ARM Subsystem

The ARM Subsystem is designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is responsible for configuration and control of the device; including the DSP Subsystem, the VPSS Subsystem, and a majority of the peripherals and external memories.
The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian operation
Co-Processor 15 (CP15)
MMU
16KB Instruction cache
8KB Data cache
Write Buffer
32KB Internal Tightly-Coupled Memory (TCM) RAM (32-bit wide access)
8KB Internal ROM (ARM bootloader for non-EMIFA boot options)
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt Controller
PLL Controller
Power and Sleep Controller (PSC)
System Module
SPRS605B–JULY 2009–REVISED JULY 2010

3.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
Separate instruction and data Caches
Write buffer
Separate instruction and data Tightly-Coupled Memories (TCMs) [internal RAM] interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 11
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com

3.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Tightly-Coupled Memories (TCMs), Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.

3.3.3 MMU

The ARM926EJ-S MMU provides virtual memory features required by operating systems such as Linux®, Windows® CE, Ultron®, ThreadX®, etc. A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10
www.ti.com

3.3.4 Caches and Write Buffer

The size of the Instruction Cache is 16KB, Data cache is 8KB. Additionally, the Caches have the following features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables.
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
12 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

3.3.5 Tightly Coupled Memory (TCM)

ARM internal RAM is provided for storing real-time and performance-critical code/data and the Interrupt Vector table. ARM internal ROM enables non-EMIFA boot options, such as NAND and UART. The RAM and ROM memories interfaced to the ARM926EJ-S via the tightly coupled memory interface that provides for separate instruction and data bus connections. Since the ARM TCM does not allow instructions on the D-TCM bus or data on the I-TCM bus, an arbiter is included so that both data and instructions can be stored in the internal RAM/ROM. The arbiter also allows accesses to the RAM/ROM from extra-ARM sources (e.g., EDMA or other masters). The ARM926EJ-S has built-in DMA support for direct accesses to the ARM internal memory from a non-ARM master. Because of the time-critical nature of the TCM link to the ARM internal memory, all accesses from non-ARM devices are treated as DMA transfers.
Instruction and Data accesses are differentiated via accessing different memory map regions, with the instruction region from 0x0000 through 0x7FFF and data from 0x10000 through 0x17FFF. The instruction region at 0x0000 and data region at 0x10000 map to the same physical 32-KB TCM RAM. Placing the instruction region at 0x0000 is necessary to allow the ARM Interrupt Vector table to be placed at 0x0000, as required by the ARM architecture. The internal 32-KB RAM is split into two physical banks of 16KB each, which allows simultaneous instruction and data accesses to be accomplished if the code and data are in separate banks.

3.3.6 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.
SPRS605B–JULY 2009–REVISED JULY 2010

3.3.7 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the DM6467T also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.
The DM6467T trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.

3.3.8 ARM Memory Mapping

The ARM memory map is shown in Section 3.5, Memory Map Summary of this document. The ARM has access to memories shown in the following sections.
3.3.8.1 ARM Internal Memories
The ARM has access to the following ARM internal memories:
32KB ARM Internal RAM on TCM interface, logically separated into two 16KB pages to allow simultaneous access on any given cycle if there are separate accesses for code (I-TCM bus) and data (D-TCM) to the different memory regions.
8KB ARM Internal ROM
3.3.8.2 External Memories
The ARM has access to the following external memories:
DDR2 Synchronous DRAM
Asynchronous EMIF / NOR Flash / NAND Flash
ATA
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 13
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
3.3.8.3 DSP Memories
The ARM has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
3.3.8.4 ARM-DSP Integration
DM6467T ARM and DSP integration features are as follows:
DSP visibility from ARM’s memory map, see Section 3.5, Memory Map Summary, for details
Boot Modes for DSP - see Device Configurations section, Section 4.4.1, DSP Boot, for details
ARM control of DSP boot / reset - see Device Configurations section, Section 4.4.2.4, ARM Boot, for details
ARM control of DSP isolation and powerdown / powerup - see Section 4, Device Configurations, for details
ARM & DSP Interrupts - see Section 7.8.1, ARM CPU Interrupts, and Section 7.8.2, DSP Interrupts, for details

3.3.9 Peripherals

The ARM9 has access to all of the peripherals on the DM6467T device.
www.ti.com

3.3.10 PLL Controller (PLLC)

The ARM Subsystem includes the PLL Controller. The PLL Controller contains a set of registers for configuring DM6467T’s two internal PLLs (PLL1 and PLL2). The PLL Controller provides the following configuration and control:
PLL Bypass Mode
Set PLL multiplier parameters
Set PLL divider parameters
PLL power down
Oscillator power down
The PLLs are briefly described in this document in the Clocking section. For more detailed information on the PLLs and PLL Controller register descriptions, see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).

3.3.11 Power and Sleep Controller (PSC)

The ARM Subsystem includes the Power and Sleep Controller (PSC). Through register settings accessible by the ARM9, the PSC provides two levels of power savings: peripheral/module clock gating and power domain shut-off. Brief details on the PSC are given in Section 7.3, Power Supplies. For more detailed information and complete register descriptions for the PSC, see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).

3.3.12 ARM Interrupt Controller (AINTC)

The ARM Interrupt Controller (AINTC) accepts device interrupts and maps them to either the ARM’s IRQ (interrupt request) or FIQ (fast interrupt request). The ARM Interrupt Controller is briefly described in this document in the Interrupts section. For detailed information on the ARM Interrupt Controller, see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).
14 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

3.3.13 System Module

The ARM Subsystem includes the System module. The System module consists of a set of registers for configuring and controlling a variety of system functions. For details and register descriptions for the System module, see Section 4, Device Configurations and see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).

3.3.14 Power Management

DM6467T has several means of managing power consumption. There is extensive use of clock gating, which reduces the power used by global device clocks and individual peripheral clocks. Clock management can be utilized to reduce clock frequencies in order to reduce switching power. For more details on power management techniques, see Section 4, Device Configurations, Section 7, Peripheral and Electrical Specifications, and see the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).
DM6467T gives the programmer full flexibility to use any and all of the previously mentioned capabilities to customize an optimal power management strategy. Several typical power management scenarios are described in the following sections.

3.4 DSP Subsystem

The DSP Subsystem includes the following features:
C64x+ DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
128KB Unified Mapped RAM/Cache (L2)
Little endian
SPRS605B–JULY 2009–REVISED JULY 2010

3.4.1 C64x+ DSP CPU Description

The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-1. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C64x+ CPU extends the performance of the C64x core through enhancements and new features. Each C64x+ .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 15
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+ compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C64x+ CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
www.ti.com
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
TMS320C64x Technical Overview (literature number SPRU395)
16 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB 32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Figure 3-1. TMS320C64x+™ CPU (DSP Core) Data Paths
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 17
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010

3.4.2 DSP Memory Mapping

The DSP memory map is shown in Section 3.5, Memory Map Summary. Configuration of the control registers for DDR2, EMIFA, and ARM Internal RAM is supported by the ARM. The DSP has access to memories shown in the following sections.
3.4.2.1 ARM Internal Memories
The DSP has access to the 32KB ARM Internal RAM on the ARM D-TCM interface (i.e., data only).
3.4.2.2 External Memories
The DSP has access to the following External memories:
DDR2 Synchronous DRAM
Asynchronous EMIF / NOR Flash
ATA
3.4.2.3 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
www.ti.com
3.4.2.4 C64x+ CPU
The C64x+ core uses a two-level cache-based architecture. The Level 1 Program memory/cache (L1P) consists of 32 KB memory space that can be configured as mapped memory or direct mapped cache. The Level 1 Data memory/cache (L1D) consists of 32 KB that can be configured as mapped memory or 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 128 KB RAM memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C64x+ CPU cache registers for the device.
Table 3-2. C64x+ Cache Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
18 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-2. C64x+ Cache Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 - 0x0184 803C MAR0 - MAR15 Reserved (corresponds to byte address 0x0000 0000 - 0x0FFF FFFF)
0x0184 8040 MAR16
0x0184 8044 - 0x0184 80FC MAR17 - MAR63 Reserved (corresponds to byte address 0x1100 0000 - 0x3FFF FFFF)
0x0184 8100 MAR64 Reserved (corresponds to byte address 0x4000 0000 - 0x40FF FFFF) 0x0184 8104 MAR65 Reserved (corresponds to byte address 0x4100 0000 - 0x41FF FFFF)
0x0184 8108 - 0x0184 8124 MAR66 - MAR73 0x0184 8128 - 0x0184 812C MAR74 - MAR75 Reserved (corresponds to byte address 0x4A00 0000 - 0x4BFF FFFF) 0x0184 8130 - 0x0184 813C MAR76 - MAR79 0x0184 8140 - 0x0184 81FC MAR80 - MAR127 Reserved (corresponds to byte address 0x5000 0000 - 0x7FFF FFFF) 0x0184 8200 - 0x0184 82FC MAR128 - MAR191 0x0184 8300 - 0x0184 83FC MAR192 - MAR255 Reserved (corresponds to byte address 0xC000 0000 - 0xFFFF FFFF)
Memory Attribute Registers for ARM TCM (corresponds to byte address 0x1000 0000 - 0x10FF FFFF)
Memory Attribute Registers for EMIFA (corresponds to byte address 0x4200 0000 - 0x49FF FFFF)
Memory Attribute Registers for VLYNQ (corresponds to byte address 0x4C00 0000 - 0x4FFF FFFF)
Memory Attribute Registers for DDR2 (corresponds to byte address 0x8000 0000 - 0xBFFF FFFF)

3.4.3 Peripherals

The DSP has access/controllability of the following peripherals:
HDVICP0/1
EDMA
McASP0/1
2 Timers (Timer0 and Timer1) that can each be configured as 1 64-bit or 2 32-bit timers

3.4.4 DSP Interrupt Controller

The DSP Interrupt Controller accepts device interrupts and appropriately maps them to the DSP’s available interrupts. The DSP Interrupt Controller is briefly described in this document in the Interrupts section. For more detailed on the DSP Interrupt Controller, see the TMS320C64x+ DSP Megamodule Reference Guide (literature number SPRU871).
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 19
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010

3.5 Memory Map Summary

Table 3-3 shows the memory map address ranges of the device. Table 3-4 depicts the expanded map of
the Configuration Space (0x0180 0000 through 0x0FFF FFFF). The device has multiple on-chip memories associated with its two processors and various subsystems. To help simplify software development a unified memory map is used where possible to maintain a consistent view of device resources across all bus masters.
www.ti.com
20 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-3. Memory Map Summary
START END SIZE EDMA/
ADDRESS ADDRESS (Bytes) PERIPHERAL
0x0000 0000 0x0000 3FFF 16K ARM RAM0
0x0000 4000 0x0000 7FFF 16K ARM RAM1
0x0000 8000 0x0000 FFFF 32K ARM ROM (Instruction) 0x0001 0000 0x0001 3FFF 16K ARM RAM0 (Data) 0x0001 4000 0x0001 7FFF 16K ARM RAM1 (Data) 0x0001 8000 0x0001 FFFF 32K ARM ROM (Data) 0x0002 0000 0x000F FFFF 896K 0x0010 0000 0x003F FFFF 3M 0x0040 0000 0x004F FFFF 1M 0x0050 0000 0x005F FFFF 1M Reserved 0x0060 0000 0x006F FFFF 1M 0x0070 0000 0x007F FFFF 1M 0x0080 0000 0x0080 FFFF 64K 0x0081 0000 0x0081 7FFF 32K Reserved Hole (MPPA Disable) 0x0081 8000 0x0083 7FFF 128K L2 RAM/Cache 0x0083 8000 0x008F FFFF 800K Reserved 0x0090 0000 0x0092 FFFF 192K 0x0093 0000 0x009F FFFF 832K 0x00A0 0000 0x00DF FFFF 4M 0x00E0 0000 0x00E0 7FFF 32K L1PRAM/Cache 0x00E0 8000 0x00EF FFFF 992K Reserved 0x00F0 0000 0x00F0 7FFF 32K L1D RAM/Cache Reserved 0x00F0 8000 0x017F FFFF 9184K Reserved
0x0180 0000 0x01BB FFFF 3840K 0x01BC 0000 0x01BC 0FFF 4K ARM ETB Memory 0x01BC 1000 0x01BC 17FF 2K ARM ETB Registers 0x01BC 1800 0x01BC 18FF 256 ARM IceCrusher 0x01BC 1900 0x01BC 1BFF 768 Reserved 0x01BC 1C00 0x01BF FFFF 249K 0x01C0 0000 0x0FFF FFFF 228M CFG Bus Peripherals CFG Bus Peripherals CFG Bus Peripherals x
0x1000 0000 0x1000 FFFF 64K Reserved
0x1001 0000 0x1001 3FFF 16K ARM RAM0 (Data) ARM RAM0 (Data) x x x x x x x
0x1001 4000 0x1001 7FFF 16K ARM RAM1 (Data) ARM RAM1 (Data) x x x x x x x
0x1001 8000 0x1001 FFFF 32K ARM ROM (Data) ARM ROM (Data) x x x x x x x
0x1002 0000 0x10FF FFFF 16256K
0x1100 0000 0x113F FFFF 4M Reserved
0x1140 0000 0x114F FFFF 1M
0x1150 0000 0x115F FFFF 1M Reserved Reserved
0x1160 0000 0x116F FFFF 1M
0x1170 0000 0x117F FFFF 1M
0x1180 0000 0x1180 FFFF 64K
0x1181 0000 0x1181 7FFF 32K Reserved Hole (MPPA Disable)
0x1181 8000 0x1183 7FFF 128K L2 RAM/Cache L2 RAM/Cache L2 RAM/Cache x x x x x x
0x1183 8000 0x118F FFFF 800K Reserved Reserved Reserved
0x1190 0000 0x11DF FFFF 5M 0x11E0 0000 0x11E0 7FFF 32K L1P RAM/Cache L1P RAM/Cache L1P RAM/Cache x x x x x 0x11E0 8000 0x11EF FFFF 992K Reserved Reserved Reserved
ARM C64x+
(Instruction)
(Instruction)
Reserved
Reserved Reserved
(2)
Reserved
CFG Space
(2)
Reserved
Video TSIF
Port (0/1)
MASTER PERIPHERAL ACCESSIBILITY
VDCE EMAC HPI PCI USB VLYNQ ATA
(3)x(3)
(1)
(3)
x
(1) These peripherals have their own DMA engine or master port interface to the DMSoC system bus and do not use the EDMA for data
transfers. The x symbol indicates that the peripheral has a valid connection through the device switch fabric to the memory region identified in the EDMA access column.
(2) MPPA should be used to disable the hole. For more information on MPPA, see the TMS320C64x+ DSP Megamodule Reference Guide
(SPRU871).
(3) The HPI's, PCI's, and VLYNQ's access to the configuration bus peripherals is limited, see Table 3-4, Configuration Memory Map
Summary for the details.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 21
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-3. Memory Map Summary (continued)
START END SIZE EDMA/
ADDRESS ADDRESS (Bytes) PERIPHERAL
ARM C64x+
Video TSIF
Port (0/1)
MASTER PERIPHERAL ACCESSIBILITY
VDCE EMAC HPI PCI USB VLYNQ ATA
0x11F0 0000 0x11F0 7FFF 32K L1D RAM/Cache L1D RAM/Cache L1D RAM/Cache x x x x x
0x11F0 8000 0x11FF FFFF 992K Reserved Reserved Reserved
0x1200 0000 0x1FFF FFFF 224M
0x2000 0000 0x2000 7FFF 32K DDR2 Control DDR2 Control DDR2 Control
0x2000 8000 0x2000 FFFF 32K EMIFA Control EMIFA Registers EMIFA Registers
0x2001 0000 0x2001 7FFF 32K VLYNQ Control VLYNQ Registers VLYNQ Registers
Registers Registers Registers
Registers
Registers 0x2001 8000 0x200F FFFF 928K Reserved Reserved Reserved 0x2010 0000 0x2FFF FFFF 255M 0x3000 0000 0x3FFF FFFF 256M PCI Data PCI Data 0x4000 0000 0x403F FFFF 4M Reserved Reserved Reserved 0x4040 0000 0x4043 FFFF 256K 0x4044 0000 0x4047 FFFF 256K 0x4048 0000 0x404B FFFF 256K
0x404C 0000 0x404F FFFF 256K
0x4050 0000 0x405F FFFF 1M 0x4060 0000 0x4063 FFFF 256K Reserved Reserved Reserved 0x4064 0000 0x4067 FFFF 256K 0x4068 0000 0x406B FFFF 256K
0x406C 0000 0x406F FFFF 256K
0x4070 0000 0x41FF FFFF 25M 0x4200 0000 0x43FF FFFF 32M EMIFA Data (CS2) 0x4400 0000 0x45FF FFFF 32M EMIFA Data (CS3) 0x4600 0000 0x47FF FFFF 32M EMIFA Data (CS4) 0x4800 0000 0x49FF FFFF 32M EMIFA Data (CS5)
(4)
EMIFA Data (CS2)
(4)
EMIFA Data (CS3)
(4)
EMIFA Data (CS4)
(4)
EMIFA Data (CS5)
(4)
EMIFA Data (CS2)
(4)
EMIFA Data (CS3)
(4)
EMIFA Data (CS4)
(4)
EMIFA Data (CS5)
(4)
(4)
(4)
(4)
x x x x x x x x x x x x
x x x x 0x4A00 0000 0x4BFF FFFF 32M Reserved Reserved Reserved 0x4C00 0000 0x4FFF FFFF 64M VLYNQ (Remote Data) VLYNQ (Remote Data) VLYNQ (Remote Data) x x x x x x x
0x5000 0000 0x7FFF FFFF 768M Reserved Reserved Reserved
0x8000 0000 0x9FFF FFFF 512M DDR2 Memory DDR2 Memory DDR2 Memory x x x x x x x x x 0xA000 0000 0xBFFF FFFF 512M Reserved Reserved Reserved 0xC000 0000 0xFFFF FFFF 1G Reserved Reserved Reserved
(4) EMIFA CS0 and CS1 are not functionally supported on the DM6467T, and therefore, are not pinned out.
(1)
22 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-4. Configuration Memory Map Summary
START END SIZE
ADDRESS ADDRESS (Bytes)
0x0180 0000 0x0180 FFFF 64K C64x+ Interrupt Controller 0x0181 0000 0x0181 0FFF 4K C64x+ Powerdown Controller 0x0181 1000 0x0181 1FFF 4K C64x+ Security ID 0x0181 2000 0x0181 2FFF 4K C64x+ Revision ID 0x0182 0000 0x0182 FFFF 64K C64x+ EMC 0x0183 0000 0x0183 FFFF 64K Reserved 0x0184 0000 0x0184 FFFF 64K C64x+ Memory System
0x0185 0000 0x01BB FFFF 3520K Reserved 0x01BC 0000 0x01BC 00FF 256 0x01BC 0100 0x01BC 01FF 256 ARM ETB Memory 0x01BC 0200 0x01BC 0FFF 3.5K 0x01BC 1000 0x01BC 17FF 2K ARM ETB Registers 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher 0x01BC 1900 0x01BF FFFF 255744 Reserved 0x01C0 0000 0x01C0 FFFF 64K EDMA CC EDMA CC 0x01C1 0000 0x01C1 03FF 1K EDMA TC0 EDMA TC0 0x01C1 0400 0x01C1 07FF 1K EDMA TC1 EDMA TC1 0x01C1 0800 0x01C1 0BFF 1K EDMA TC2 EDMA TC2 0x01C1 0C00 0x01C1 0FFF 1K EDMA TC3 EDMA TC3 0x01C1 1000 0x01C11FFF 4K Reserved Reserved 0x01C1 2000 0x01C1 23FF 1K Video Port 0x01C1 2400 0x01C1 27FF 1K Reserved Reserved 0x01C1 2800 0x01C12FFF 2K VDCE 0x01C1 3000 0x01C1 33FF 1K TSIF0 0x01C1 3400 0x01C1 37FF 1K TSIF1 0x01C1 3800 0x01C19FFF 26K Reserved Reserved 0x01C1 A000 0x01C1 A7FF 2K PCI Control Registers 0x01C1 A800 0x01C1 FFFF 22K Reserved Reserved 0x01C2 0000 0x01C2 03FF 1K UART0 x x x 0x01C2 0400 0x01C2 07FF 1K UART1 x x x 0x01C2 0800 0x01C2 0BFF 1K UART2 x x x 0x01C2 0C00 0x01C2 0FFF 1K Reserved Reserved x x x 0x01C2 1000 0x01C2 13FF 1K I2C x x x 0x01C2 1400 0x01C2 17FF 1K Timer0 Timer0 x x x 0x01C2 1800 0x01C2 1BFF 1K Timer1 Timer1 x x x 0x01C2 1C00 0x01C2 1FFF 1K Timer2 (Watchdog) x x x 0x01C2 2000 0x01C2 23FF 1K PWM0 x x x 0x01C2 2400 0x01C2 27FF 1K PWM1 x x x 0x01C2 2800 0x01C25FFF 14K Reserved Reserved x x x 0x01C2 6000 0x01C2 63FF 1K CRGEN0 x x x 0x01C2 6400 0x01C2 67FF 1K CRGEN1 x x x 0x01C2 6800 0x01C3 FFFF 102K Reserved Reserved x x x 0x01C4 0000 0x01C4 07FF 2K System Module System Module x x x 0x01C4 0800 0x01C4 0BFF 1K PLL Controller 1 x x x 0x01C4 0C00 0x01C4 0FFF 1K PLL Controller 2 x x x 0x01C4 1000 0x01C41FFF 4K Power and Sleep Controller Power and Sleep Controller x x x 0x01C4 2000 0x01C47FFF 24K Reserved Reserved x x x 0x01C4 8000 0x01C4 83FF 1K ARM Interrupt Controller Reserved x x x 0x01C4 8400 0x01C63FFF 111K Reserved Reserved x x x 0x01C6 4000 0x01C65FFF 8K USB2.0 Registers / RAM x x x
Reserved
ARM/EDMA C64x+
Reserved
MASTER PERIPHERAL
ACCESSIBILITY
HPI PCI VLYNQ
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 23
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-4. Configuration Memory Map Summary (continued)
START END SIZE
ADDRESS ADDRESS (Bytes)
0x01C6 6000 0x01C6 67FF 2K ATA x x x 0x01C6 6800 0x01C66FFF 2K SPI x x x 0x01C6 7000 0x01C6 77FF 2K GPIO x x x 0x01C6 7800 0x01C67FFF 2K HPI HPI x x x 0x01C6 8000 0x01C7 FFFF 96K Reserved Reserved x x x 0x01C8 0000 0x01C80FFF 4K EMAC Control Registers x x x 0x01C8 1000 0x01C81FFF 4K EMAC Control Module Registers x x x 0x01C8 2000 0x01C83FFF 8K EMAC Control Module RAM x x x 0x01C8 4000 0x01C8 47FF 2K MDIO Control Registers x x x 0x01C8 4800 0x01D00FFF 498K Reserved Reserved x x x 0x01D0 1000 0x01D0 13FF 1K McASP0 Registers McASP0 Registers x x x 0x01D0 1400 0x01D0 17FF 1K McASP0 Data Port McASP0 Data Port x x x 0x01D0 1800 0x01D0 1BFF 1K McASP1 Registers McASP1 Registers x x x 0x01D0 1C00 0x01D0 1FFF 1K McASP1 Data Port McASP1 Data Port x x x 0x01D0 2000 0x01DF FFFF 1016K Reserved Reserved 0x01E0 0000 0x01FF FFFF 2M Reserved Reserved
0x0200 0000 0x021F FFFF 2M Reserved Reserved
0x0220 0000 0x023F FFFF 2M Reserved Reserved
0x0240 0000 0x0FFF FFFF 220M Reserved Reserved
ARM/EDMA C64x+
Reserved
MASTER PERIPHERAL
ACCESSIBILITY
HPI PCI VLYNQ
www.ti.com

3.6 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. For more information on pin muxing, see Section 4.7, Multiplexed Pin Configurations, of this document.

3.6.1 Pin Map (Bottom View)

Figure 3-2 through Figure 3-7 show the bottom view of the package pin assignments in six quadrants (A,
B, C, D, E, and F).
24 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
V
SS
V
SS
GP[4]/
STC_CLKIN
VP_DOUT1/
BTMODE1
VP_DOUT6/
DSPBOOT
VP_DOUT5/
PCIEN
VP_DOUT14/
TS1_PSTIN
VP_DOUT9/
TS1_ENAO
V
SS
AHCLKR0
GP[3]/
AUDIO_CLK0
TOUT1U
VP_DOUT0/
BTMODE0
VP_DOUT3/
BTMODE3
VP_DOUT7
VP_DOUT15/
TS1_DIN
ACLKX0 ACLKR0
AMUTEIN0
GP[2]/
AUDIO_CLK1
TOUT1L
TINP0U
VP_DOUT4/
CS2BW
VP_DOUT12/
TS1_WAITO
AHCLKX0
AMUTE0
AFSR0 AFSX0
TOUT2
TINP1L
TINP0L
VP_DOUT2/
BTMODE2
ACLKX1 AHCLKX1
AXR0[3] AXR0[2]
GP[0]
RESET
TOUT0U TOUT0L
SPI_CLK
AXR1[0]
AXR0[0] AXR0[1]
GP[1]
V
SS
DV
DD33
DV
DD33
VLYNQ_
CLOCK
VLYNQ_
SCRUN
SPI_CS1
SDA SCL
DV
DD33
CV
DD
VLYNQ_TXD1 VLYNQ_TXD2 VLYNQ_TXD3
SPI_CS0
SPI_EN
1 2
AC
AB
AA
Y
W
V
U
T
MTCLK
VLYNQ_RXD2 VLYNQ_RXD3 VLYNQ_TXD0 SPI_SOMI
MTXD7 GMTCLK
VLYNQ_RXD1 VLYNQ_RXD0 SPI_SIMO
MTXD3 MTXD4
MTXD5
MTXD6
R
P
N
3 4 5 6 7 8
1 2 3 4 5 6 7 8
AC
AB
AA
Y
W
V
U
T
R
P
N
V
SS
V
SS
DV
DD33
CV
DD
CV
DD
DV
DD33
V
SS
V
SS
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
A B C
D E F
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Figure 3-2. Pin Map [Section A]
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 25
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
A B C
D E F
VP_CLKIN3/
TS1_CLKO
VP_CLKO3/
TS0_CLKO
TS1_CLKIN
UCTS0/
USD0
VP_CLKIN0
VP_DIN4/
TS0_DOUT4/
TS1_WAITO
VP_DIN0/
TS0_DOUT0
VP_DIN8/
TS0_DIN0
VP_DOUT8/
TS1_WAITIN
VP_DOUT11/
TS1_DOUT
UDSR0/
TS0_PSTO/
GP[37]
V
SS
URXD0/
TS1_DIN
VP_DIN5/
TS0_DOUT5/
TS1_EN_WAITO
VP_DIN1/
TS0_DOUT1
VP_DIN9/
TS0_DIN1
VP_CLKO2
VP_DOUT10/
TS1_PSTO
UDCD0/
TS0_WAITIN/
GP[38]
DV
DD33
URTS0/ UIRTX0/
TS1_EN_WAITO
VP_DIN6/
TS0_DOUT6/
TS1_PSTIN
VP_DIN2/
TS0_DOUT2
VP_DIN10/
TS0_DIN2
VP_DOUT13/
TS1_EN_WAITO
VP_CLKIN2
URIN0/
GP[8]/
TS1_WAITIN
UDTR0/
TS0_ENAO/
GP[36]
UTXD0/
URCTX0/
TS1_PSTIN
VP_DIN7/
TS0_DOUT7/
TS1_DIN
VP_DIN3/
TS0_DOUT3
VP_DIN11/ TS0_DIN3
DV
DD33
CV
DD
9 10
AC
AB
AA
Y
W
V
U
T
R
P
N
11 12 13 14 15 16
9 10 11 12 13 14 15 16
AC
AB
AA
Y
W
V
U
T
R
P
N
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
CV
DD
CV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Figure 3-3. Pin Map [Section B]
26 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
VP_DIN12/
TS0_DIN4
VP_DIN15_
VP_VSYNC/
TS0_DIN7
TS0_CLKIN
URTS2/
UIRTX2/
TS0_PSTIN/
GP[41]
UCTS2/USD2/
CRG0_VCXI/
GP[42]/
TS1_PSTO
V
SS
VP_DIN13_
FIELD/
TS0_DIN5
VP_CLKIN1
UTXD1/
URCTX1/
TS0_DOUT7/
GP[24]
V
SS
DDR_D[23]
VP_DIN14_
VP_HSYNC/
TS0_DIN6
URTS1/
UIRTX1/
TS0_WAITO/
GP[25]
UTXD2/URCTX2/
CRG1_PO/
GP[40]/
CRG0_PO
DV
DDR2
DDR_D[28] DDR_D[21] DDR_D[20]
UCTS1/USD1/
TS0_EN_WAITO/
GP[26]
URXD1/
TS0_DIN7/
GP[23]
DDR_D[31] DDR_D[29] DDR_D[22]
DDR_DQM[2]
PWM0/
CRG0_PO/
TS1_ENAO
17 18
AC
AB
AA
Y
W
V
U
T
R
P
N
19 20 21 22 23
17 18 19 20 21 22 23
AC
AB
AA
Y
W
V
U
T
R
P
N
A B C
D E F
PWM1/
TS1_DOUT
V
SS
DDR_D[30] DV
DDR2
V
SS
DDR_DQS[2]
DDR_D[19]DDR_DQS[2]DDR_DQS[3]DDR_DQM[3]V
SS
V
SS
DDR_DQS[3] DDR_D[27]DV
DDR2
DDR_D[24]
DDR_D[18]DDR_D[16]V
SS
V
SS
DV
DDR2
V
SS
DV
DDR2
DDR_A[10]DDR_D[17]DDR_D[26]
DDR_D[25]
DV
DDR2
DDR_DQGATE2 DDR_A[1]DDR_A[3]DDR_DQGATE3
DDR_A[12]
DDR_BA[2] DDR_VREFV
SS
DV
DDR2
DDR_A[14]DDR_A[9]DDR_A[5]DDR_A[7]DDR_BA[0]V
SS
V
SS
V
SS
V
SS
DV
DD33
DV
DDR2
V
SS
URXD2/
CRG1_VCXI/
GP[39]/
CRG0_VCXI
V
SS
V
SS
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Figure 3-4. Pin Map [Section C]
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 27
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
MTXD0
MTXEN
MCRS
MCOL
MRCLK MRXD7
MRXD6
V
SS
MRXD4
MRXD3
MRXD2
MRXDV
RFTCLK
MRXD1
MRXER
MDIO
MDCLK
DV
DD33
1 2
L
K
J
H
G
F
E
D
C
B
A
3 4 5 6 7 8
1 2 3 4 5 6 7 8
L
K
J
H
G
F
E
D
C
B
A
A B C
D E F
DV
DD33
PCI_AD0/
HD0/
EM_D0
PCI_AD2/
HD2/
EM_D2
PCI_AD4/
HD4/
EM_D4
V
SS
DV
DD33
CV
DD
V
SS
V
SS
PCI_AD9/
HD9/
EM_D9
PCI_CBE0
ATA_CS0//
GP[33]/
EM_A[18]
PCI_AD6/
HD6/
EM_D6
PCI_AD3/
HD3/
EM_D3
PCI_AD1/
HD1/
EM_D1
PCI_AD13/
HD13/
EM_D13
PCI_AD15/
HD15/
EM_D15
PCI_AD11/
HD11/
EM_D11
PCI_PAR/
/HAS
EM_DQM0
PCI_IDSEL/
HDDIR/
EM_R/W
PCI_AD18/
DD2/
HD18/
EM_A[2]
PCI_TRDY/
HHWIL/
EM_A[16]/(ALE)
PCI_AD7/
HD7/
EM_D7
PCI_AD5/
HD5/
EM_D5
PCI_AD10/
HD10/
EM_D10
PCI_AD8/
HD8/
EM_D8
PCI_AD12/
HD12/
EM_D12
PCI_AD24/
DD8/
HD24/
EM_A[8]
PCI_AD20/
DD4/
HD20/
EM_A[4]
PCI_FRAME
HINT//
EM_BA[0]
PCI_STOP
EM_WE
/
HCNTL0/
PCI_AD26/
DD10/ HD26/
EM_A[10]
PCI_CBE2
HDS2
EM_CS2
/
/
PCI_CBE1
ATA_CS1//
GP[32]/
EM_A[19]
PCI_AD14/
HD14/
EM_D14
PCI_PERR
HCS
EM_DQM1
/
/
PCI_AD22/
DD6/
HD22/
EM_A[6]
PCI_AD16/
DD0/
HD16/
EM_A[0]
PCI_AD21/
DD5/
HD21/
EM_A[5]
PCI_AD29/
DD13/ HD29/
EM_A[13]
PCI_AD17/
DD1/
HD17/
EM_A[1]
PCI_SERR
HDS1
EM_OE
/
/
V
SS
PCI_DEVSEL/
HCNTL1/
EM_BA[1]
PCI_AD25/
DD9/
HD25/
EM_A[9]
PCI_AD23/
DD7/
HD23/
EM_A[7]
PCI_AD31/
DD15/ HD31/
EM_A[15]
V
SS
PCI_AD27/
DD11/ HD27/
EM_A[11]
PCI_CBE3
W
EM_CS3
/
HR/ /
PCI_AD19/
DD3/
HD19/
EM_A[3]
PCI_IRDY
HRDY//
EM_A[17]/(CLE)
RSV2RSV1
MTXD1 MTXD2
M M
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
DV
DD33
DV
DD33
V
SS
MRXD5
V
SS
DV
DD33
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD33
V
SS
MRXD0
DV
DD33
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Figure 3-5. Pin Map [Section D]
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
28 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
A B C
D E F
V
SS
DV
DD33
9 10
L
K
J
H
G
F
E
D
C
B
A
11 12 13 14 15 16
9 10 11 12 13 14 15 16
L
K
J
H
G
F
E
D
C
B
A
RSV7
TRST
TDI
GP[6]
TMS
AUX_CV
DD
DEV_CV
DD
DEV_DV
SS
PCI_RSV3/
/
GP[19]/
EM_WAIT5/
(RDY5/ )
DIOR
BSY5
PCI_RSV1/
DA0/
GP[17]/
EM_A[20]
PCI_GNT
DMACK
EM_CS4
/
/
GP[12]/
PCI_AD28/
DD12/ HD28/
EM_A[12]
PCI_RSV5/
IORDY/
GP[21]/
EM_WAIT3/
(RDY3/ )BSY3
AUX_DV
DD18
DEV_DV
DD18
RSV5
TDO
AUX_DV
SS
RTCK
PCI_RST/
DA2/
GP[13]/
EM_A[22]
PCI_AD30/
DD14/ HD30/
EM_A[14]
PCI_INTA
BSY2
/
EM_WAIT2/
(RDY2/ )
DEV_V
SS
PLL1V
SS
CLKOUT0
TCK
PCI_RSV2/
INTRQ/ GP[18]/
EM_RSV0
PCI_REQ
EM_CS5
/
DMARQ/
GP[11]/
GP[5]
PLL1V
DD18
EMU1
PLL2V
SS
V
SS
DEV_MXO
EMU0
GP[7]
PCI_RSV4/
/
GP[20]/
EM_WAIT4/
(RDY4/ )
DIOW
BSY4
PCI_CLK/
GP[10]
PCI_RSV0/
DA1/
GP[16]/
EM_A[21]
M M
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
V
SS
CV
DD
CV
DD
V
SS
DEV_MXI/
DEV_CLKIN
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
PLL2V
DD18
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 29
Figure 3-6. Pin Map [Section E]
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
DDR_A[2]
DDR_CLK
DDR_ZP
DDR_WE
DDR_CAS
V
SS
DV
DDR2
DDR_RAS
DV
DDR2
DDR_A[11]
DDR_DQGATE0 DDR_CS DDR_DQGATE1 DDR_A[4] DDR_A[8]
DDR_D[7] DDR_A[13] DDR_D[15]
DDR_A[0]
DV
DDR2
17 18
L
K
J
H
G
F
E
D
C
B
A
19 20 21 22 23
17 18 19 20 21 22 23
L
K
J
H
G
F
E
D
C
B
A
A B C
D E F
DV
DDR2
DDR_D[4] DDR_D[6] DDR_D[13] DDR_D[14]
DDR_D[12]DDR_DQM[1]DDR_D[5]DDR_DQM[0]V
SS
USB_V
DDA3P3
DDR_DQS[0]
DV
DDR2
V
SS
DDR_D[1]
DDR_D[11]USB_V
DD1P8
USB_
V
DDA1P2LDO
USB_R1POR
V
SS
DDR_DQS[1]DDR_DQS[1]DDR_DQS[0]
DDR_D[2]
USB_V
SSREF
DDR_D[8]DDR_D[10]DDR_D[0]
DDR_D[3]
USB_
DRVVBUS/
GP[22]
DDR_D[9]
V
SS
DV
DDR2
RSV4RSV3USB_DNUSB_DPV
SS
AUX_MXO
V
SS
AUX_MXI/
AUX_CLKIN
RSV6
AUX_V
SS
V
SS
DDR_ODT0
V
SS
V
SS
DDR_A[6]
DDR_CLKDDR_ZN DDR_CKE
DDR_BA[1]
V
SS
M M
V
SS
V
SS
DV
DDR2
V
SS
DV
DDR2
V
SS
V
SS
V
SS
V
SS
V
SS
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Figure 3-7. Pin Map [Section F]
30 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

3.7 Terminal Functions

The terminal functions tables (Table 3-5 through Table 3-32) identify the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type, whether the pin has any internal pullup or pulldown resistors, and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pin, and see the Device Configurations section of this data manual.
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 31
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-5. BOOT Terminal Functions
SIGNAL
NAME NO.
TYPE
(1)
ARM Boot Mode configuration bits. These pins are multiplexed between ARM boot mode and the Video Port Interface (VPIF). At reset, the boot mode inputs BTMODE[3:0] are sampled to determine the ARM boot configuration. See below the boot modes set by these inputs. For more details on the types of boot modes, see the Section 4.4.1, Boot Modes. After reset, these pins are Video port data outputs 3 through 0 (VP_DOUT[3:0]).
VP_DOUT0/ IPD
BTMODE0 DV
VP_DOUT1/ IPD
BTMODE1 DV
VP_DOUT2/ IPD
BTMODE2 DV
VP_DOUT3/ IPD
BTMODE3 DV
VP_DOUT4/ IPD
CS2BW DV
VP_DOUT5/ IPD
PCIEN DV
AB5 I/O/Z
AC4 I/O/Z
Y8 I/O/Z
AB6 I/O/Z 1110 SPI Boot
AA7 I/O/Z
AC6 I/O/Z
OTHER
(3)
DD33
DD33
DD33
DD33
DD33
DD33
(2)
DESCRIPTION
BOOT
BTMODE[3:0] ARM Boot Mode
0000 Emulation Boot (PCIEN = 0) 0001 Reserved
HPI Boot (16-Bit width) (if PCIEN = 0)
0010 or
PCI Boot without auto-initialization (if PCIEN = 1) HPI Boot (32-Bit width) (if PCIEN = 0)
0011 or
PCI Boot with auto-initialization (if PCIEN = 1)
0100
EMIFA Direct Boot (ROM/NOR) (PCIEN = 0) [error if PCIEN =
1; defaults to UART0] 0101 Reserved 0110 I2C Boot 0111 NAND Flash Boot (PCIEN = 0) [error if PCIEN = 1] 1000 UART0 Boot 1001 Reserved 1010 Reserved 1011 Reserved
1100 - 1101 Reserved
1111 Reserved
DEVICE CONTROL
EMIFA CS2 space data bus width. This pin is multiplexed between EMIFA control and the VPIF. At reset, the input state is sampled to set the EMIFA data bus width for the CS2 (boot) chip select region.
For an 8-bit-wide EMIFA data bus, CS2BW = 0. For a 16-bit-wide EMIFA data bus, CS2BW = 1.
After reset, this pin is video port data output 4 (VP_DOUT4). PCI Enable. This pin is multiplexed between PCI Control and the VPIF. At reset, the
input state is sampled to enable/disable the PCI interface pin multiplexing. Note: When PCI boot mode is not used, for proper device operation out of reset PCIEN must be "0".
0 = PCI pin function is disabled; EMIFA or HPI pin function enabled 1 = PCI pin function is enabled
After reset, this pin is video port data output 5 (VP_DOUT5).­DSP boot source bit. This pin is multiplexed between DSP boot and the VPIF. At
reset, the input state is sampled to set the DSP boot source DSPBOOT.
VP_DOUT6/ IPD The DSP is booted by the ARM when DSPBOOT = 0.
DSPBOOT DV
AC5 I/O/Z
DD33
The DSP boots from EMIFA when DSPBOOT = 1 (and ARM HPI or PCI boot mode is not selected).
After reset, this pin is video port data output 6 (VP_DOUT6).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal 32 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-6. Oscillator/PLL Terminal Functions
SIGNAL
NAME NO.
DEV_MXI/
DEV_CLKIN
B15 I DEV_DV
DEV_MXO A15 O DEV_DV
DEV_DV
DEV_DV
DEV_CV
DEV_V
DD18
SS
DD
SS
AUX_MXI/ McASP1/0). If the internal oscillator is bypassed, this pin is the 1.8-V external
AUX_CLKIN oscillator clock input. When the peripheral is not used, AUX_MXI should be left as a
D15 S
E14 GND
E15 S
C15 GND
B17 I AUX_DV
AUX_MXO A17 O AUX_DV
AUX_DV
AUX_DV
AUX_CV
AUX_V
PLL1V PLL2V
PLL1V PLL2V
DD18
SS
DD
SS
DD18 DD18
SS SS
D16 S
C16 GND
E16 S
C17 GND
B14 B16 C14 A16
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) Specifies the operating I/O supply voltage for each signal (3) For more information, see the Recommended Operating Conditions table
TYPE
S
GND
(1)
OTHER
(2)
DESCRIPTION
OSCILLATOR, PLL
Crystal input DEV_MXI for DEV oscillator (system oscillator, between 27 MHz and 35 MHz, typically 33 MHz or 33.3 MHz). If the internal oscillator is bypassed, this pin
DD18
is the 1.8-V external oscillator clock input. Crystal output for DEV oscillator. If the internal oscillator is bypassed, DEV_MXO
DD18
should be left as a No Connect.
(3)
(3)
(3)
(3)
1.8-V power supply for DEV oscillator. If the internal oscillator is bypassed, DEV_DV
should still be connected to the 1.8-V power supply.
DD18
I/O ground for DEV oscillator. If the internal oscillator is bypassed, DEV_DV should be connected to ground VSS.
1.3-V power supply for DEV oscillator. If the internal oscillator is bypassed, DEV_CVDDshould be connected to the 1.3-V power supply (CVDD).
Ground for DEV oscillator. Connect to crystal load capacitors. Do not connect to board ground (VSS). If the internal oscillator is bypassed, DEV_VSSshould still be connected to ground VSS.
Crystal input for Auxiliary (AUX) oscillator (24/48 MHz for USB, and UART2/1/0 and
DD18
No Connect. Crystal output for AUX oscillator. If the internal oscillator is bypassed, AUX_MXO
should be left as a No Connect. When the peripheral is not used, AUX_MXO should
DD18
be left as a No Connect.
1.8-V power supply for AUX oscillator. If the internal oscillator is bypassed,
(3)
AUX_DV peripheral is not used, AUX_DV supply.
(3)
I/O ground for AUX oscillator. If the internal oscillator is bypassed, AUX_DV should be connected to ground (VSS). When the peripheral is not used, AUX_DV
should still be connected to the 1.8-V power supply. When the
DD18
should be connected to the 1.8-V power
DD18
should be connected to ground (VSS).
1.3-V power supply for AUX oscillator. If the internal oscillator is bypassed,
(3)
AUX_CVDDshould be connected to the 1.3-V power supply (CVDD). When the peripheral is not used, AUX_CVDDshould be connected to the 1.3-V power supply (CVDD).
Ground for AUX oscillator. Connect to crystal load capacitors. Do not connect to
(3)
board ground (VSS). If the internal oscillator is bypassed, AUX_VSSshould still be connected to ground (VSS). When the peripheral is not used, AUX_VSSshould be connected to ground (VSS).
(3)
(3)
1.8-V power supply for PLLs.
Ground for PLLs.
SS
SS
SS
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 33
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-7. Clock Generator Terminal Functions
SIGNAL
NAME NO.
CLKOUT0 C13 O/Z DV
GP[3]/ IPD This pin is multiplexed between GPIO and the Audio Clock Selector. For the audio
AUDIO_CLK0 DV
GP[2]/ IPD This pin is multiplexed between GPIO and the Audio Clock Selector. For the audio
AUDIO_CLK1 DV
GP[4]/ IPD
STC_CLKIN DV
AB3 I/O/Z
AA4 I/O/Z
AC3 I/O/Z pin is the STC_CLKIN which can be used as an external clock source for the TSIF
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
DD33
DD33
DD33
DD33
(2) (3)
DESCRIPTION
CLOCK GENERATOR
Configurable output clock.
clock selector, this pin is the configurable AUDIO_CLK0 output.
clock selector, this pin is the configurable AUDIO_CLK1 output. This pin is multiplexed between GPIO and the TSIF Clock Selector. For TSIF, this
counters or as TSIF output clock.
Table 3-8. RESET and JTAG Terminal Functions
SIGNAL
NAME NO.
RESET W6 I Device reset.
POR D17 I Power-on reset.
TMS D12 I
TDO D13 O/Z JTAG test-port data output.
TDI E13 I JTAG test-port data input.
TCK B12 I JTAG test-port clock input.
RTCK C12 O/Z JTAG test-port return clock output.
TRST E12 I
EMU1 B13 I/O/Z Emulation pin 1
EMU0 A13 I/O/Z Emulation pin 0
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
RESET
IPU
DV
DD33
IPU
DV
DD33
JTAG
IPU JTAG test-port mode select input.
DV
DD33
For proper device operation, do not oppose the IPU on this pin.
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
DV
DD33
IPD JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1
DV
DD33
JTAG compatibility statement portion of this data manual.
IPU
DV
DD33
IPU
DV
DD33
34 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-9. Asynchronous External Memory Interface (EMIFA) Terminal Functions
SIGNAL
NAME NO.
VP_DOUT4/ IPD
CS2BW DV
VP_DOUT6/ IPD
DSPBOOT DV
AA7 I/O/Z
AC5 I/O/Z The DSP is booted by the ARM when DSPBOOT = 0.
PCI_CBE2/
HDS2/ C4 I/O/Z
EM_CS2
PCI_CBE3/ This pin is multiplexed between PCI, HPI, and EMIFA.
HR/W A5 I/O/Z In EMIFA mode, this pin is Chip Select 3 output EM_CS3 (O/Z). Asynchronous
EM_CS3 memories (i.e., NOR Flash).
PCI_GNT/
DACK/ D10 I/O/Z
GP[12]/ EM_CS4
PCI_REQ/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DMARQ/ B9 I/O/Z In EMIFA mode, this pin is Chip Select 5 output EM_CS5 (O/Z).
GP[11]/ EM_CS5 This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_IDSEL/
HDDIR/ E8 I/O/Z
EM_R/W
PCI_SERR/
HDS1/ B2 I/O/Z
EM_OE
PCI_STOP/
HCNTL0/ D5 I/O/Z
EM_WE
PCI_PERR/
HCS/ C3 I/O/Z
EM_DQM1
PCI_PAR/
HAS/ D4 I/O/Z
EM_DQM0
PCI_INTA/ This pin is multiplexed between PCI and EMIFA.
EM_WAIT2/ C11 I/O/Z In EMIFA mode, this pin is wait state extension input 2 EM_WAIT2 (I).
(RDY2/BSY2) When used for EMIFA (NAND), this pin is the ready/busy 2 input (RDY2/BSY2).
PCI_RSV5/IORDY/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[21]/EM_WAIT3/ D11 I/O/Z In EMIFA mode, this pin is wait state extension input 3 EM_WAIT3 (I).
(RDY3/BSY3) When used for EMIFA (NAND), this pin is the ready/busy 3 input (RDY3/BSY3).
PCI_RSV4/DIOW/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[20]/EM_WAIT4/ A11 I/O/Z In EMIFA mode, this pin is wait state extension input 4 EM_WAIT4 (I).
(RDY4/BSY4) When used for EMIFA (NAND), this pin is the ready/busy 4 input (RDY4/BSY4).
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
EMIFA BOOT CONFIGURATION
EMIFA CS2 space data bus width. This pin is multiplexed between EMIFA control and the VPIF. At reset, the input state is sampled to set the EMIFA data bus width for the CS2 (boot) chip select region.
DD33
For an 8-bit-wide EMIFA data bus, CS2BW = 0. For a 16-bit-wide EMIFA data bus, CS2BW = 1.
After reset, this pin is video port data output 4 (VP_DOUT4). DSP boot source bit. This pin is multiplexed between DSP boot and the VPIF. At
reset, the input state is sampled to set the DSP boot source DSPBOOT.
DD33
The DSP boots from EMIFA when DSPBOOT=1. After reset, this pin is video port data output 6 (VP_DOUT6).
EMIFA FUNCTIONAL PINS: ASYNC
This pin is multiplexed between PCI, HPI, and EMIFA.
IPU In EMIFA mode, this pin is Chip Select 2 output EM_CS2 (O/Z). This is the chip
DV
DD33
select used for EMIFA boot modes. Asynchronous memories (i.e., NOR Flash) or NAND flash.
IPU
DV
DD33
This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
IPU In EMIFA mode, this pin is Chip Select 4 output EM_CS4 (O/Z). Asynchronous
DV
DD33
memories (i.e., NOR Flash). This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
IPU
DV
DD33
IPU This pin is multiplexed between PCI, ATA, and EMIFA.
DV
DD33
In EMIFA mode, this pin is the read/write output EM_R/W (O/Z).
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In EMIFA mode, this pin is the output enable output EM_OE (O/Z).
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In EMIFA mode, this pin is the write enable output EM_WE (O/Z).
IPU
DV
DV
DD33
IPU
DD33
These pins are multiplexed between PCI, HPI, and EMIFA. In EMIFA mode, these pins are EM_DQM[1:0] and act as byte enables (O/Z).
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 35
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-9. Asynchronous External Memory Interface (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_RSV3/DIOR/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[19]/EM_WAIT5/ E10 I/O/Z For EMIFA, this pin is wait state extension input 5 EM_WAIT5 (I).
(RDY5/BSY5) When used for EMIFA (NAND), this pin is the ready/busy 5 input (RDY5/BSY5).
PCI_FRAME/
HINT/ D6 I/O/Z
EM_BA[0]
PCI_DEVSEL/
HCNTL1/ B3 I/O/Z
EM_BA[1]
PCI_RSV2/INTRQ/ IPD
GP[18]/EM_RSV0 DV
B10 I/O/Z In EMIFA mode, this pin is reserved.
PCI_RST/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DA2/ C10 I/O/Z In EMIFA mode, this pin is address bit 22 output EM_A[22] (O/Z).
GP[13]/EM_A[22] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_RSV0/DA1/ IPD
GP[16]/EM_A[21] DV
PCI_RSV1/DA0/ IPD
GP[17]/EM_A[20] DV
A9 I/O/Z In EMIFA mode, this pin is address bit 21 output EM_A[21] (O/Z).
E9 I/O/Z In EMIFA mode, this pin is address bit 20 output EM_A[20] (O/Z).
PCI_CBE1/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
ATA_CS1/ C2 I/O/Z In EMIFA mode, this pin is address bit 19 output EM_A[19] (O/Z).
GP[32]/EM_A[19] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_CBE0/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
ATA_CS0/ F4 I/O/Z In EMIFA mode, this pin is address bit 18 output EM_A[18] (O/Z).
GP[33]/EM_A[18] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_IRDY/ This pin is multiplexed between PCI, HPI, and EMIFA.
HRDY/ A3 I/O/Z In EMIFA mode, this pin is address bit 17 output EM_A[17] (O/Z).
EM_A[17]/(CLE) When used for EMIFA (NAND), this pin is Command Latch Enable output (CLE).
PCI_TRDY/ This pin is multiplexed between PCI, HPI, and EMIFA.
HHWIL/ E6 I/O/Z For EMIFA, this pin is address bit 16 output EM_A[16] (O/Z).
EM_A[16]/(ALE) When used for EMIFA (NAND), this pin is Address Latch Enable output (ALE).
PCI_AD31/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD15/ A8 I/O/Z For EMIFA, this pin is address bit 15 output EM_A[15] (O/Z).
HD31/EM_A[15] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD30/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD14/ C9 I/O/Z For EMIFA, this pin is address bit 14 output EM_A[14] (O/Z).
HD30/EM_A[14] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD29/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD13/ B8 I/O/Z For EMIFA, this pin is address bit 13 output EM_A[13] (O/Z).
HD29/EM_A[13] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD28/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD12/ D9 I/O/Z For EMIFA, this pin is address bit 12 output EM_A[12] (O/Z).
HD28/EM_A[12] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD27/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD11/ A6 I/O/Z For EMIFA, this pin is address bit 11 output EM_A[11] (O/Z).
HD27/EM_A[11] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD26/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD10/ C8 I/O/Z For EMIFA, this pin is address bit 10 output EM_A[10] (O/Z).
HD26/EM_A[10] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD25/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD9/ B6 I/O/Z For EMIFA, this pin is address bit 9 output EM_A[9] (O/Z).
HD25/EM_A[9] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
IPU
DV
DD33
This pin is multiplexed between PCI, HPI, and EMIFA. For EMIFA, this is the Bank Address 0 output EM_BA[0] (O/Z).
IPU When connected to a 16-bit asynchronous memory, this pin has the same
DV
DD33
function as EMIF address pin 22 (EM_A[22]). When connected to an 8-bit asynchronous memory, this pin is the lowest order bit of the byte address.
This pin is multiplexed between PCI, HPI, and EMIFA. For EMIFA, this is the Bank Address 1 output EM_BA[1] (O/Z).
IPU When connected to a 16 bit asynchronous memory this pin is the lowest order bit
DV
DD33
of the 16-bit word address. When connected to an 8-bit asynchronous memory, this pin is the second bit of the address.
This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DD33
This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
IPD
DV
DD33
This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DD33
This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode). This pin is multiplexed between PCI ATA, GPIO, and EMIFA.
DD33
This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
36 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-9. Asynchronous External Memory Interface (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_AD24/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD8/ D8 I/O/Z For EMIFA, this pin is address bit 8 output EM_A[8] (O/Z).
HD24/EM_A[8] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD23/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD7/ B5 I/O/Z For EMIFA, this pin is address bit 7 output EM_A[7] (O/Z).
HD23/EM_A[7] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD22/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD6/ C7 I/O/Z For EMIFA, this pin is address bit 6 output EM_A[6] (O/Z).
HD22/EM_A[6] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD21/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD5/ C5 I/O/Z For EMIFA, this pin is address bit 5 output EM_A[5] (O/Z).
HD21/EM_A[5] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD20/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD4/ D7 I/O/Z For EMIFA, this pin is address bit 4 output EM_A[4] (O/Z).
HD20/EM_A[4] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD19/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD3/ A4 I/O/Z For EMIFA, this pin is address bit 3 output EM_A[3] (O/Z).
HD19/EM_A[3] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD18/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD2/ E7 I/O/Z For EMIFA, this pin is address bit 2 output EM_A[2] (O/Z).
HD18/EM_A[2] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD17/ This pin is multiplexed between PCI, ATA, HPI, and EMIFA.
DD1/ B4 I/O/Z For EMIFA, this pin is address bit 1 output EM_A[1] (O/Z).
HD17/EM_A[1] This signal is not available when ATA is enabled (i.e., EMIF NAND Flash mode).
PCI_AD16/
DD0/ C6 I/O/Z
HD16/EM_A[0]
TYPE
(1)
(2) (3)
OTHER
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
This pin is multiplexed between PCI, ATA, HPI, and EMIFA. For EMIFA, this pin is address bit 0 output EM_A[0] (O/Z), which is the least
IPD significant bit on a 32-bit word address.
DV
DD33
When connected to a 16-bit asynchronous memory, this pin is the second bit of the address. For an 8-bit asynchronous memory, this pin is the third bit of the address.
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 37
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-9. Asynchronous External Memory Interface (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_AD15/ IPD
HD15/EM_D15 DV
PCI_AD14/ IPD
HD14 /EM_D14 DV
PCI_AD13/ IPD
HD13/EM_D13 DV
PCI_AD12/ IPD
HD12/EM_D12 DV
PCI_AD11/ IPD
HD11/EM_D11 DV
PCI_AD10/ IPD
HD10/EM_D10 DV
PCI_AD9/ IPD
HD9/EM_D9 DV
PCI_AD8/ IPD
HD8/EM_D8 DV
PCI_AD7/ IPD
HD7/EM_D7 DV
PCI_AD6/ IPD
HD6/EM_D6 DV
PCI_AD5/ IPD
HD5/EM_D5 DV
PCI_AD4/ IPD
HD4/EM_D4 DV
PCI_AD3/ IPD
HD3/EM_D3 DV
PCI_AD2/ IPD
HD2/EM_D2 DV
PCI_AD1/ IPD
HD1/EM_D1 DV
PCI_AD0/ IPD
HD0/EM_D0 DV
E5 I/O/Z
C1 I/O/Z
E4 I/O/Z
D3 I/O/Z
E3 I/O/Z
D2 I/O/Z
F5 I/O/Z
D1 I/O/Z
E2 I/O/Z
F3 I/O/Z
E1 I/O/Z
G5 I/O/Z
F2 I/O/Z
G4 I/O/Z
F1 I/O/Z
G3 I/O/Z
PCI_IRDY/ This pin is multiplexed between PCI, HPI, and EMIFA.
HRDY/ A3 I/O/Z In EMIFA mode, this pin is address bit 17 output EM_A[17] (O/Z).
EM_A[17]/(CLE) When used for EMIFA (NAND), this pin is Command Latch Enable output (CLE).
PCI_TRDY/ This pin is multiplexed between PCI, HPI, and EMIFA.
HHWIL/ E6 I/O/Z For EMIFA, this pin is address bit 16 output EM_A[16] (O/Z).
EM_A[16]/(ALE) When used for EMIFA (NAND), this pin is Address Latch Enable output (ALE).
PCI_INTA/ This pin is multiplexed between PCI and EMIFA.
EM_WAIT2/ C11 I/O/Z In EMIFA mode, this pin is wait state extension input 2 EM_WAIT2 (I).
(RDY2/BSY2) When used for EMIFA (NAND), this pin is the ready/busy 2 input (RDY2/BSY2).
IORDY/ This pin is multiplexed between ATA, GPIO, and EMIFA.
GP[21]/EM_WAIT3/ D11 I/O/Z In EMIFA mode, this pin is wait state extension input 3 EM_WAIT3 (I).
(RDY3/BSY3) When used for EMIFA (NAND), this pin is the ready/busy 3 input (RDY3/BSY3).
DIOW/ This pin is multiplexed between ATA, GPIO, and EMIFA.
GP[20]/EM_WAIT4/ A11 I/O/Z In EMIFA mode, this pin is wait state extension input 4 EM_WAIT4 (I).
(RDY4/BSY4) When used for EMIFA (NAND), this pin is the ready/busy 4 input (RDY4/BSY4).
DIOR/ This pin is multiplexed between ATA, GPIO, and EMIFA.
GP[19]/EM_WAIT5/ E10 I/O/Z For EMIFA, this pin is wait state extension input 5 EM_WAIT5 (I).
(RDY5/BSY5) When used for EMIFA (NAND), this pin is the ready/busy 5 input (RDY5/BSY5).
PCI_SERR/
HDS1/ B2 I/O/Z
EM_OE
TYPE
(1)
(2) (3)
OTHER
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DESCRIPTION
These pins are multiplexed between PCI, HPI, and EMIFA.
DD33
For EMIFA mode, these pins are the 16-bit bidirectional data bus (EM_D[15:0]) [I/O/Z]. When EMIFA is configured for an 8-bit asynchronous memory, only EM_D[7:0]
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
pins are used.
EMIFA FUNCTIONAL PINS: NAND
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPU
DV
DD33
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In EMIFA mode, this pin is the output enable output EM_OE (O/Z).
38 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-9. Asynchronous External Memory Interface (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_STOP/
HCNTL0/ D5 I/O/Z
EM_WE
PCI_CBE2/
HDS2/ C4 I/O/Z
EM_CS2
PCI_CBE3/ This pin is multiplexed between PCI, HPI, and EMIFA.
HR/W A5 I/O/Z In EMIFA mode, this pin is Chip Select 3 output EM_CS3 (O/Z). Asynchronous
EM_CS3 memories (i.e., NOR Flash).
PCI_AD15/ IPD
HD15/EM_D15 DV
PCI_AD14/ IPD
HD14 /EM_D14 DV
PCI_AD13/ IPD
HD13/EM_D13 DV
PCI_AD12/ IPD
HD12/EM_D12 DV
PCI_AD11/ IPD
HD11/EM_D11 DV
PCI_AD10/ IPD
HD10/EM_D10 DV
PCI_AD9/ IPD
HD9/EM_D9 DV
PCI_AD8/ IPD
HD8/EM_D8 DV
PCI_AD7/ IPD
HD7/EM_D7 DV
PCI_AD6/ IPD
HD6/EM_D6 DV
PCI_AD5/ IPD
HD5/EM_D5 DV
PCI_AD4/ IPD
HD4/EM_D4 DV
PCI_AD3/ IPD
HD3/EM_D3 DV
PCI_AD2/ IPD
HD2/EM_D2 DV
PCI_AD1/ IPD
HD1/EM_D1 DV
PCI_AD0/ IPD
HD0/EM_D0 DV
E5 I/O/Z
C1 I/O/Z
E4 I/O/Z
D3 I/O/Z
E3 I/O/Z
D2 I/O/Z
F5 I/O/Z
D1 I/O/Z
E2 I/O/Z
F3 I/O/Z
E1 I/O/Z
G5 I/O/Z
F2 I/O/Z
G4 I/O/Z
F1 I/O/Z
G3 I/O/Z
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In EMIFA mode, this pin is the write enable output EM_WE (O/Z). This pin is multiplexed between PCI, HPI, and EMIFA.
IPU In EMIFA mode, this pin is Chip Select 2 output EM_CS2 (O/Z). This is the chip
DV
DD33
select used for EMIFA boot modes. Asynchronous memories (i.e., NOR Flash) or NAND flash.
IPU
DV
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
These pins are multiplexed between PCI, HPI, and EMIFA.
DD33
For EMIFA mode, these pins are the 16-bit bidirectional data bus (EM_D[15:0]) [I/O/Z]. When EMIFA is configured for an 8-bit asynchronous memory, only EM_D[7:0]
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
pins are used.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 39
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-10. DDR2 Memory Controller Terminal Functions
SIGNAL
NAME NO.
DDR_CLK M23 O/Z DV DDR_CLK L23 O/Z DV
DDR_CKE M20 O/Z DV
DDR_CS J20 O/Z DV
DDR_WE L20 O/Z DV DDR_RAS K19 O/Z DV DDR_CAS L21 O/Z DV
DDR_DQM[3] V20 O/Z DV DDR_DQM[2] Y23 O/Z DV DDR_DQM[1] F22 O/Z DV DDR_DQM[0] F20 O/Z DV DDR_DQS[3] U20 I/O/Z DV DDR_DQS[2] V22 I/O/Z DV DDR_DQS[1] D22 I/O/Z DV
DDR_DQS[0] D21 I/O/Z DV
DDR_DQS[3] V21 I/O/Z DV DDR_DQS[2] W23 I/O/Z DV DDR_DQS[1] D23 I/O/Z DV
DDR_DQS[0] E20 I/O/Z DV
DDR_ODT0 K20 O/Z DV
DDR_BA[2] P19 DDR_BA[1] M21 O/Z DV DDR_BA[0] N19
DDR_A[14] N23 DDR_A[13] H21 DDR_A[12] P20 DDR_A[11] K23 DDR_A[10] T23
DDR_A[9] N22 DDR_A[8] J23 DDR_A[7] N20 O/Z DV DDR_A[6] M22 DDR_A[5] N21 DDR_A[4] J22 DDR_A[3] R22 DDR_A[2] L22 DDR_A[1] R23 DDR_A[0] H23
TYPE
(1)
OTHER
DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2
DDR2
DDR2 DDR2 DDR2
DDR2
DDR2
DDR2
DDR2
(2) (3)
DESCRIPTION
DDR2 Memory Controller
DDR2 Clock DDR2 Differential clock DDR2 Clock Enable DDR2 Active low chip select DDR2 Active low Write enable DDR2 Row Access Signal output DDR2 Column Access Signal output
DDR2 Data mask outputs DDR_DQM[3]: For upper byte data bus DDR_D[31:24] DDR_DQM[2]: For DDR_D[23:16] DDR_DQM[1]: For DDR_D[15:8] DDR_DQM[0]: For lower byte DDR_D[7:0]
Data strobe input/outputs for each byte of the 32-bit data bus. They are outputs to the DDR2 memory when writing and inputs when reading. They are used to synchronize the data transfers. DDR_DQS[3] : For upper byte DDR_D[31:24] DDR_DQS[2]: For DDR_D[23:16] DDR_DQS[1]: For DDR_D[15:8] DDR_DQS[0]: For bottom byte DDR_D[7:0]
Complimentary data strobe input/outputs for each byte of the 32-bit data bus. They are outputs to the DDR2 memory when writing and inputs when reading. They are used to synchronize the data transfers. DDR_DQS[3] : For upper byte DDR_D[31:24] DDR_DQS[2]: For DDR_D[23:16] DDR_DQS[1]: For DDR_D[15:8] DDR_DQS[0]: For bottom byte DDR_D[7:0]
DDR2 on-die termination control
Bank address outputs (BA[2:0]).
DDR2 address bus
www.ti.com
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) Specifies the operating I/O supply voltage for each signal (3) For more information, see the Recommended Operating Conditions table
40 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 3-10. DDR2 Memory Controller Terminal Functions (continued)
SIGNAL
NAME NO.
DDR_D[31] Y20 DDR_D[30] W20 DDR_D[29] Y21 DDR_D[28] AA21 DDR_D[27] U21 DDR_D[26] T21 DDR_D[25] R20 DDR_D[24] T20 DDR_D[23] AB22 DDR_D[22] Y22 DDR_D[21] AA22 DDR_D[20] AA23 DDR_D[19] V23 DDR_D[18] U23 DDR_D[17] T22 DDR_D[16] U22 DDR_D[15] H22 DDR_D[14] G23 DDR_D[13] G22 DDR_D[12] F23 DDR_D[11] E23 DDR_D[10] C22
DDR_D[9] B22 DDR_D[8] C23 DDR_D[7] H20 DDR_D[6] G21 DDR_D[5] F21 DDR_D[4] G20 DDR_D[3] B21 DDR_D[2] C20 DDR_D[1] D20
DDR_D[0] C21 DDR_DQGATE0 J19 O/Z DV DDR_DQGATE1 J21 I DV DDR_DQGATE2 R19 O/Z DV DDR_DQGATE3 R21 I DV
DDR_VREF P23 S
DDR_ZP L19 O
DDR_ZN M19 O
(4) For more information, see the Recommended Operating Conditions table
(1)
TYPE
OTHER
I/O/Z DV
DDR2
DDR2 DDR2 DDR2 DDR2
(4)
(4)
(2) (3)
DDR2 data bus can be configured as 32 bits wide or 16 bits wide.
DDR2 strobe gate signal for lower-half data bus DDR2 strobe gate signal return for lower-half data bus DDR2 strobe gate signal for upper-half data bus DDR2 strobe gate signal return for upper-half data bus
(4)
Reference voltage input for the SSTL_18 IO buffers.
Impedance control for DDR2 outputs. This must be connected via a 50-(±5% tolerance) resistor to VSS.
Impedance control for DDR2 outputs. This must be connected via a 50-(±5% tolerance) resistor to DV
DDR2
SPRS605B–JULY 2009–REVISED JULY 2010
DESCRIPTION
.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 41
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-11. Peripheral Component Interconnect (PCI) Terminal Functions
SIGNAL
NAME NO.
Notes: When PCI boot mode is not used, for proper device operation out of reset PCIEN must be "0".
The PCI pin functions are enabled when PCIEN = 1 (PCI mode). This can be done via an external PU on the PCIEN pin (AC6) or by setting the PCIEN bit (bit 2) in the PINMUX0 register to a "1" after device reset. For more details on the PCIEN pin, see Table 3-5, Boot Terminal Functions.
In PCI mode (PCIEN = 1), the internal pullups/pulldowns (IPUs/IPDs) are disabled on all PCI pins and it is recommended to have external pullup resistors on the PCI_RSV[5:0] pins. For more detailed information on external pullup/pulldown resistors, see Section 4.8.1, Pullup/Pulldown Resistors.
Also in PCI mode (PCIEN = 1), the internal pulldowns (IPDs) are disabled on the GP[5:7] pins. It is recommended to have external pullup resistors on the GP[5] pin when PCIEN = 1 and on GP[6:7] pins when PCIEN = 1 and VADJEN = 0.
PCI_CLK/GP[10] A10 I/O/Z
PCI_RST /DA2/ [IPD] This pin is multiplexed between the PCI, ATA, GPIO, and EMIFA.
GP[13]/EM_A[22] DV
PCI_IDSEL/ [IPU]
HDDIR/EM_R/W DV
PCI_DEVSEL / [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HCNTL1/EM_BA[1] DV
PCI_FRAME / [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HINT/EM_BA[0] DV
PCI_IRDY /HRDY/ [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
EM_A[17]/(CLE) DV
PCI_ TRDY /HHWIL/ [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
EM_A[16]/(ALE) DV
PCI_STOP / [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HCNTL0/EM_WE DV
PCI_SERR / [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HDS1/EM_OE DV
PCI_PERR / [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HCS/EM_DQM1 DV
PCI_PAR/ [IPU] This pin is multiplexed between PCI, HPI, and EMIFA.
HAS/EM_DQM0 DV
C10 I/O/Z
E8 I/O/Z In PCI mode, this pin is the PCI initialization device select, PCI_IDSEL
B3 I/O/Z
D6 I/O/Z
A3 I/O/Z
E6 I/O/Z
D5 I/O/Z
B2 I/O/Z
C3 I/O/Z
D4 I/O/Z
PCI_INTA /
EM_WAIT2/ C11 I/O/Z
(RDY2/BSY2)
PCI_REQ /
DMARQ/ B9 I/O/Z
GP[11]/EM_CS5
PCI_GNT /
DMACK/ D10 I/O/Z
GP[12]/EM_CS4
PCI_CBE3 / [IPU]
HR/W/EM_CS3 DV
PCI_CBE2 / [IPU]
HDS2/EM_CS2 DV
A5 I/O/Z In PCI mode, this pin is the PCI command/byte enable 3, PCI_CBE3
C4 I/O/Z In PCI mode, this pin is the PCI command/byte enable 2, PCI_CBE2
PCI_CBE1 / This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
ATA_CS1/ C2 I/O/Z In PCI mode, this pin is the PCI command/byte enable 1 PCI_CBE1
GP[32]/EM_A[19] (I/O/Z).
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
PCI
[IPU] This pin is multiplexed between PCI and GPIO.
DV
DD33
DD33
In PCI mode, this pin is the PCI clock input PCI_CLK (I).
In PCI mode, this pin is PCI reset PCI_RST (I). This pin is multiplexed between PCI, ATA, and EMIFA.
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
(I).
In PCI mode, this pin is the PCI device select, PCI_DEVSEL (I/O/Z).
In PCI mode, this pin is the PCI cycle frame, PCI_FRAME (I/O/Z).
In PCI mode, this pin is the PCI initiator ready, PCI_IRDY (I/O/Z).
In PCI mode, this pin is the PCI target ready, PCI_ TRDY (I/O/Z).
In PCI mode, this pin is the PCI stop, PCI_STOP (I/O/Z).
In PCI mode, this pin is the PCI system error, PCI_SERR (I/O/Z).
In PCI mode, this pin is the PCI parity error, PCI_PERR (I/O/Z).
In PCI mode, this pin is the PCI parity, PCI_PAR (I/O/Z).
[IPU] This pin is multiplexed between the PCI and EMIFA.
DV
DD33
In PCI mode, this pin is the PCI interrupt A, PCI_INTA (O/Z).
[IPU] This pin is multiplexed between the PCI, ATA, GPIO, and EMIFA.
DV
DD33
In PCI mode, this pin is the PCI bus request, PCI_REQ (O/Z).
[IPU] This pin is multiplexed between the PCI, ATA, GPIO, and EMIFA.
DV
DD33
In PCI mode, this pin is PCI bus grant, PCI_GNT (I). This pin is multiplexed between PCI, HPI, and EMIFA.
DD33
(I/O/Z). This pin is multiplexed between PCI, HPI, and EMIFA.
DD33
(I/O/Z).
[IPU]
DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal 42 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-11. Peripheral Component Interconnect (PCI) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_CBE0 / This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
ATA_CS0/ F4 I/O/Z In PCI mode, this pin is the PCI command/byte enable 0 PCI_CBE0
GP[33]/EM_A[18] (I/O/Z).
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
[IPU]
DV
DD33
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 43
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-11. Peripheral Component Interconnect (PCI) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_AD31/DD15/ [IPD]
HD31/EM_A[15] DV
PCI_AD30/DD14/ [IPD]
HD30/EM_A[14] DV
PCI_AD29/DD13/ [IPD]
HD29/EM_A[13] DV
PCI_AD28/DD12/ [IPD]
HD28/EM_A[12] DV
PCI_AD27/DD11/ [IPD]
HD27/EM_A[11] DV
PCI_AD26/DD10/ [IPD]
HD26/EM_A[10] DV PCI_AD25/DD9/ [IPD]
HD25/EM_A[9] DV
PCI_AD24/DD8/ [IPD]
HD24/EM_A[8] DV
PCI_AD23/DD7/ [IPD]
HD23/EM_A[7] DV
PCI_AD22/DD6/ [IPD]
HD22/EM_A[6] DV
PCI_AD21/DD5/ [IPD]
HD21/EM_A[5] DV
PCI_AD20/DD4/ [IPD]
HD20/EM_A[4] DV
PCI_AD19/DD3/ [IPD]
HD19/EM_A[3] DV
PCI_AD18/DD2/ [IPU]
HD18/EM_A[2] DV
PCI_AD17/DD1/ [IPD]
HD17/EM_A[1] DV
PCI_AD16/DD0/ [IPD]
HD16/EM_A[0] DV
PCI_AD15/ [IPD]
HD15/EM_D15 DV
PCI_AD14/ [IPD]
HD14/EM_D14 DV
PCI_AD13/ [IPD]
HD13/EM_D13 DV
PCI_AD12/ [IPD]
HD12/EM_D12 DV
PCI_AD11/ [IPD]
HD11/EM_D11 DV
PCI_AD10/ [IPD]
HD10/EM_D10 DV
PCI_AD9/ [IPU]
HD9/EM_D9 DV
PCI_AD8/ [IPD]
HD8/EM_D8 DV
A8 I/O/Z
C9 I/O/Z
B8 I/O/Z
D9 I/O/Z
A6 I/O/Z
C8 I/O/Z
B6 I/O/Z
D8 I/O/Z
B5 I/O/Z
C7 I/O/Z
C5 I/O/Z
D7 I/O/Z
A4 I/O/Z
E7 I/O/Z
B4 I/O/Z
C6 I/O/Z
E5 I/O/Z
C1 I/O/Z
E4 I/O/Z
D3 I/O/Z
E3 I/O/Z
D2 I/O/Z
F5 I/O/Z
D1 I/O/Z
TYPE
(1)
OTHER
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
DD33
(2) (3)
www.ti.com
DESCRIPTION
These pins are multiplexed between PCI, ATA, HPI, and EMIFA. In PCI mode, these pins are the PCI address/data bus, PCI_AD[31:16] (I/O/Z).
These pins are multiplexed between PCI, HPI, and EMIFA. For PCI, these pins are PCI data/address bus, PCI_AD [15:0] (I/O/Z).
44 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 3-11. Peripheral Component Interconnect (PCI) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_AD7/ [IPD]
HD7/EM_D7 DV
PCI_AD6/ [IPD]
HD6/EM_D6 DV
PCI_AD5/ [IPD]
HD5/EM_D5 DV
PCI_AD4/ [IPD]
HD4/EM_D4 DV
PCI_AD3/ [IPD]
HD3/EM_D3 DV
PCI_AD2/ [IPD]
HD2/EM_D2 DV
PCI_AD1/ [IPD]
HD1/EM_D1 DV
PCI_AD0/ [IPD]
HD0/EM_D0 DV
PCI_RSV0/DA1/ [IPD]
GP[16]/EM_A[21] DV
PCI_RSV1/DA0/ [IPD]
GP[17]/EM_A[20] DV
PCI_RSV2/INTRQ/ [IPD]
GP[18]/EM_RSV 0 DV
E2 I/O/Z
F3 I/O/Z
E1 I/O/Z
G5 I/O/Z
F2 I/O/Z
G4 I/O/Z
F1 I/O/Z
G3 I/O/Z
A9 I/O/Z PCI reserved (I)
E9 I/O/Z PCI reserved (O/Z)
B10 I/O/Z PCI reserved (I)
PCI_RSV3/DIOR/
GP[19]/ E10 I/O/Z PCI reserved (O/Z)
EM_WAIT5
PCI_RSV4/DIOW/
GP[20]/ A11 I/O/Z PCI reserved (I/O/Z)
EM_WAIT4
PCI_RSV5/IORDY/
GP[21]/ D11 I/O/Z PCI reserved (I/O/Z)
EM_WAIT3
(1) In PCI mode (PCIEN = 1), it is recommended to have an external pullup resistor on this pin.
TYPE
(1)
OTHER
DD33
DD33
DD33
DD33
(2) (3)
These pins are multiplexed between PCI, HPI, and EMIFA. For PCI, these pins are PCI data/address bus [15:0] (I/O/Z)
DD33
DD33
DD33
DD33
(1)
(1)
(1)
(1)
(1)
(1)
DV
DV
DV
DD33
DD33
DD33
[IPU]
DD33
[IPU]
DD33
[IPU]
DD33
SPRS605B–JULY 2009–REVISED JULY 2010
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 45
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-12. EMAC [G]MII and MDIO Terminal Functions
SIGNAL
NAME NO.
RFTCLK H1 I Gigabit (GMII) reference transmit clock (125 MHz)
GMTCLK P2 O/Z GMII source asynchronous transmit clock
MTCLK R1 I [G]MII transmit clock input MTXD7 P1
MTXD6 N4 MTXD5 N3 MTXD4 N2 MTXD3 N1 MTXD2 M4 MTXD1 M1 MTXD0 L1
MTXEN L2 O/Z [G]MII transmit data enable output
MCOL L4 I [G]MII collision detect (sense) input
MCRS L3 I [G]MII carrier sense input
MRCLK K1 I [G]MII receive clock MRXD7 K2
MRXD6 K3 MRXD5 K4 MRXD4 J1 MRXD3 J2 MRXD2 J3 MRXD1 H2 MRXD0 G2
MRXDV J4 I [G]MII receive data valid input
MRXER H3 I [G]MII receive data error input
MDCLK G1 O/Z Management data serial clock output
MDIO H4 I/O/Z Management Data IO
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
TYPE
O/Z
(1)
OTHER
(2) (3)
DESCRIPTION
EMAC [G]MII
IPD
DV
DD33
-
DV
DD33
IPD
DV
DD33
- [G]MII transmit data [7:0]. For 1000 GMII operation, MTXD[7:0] are used. For 10/100
DV
DD33
MII operation, only MTXD[3:0] are used.
-
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPU
DV
DD33
I
IPU [G]MII receive data [7:0]. For 1000 GMII operation, MRXD[7:0] are used. For 10/100
DV
DD33
MII operation, only MRXD[3:0] are used.
IPU
DV
DD33
IPU
DV
DD33
MDIO
IPU
DV
DD33
IPU
DV
DD33
46 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-13. VLYNQ Terminal Functions
SIGNAL
NAME NO.
VLYNQ_CLOCK U1 I/O/Z VLYNQ serial clock
VLYNQ_SCRUN U2 I/O/Z VLYNQ serial clock run request
VLYNQ_TXD3 T3 VLYNQ_TXD2 T2 VLYNQ_TXD1 T1 VLYNQ_TXD0 R4 VLYNQ_RXD3 R3 VLYNQ_RXD2 R2 VLYNQ_RXD1 P3 VLYNQ_RXD0 P4
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
VLYNQ
IPU
DV
DD33
IPU
DV
DD33
O/Z VLYNQ transmit bus [3:0]
I VLYNQ receive bus [3:0]
DV
DV
DD33
IPD
DD33
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 47
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-14. HPI Terminal Functions
SIGNAL
NAME NO.
HPI is enabled by the PINMUX0.HPIEN =1 (and PCIEN = 0 and ATAEN dependent for 16-/32-bit modes). For more detailed information on the HPI pin muxing, see Section 4.7.3.1, PCI, HPI, EMIFA, and ATA Pin Muxing.
PCI_PERR/
HCS / C3 I/O/Z
EM_DQM1
PCI_STOP/
HCNTL0/ D5 I/O/Z
EM_WE
PCI_DEVSEL/
HCNTL1/ B3 I/O/Z
EM_BA[1]
PCI_PAR/ HAS / IPU In HPI mode, this pin is the HPI address strobe, HAS (I).
EM_DQM0 DV
PCI_SERR/ IPU This pin is multiplexed between PCI, HPI, and EMIFA.
HDS1 /EM_OE DV
PCI_CBE2/ IPU This pin is multiplexed between PCI, HPI, and EMIFA.
HDS2 /EM_CS2 DV
PCI_CBE3/ IPU This pin is multiplexed between PCI, HPI, and EMIFA.
HR/W /EM_CS3 DV
D4 I/O/Z
B2 I/O/Z
C4 I/O/Z
A5 I/O/Z
PCI_TRDY/
HHWIL/ E6 I/O/Z
EM_A[16]/(ALE)
PCI_AD31/
DD15/ A8
HD31/EM_A[15]
PCI_AD30/
DD14/ C9
HD30/EM_A[14]
PCI_AD29/
DD13/ B8
HD29/EM_A[13]
PCI_AD28/
DD12/ D9
HD28/EM_A[12]
PCI_AD27/
DD11/ A6
HD27/EM_A[11]
PCI_AD26/
DD10/ C8
HD26/ EM_A[10]
PCI_AD25/
DD9/ B6
HD25/EM_A[9]
PCI_AD24/
DD8/ D8
HD24/EM_A[8]
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
Host-Port Interface (HPI)
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In HPI mode, this pin is the HPI active-low chip select input, HCS (I).
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In HPI mode, this pin is the HPI control input 0, HCNTL0 (I)
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
In HPI mode, this pin is the HPI control input 1, HCNTL1 (I). This pin is multiplexed between PCI, HPI, and EMIFA.
DD33
DD33
DD33
DD33
NOTE: The DM6467T HPI does not support the HAS feature. For proper HPI operation if the pin is routed out, it must be pulled up via an external resistor.
In HPI mode, this pin is the HPI data strobe input 1, HDS1 (I).
In HPI mode, this pin is the HPI data strobe input 2, HDS2 (I).
In HPI mode, this pin is the HPI host read/write select input, HR/W (I).
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
I/O/Z In HPI-32 mode, these pins are the HPI upper data bus, HD[31:16] (I/O/Z).
DV
IPD
DD33
In HPI mode, this pin is the HPI half-word identification input control, HHWIL (I).
These pins are multiplexed between PCI, ATA, HPI, and EMIFA. In HPI-16 mode, the HD[31:16] pins are not used by the HPI .
(1) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (2) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (3) Specifies the operating I/O supply voltage for each signal
48 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SIGNAL
NAME NO.
PCI_AD23/
DD7/ B5
HD23/EM_A[7]
PCI_AD22/
DD6/ C7
HD22/EM_A[6]
PCI_AD21/
DD5/ C5
HD21/EM_A[5]
PCI_AD20/
DD4/ D7
HD20/EM_A[4]
PCI_AD19/
DD3/ A4
HD19/EM_A[3]
PCI_AD18/
DD2/ E7
HD18/EM_A[2]
PCI_AD17/
DD1/ B4
HD17/EM_A[1]
PCI_AD16/
DD0/ C6
HD16/EM_A[0]
PCI_AD15/
HD15/EM_D15
PCI_AD14/
HD14/EM_D14
PCI_AD13/
HD13/EM_D13
PCI_AD12/
HD12/EM_D12
PCI_AD11/
HD11/EM_D11
PCI_AD10/
HD10/EM_D10
PCI_AD9/
HD9/EM_D9
PCI_AD8/
HD8/EM_D8
PCI_AD7/
HD7/EM_D7
PCI_AD6/
HD6/EM_D6
PCI_AD5/
HD5/EM_D5
PCI_AD4/
HD4/EM_D4
PCI_AD3/
HD3/EM_D3
PCI_AD2/
HD2/EM_D2
PCI_AD1/
HD1/EM_D1
PCI_AD0/
HD0/EM_D0
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-14. HPI Terminal Functions (continued)
(1)
TYPE
I/O/Z In HPI-32 mode, these pins are the HPI upper data bus, HD[31:16] (I/O/Z).
E5
C1
E4
D3
I/O/Z In HPI-16 mode, these pins are the HPI data bus, HD[15:0] (I/O/Z).
E3
D2
F5
D1
E2
F3
E1
G5
I/O/Z In HPI-16 mode, these pins are the HPI data bus, HD[15:0] (I/O/Z).
F2
G4
F1
G3
OTHER
IPD
DV
IPD
DV
IPD
DV
DD33
DD33
DD33
(2) (3)
DESCRIPTION
These pins are multiplexed between PCI, ATA, HPI, and EMIFA. In HPI-16 mode, the HD[31:16] pins are not used by the HPI .
These pins are multiplexed between PCI, HPI, and EMIFA. In HPI-32 mode, these pins are the HPI lower data bus, HD[15:0] (I/O/Z).
These pins are multiplexed between PCI, HPI, and EMIFA. In HPI-32 mode, these pins are the HPI lower data bus, HD[15:0] (I/O/Z).
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 49
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-14. HPI Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_IRDY/
HRDY / A3 I/O/Z
EM_A[17]/(CLE)
PCI_FRAME/ IPU This pin is multiplexed between PCI, HPI, and EMIFA.
HINT /EM_BA[0] DV
D6 I/O/Z
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
IPU This pin is multiplexed between PCI, HPI, and EMIFA.
DV
DD33
DD33
In HPI mode, this pin is the HPI host ready output from DSP to host, HRDY (O/Z).
In HPI mode, this pin is the HPI host interrupt output, HINT (O/Z).
www.ti.com
50 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-15. USB Terminal Functions
SIGNAL
NAME NO.
TYPE
(1)
USB_DP A19 A I/O USB bidirectional Data Differential signal pair [positive/negative]. USB_DN A20 A I/O
USB_R1 D18 A I/O
USB_DRVVBUS/ IPD When this pin is used as USB_DRVVBUS (PINMUX0.VBUSDIS = 0), and the USB
GP[22] DV
USB_V
SSREF
USB_V
DDA3P3
USB_V
DD1P8
USB_V
DDA1P2LDO
B18 I/O/Z
C18 GND
F18 S
E18 S
E17 S
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal (4) For more information, see the Recommended Operating Conditions table
OTHER
(4)
(4)
(4)
(4)
(4)
(4)
DD33
(2) (3)
DESCRIPTION
USB 2.0
When the USB peripheral is not used, the USB_DP signal should be pulled up (high) and the USB_DN signal should be pulled down (low) via a 10-kresistor.
USB current reference output. When the USB peripheral is used, this pin must be connected via a 10-k±1% resistor to USB_V When the USB peripheral is not used, this pin must be connected via a 10-k resistor to USB_V
SSREF
.
SSREF
.
This pin is multiplexed between USB and GPIO. Controller is operating as a Host (USBCTL.USBID = 0 and Session is in progress),
this signal is used by the USB Controler to enable the external VBUS charge pump. Ground for reference current. This pin must be connected via a 10-k±1% resistor
to USB_R1. When the USB peripheral is not used, the USB_V to VSS.
signal should be connected
SSREF
Analog 3.3 V power supply for USB PHY. When the USB peripheral is not used, the USB_V connected to DV
DD33
.
DDA3P3
signal should be
1.8-V I/O power supply for USB PHY. When the USB peripheral is not used, the USB_V to 1.8-V power supply.
signal should be connected
DD1P8
Core power supply LDO output for USB PHY. This pin must be connected via a 1-mF capacitor to VSS. When the USB peripheral is not used, the USB_V connected via a 1-mF capacitor to VSS.
DDA1P2LDO
signal should still be
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 51
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-16. Video-Port Interface (VPIF) Terminal Functions
SIGNAL
NAME NO.
VP_CLKIN0 AC13 I VPIF capture channel 0 input clock (I).
VP_CLKIN1 AB18 I VPIF capture channel 1 input clock (I).
VP_DIN15_VP_VSYNC/ IPD
TS0_DIN7 DV
VP_DIN14_VP_HSYNC/ IPD
TS0_DIN6 DV
VP_DIN13_FIELD/ IPD
TS0_DIN5 DV
VP_DIN12/
TS0_DIN4
VP_DIN11/
TS0_DIN3
VP_DIN10/ IPD These pins are multiplexed between the VPIF and TSIF0.
TS0_DIN2 DV
VP_DIN9/
TS0_DIN1
VP_DIN8/
TS0_DIN0
AC18 I When used for the VPIF, this pin is capture data bit 15 or the vertical sync
AA17 I When used for the VPIF, this pin is capture data bit 14 or the horizontal sync
AB17 I When used for the VPIF, this pin is capture data bit 13 or the field indicator
AC17
Y16
AA16 I
AB16
AC16
VP_DIN7/
TS0_DOUT7/ Y14
TS1_DIN
VP_DIN6/
TS0_DOUT6/ AA14
TS1_PSTIN
VP_DIN5/
TS0_DOUT5/ AB14
TS1_EN_WAITO
VP_DIN4/
TS0_DOUT4/ AC14
TS1_WAITO
VP_DIN3/
TS0_DOUT3
VP_DIN2/
TS0_DOUT2
VP_DIN1/
TS0_DOUT1
VP_DIN0/
TS0_DOUT0
Y15
AA15
AB15
AC15
VP_CLKIN2 Y10 I VPIF display channel 2 source input clock (I).
VP_CLKIN3/ IPD
TS1_CLKO DV
AC9 I/O/Z When used for VPIF, this pin is display channel 3 source clock, VP_CLKIN3
VP_CLKO2 AA9 O/Z VPIF display channel 2 output clock (O/Z).
TYPE
I/O/Z
I/O/Z
(1)
OTHER
(2) (3)
VIDEO-PORT INTERFACE (VPIF) – CAPTURE
IPD
DV
DD33
IPD
DV
DD33
This pin is multiplexed between the VPIF and TSIF0.
DD33
input, VP_DIN15_VSYNC (I). This pin is multiplexed between the VPIF and TSIF0.
DD33
input, VP_DIN14_HSYNC (I). This pin is multiplexed between the VPIF and TSIF0.
DD33
DD33
input, VP_DIN13_FIELD (I).
When used for the VPIF, these pins are capture data bits, VP_DIN[12:8] (I).
IPD These pins are multiplexed between the VPIF, TSIF0, and TSIF1.
DV
DD33
When used for the VPIF, these pins are capture data bits, VP_DIN[7:4] (I).
IPD These pins are multiplexed between the VPIF and TSIF0.
DV
DD33
When used for the VPIF, these pins are capture data bits, VP_DIN[3:0] (I).
VIDEO-PORT INTERFACE (VPIF) – DISPLAY
IPD
DV
DD33
This pin is multiplexed between the VPIF and TSIF1.
DD33
(I).
-
DV
DD33
DESCRIPTION
www.ti.com
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
52 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 3-16. Video-Port Interface (VPIF) Terminal Functions (continued)
SIGNAL
NAME NO.
VP_CLKO3/ -
TS0_CLKO DV
VP_DOUT15/
TS1_DIN
VP_DOUT14/
TS1_PSTIN
VP_DOUT13/
TS1_EN_WAITO
VP_DOUT12/
TS1_WAITO
VP_DOUT11/
TS1_DOUT
VP_DOUT10/
TS1_PSTO
VP_DOUT9/
TS1_ENAO
VP_DOUT8/
TS1_WAITIN
VP_DOUT7 AB7 O/Z
VP_DOUT6/
DSPBOOT
VP_DOUT5/
PCIEN
VP_DOUT4/
CS2BW
VP_DOUT3/ IPD
BTMODE3 DV
VP_DOUT2/
BTMODE2
VP_DOUT1/
BTMODE1
VP_DOUT0/
BTMODE0
TYPE
AC10 O/Z When used for VPIF, this pin is the display channel 3 output clock,
AB8 I/O/Z
AC7 I/O/Z
Y9 I/O/Z
AA8 I/O/Z
AB10 O/Z
AA10 O/Z
AC8 O/Z
AB9 O/Z
AC5
AC6
AA7
AB6 I/O/Z After reset, these pins are used by the VPIF as display data bits,
Y8
AC4
AB5
(1)
OTHER
IPD
DV
IPD
DV
DD33
DD33
DD33
DD33
SPRS605B–JULY 2009–REVISED JULY 2010
(2) (3)
DESCRIPTION
This pin is multiplexed between the VPIF and TSIF0. VP_CLKO3 (O/Z).
These pins are multiplexed between the VPIF and TSIF1. When used for the VPIF, these pins are display data bits, VP_DOUT[15:8] (O/Z).
This pin is video display data bit 7, VP_DOUT[7] (O/Z). Note: For proper device operation, do not oppose the IPD resistor on this
pin at reset (i.e., this pin should be low at the rising edge of RESET or POR).
These pins are multiplexed between the VPIF and boot configuration. VP_DOUT[6:0] (O/Z).
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 53
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-17. Transport Stream Interface 0 (TSIF0) Terminal Functions
SIGNAL
NAME NO.
TS0_CLKIN AC19 I TSIF0 receive clock input (I).
UCTS1/USD1/
TS0_EN_WAITO/ Y17 I/O/Z
GP[26]
URTS1/UIRTX1/ IPU When TSIF0 input is enabled (PINMUX0.PTSIMUX = 1x), in asynchronous
TS0_WAITO/GP[25] DV
URTS2/UIRTX2/ IPU
TS0_PSTIN/GP[41] DV
VP_DIN15_VP_VSYNC/
TS0_DIN7
VP_DIN14_VP_HSYNC/
TS0_DIN6
VP_DIN13_FIELD/
TS0_DIN5
VP_DIN12/
TS0_DIN4
VP_DIN11/
TS0_DIN3
VP_DIN10/
TS0_DIN2
VP_DIN9/
TS0_DIN1
VP_DIN8/
TS0_DIN0
AA18 I/O/Z
AC20 I/O/Z When TSIF0 input is enabled (PINMUX0.PTSIMUX = 1x), this pin is the
AC18
AA17
AB17
AC17
Y16
AA16
AB16
AC16
TS0_CLKIN AC19 I TSIF0 receive clock input (I).
UCTS1/USD1/
TS0_EN_WAITO/ Y17 I/O/Z
GP[26]
URTS2/UIRTX2/ IPU When TSIF0 input is enabled (PINMUX0.PTSIMUX = 1x), in
TS0_PSTIN/GP[41] DV
URXD1/ IPD When TSIF0 serial input mux mode is enabled (PINMUX0.PTSIMUX = 11), in
TS0_DIN7/GP[23] DV
AC20 I/O/Z
Y18 I/O/Z
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
TSIF0 PARALLEL INPUT (PINMUX0.PTSIMUX = 10)
IPD
DV
DD33
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When TSIF0 input is enabled (PINMUX0.PTSIMUX = 1x), in synchronous
DV
DD33
mode, this pin is the data enable indicator (I) or in asynchronous mode, this pin is the wait output (O/Z), TS0_EN_WAITO.
This pin is multiplexed between UART1, TSIF0, and GPIO.
DD33
mode, this pin is the wait output, TS0_WAITO (O/Z). This TSIF pin function is not used in synchronous mode.
This pin is multiplexed between UART2, TSIF0, and GPIO.
DD33
I/O/Z When TSIF0 parallel input mux mode is enabled (PINMUX0.PTSIMUX = 10),
DV
IPD
DD33
packet start input indicator, TS0_PSTIN (I).
These pins are multiplexed between the VPIF and TSIF0. these pins are input data bits TS0_DIN[7:0] (I).
TSIF0 SERIAL INPUT (PINMUX0.PTSIMUX = 11)
IPD
DV
DD33
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When TSIF0 input is enabled (PINMUX0.PTSIMUX = 1x), in synchronous
DV
DD33
mode, this pin is the data enable indicator (I) or in asynchronous mode, this pin is the wait output (O/Z), TS0_EN_WAITO.
This pin is multiplexed between UART2, TSIF0, and GPIO.
DD33
synchronous/asynchronous modes, this pin is the packet start input indicator, TS0_PSTIN (I).
This pin is multiplexed between UART1, TSIF0, and GPIO.
DD33
synchronous/asynchronous modes, this pin is the serial input data bit (I), TS0_DIN7(I).
54 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-17. Transport Stream Interface 0 (TSIF0) Terminal Functions (continued)
SIGNAL
NAME NO.
VP_CLKO3/ -
TS0_CLKO DV
UDTR0/ IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
TS0_ENAO/GP[36] DV
AC10 O/Z When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
Y12 I/O/Z
UDSR0/
TS0_PSTO/ AB11 I/O/Z
GP[37]
UDCD0/
TS0_WAITIN/ AA11 I/O/Z
GP[38]
VP_DIN7/
TS0_DOUT7/ Y14
TS1_DIN
VP_DIN6/
TS0_DOUT6/ AA14
TS1_PSTIN
VP_DIN5/
TS0_DOUT5/ AB14
TS1_EN_WAITO
VP_DIN4/
TS0_DOUT4/ AC14
TS1_WAITO
VP_DIN3/
TS0_DOUT3
VP_DIN2/
TS0_DOUT2
VP_DIN1/
TS0_DOUT1
VP_DIN0/
TS0_DOUT0
VP_CLKO3/ -
TS0_CLKO DV
UDTR0/ IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
TS0_ENAO/GP[36] DV
UDSR0/ IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
TS0_PSTO/GP[37] DV
UDCD0/ IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), in asynchronous
TS0_WAITIN/GP[38] DV
UTXD1/URCTX1/ IPD When serial TSIF0 output is enabled (PINMUX0.PTSOMUX = 11), in
TS0_DOUT7/GP[24] DV
Y15
AA15
AB15
AC15
AC10 O/Z When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
Y12 I/O/Z
AB11 I/O/Z
AA11 I/O/Z
AB19 I/O/Z
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
TSIF0 PARALLEL OUTPUT (PINMUX0.PTSIMUX = 10)
This pin is multiplexed between the VPIF and TSIF0.
DD33
transmit clock output, TS0_CLKO (O/Z). This pin is multiplexed between UART0, TSIF0, and GPIO.
DD33
data enable indicator, TS0_ENAO (O/Z) in either synchronous/asynchronous modes.
This pin is multiplexed between UART0, TSIF0, and GPIO.
IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), this pin is the
DV
DD33
packet start output indicator, TS0_PSTO (O/Z) in either synchronous/asynchronous modes.
This pin is multiplexed between UART0, TSIF0, and GPIO.
IPU When TSIF0 output is enabled (PINMUX0.PTSOMUX = 1x), in asynchronous
DV
DD33
mode, this pin is the wait input, TS0_WAITIN (I). This TSIF pin function is not used in synchronous mode.
These pins are multiplexed between the VPIF, TSIF0, and TSIF1. When parallel TSIF0 output is enabled (PINMUX0.PTSOMUX = 10), and
the output data bits TS0_DOUT[7:4] (O/Z) in either
I/O/Z TSIF1 VPIF_DIN muxing is not enabled (TSSI_MUX 11), these pins are
DV
IPD
DD33
synchronous/asynchronous modes.
These pins are multiplexed between the VPIF and TSIF0.
I/O/Z
IPD When parallel TSIF0 output is enabled (PINMUX0.PTSOMUX = 10), these
DV
DD33
pins are the output data bits TS0_DOUT[3:0] (O/Z) in either synchronous/asynchronous modes.
TSIF0 SERIAL OUTPUT (PINMUX0.PTSIMUX = 11)
This pin is multiplexed between the VPIF and TSIF0.
DD33
transmit clock output, TS0_CLKO (O/Z). This pin is multiplexed between UART0, TSIF0, and GPIO.
DD33
data enable indicator, TS0_ENAO (O/Z) in either synchronous/asynchronous modes.
This pin is multiplexed between UART0, TSIF0, and GPIO.
DD33
packet start output indicator, TS0_PSTO (O/Z) in either synchronous/asynchronous modes.
This pin is multiplexed between UART0, TSIF0, and GPIO.
DD33
mode, this pin is the wait input, TS0_WAITIN (I). This TSIF pin function is not used in synchronous mode.
This pin is multiplexed between UART1, TSIF0, and GPIO.
DD33
synchronous/asynchronous modes, this pin is the serial output data bit, TS0_DOUT[7] (O/Z).
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 55
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-18. Transport Stream Interface 1 (TSIF1) Terminal Functions
SIGNAL
NAME NO.
TS1_CLKIN AC11 I TSIF1 receive clock input (I).
URXD0/ IPD
TS1_DIN DV
URTS0/UIRTX0/ IPU When TSIF1 input on UART0 muxing is enabled (PINMUX0.TSSIMUX = 01), in
TS1_EN_WAITO DV
UTXD0/URCTX0/ IPD
TS1_PSTIN DV
AB13 I When TSIF1 input on UART0 muxing is enabled (PINMUX0.TSSIMUX = 01), this
AA13 I/O/Z
Y13 I/O/Z When TSIF1 input on UART0 muxing is enabled (PINUMX0.TSSIMUX = 01), this
TS1_CLKIN AC11 I TSIF1 receive clock input (I).
VP_DOUT15/ IPD
TS1_DIN DV
VP_DOUT13/ IPD When TSIF1 input on VPIF DOUT muxing is enabled (PINMUX0.TSSIMUX = 10), in
TS1_EN_WAITO DV
VP_DOUT14/ IPD When TSIF1 input on VPIF DOUT muxing is enabled (PINMUX0.TSSIMUX = 10), in
TS1_PSTIN DV
AB8 I/O/Z When TSIF1 input on VPIF DOUT muxing is enabled (PINMUX0.TSSIMUX = 10),
Y9 I/O/Z
AC7 I/O/Z
TS1_CLKIN AC11 I TSIF1 receive clock input (I).
VP_DIN7/ This pin is multiplexed between VPIF, TSIF0, and TSIF1.
TS0_DOUT7/ Y14 I/O/Z When TSIF1 input on VPIF DIN muxing is enabled (PINMUX0.TSSIMUX = 11), in
TS1_DIN synchronous/asynchronous modes, this pin is the serial data input, TS1_DIN (I).
VP_DIN5/
TS0_DOUT5/ AB14 I/O/Z
TS1_EN_WAITO
VP_DIN6/
TS0_DOUT6/ AA14 I/O/Z
TS1_PSTIN
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
TSIF1 INPUT – UART0 MUXING (PINMUX0.TSSIMUX = 01)
IPD
DV
DD33
This pin is multiplexed between UART0 and TSIF1.
DD33
pin is the serial data input, TS1_DIN (I). This pin is multiplexed between UART0 and TSIF1.
DD33
synchronous mode, this pin is the data enable indicator (I) or in asynchronous mode, this pin is the wait output, TS1_EN_WAITO (O/Z).
This pin is multiplexed between UART0 and TSIF1.
DD33
pin is the packet start indicator, TS1_PSTIN (I).
TSIF1 INPUT – VPIF DOUT MUXING (PINMUX0.TSSIMUX = 10)
IPD
DV
DD33
This pin is multiplexed between VPIF and TSIF1.
DD33
this pin is the serial data input, TS1_DIN (I). This pin is multiplexed between VPIF and TSIF1.
DD33
synchronous mode, this pin is the data enable indicator (I) or in asynchronous mode, this pin is the wait output, TS1_EN_WAITO (O/Z).
This pin is multiplexed between VPIF and TSIF1.
DD33
synchronous/asynchronous modes, this pin is the packet start indicator, TS1_PSTIN (I).
TSIF1 INPUT – VPIF DIN MUXING (PINMUX0.TSSIMUX = 11)
IPD
DV
DD33
IPD
DV
DD33
This pin is multiplexed between VPIF, TSIF0, and TSIF1.
IPD When TSIF1 input on VPIF DIN muxing is enabled (PINMUX0.TSSIMUX = 11), in
DV
DD33
synchronous mode, this pin is the data enable indicator (I) or in asynchronous mode, this pin is the wait output, TS1_EN_WAITO (O/Z).
This pin is multiplexed between VPIF, TSIF0, and TSIF1.
IPD When TSIF1 input on VPIF DIN muxing is enabled (PINMUX0.TSSIMUX = 11), in
DV
DD33
synchronous/asynchronous modes, this pin is the packet start indicator, TS1_PSTIN (I).
56 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-18. Transport Stream Interface 1 (TSIF1) Terminal Functions (continued)
SIGNAL
NAME NO.
VP_CLKIN3/ IPD When TSIF1 output is enabled (PINMUX0.TSSOMUX = 1x), in
TS1_CLKO DV
VP_DOUT11/ IPD When TSIF1 output on VPIF DOUT muxing is enabled (PINMUX0.TSSOMUX = 10),
TS1_DOUT DV
VP_DOUT9/ IPD When TSIF1 output on VPIF DOUT muxing is enabled (PINMUX0.TSSOMUX = 10),
TS1_ENAO DV
VP_DOUT10/ IPD When TSIF1 output on VPIF DOUT muxing is enabled (PINMUX0.TSSOMUX = 10),
TS1_PSTO DV
VP_DOUT8/ IPD When TSIF1 output on VPIF DOUT muxing is enabled (PINMUX0.TSSOMUX = 10),
TS1_WAITIN DV
VP_CLKIN3/ IPD When TSIF1 output is enabled (PINMUX0.TSSOMUX = 1x), in
TS1_CLKO DV
PWM1/ - When TSIF1 output on UART/PWM is enabled (PINMUX0.TSSOMUX = 11), in
TS1_DOUT DV
AC9 I/O/Z
AB10 I/O/Z
AC8 I/O/Z
AA10 I/O/Z
AB9 I/O/Z
AC9 I/O/Z
W18 I/O/Z
PWM0/
CRG0_PO/ W17 O/Z
TS1_ENAO
UCTS2/USD2/ This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1.
CRG0_VCX1/ IPU When TSIF1 output on UART/PWM is enabled (PINMUX0.TSSOMUX = 11), in
GP[42]/ DV
AC21 I/O/Z
TS1_PSTO TS1_PSTO (O/Z).
URIN0/GP[8]/ IPD When TSIF1 output on UART/PWM is enabled (PINMUX0.TSSOMUX = 11), in
TS1_WAITIN DV
Y11 I/O/Z
TYPE
(1)
OTHER
(2) (3)
TSIF1 OUTPUT – VPIF DOUT MUXING (PINMUX0.TSSOMUX = 10)
This pin is multiplexed between the VPIF and TSIF1.
DD33
synchronous/asynchronous modes, this pin is the transmit clock output, TS1_CLKO (O/Z).
This pin is multiplexed between the VPIF and TSIF1.
DD33
in synchronous/asynchronous modes, this pin is the serial data output, TS1_DOUT (O/Z).
This pin is multiplexed between the VPIF and TSIF1.
DD33
in synchronous/asynchronous modes, this pin is the data enable indicator, TS1_ENAO (O/Z).
This pin is multiplexed between the VPIF and TSIF1.
DD33
in synchronous/asynchronous modes, this pin is the packet start indicator output, TS1_PSTO (O/Z).
This pin is multiplexed between the VPIF and TSIF1.
DD33
in asynchronous mode, this pin is the wait indicator input, TS1_WAITIN (I). This TSIF pin function is not used in synchronous mode.
TSIF1 OUTPUT – UART/PWM MUXING (PINMUX0.TSSOMUX = 11)
This pin is multiplexed between the VPIF and TSIF1.
DD33
synchronous/asynchronous modes, this pin is the transmit clock output, TS1_CLKO (O/Z).
This pin is multiplexed between PWM1 and TSIF1.
DD33
synchronous/asynchronous modes, this pin is the serial data output, TS1_DOUT (O/Z).
This pin is multiplexed between PWM0, CRGEN0, and TSIF1.
- When TSIF1 output on UART/PWM is enabled (PINMUX0.TSSOMUX = 11), in
DV
DD33
DD33
synchronous/asynchronous modes, this pin is the data enable indicator output, TS1_ENAO (O/Z)
synchronous/asynchronous modes, this pin is the packet start indicator output,
This pin is multiplexed between UART0, GPIO, and TSIF1.
DD33
asynchronous mode, this pin is the wait indicator input, TS1_WAITIN (I). This TSIF pin function is not used in synchronous mode.
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 57
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-19. I2C Terminal Functions
SIGNAL
NAME NO.
SCL U5 I/O/Z
SDA U4 I/O/Z
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2)
DESCRIPTION
I2C
- I2C clock output SCL. For proper device operation, this pin must be pulled up via
DV
DD33
external resistor.
- I2C bidirectional data signal SDA. For proper device operation, this pin must be
DV
DD33
pulled up via external resistor.
Table 3-20. SPI Terminal Functions
SIGNAL
NAME NO.
SPI_CLK V1 I/O/Z SPI clock
SPI_EN T5 I/O/Z SPI device enable
SPI_CS0 T4 I/O/Z SPI chip select 0
SPI_CS1 U3 I/O/Z SPI chip select 1
SPI_SOMI R5 I/O/Z SPI slave out, master in data pin
SPI_SIMO P5 I/O/Z SPI slave in, master out data pin
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
IPD
DV
IPD
DV
IPD
DV
IPD
DV
IPD
DV
IPD
DV
DD33
DD33
DD33
DD33
DD33
DD33
(2) (3)
DESCRIPTION
SPI
58 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-21. Multichannel Audio Serial Port (McASP) Terminal Functions
SIGNAL
NAME NO.
ACLKR0 AA2 I/O/Z McASP0 receive bit clock
AHCLKR0 AB2 I/O/Z McASP0 receive high-frequency master clock
AFSR0 Y3 I/O/Z McASP0 receive frame sync
ACLKX0 AA1 I/O/Z McASP0 transmit bit clock
AHCLKX0 Y1 I/O/Z McASP0 transmit high-frequency master clock
AFSX0 Y4 I/O/Z McASP0 transmit frame sync
AXR0[3] W3 AXR0[2] W4 AXR0[1] V4 AXR0[0] V3
AMUTE0 Y2 I/O/Z McASP0 mute output
AMUTEIN0 AA3 I McASP0 mute input
ACLKX1 W1 I/O/Z McASP1 transmit bit clock
AHCLKX1 W2 I/O/Z McASP1 transmit high-frequency master clock
AXR1[0] V2 I/O/Z McASP1 transmit data pin [0]
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
McASP0
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
I/O/Z McASP0 transmit/receive data pins [3:0]
DV
IPD
DD33
IPD
DV
DD33
IPD
DV
DD33
McASP1
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 59
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-22. Clock Recovery Generator (CRGEN) Terminal Functions
SIGNAL
NAME NO.
URXD2/
CRG1_VCXI/ IPD
GP[39]/ DV
AB20 I/O/Z When CRGEN1 is enabled (PINMUX0.CRGMUX = 001), this pin is CRGEN1 input
CRG0_VCXI
UTXD2/ URCTX2/
CRG1_PO/ IPD
GP[40]/ DV
AA19 I/O/Z When CRGEN1 is enabled (PINMUX0.CRGMUX = 001), this pin is CRGEN1
CRG0_PO
UCTS2/ USD2/
CRG0_VCXI/ IPU
GP[42]/ DV
AC21 I/O/Z When CRGEN0 on UART2/PWM muxing is enabled (PINMUX0.CRGMUX = 10x),
TS1_PSTO
PWM0/ This pin is multiplexed between PWM0, CRGEN0, and TSIF1.
CRG0_PO/ W17 O/Z When CRGEN0 on UART2/PWM muxing is enabled (PINMUX0.CRGMUX = 10x),
TS1_ENAO this pin is CRGEN0 pulse width modulation output, CRG0_PO (O/Z).
URXD2/
CRG1_VCXI/ IPD
GP[39]/ DV
AB20 I/O/Z When CRGEN1 is enabled (PINMUX0.CRGMUX = x01), this pin is CRGEN1 input
CRG0_VCXI
UTXD2/ URCTX2/
CRG1_PO/ IPD
GP[40]/ DV
AA19 I/O/Z When CRGEN1 is enabled (PINMUX0.CRGMUX = x01), this pin is CRGEN1
CRG0_PO
UCTS2/ USD2/
CRG0_VCXI/ IPU
GP[42]/ DV
AC21 I/O/Z When CRGEN0 on UART2/PWM muxing is enabled (PINMUX0.CRGMUX = 10x),
TS1_PSTO
PWM0/ This pin is multiplexed between PWM0, CRGEN0, and TSIF1.
CRG0_PO/ W17 O/Z When CRGEN0 on UART2/PWM muxing is enabled (PINMUX0.CRGMUX = 10x),
TS1_ENAO this pin is CRGEN0 pulse width modulation output, CRG0_PO (O/Z).
URXD2/
CRG1_VCXI/ IPD
GP[39]/ DV
AB20 I/O/Z When CRGEN0 on UART2 muxing is enabled (PINMUX0.CRGMUX = 110), this
CRG0_VCXI
UTXD2/ URCTX2/
CRG1_PO/ IPD
GP[40]/ DV
AA19 I/O/Z When CRGEN0 on UART2 muxing is enabled (PINMUX0.CRGMUX = 110), this
CRG0_PO
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
CRGEN1 ONLY MODE (PINMUX0.CRGMUX = 001)
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
clock from external VCXO, CRG1_VCXI (I).
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
pulse width modulation output, CRG1_PO (O/Z).
CRGEN0 ONLY (UART2/PWM0 MUX) MODE (PINMUX0.CRGMUX = 100)
This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1.
DD33
this pin is CRGEN0 input clock from external VCXO, CRG0_VCXI (I).
DV
DD33
CRGEN0 AND CRGEN1 MODE (PINMUX0.CRGMUX = 101)
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
clock from external VCXO, CRG1_VCXI (I).
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
pulse width modulation output, CRG1_PO (O/Z).
This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1.
DD33
this pin is CRGEN0 input clock from external VCXO, CRG0_VCXI (I).
DV
DD33
CRGEN0 ONLY (UART2 MUX) MODE (PINMUX0.CRGMUX = 110)
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
pin is CRGEN0 input clock from external VCXO, CRG0_VCXI (I).
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
DD33
pin is CRGEN0 pulse width modulation output, CRG0_PO (O/Z).
60 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-23. UART0 Terminal Functions
SIGNAL
NAME NO.
Actual UART0 pin functions are determined by the PINMUX0 and PINMUX1 register bit settings. For more details, see
Section 4.7.3, Pin Multiplexing.
URXD0/ IPD When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
TS1_DIN DV
AB13 I
UTXD0/
URCTX0/ Y13 I/O/Z
TS1_PSTIN
URTS0 /
UIRTX0/ AA13 I/O/Z
TS1_EN_WAITO
UCTS0 / USD0 AC12 I/O/Z
UDTR0 /
TS0_ENAO/ Y12 I/O/Z
GP[36]
UDSR0 /
TS0_PSTO/ AB11 I/O/Z
GP[37]
UDCD0 /
TS0_WAITIN/ AA11 I/O/Z
GP[38]
URIN0 /GP[8]/ IPD
TS1_WAITIN DV
URXD0/ IPD When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
TS1_DIN DV
Y11 I/O/Z (PINMUX1.UART0CTL = 00) and TSIF1 output on UART/PWM muxing is not
AB13 I
UTXD0/
URCTX0/ Y13 I/O/Z
TS1_PSTIN
URTS0 /
UIRTX0/ AA13 I/O/Z
TS1_EN_WAITO
UCTS0 / IPU
USD0 DV
AC12 I/O/Z and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this
(1) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (2) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
UART0 WITH MODEM CONTROL (PINMUX1.UART0CTL = 00)
This pin is multiplexed between UART0 and TSIF1.
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 receive data, URXD0 (I).
This pin is multiplexed between UART0 and TSIF1.
IPD When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 transmit data, UTXD0 (O/Z).
This pin is multiplexed between UART0 and TSIF1.
IPU When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is the UART0 request-to-send signal, URTS0 (O/Z).
This pin is multiplexed between UART0 and TSIF1.
IPU When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is the UART0 clear-to-send signal, UCTS0 (I).
This pin is multiplexed between UART0, TSIF0, and GPIO.
IPU When UART0 UART with modem functional muxing is selected
DV
DD33
(PINMUX1.UART0CTL = 00) and TSIF0 output muxing is not enabled (PINMUX0.PTSOMUX 1x), this pin is UART0 data-terminal-ready, UDTR0 (O/Z).
This pin is multiplexed between UART0, TSIF0, and GPIO.
IPU When UART0 UART with modem functional muxing is selected
DV
DD33
(PINMUX1.UART0CTL = 00) and TSIF0 output muxing is not enabled (PINMUX0.PTSOMUX 1x), this pin is UART0 data-set-ready, UDSR0 (I).
This pin is multiplexed between UART0, TSIF0, and GPIO.
IPU When UART0 UART with modem functional muxing is selected
DV
DD33
(PINMUX1.UART0CTL = 00) and TSIF0 output muxing is not enabled (PINMUX0.PTSOMUX 1x), this pin is UART0 data-carrier-detect, UDCD0 (I).
This pin is multiplexed between UART0, GPIO, and TSIF1. When UART0 UART with modem functional muxing is selected
DD33
enabled (PINMUX0.TSSOMUX 11), this pin is the UART0 ring indicator, URIN0 (I).
UART0 WITHOUT MODEM CONTROL (PINMUX1.UART0CTL = 01)
This pin is multiplexed between UART0 and TSIF1.
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 receive data, URXD0 (I).
This pin is multiplexed between UART0 and TSIF1.
IPD When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 transmit data, UTXD0 (O/Z).
This pin is multiplexed between UART0 and TSIF1.
IPU When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 request-to-send signal, URTS0 (O/Z).
When UART0 UART functional muxing is selected (PINMUX1.UART0CTL = 0x)
DD33
pin is UART0 clear-to-send signal, UCTS0 (I).
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 61
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-23. UART0 Terminal Functions (continued)
SIGNAL
NAME NO.
URXD0/ IPD
TS1_DIN DV
AB13 I When TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01),
UTXD0/
URCTX0/ Y13 I/O/Z
TS1_PSTIN
URTS0/
UIRTX0/ AA13 I/O/Z
TS1_EN_WAITO
UCTS0/ IPU
USD0 DV
AC12 I/O/Z and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
UART0 IrDA/CIR FUNCTION (PINMUX1.UART0CTL = 1x)
This pin is multiplexed between UART0 and TSIF1.
DD33
this pin is UART0 IrDA/CIR receive data, URXD0 (I). This pin is multiplexed between UART0 and TSIF1.
IPD When UART0 IrDA/CIR functional muxing is selected (PINMUX1.UART0CTL = 1x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 CIR transmit data, URCTX0 (O/Z).
This pin is multiplexed between UART0 and TSIF1.
IPU When UART0 IrDA/CIR functional muxing is selected (PINMUX1.UART0CTL = 1x)
DV
DD33
and TSIF1 input on UART0 muxing is not enabled (PINMUX0.TSSIMUX 01), this pin is UART0 IrDA transmit data, UIRTX0 (O/Z).
When UART0 IrDA/CIR functional muxing is selected (PINMUX1.UART0CTL = 1x)
DD33
pin is UART0 IrDA transceiver control, USD0 (O/Z).
www.ti.com
62 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-24. UART1 Terminal Functions
SIGNAL
NAME NO.
Actual UART1 pin functions are determined by the PINMUX0 and PINMUX1 register bit settings. For more details, see
Section 4.7.3, Pin Multiplexing.
URXD1/
TS0_DIN7/ Y18 I/O/Z
GP[23]
UTXD1/ This pin is multiplexed between UART1, TSIF0, and GPIO.
URCTX1/ IPD When UART1 UART functional muxing is selected (PINMUX1.UART1CTL = 0x)
TS0_DOUT7/ DV
AB19 I/O/Z
GP[24] UART1 transmit data, UTXD1 (O/Z).
URTS1 /UIRTX1/
TS0_WAITO/ AA18 I/O/Z
GP[25]
UCTS1 /USD1
TS0_EN_WAITO/ Y17 I/O/Z
GP[26]
URXD1/
TS0_DIN7/ Y18 I/O/Z
GP[23]
UTXD1/ This pin is multiplexed between UART1, TSIF0, and GPIO.
URCTX1/ IPD When UART1 UART functional muxing is selected (PINMUX1.UART1CTL = 0x)
TS0_DOUT7/ DV
AB19 I/O/Z
GP[24] UART1 transmit data, UTXD1 (O/Z).
URXD1/
TS0_DIN7/ Y18 I/O/Z
GP[23]
UTXD1/URCTX1/
TS0_DOUT7/ AB19 I/O/Z
GP[24]
URTS1/UIRTX1/
TS0_WAITO/ AA18 I/O/Z
GP[25]
UCTS1/USD1/
TS0_EN_WAITO/ Y17 I/O/Z
GP[26]
(1) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (2) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
UART1 WITH FLOW CONTROL (PINMUX1.UART1CTL = 00)
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPD When UART1 UART functional muxing is selected (PINMUX1.UART1CTL = 0x)
DV
DD33
DD33
and TSIF0 serial input is not enabled (PINMUX0.PTSIMUX 11), this pin is UART1 receive data, URXD1 (I).
and TSIF0 serial output is not enabled (PINMUX0.PTSIMUX 11), this pin is
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When UART1 UART with flow control muxing is selected (PINMUX1.UART1CTL =
DV
DD33
00) and TSIF0 input is not enabled (PINMUX0.PTSIMUX 0x), this pin is UART1 request-to-send, URTS1 (O/Z).
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When UART1 UART with flow control muxing is selected (PINMUX1.UART1CTL =
DV
DD33
00) and TSIF0 input is not enabled (PINMUX0.PTSIMUX 0x), this pin is UART1 clear-to-send, UCTS1 (I).
UART1 WITHOUT FLOW CONTROL (PINMUX1.UART1CTL = 01)
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPD When UART1 UART functional muxing is selected (PINMUX1.UART1CTL = 0x)
DV
DD33
DD33
and TSIF0 serial input is not enabled (PINMUX0.PTSIMUX 11), this pin is UART1 receive data, URXD1 (I).
and TSIF0 serial output is not enabled (PINMUX0.PTSIMUX 11), this pin is
UART1 IrDA/CIR FUNCTION (PINMUX1.UART1CTL = 10)
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPD When UART1 IrDA/CIR functional muxing is selected (PINMUX1.UART1CTL = 10)
DV
DD33
and TSIF0 serial input is not enabled (PINMUX0.PTSIMUX 11), this pin is UART1 receive data, URXD1 (I).
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPD When UART1 IrDA/CIR functional muxing is selected (PINMUX1.UART1CTL = 10)
DV
DD33
and TSIF0 serial output is not enabled (PINMUX0.PTSOMUX 11), this pin is UART1 CIR transmit data, URCTX1 (O/Z).
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When UART1 IrDA/CIR functional muxing is selected (PINMUX1.UART1CTL = 10)
DV
DD33
and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), this pin is UART1 IrDA transmit data, UIRTX1 (O/Z).
This pin is multiplexed between UART1, TSIF0, and GPIO.
IPU When UART1 IrDA/CIR functional muxing is selected (PINMUX1.UART1CTL = 10)
DV
DD33
and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), this pin is UART1 IrDA tranceiver control, USD1 (O/Z).
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 63
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-25. UART2 Terminal Functions
SIGNAL
NAME NO.
Actual UART2 pin functions are determined by the PINMUX0 and PINMUX1 register bit settings. For more details, see
Section 4.7.3, Pin Multiplexing.
URXD2/ This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
CRG1_VCXI/ IPD When UART2 UART functional muxing is selected (PINMUX1.UART2CTL = 0x)
GP[39]/ DV
AB20 I/O/Z
CRG0_VCXI UART2 receive data, URXD2 (I).
UTXD2/
URCTX2/
CRG1_PO/ AA19 I/O/Z
GP[40]/
CRG0_PO
URTS2 /UIRTX2/
TS0_PSTIN/ AC20 I/O/Z
GP[41]
UCTS2 /USD2/ This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1.
CRG0_VCXI/ IPU When UART2 UART with flow control muxing is selected (PINMUX1.UART2CTL =
GP[42]/ DV
AC21 I/O/Z
TS1_PSTO UART2 clear-to-send, UCTS2 (I).
URXD2/ This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
CRG1_VCXI/ IPD When UART2 UART functional muxing is selected (PINMUX1.UART2CTL = 0x)
GP[39]/ DV
AB20 I/O/Z
CRG0_VCXI UART2 receive data, URXD2 (I).
UTXD2/
URCTX2/
CRG1_PO/ AA19 I/O/Z
GP[40]/
CRG0_PO
URXD2/ This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
CRG1_VCXI/ IPD When UART2 IrDA/CIR functional muxing is selected (PINMUX1.UART2CTL = 10)
GP[39]/ DV
AB20 I/O/Z
CRG0_VCXI UART2 receive data, URXD2 (I).
UTXD2/URCTX2/ This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
CRG1_PO/ IPD When UART2 IrDA/CIR functional muxing is selected (PINMUX1.UART2CTL = 10)
GP[40]/ DV
AA19 I/O/Z
CRG0_PO UART2 CIR transmit data, URCTX2 (O/Z).
URTS2/UIRTX2/
TS0_PSTIN/ AC20 I/O/Z
GP[41]
UCTS2/USD2/ This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1.
CRG0_VCXI/ IPU When UART2 IrDA/CIR functional muxing is selected (PINMUX1.UART2CTL = 10)
GP[42]/ DV
AC21 I/O/Z
TS1_PSTO pin is UART2 IrDA tranceiver control, USD2 (O/Z).
(1) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (2) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2) (3)
UART2 WITH FLOW CONTROL (PINMUX1.UART2CTL = 00)
DD33
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
IPD When UART2 UART functional muxing is selected (PINMUX1.UART2CTL = 0x)
DV
DD33
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is UART2 transmit data, UTXD2 (O/Z).
This pin is multiplexed between UART2, TSIF0, and GPIO.
IPU When UART2 UART with flow control muxing is selected (PINMUX1.UART2CTL =
DV
DD33
DD33
00) and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), this pin is UART2 request-to-send, URTS2 (O/Z).
00) and TSIF1 output is not enabled (PINMUX0.PTSOMUX = 0x), this pin is
UART2 WITHOUT FLOW CONTROL (PINMUX1.UART2CTL = 01)
DD33
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is
This pin is multiplexed between UART2, CRGEN1, GPIO, and CRGEN0.
IPD When UART2 UART functional muxing is selected (PINMUX1.UART2CTL = 0x)
DV
DD33
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is UART2 transmit data, UTXD2 (O/Z).
UART2 IrDA/CIR FUNCTION (PINMUX1.UART2CTL = 10)
DD33
DD33
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is
and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), this pin is the
This pin is multiplexed between UART2, TSIF0, and GPIO.
IPU When UART2 IrDA/CIR functional muxing is selected (PINMUX1.UART2CTL = 10)
DV
DD33
DD33
and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), this pin is UART2 IrDA transmit data, UIRTX2 (O/Z).
and CRGEN0 on TSIF0 output is not enabled (PINMUX0.TSSOMUX = 0x), this
DESCRIPTION
64 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-26. PWM Terminal Functions
SIGNAL
NAME NO.
PWM0/
CRG0_PO/ W17 O/Z
TS1_ENAO
PWM1/
TS1_DOUT DV
W18 O/Z When not overridden by TSIF1 output muxing (PINMUX0.TSSOMUX 11), this pin
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
OTHER
(2)
DESCRIPTION
PWM0
This pin is multiplexed between PWM0, CRGEN0, and TSIF1.
When not overridden by CRGEN or TSIF1 output muxing (PINMUX0.CRGMUX
DV
DD33
10x and PINMUX0.TSSOMUX 11), this pin is the pulse width modulation 0 output, PWM0 (O/Z).
PWM1
This pin is multiplexed between PWM1 and TSIF1.
DD33
is the pulse width modulation 1 output, PWM1 (O/Z).
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 65
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 3-27. Timer 0, Timer 1, and Timer 2 Terminal Functions
SIGNAL
NAME NO.
TINP0L Y7 I/O/Z
TINP0U AA6 I/O/Z
TOUT0L W8 I/O/Z
TOUT0U W7 I/O/Z
TINP1L Y6 I/O/Z
TOUT1L AA5 I/O/Z
TOUT1U AB4 I/O/Z
TOUT2 Y5 I/O/Z Watchdog timer output.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
Timer 0
IPD Timer0 lower input. This pin is the Timer0 input for 64-mode operation. For 32-bit
DV
DD33
timer operation, this pin is the input for the Timer0 lower 32-bit counter.
IPD Timer0 upper input. For 32-bit timer operation, this pin is the input for the Timer0
DV
DD33
upper 32-bit counter. Not used for Timer0 64-mode operation.
IPD Timer0 lower output. This pin is the Timer0 output for 64-mode operation. For 32-bit
DV
DD33
timer operation, this pin is the output for the Timer0 lower 32-bit counter.
IPD Timer0 upper output. For 32-bit timer operation, this pin is the output for the Timer0
DV
DD33
upper 32-bit counter. Not used for Timer0 64-mode operation.
Timer 1
IPD Timer1 lower input. This pin is the Timer1 input for 64-mode operation. For 32-bit
DV
DD33
timer operation, this pin is the input for the Timer1 lower 32-bit counter.
IPD Timer1 lower output. This pin is the Timer1 output for 64-mode operation. For 32-bit
DV
DD33
timer operation, this pin is the output for the Timer1 lower 32-bit counter.
IPD Timer1 upper output. For 32-bit timer operation, this pin is the output for the Timer1
DV
DD33
upper 32-bit counter. Not used for Timer1 64-mode operation.
WATCHDOG TIMER (Timer 2)
IPD
DV
DD33
66 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-28. ATA Terminal Functions
SIGNAL
NAME NO.
ATA is enabled by the PINMUX0.ATAEN =1 (and PCIEN = 0). For more detailed information on the ATA pin muxing, see Section 4.7.3.1, PCI, HPI, EMIFA, and ATA Pin Muxing.
PCI_CBE0/ ATA_CS0 / F4 I/O/Z
GP[33]/EM_A[18]
PCI_CBE1/ ATA_CS1 / C2 I/O/Z
GP[32]/EM_A[19]
PCI_RSV4/ DIOW / IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA. GP[20]/EM_WAIT4 DV
PCI_RSV3/ DIOR / IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA. GP[19]/EM_WAIT5 DV
PCI_RSV5/IORDY/ IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA. GP[21]/EM_WAIT3 DV
A11 I/O/Z
E10 I/O/Z
D11 I/O/Z
PCI_RST/
DA2/ C10 I/O/Z
GP[13]/EM_A[22]
PCI_RSV0/DA1/ IPD This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[16]/EM_A[21] DV
PCI_RSV1/DA0/ IPD This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[17]/EM_A[20] DV
PCI_RSV2/INTRQ/ IPD This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
GP[18]/EM_RSV0 DV
A9 I/O/Z
E9 I/O/Z
B10 I/O/Z
PCI_REQ/
DMARQ/ B9 I/O/Z
GP[11]/EM_CS5
PCI_GNT/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DMACK / D10 I/O/Z When ATA is enabled, this pin is the ATA DMA acknowledge output, DMACK
GP[12]/EM_CS4 (O/Z).
PCI_IDSEL/ This pin is multiplexed between PCI, ATA, and EMIFA.
HDDIR/ E8 I/O/Z When ATA is enabled, this pin is the data direction indicator for external buffer
EM_R/W control, HDDIR (O/Z).
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
ATA
IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DV
DD33
When ATA is enabled, this pin is ATA chip select 0 output, ATA_CS0 (O/Z).
IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DV
DD33
DD33
DD33
DD33
When ATA is enabled, this pin is ATA chip select 1 output, ATA_CS1 (O/Z).
When ATA is enabled, this pin is the ATA write strobe output, DIOW (O/Z).
When ATA is enabled, this pin is the ATA read strobe output, DIOR (O/Z).
When ATA is enabled, this pin is ATA I/O ready, IORDY (I).
IPD This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DV
DD33
DD33
DD33
DD33
When ATA is enabled, this pin is ATA address bit 2, DA2 (O/Z).
When ATA is enabled, this pin is ATA address bit 1, DA1 (O/Z).
When ATA is enabled, this pin is ATA address bit 0, DA0 (O/Z).
When ATA is enabled, this pin is the ATA interrupt request input, INTRQ (I).
IPU This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DV
DD33
When ATA is enabled, this pin is the ATA DMA request input, DMARQ (I).
IPU
DV
DD33
IPU
DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 67
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-28. ATA Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_AD31/
DD15/ A8
HD31/ EM_A[15]
PCI_AD30/
DD14/ C9
HD30/EM_A[14]
PCI_AD29/
DD13/ B8
HD29/EM_A[13]
PCI_AD28/
DD12/ D9
HD28/EM_A[12]
PCI_AD27/
DD11/ A6
HD27/EM_A[11]
PCI_AD26/
DD10/ C8
HD26/EM_A[10]
PCI_AD25/
DD9/ B6
HD25/EM_A[9]
PCI_AD24/
DD8/ D8
HD24/EM_A[8]
PCI_AD23/
DD7/ B5
HD23/EM_A[7]
PCI_AD22/
DD6/ C7
HD22/EM_A[6]
PCI_AD21/
DD5/ C5
HD21/EM_A[5]
PCI_AD20/
DD4/ D7
HD20/EM_A[4]
PCI_AD19/
DD3/ A4
HD19/EM_A[3]
PCI_AD18/
DD2/ E7
HD18/EM_A[2]
PCI_AD17/
DD1/ B4
HD17/EM_A[1]
PCI_AD16/
DD0/ C6
HD16/EM_A[0]
(1)
TYPE
I/O/Z When ATA is enabled, these pins are the ATA 16-bit bidirectional data bus,
OTHER
IPD
DV
DD33
(2) (3)
These pins are multiplexed between PCI, ATA, HPI, and EMIFA. DD[15:0] (I/O/Z).
DESCRIPTION
www.ti.com
68 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-29. General Purpose Input/Output (GPIO) Terminal Functions
SIGNAL
NAME NO.
The DM6467T device does not support GP[47:43], GP[35:34], GP[31:27], GP[15:14], and GP[9] signals (not pinned out). GP[7:0] pins have dedicated ARM926 and DSP interrupts. When PCI is used, GP[19:16] pins are reserved.
GP[0] W5 I/O/Z GP[0] (I/O/Z). This pin is general-purpose input/output 0.
GP[1] V5 I/O/Z GP[1] (I/O/Z). This pin is general-purpose input/output 1.
GP[2]/ IPD This pin is multiplexed between GPIO and the audio clock selector.
AUDIO_CLK1 DV
GP[3]/ IPD This pin is multiplexed between GPIO and the audio clock selector.
AUDIO_CLK0 DV
GP[4]/ IPD
STC_CLKIN DV
AA4 I/O/Z
AB3 I/O/Z
AC3 I/O/Z When the STC source clock input is disabled (PINMUX0.STCCK = 0), this pin is
GP[5] B11 I/O/Z This pin is GP[5] (I/O/Z).
GP[6] E11 I/O/Z This pin is GP[6] (I/O/Z).
GP[7] A12 I/O/Z This pin is GP[7] (I/O/Z).
URIN0/GP[8]/ IPD When UART0 UART with modem functional muxing is not selected
TS1_WAITIN DV
Y11 I/O/Z
GP[9] n/a GP[9] is not pinned out on this device.
PCI_CLK/GP[10] A10 I/O/Z
PCI_REQ/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DMARQ/ B9 I/O/Z When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1,
GP[11]/EM_CS5 PINMUX0.ATAEN = 0), this pin is GP[11] (I/O/Z).
PCI_GNT/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DMACK/ D10 I/O/Z When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1,
GP[12]/EM_CS4 PINMUX0.ATAEN = 0), this pin is GP[12] (I/O/Z).
PCI_RST/ This pin is multiplexed between PCI, ATA, GPIO, and EMIFA.
DA2/ C10 I/O/Z When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1,
GP[13]/EM_A[22] PINMUX0.ATAEN = 0), this pin is GP[13] (I/O/Z).
GP[14:15] n/a GP[14:15] are not pinned out on this device.
PCI_RSV0/DA1/
GP[16]/ A9 I/O/Z
EM_A[21]
PCI_RSV1/DA0/ IPD
GP[17]/EM_A[20] DV
E9 I/O/Z
PCI_RSV2/
INTRQ/ IPD
GP[18]/ DV
B10 I/O/Z
EM_RSV0
PCI_RSV3/DIOR/
GP[19]/ E10 I/O/Z
EM_WAIT5
TYPE
(1)
(2) (3)
OTHER
DESCRIPTION
GPIO
IPD
DV
DD33
IPD
DV
DD33
DD33
DD33
When audio clock 1 is disabled (PINMUX0.AUDCK1 = 0), this pin is GP[2] (I/O/Z).
When audio clock 0 is disabled (PINMUX0.AUDCK0 = 0), this pin is GP[3] (I/O/Z). This pin is multiplexed between GPIO and the TSIF clock selector.
DD33
GP[4] (I/O/Z).
IPD
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
This pin is multiplexed between UART0, GPIO, and TSIF1.
DD33
(PINMUX1.UART0CTL = 00) and TSIF1 output on UART/PWM muxing is not enabled (PINMUX0.TSSOMUX 11), this pin is GP[8] (I/O/Z).
IPU This pin is multiplexed between PCI and GPIO.
DV
DD33
When PCI is disabled (PINMUX0.PCIEN = 0), this pin is GP[10] (I/O/Z).
IPU
DV
DD33
IPU
DV
DD33
IPD
DV
DD33
IPD
DV
DD33
DD33
These pins are multiplexed between PCI, ATA, GPIO, and EMIFA. When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1, PINMUX0.ATAEN = 0), these pins are GP[16:19] (I/0/Z). When PCI mode is enabled
DD33
(PINMUX0.PCIEN = 1), these pins are reserved.
IPU
DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 4.8.1, Pullup/Pulldown Resistors. (3) Specifies the operating I/O supply voltage for each signal
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 69
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-29. General Purpose Input/Output (GPIO) Terminal Functions (continued)
SIGNAL
NAME NO.
PCI_RSV4/
DIOW/ IPU
GP[20]/ DV
A11 I/O/Z EM_WAIT4 PCI_RSV5/
IORDY/ IPU
GP[21]/ DV
D11 I/O/Z EM_WAIT3
USB_DRVVBUS/ IPD This pin is multiplexed between USB and GPIO.
GP[22] DV
B18 I/O/Z
URXD1/ This pin is multiplexed between UART1, TSIF0, and GPIO.
TS0_DIN7/ Y18 I/O/Z When UART1 GPIO muxing is selected (PINMUX1.UART1CTL = 11) and TSIF0
GP[23] serial input is not enabled (PINMUX0.PTSIMUX 11), this pin is GP[23] (I/O/Z).
UTXD1/
URCTX1/ IPD
TS0_DOUT7/ DV
AB19 I/O/Z When UART1 GPIO muxing is selected (PINMUX1. UART1CTL = 11) and TSIF0
GP[24]
URTS1/
UIRTX1/ IPD
TS0_WAITO/ DV
AA18 I/O/Z
GP[25]
UCTS1/USD1/
TS0_EN_WAITO/ Y17 I/O/Z
GP[26]
GP[27:31] n/a GP[27:31] are not pinned out on this device.
PCI_CBE1/
ATA_CS1/ IPU
GP[32]/ DV
C2 I/O/Z
EM_A[19]
PCI_CBE0/
ATA_CS0/ IPU
GP[33]/ DV
F4 I/O/Z
EM_A[18]
GP[34:35] n/a GP[34:35] are not pinned out on this device.
UDTR0/
TS0_ENAO/ Y12 I/O/Z
GP[36]
UDSR0/
TS0_PSTO/ AB11 I/O/Z
GP[37]
UDCD0/
TS0_WAITIN/ AA11 I/O/Z
GP[38]
URXD2/
CRG1_VCXI/ IPD
GP[39]/ DV
AB20 I/O/Z
CRG0_VCXI
UTXD2/URCTX2/
CRG1_PO/ IPD
GP[40]/ DV
AA19 I/O/Z
CRG0_PO
URTS2/UIRTX2/
TS0_PSTIN/ AC20 I/O/Z
GP[41]
UCTS2/USD2/
CRG0_VCXI/ IPU
GP[42]/ DV
AC21 I/O/Z (PINMUX1.UART2CTL = x1) and CRGEN0 on UART2/PWM muxing is not enabled
TS1_PSTO
TYPE
(1)
(2) (3)
OTHER
DD33
These pins are multiplexed between PCI, ATA, GPIO, and EMIFA.
DESCRIPTION
When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1, PINMUX0.ATAEN = 0), these pins are GP[20:21] (I/0/Z).
DD33
DD33
When not used for USB (PINMUX0.VBUSDIS = 1), this pin is GP[22] (I/O/Z).
IPD
DV
DD33
This pin is multiplexed between UART1, TSIF0, and GPIO.
DD33
DD33
serial input is not enabled (PINMUX0.PTSIMUX 11), this pin is GP[24] (I/O/Z).
These pins are multiplexed between UART1, TSIF0, and GPIO. When UART1 GPIO muxing is selected (PINMUX1.UART1CTL = 11) and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), these pins are GP[25:26] (I/O/Z).
These pins are multiplexed between PCI, ATA, GPIO, and EMIFA.
DV
IPU
DD33
DD33
When 32-bit HPI mode is enabled (PINMUX0.PCIEN = 0, PINMUX0.HPIEN = 1, PINMUX0.ATAEN = 0), these pins are GP[32:33] (I/O/Z).
DD33
IPU
DV
DD33
These pins are multiplexed between UART0, TSIF0, and GPIO.
IPU When UART0 UART with modem functional muxing is not selected
DV
DD33
(PINMUX1.UART0CTL 00) and TSIF0 output muxing is not enabled (PINMUX0.PTSOMUX 1x), these pins are GP[36:38] (I/O/Z).
IPU
DV
DD33
DD33
These pins are multiplexed between UART2, CRGEN1, GPIO, and CRGEN0. When UART2 UART GPIO muxing is selected (PINMUX1.UART2CTL = 11) and CRGEN0/1 are not enabled (PINMUX0.CRGMUX x01, 110), these pins are GP[39:40] (I/O/Z).
DD33
This pin is multiplexed between UART2, TSIF0, and GPIO.
IPU When UART2 UART without flow control or GPIO muxing is selected
DV
DD33
(PINMUX1.UART2CTL = x1) and TSIF0 input is not enabled (PINMUX0.PTSIMUX = 0x), this pin is GP[41] (I/O/Z).
This pin is multiplexed between UART2, CRGEN0, GPIO, and TSIF1. When UART2 UART without flow control or GPIO muxing is selected
DD33
(PINMUX0.CRGMUX 10x) and TSIF1 output is not enabled (PINMUX0.TSSOMUX = 0x), this pin is GP[42] (I/O/Z).
www.ti.com
70 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 3-29. General Purpose Input/Output (GPIO) Terminal Functions (continued)
SIGNAL
NAME NO.
GP[43:47] n/a GP[43:47] are not pinned out on this device.
TYPE
(1)
OTHER
(2) (3)
SPRS605B–JULY 2009–REVISED JULY 2010
DESCRIPTION
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 71
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-30. Reserved Terminal Functions
SIGNAL
NAME NO.
RSV1 A1 Reserved. For proper device operation, this pin must be tied directly to VSS. RSV2 A2 Reserved. For proper device operation, this pin must be tied directly to VSS. RSV3 A22 Reserved. For proper device operation, this pin must be tied directly to VSS. RSV4 A23 Reserved. (Leave unconnected, do not connect to power or ground.) RSV5 D14 Reserved. (Leave unconnected, do not connect to power or ground.) RSV6 F17 Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV7 G16 Reserved. For proper device operation, this pin must be tied directly to CVDD.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
TYPE
(1)
OTHER DESCRIPTION
RESERVED
www.ti.com
72 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-31. Supply Terminal Functions
SIGNAL
NAME NO.
B7 F8
F9 F10 F11 F12 F13 F14 F15 F16
G7
H6
J6
K6
K7
DV
DD33
M3 S
R7
T7
U7
V7
V8 V17
W9 W10 W11 W12 W13 W14 W15 W16
AA12
B20 E21 G17 G19
DV
DDR2
H17
J17
K17 K21 P21 R17
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
TYPE
S
(1)
OTHER DESCRIPTION
SUPPLY VOLTAGE PINS
3.3-V I/O supply voltage (see the Power-Supply Decoupling section of this data manual)
1.8-V DDR2 I/O supply voltage (see the Power-Supply Decoupling section of this data manual)
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 73
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-31. Supply Terminal Functions (continued)
SIGNAL
NAME NO.
DV
DDR2
CV
DD
R18 T18 T19 U19
W21
AA20
G10 G11 G12 G13 G14 G15
H14 H15 H16
K10 K11 K13 K14 K15 K16
P10 P11 P13 P14 P15
TYPE
S
G8 G9
H7 H8 H9
J7 J8
J9 J10 J11 J13 S J14 J15 J16
K8
K9
P7
P8
P9
(1)
OTHER DESCRIPTION
1.8-V DDR2 I/O supply voltage (see the Power-Supply Decoupling section of this data manual)
1.3-V core supply voltage (-1G devices) (see the Power-Supply Decoupling section of this data manual)
www.ti.com
74 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
NAME NO.
CV
DD
SIGNAL
R8
R9
R10 R11 R13 R14 R15
T8
T9
T10 T11 T13 T14 T15
U8
U9
U10 U14 U15 U16
V9
V10 V11 V12 V13 V14 V15 V16
Table 3-31. Supply Terminal Functions (continued)
(1)
TYPE
S
OTHER DESCRIPTION
1.3-V core supply voltage (-1G devices) (see the Power-Supply Decoupling section of this data manual)
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 75
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-32. Ground Terminal Functions
SIGNAL
NAME NO.
A7
A14 A18 A21
B1
B19 B23 C19 D19 E19 E22
F6
F7
F19
G6
G18
H5
H10 H11 H12 H13
V
SS
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
H18 GND Ground pins H19
J5 J12 J18
K5
K12 K18 K22
L5
L6
L7
L8
L9 L10 L11 L12 L13 L14 L15 L16 L17
TYPE
(1)
OTHER DESCRIPTION
GROUND PINS
www.ti.com
76 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
NAME NO.
V
SS
SIGNAL
L18 M2 M5 M6 M7 M8 M9
M10 M11 M12 M13 M14 M15 M16 M17 M18
N5
N6
N7
N8
N9
N10 N11 N12 N13 N14 N15 N16 N17 N18
P6
P12 P16 P17 P18 P22
R6
R12 R16
T6
T12 T16 T17
U6
U11 U12
Table 3-32. Ground Terminal Functions (continued)
(1)
TYPE
GND Ground pins
OTHER DESCRIPTION
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 77
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 3-32. Ground Terminal Functions (continued)
SIGNAL
NAME NO.
V
SS
U13 U17 U18
V18
V19 W19 W22
Y19 GND Ground Pins
AB1
AB12 AB21 AB23
AC1 AC2
AC22 AC23
TYPE
V6
(1)
OTHER DESCRIPTION
www.ti.com
78 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

3.8 Device Support

3.8.1 Development Support

TI offers an extensive line of development tools for the TMS320DM646x DMSoC platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of TMS320DM646x SoC-based applications:
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target
software needed to support any SoC application.
Hardware Development Tools:
Extended Development System (XDS™) Emulator For a complete listing of development-support tools for the TMS320DM646x DMSoC platform, visit the
Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.
SPRS605B–JULY 2009–REVISED JULY 2010

3.8.2 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g.,TMX320DM6467TZUT). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical
specifications.
TMP Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
TMS Fully-qualified production device. Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS Fully qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 79
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
PREFIX
TMS
320 DM6467T
ZUT
TMX = Experimental device TMS = Qualified device
DEVICE FAMILY
32 320 = TMS320™ DSP familyor
PACKAGE TYPE
(A)
ZUT = 529-pin plastic BGA, with Pb-Free soldered balls [Green]
C64x+™ DSP:
DM6467T
DEVICE
A. BGA = Ball Grid Array B. For actual device part numbers (P/Ns) and ordering information, see the TI website (http://www.ti.com)
DEVICE SPEED RANGE
(C)
1 = 1-GHz DSP, 500-MHz ARM9, 150-MHz VPIF, 400-MHz DDR2
TEMPERATURE RANGE
( )( )
SILICON REVISION
Blank = Revision 3.0
Blank= 0° C to 85° C, Commercial Temperature
D =-40° C to 85° C, Industrial Temperature
TMX
Blank = Revision 3.0
TMS
1
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZUT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz or gigahertz (for example, "1" is the default [1-GHz DSP, 500-MHz ARM9]).
Figure 3-8 provides a legend for reading the complete device name for any TMS320DM6467T DMSoC
platform member.
www.ti.com
Figure 3-8. Device Nomenclature
80 Device Overview Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
(A)(B)
TMS320DM6467T
www.ti.com

3.9 Documentation Support

3.9.1 Related Documentation From Texas Instruments

The following documents describe the TMS320DM646x Digital Media System-on-Chip (DMSoC). Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.
The current documentation that describes the DM646x DMSoC, related peripherals, and other technical collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.
SPRUEP8 TMS320DM646x DMSoC DSP Subsystem Reference Guide. Describes the digital signal
processor (DSP) subsystem in the TMS320DM646x Digital Media System-on-Chip (DMSoC).
SPRUEP9 TMS320DM646x DMSoC ARM Subsystem Reference Guide. Describes the ARM
subsystem in the TMS320DM646x Digital Media System-on-Chip (DMSoC). The ARM subsystem is designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is responsible for configuration and control of the device; including the DSP subsystem and a majority of the peripherals and external memories.
SPRUEQ0 TMS320DM646x DMSoC Peripherals Overview Reference Guide. Provides an overview
and briefly describes the peripherals available on the TMS320DM646x Digital Media System-on-Chip (DMSoC).
SPRAA84 TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the Texas
Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The objective of this document is to indicate differences between the two cores. Functionality in the devices that is identical is not included.
SPRS605B–JULY 2009–REVISED JULY 2010
SPRU732 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of the C64x DSP with added functionality and an expanded instruction set.
SPRU871 TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.
SPRAAV0 Understanding TI's PCB Routing Rule-Based DDR Timing Specification Application
Report This application report describes the way the DDR high-speed timing requirements are now going to be communicated to system designers. The system designer uses this information to evaluate whether timing specifications are met and can be expected to operate reliably.
Copyright © 2009–2010, Texas Instruments Incorporated Device Overview 81
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com

4 Device Configurations

4.1 System Module Registers

The system module includes status and control registers for configuration of the device.Brief descriptions of the various registers are shown in Table 4-1. System Module registers required for device configurations are discussed in the following sections.
Table 4-1. System Module Register Memory Map
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C4 0000 PINMUX0 Pin Multiplexing Control 0 (see Section 4.7.2.1, PINMUX0 Register). 0x01C4 0004 PINMUX1 Pin Multiplexing Control 1 (see Section 4.7.2.2, PINMUX1 Register). 0x01C4 0008 DSPBOOTADDR DSP Boot Address. Decoded by bootloader software for host boots.
0x01C4 000C SUSPSRC Emulator Suspend Source (see Section 4.7.3.12, Emulation Control). 0x01C4 0010 BOOTSTAT Boot Status (see Section 4.4.2.2, BOOTSTAT Register). 0x01C4 0014 BOOTCFG Device Boot Configuration (see Section 4.4.2.3, BOOTCFG Register). 0x01C4 0018 Reserved 0x01C4 001C - 0x01C4 0020 Reserved 0x01C4 0024 ARMBOOT ARM926 Boot Control (see Section 4.4.2.4, ARMBOOT Register). 0x01C4 0028 JTAGID Device ID Number [see Section 7.29.1, JTAG ID (JTAGID) Register
0x01C4 002C Reserved 0x01C4 0030 HPICTL HPI Control (see Section 4.6.2.1, HPICTL Register). 0x01C4 0034 USBCTL USB Control (see Section 4.6.2.2, USBCTL Register). 0x01C4 0038 VIDCLKCTL Video Clock Control (see Section 4.3.2.1, Video Clock Control). 0x01C4 003C MSTPRI0 Bus Master Priority Control 0 (see Section 4.6.1, Switch Central
0x01C4 0040 MSTPRI1 Bus Master Priority Control 1 (see Section 4.6.1, Switch Central
0x01C4 0044 MSTPRI2 Bus Master Priority Control 2 (see Section 4.6.1, Switch Central
0x01C4 0048 VDD3P3V_PWDN VDD3.3-V I/O Powerdown Control (see Section 4.2, Power
0x01C4 004C Reserved 0x01C4 0050 TSIFCTL TSIF Control Register (see Section 4.3.2.2, TSIF Control). 0x01C4 0054 PWMCTL PWM Control (see Section 4.6.2.3, PWM (Trigger Source) Control
0x01C4 0058 EDMATCCFG EDMA TC Configuration (see Section 4.6.2.4, EDMATCCFG
0x01C4 005C CLKCTL Oscillator and Output Clock Control (see Section 4.3.3, Clock and
0x01C4 0060 DSPINT ARM to DSP Interrupt Status (see Section 4.7.3.11, ARM/DSP
0x01C4 0064 DSPINTSET ARM to DSP Interrupt Set (see Section 4.7.3.11, ARM/DSP
0x01C4 0068 DSPINTCLR ARM to DSP Interrupt Clear (see Section 4.7.3.11, ARM/DSP
0x01C4 006C VSCLKDIS Video and TSIF Clock Disable (see Section 4.3.2.3, Video and TSIF
0x01C4 0070 ARMINT DSP to ARM Interrupt Status (see Section 4.7.3.11, ARM/DSP
0x01C4 0074 ARMINTSET DSP to ARM Interrupt Set (see Section 4.7.3.11, ARM/DSP
(See Section 4.4.2.1, DSPBOOTADDR Register.)
Description(s)].
Resource (SCR) Bus Priorities).
Resource (SCR) Bus Priorities).
Resource (SCR) Bus Priorities).
Considerations).
Register).
Register).
Oscillator Control).
Communications Interrupts).
Communications Interrupts).
Communications Interrupts).
Clock Disable).
Communications Interrupts).
Communications Interrupts).
82 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
Table 4-1. System Module Register Memory Map (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x01C4 0078 ARMINTCLR DSP to ARM Interrupt Clear (see Section 4.7.3.11, ARM/DSP
0x01C4 007C ARMWAIT ARM Memory Wait State Control (see Section 4.4.2.5, ARMWAIT
0x01C4 0080 - 0x01C4 03FF Reserved
Communications Interrupts).
Register).
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 83
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010

4.2 Power Considerations

The DM6467T provides several means of managing power consumption. As described in the Section 7.3.4, DM6467T Power and Clock Domains, the DM6467T has one single
power domain—the “Always On” power domain. Within this power domain, the DM6467T utilizes local clock gating via the Power and Sleep Controller (PSC) to achieve power savings. For more details on the PSC, see Section 7.3.5, Power and Sleep Controller (PSC) and the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number SPRUEP9).
Some of the DM6467T peripherals support additional power saving features. For more details on power saving features supported, see the peripheral-specific reference guides [listed/linked in the TMS320DM646x DMSoC Peripherals Overview Reference Guide (literature number SPRUEQ0).
Most DM6467T 3.3-V I/Os can be powered-down to reduce power consumption. The VDD3P3V_PWDN register in the System Module (see Figure 4-1 ) is used to selectively power down unused 3.3-V I/O pins.
Note: To save power, all other I/O buffers are powered down by default. Before using these pins, the user must program the VDD3P3V_PWDN register to power up the corresponding I/O buffers.
For a list of multiplexed pins on the device and the pin mux group each pin belongs to, see Section 4.7.3, Pin Multiplexing Details.
Note: The VDD3P3V_PWDN register only controls the power to the I/O buffers. The Power and Sleep Controller (PSC) determines the clock/power state of the peripheral.
www.ti.com
31 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RESERVED USBV CLKOUT RSV SPI VLYNQ RESERVED GMII MII MCASP1 MCASP0 PCIHPI1 PCIHPI0
R-000 R/W-1 R/W-0 R-0 R/W-1 R/W-1 R-00 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPIO WDTIM TIM23 TIM01 PWM1 PWM0 UR2FC UR2DAT UR1FC UR1DAT UR0MDM UR0DF VPIF3 VPIF2 VPIF1 VPIF0
R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-1. VDD3P3V_PWDN Register [0x01C4 0048]
84 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 4-2. VDD3P3V_PWDN Register Bit Descriptions
BIT NAME DESCRIPTION
31:29 RESERVED Reserved. Read returns "0".
USB_DRVVBUS Powerdown Control.
28 USBV
27 CLKOUT 26 RSV Reserved. Read returns "0".
25 SPI This bit controls the six SPI interface pins: SPI_CLK, SPI_EN, SPI_CS0, SPI_CS1, SPI_SOMI, and
24 VLYNQ This bit controls the ten VLYNQ interface pins: VLYNQ_CLOCK, VLYNQ_SCRUN,
23:22 RESERVED Reserved. Read returns "0".
21 GMII This bit controls the ten pins used by GMII (Gigabit) only: RFTCLK, GMTCLK, MTXD[7:4], and
20 MII This bit controls the 17 pins used by (G)MII (10/100/1000) and MDIO interfaces: MTCLK,
19 MCASP1
18 MCASP0 This bit controls the 12 McASP0 pins: ACLKR0, AHCLKR0, AFSR0, ACLKX0, AHCLKX0, AFSX0,
17 PCIHPI1 PCI_CBE1/ATA_CS1/GP[32]/EM_A[19], PCI_CBE0/ATA_CS0/GP[33]/EM_A[18],
16 PCIHPI0
15 GPIO
14 WDTIM
13 TIM23
12 TIM01
11 PWM1
10 PWM0
9 UR2FC This bit controls the URTS2/UIRTX2/TS0_PSTIN/GP[41] and
0 = I/O cells powered up. 1 = I/O cells powered down. This bit controls the USB_DRVVBUS/GP[22] pin.
CLKOUT0 Powerdown Control. This bit controls the CLKOUT0 pin.
SPI Powerdown Control. SPI_SIMO.
VLYNQ Powerdown Control. VLYNQ_TXD[3:0], and VLYNQ_RXD[3:0].
GMII Powerdown Control. MRXD[7:4].
MII Powerdown Control. MTXD[3:0], MTXEN, MCOL, MCRS, MRCLK, MRXD[3:0], MRXDV, MRXER, MDCLK, and MDIO.
McASP1 Powerdown Control. This bit controls the three McASP1 pins: ACLKX1, AHCLKX1, and AXR1[0].
McASP0 Powerdown Control. AXR0[3:0], AMUTE0, and AMUTEIN0.
PCI/HPI/EMIFA/ATA Powerdown Control. This bit controls the 28 pins used by the ATA or PCI`, HPI, or EMIFA. These pins include: PCI_RST/DA2/GP[13]/EM_A[22], PCI_IDSEL/HDDIR/EM_R/W, PCI_REQ/DMARQ/GP[11]/EM_CS5, PCI_GNT/DMACK/GP[12]/EM_CS4,
DIOW/GP[20]/EM_WAIT4/(RDY4/BSY4), IORDY/GP[21]/EM_WAIT3/(RDY3/BSY3), DIOR/GP[19]/EM_WAIT5/(RDY5/BSY5), DA1/GP[16]/EM_A[21], DA0/GP[17]/EM_A[20], INTRQ/GP[18]/RSV , PCI_AD[31:16]/DD[15:0]/HD[31:16]/EM_A[15:0] Defaults to powered up for NOR boot.
PCI/HPI/EMIFA Powerdown Control. This bit controls the 28 pins used by PCI, HPI, or EMIFA but not shared with ATA. These pins include: PCI_CLK/GP[10], PCI_DEVSEL/HCNTL1/EM_BA[1], PCI_FRAME/HINT/EM_BA[0], PCI_IRDY/HRDY/EM_A[17]/(CLE), PCI_TRDY/HHWIL/EM_A[16]/(ALE), PCI_STOP/HCNTL0/EM_WE, PCI_SERR/HDS1/EM_OE, PCI_PERR/HCS/EM_DQM1, PCI_PAR/HAS/EM_DQM0, PCI_INTA/EM_WAIT2/(RDY2/BSY2), PCI_CBE3/HR/W/EM_CS3, PCI_CBE2/HDS2/EM_CS2, PCI_AD[15:0]/HD[15:0]/EM_D[15:0] Defaults to powered up for NOR boot.
GPIO Powerdown Control. This bit controls the eight GP[7:0] pins. Defaults to powered up.
WD Timer Powerdown Control. This bit controls the WD Timer pin TOUT2.
Timer1 Powerdown Control. This bit controls the three Timer1 pins TINP1L, TOUT1L, and TOUT1U.
Timer0 Powerdown Control. This bit controls the four Timer0 pins TINP0L, TINP0U, TOUT0L, and TOUT0U.
PWM1 Powerdown Control. This bit controls the PWM1/TS1_DOUT pin.
PWM0 Powerdown Control. This bit controls the PWM0/CRG0_PO/TS1_ENAO pin.
UART2 Flow Control Powerdown Control. UCTS2/USD2/CRG0_VCXI/GP[42]/TS1_PSTO pins.
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 85
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
Table 4-2. VDD3P3V_PWDN Register Bit Descriptions (continued)
BIT NAME DESCRIPTION
8 UR2DAT This bit controls the URXD2/CRG1_VCXI/GP[39]/CRG0_VCXI and
7 UR1FC This bit controls the URTS1/UIRTX1/TS0_WAITO/GP[25] and
6 UR1DAT
5 UR0MDM This bit controls the UDTR0/TS0_ENAO/GP[36], UDSR0/TS0_PSTO/GP[37],
4 UR0DF This bit controls the URXD0/TS1_DIN, UTXD0/URCTX0/TS1_PSTIN,
3 VPIF3 This bit controls the VP_DOUT[15:8]/TS1_xx, VP_CLKIN3/TS1_CLKO, and VP_CLKO3/TS0_CLKO
2 VPIF2 This bit controls the VP_DOUT[7:0], VP_CLKIN2, and VP_CLKO2 pins. (VP_DOUT[7:0] are boot
1 VPIF1
0 VPIF0 This bit controls the VP_DIN[3:0]/TS0_DOUT[3:0], VP_DIN[7:4]/TS0_DOUT[7:4]/TS1_xx, and
UART2 Data Powerdown Control. UTXD2/URCTX2/CRG1_PO/GP[40]/CRG0_PO pins.
UART1 Flow Control Powerdown Control. UCTS1/USD1/TS0_EN_WAITO/GP[26] pins.
UART1 Data Powerdown Control. This bit controls the URXD1/TS0_DIN7/GP[23] and UTXD1/URCTX1/TS0_DOUT7/GP[24] pins.
UART0 Modem Control Powerdown Control. UDCD0/TS0_WAITIN/GP[38], and URIN0/GP[8]/TS1_WAITIN pins.
UART0 Data and Flow Control Powerdown Control. URTS0/UIRTX0/TS1_EN_WAITO, and UCTS0/USD0 pins.
VPIF MSB Output Powerdown Control. pins.
VPIF LSB Output Powerdown Control. configuration inputs.)
VPIF MSB Input Powerdown Control. This bit controls the VP_DIN[15:8]/TS0_DIN[7:0] and VP_CLKIN1 pins.
VPIF LSB Input Powerdown Control. VP_CLKIN0 pins.
www.ti.com
86 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com

4.3 Clock Considerations

Global device and local peripheral clocks are controlled by the PLL Controllers (PLLC1 and PLLC2) and the Power and Sleep Controller (PSC). In addition, the System Module Video Clock Control (VIDCLKCTL), TSIF Control (TSIFCTL), and Clock and Oscillator Control (CLKCTL) registers configure the clock sources to the VPIF, TSIF, CRGEN peripherals, and the Auxiliary Oscillator.
The selected Video, TSIF, and CRGEN module input clocks are disabled using the System Module Video Source Clock Disable (VSCLKDIS) register. Note: To ensure glitch-free operation, the clock should be disabled before changing the clock source frequency or muxing via the VIDCLKCTL and TSIFCTL.

4.3.1 Clock Configurations after Device Reset

After device reset, the user is responsible for programming the PLL Controllers (PLLC1 and PLLC2) and the Power and Sleep Controller (PSC) to bring the device up to the desired clock frequency and the desired peripheral clock state (clock gating or not).
For additional power savings, some of the DM6467T peripherals support clock gating within the peripheral boundary. For more details on clock gating and power saving features supported by a specific peripheral, see the peripheral-specific reference/user's guides [listed/linked in the TMS320DM646x DMSoC Peripherals Overview Reference Guide (literature number SPRUEQ0)].
4.3.1.1 Device Clock Frequency
The DM6467T defaults to PLL bypass mode. If the ROM bootloader is selected (BTMODE[3:0] 0100), the bootloader code programs PLLC1 and PLLC2.
SPRS605B–JULY 2009–REVISED JULY 2010
Section 4.4.1, Boot Modes discusses the different boot modes in more detail.
The user must adhere to the various clock requirements when programming the PLLC1 and PLLC2:
PLL multiplier and frequency ranges. For more details on PLL multiplier and frequency ranges, see
Section 7.5.1, PLL1 and PLL2.
4.3.1.2 Module Clock State
The clock and reset state for each of the modules is controlled by the Power and Sleep Controller (PSC).
Table 4-3 shows the default state of each module after a device-level global reset. The DM6467T device
has four different module states—Enable, Disable, SyncReset, or SwRstDisable. For more information on the definitions of the module states, the PSC, and PSC programming, see Section 7.3.5, Power and Sleep Controller (PSC) and the TMS320DM646x DMSoC ARM Subsystem Reference Guide (literature number
SPRUEP9).
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 87
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
Table 4-3. DM6467T Default Module States
LPSC # MODULE NAME
0 ARM Enable
DSP C64x+ If DSPBOOT = 0 then, Enable and Module Local Reset is asserted
1
2 HDVICP0 SwRstDisable 3 HDVICP1 SwRstDisable 4 EDMACC SwRstDisable 5 EDMATC0 SwRstDisable 6 EDMATC1 SwRstDisable 7 EDMATC2 SwRstDisable 8 EDMATC3 SwRstDisable
9 USB2.0 SwRstDisable 10 ATA SwRstDisable 11 VLYNQ SwRstDisable 12 HPI SwRstDisable 13 PCI SwRstDisable 14 EMAC/MDIO SwRstDisable 15 VDCE SwRstDisable
16 – 17 Video Port
18 TSIF0 SwRstDisable 19 TSIF1 SwRstDisable 20 DDR2 Memory Contoller SwRstDisable
21 EMIFA 22 McASP0 SwRstDisable
23 McASP1 SwRstDisable 24 CRGEN0 SwRstDisable 25 CRGEN1 SwRstDisable 26 UART0 SwRstDisable 27 UART1 SwRstDisable 28 UART2 SwRstDisable 29 PWM0 SwRstDisable 30 PWM1 SwRstDisable 31 I2C SwRstDisable 32 SPI SwRstDisable 33 GPIO SwRstDisable 34 TIMER0 SwRstDisable 35 TIMER1 SwRstDisable
36 – 44 Reserved Reserved
45 ARM INTC Enable
(1) The Video Port Module has a total of five clock inputs that can be controlled by the LPSC. One LPSC can support only a maximum of
four clocks; therefore, two LPSCs are assigned to the Video Port. Both Video Port LPSCs should be controlled together and should be set to the same state.
(1)
(MDSTATn.LRST = 0). If DSPBOOT = 1 then, Enable and Module Local Reset is asserted (MDSTATn.LRST = 1).
SwRstDisable
If BTMODE[3:0] 0100 and DSPBOOT = 0 then, SwRstDisable If BTMODE[3:0] = 0100 or DSPBOOT = 1 then, Enable
DEFAULT MODULE STATE
[PSC Register MDSTATn.STATE]
88 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010

4.3.2 Clock Control

This section describes the following registers: the VPIF (Video)/TSIF clock control and clock disable registers and the Clock and Oscillator control register.
4.3.2.1 Video Clock Control Register
The Video Clock Control (VIDCLKCTL) register allows the user to select/control the clock muxing for the video channels' (i.e., channels 1, 2, and 3) output clock source.
31 16
RESERVED
R-0000 0000 0000 0000
15 14 12 11 10 8 7 5 4 3 0
RSV VCH3CLK RSV VCH2CLK RESERVED VCH1CLK RESERVED
R-0 R/W-111 R-0 R/W-110 R-000 R/W-1 R-0000
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-2. VIDCLKCTL Register [0x01C4 0038]
Table 4-4. VIDCLKCTL Register Bit Descriptions
BIT NAME DESCRIPTION
31:15 RESERVED Reserved. Read returns "0".
Video Channel 3 Clock Source. This field selects the clock source for the Channel 3 output source clock. 000 = CRG0_VCXI (external pin) 001 = CRG1_VCXI (external pin)
14:12 VCH3CLK
11 RSV Reserved. Read returns "0".
10:8 VCH2CLK
7:5 RESERVED Reserved. Read returns "0".
4 VCH1CLK
3:0 RESERVED Reserved. Read returns "0".
010 = SYSCLK8 (PLLC1) 011 = AUXCLK (PLLC1) 100 = VP_CLKIN0 (external pin) 101 = STC_CLKIN (external pin) 110 = VP_CLKIN2 (external pin) 111 = VP_CLKIN3 (external pin)
Video Channel 2 Clock Source. This field selects the clock source for the Channel 2 output source clock. 000 = CRG0_VCXI (external pin) 001 = CRG1_VCXI (external pin) 010 = SYSCLK8 (PLLC1) 011 = AUXCLK (PLLC1) 100 = VP_CLKIN0 (external pin) 101 = STC_CLKIN (external pin) 110 = VP_CLKIN2 (external pin) 111 = Reserved
Video Channel 1 Clock Source. This bit selects the clock source for the Channel 1 input clock. 0 = VP_CLKIN0 (external pin) 1 = VP_CLKIN1 (external pin)
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 89
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com
4.3.2.2 TSIF Control
The TSIF Control (TSIFCTL) registers allows the user to select/control the clock muxing for the counter and serial output of TSIF1 andthe counter and parallel/serial output for TSIF0.
31 16
RESERVED
R-0000 0000 0000 0000
15 14 12 11 8 7 6 4 3 2 0
RSV TSIF1_CNTCLK TSSO_CLK RSV TSIF0_CNTCLK RSV TSPO_CLK
R-0 R/W-000 R/W-0000 R-0 R/W-000 R-0 R/W-000
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-3. TSIFCTL Register [0x01C4 0050]
Table 4-5. TSIFCTL Register Bit Descriptions
BIT NAME DESCRIPTION
31:15 RESERVED Reserved. Read returns "0".
TSIF1 Counter Clock Source. This field selects the clock source for the TSIF1 module's counter. 000 = CRG1_VCXI (external pin) 001 = STC_CLKIN (external pin)
14:12 TSIF1_CNTCLK
11:8 TSSO_CLK 0100 = VP_CLKIN0 (external pin)
7 RSV Reserved. Read returns "0".
6:4 TSIF0_CNTCLK
3 RSV Reserved. Read returns "0".
2:0 TSPO_CLK
010 = AUXCLK (PLLC1 output) 011 = CRG0_VCXI (external pin) 100 = VP_CLKIN2 (external pin) 101 = VP_CLKIN3 (external pin) 110 = Reserved 111 = Reserved
TSIF1 Serial Output Clock Source. This field selects the clock source for the TSIF1 output source clock. 0000 = CRG1_VCXI (external pin) 0001 = STC_CLKIN (external pin) 0010 = SYSCLK6 (PLLC1) 0011 = SYSCLKBP (PLLC1)
0101 = TS1_CLKIN (external pin) 0110 = VP_CLKIN2 (external pin) 0111 = Reserved 1000 = CRG0_VCXI 1001 = Reserved 1xx1 = Reserved
TSIF0 Counter Clock Source. This field selects the clock source for the TSIF0 module's counter. 000 = CRG0_VCXI (external pin) 001 = STC_CLKIN (external pin) 010 = AUXCLK (PLLC1 output) 011 = CRG1_VCXI (external pin) 100 = VP_CLKIN0 (external pin) 101 = VP_CLKIN1 (external pin) 110 = Reserved 111 = Reserved
TSIF0 Parallel/Serial Output Clock Source. This field selects the clock source for the TSIF0 output source clock. 000 = CRG0_VCXI (external pin) 001 = STC_CLKIN (external pin) 010 = SYSCLK5 (PLLC1) 011 = SYSCLKBP (PLLC1) 100 = VP_CLKIN0 (external pin) 101 = VP_CLKIN1 (external pin) 110 = TS0_CLKIN (external pin) 111 = CRG1_VCXI (external pin)
90 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
4.3.2.3 Video and TSIF Clock Disable
The Video Source Clock Disable (VSCLKDIS) register allows the user to disable the selected Video (VPIF), TSIF, and CRGEN module input clocks.
Note: To ensure glitch-free operation, the clock should be disabled before changing the clock source frequency or muxing via the VIDCLKCTL and TSIFCTL.
31 16
RESERVED
R-0000 0000 0000 0000
15 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED VID3 VID2 VID1 VID0 TSIFCNT1 TSIFCNT0 TSIFTX1 TSIFTX0 TSIFRX1 TSIFRX0 CRG1 CRG0
R-0000 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-4. VSCLKDIS Register [0x01C4 006C]
Table 4-6. VSCLKDIS Register Bit Descriptions
BIT NAME DESCRIPTION
31:12 RESERVED Reserved. Read returns "0".
11 VID3 0 = Clock enabled.
10 VID2 0 = Clock enabled.
9 VID1 0 = Clock enabled.
8 VID0 0 = Clock enabled.
7 TSIFCNT1 0 = Clock enabled.
6 TSIFCNT0 0 = Clock enabled.
5 TSIFTX1 0 = Clock enabled.
4 TSIFTX0 0 = Clock enabled.
3 TSIFRX1 0 = Clock enabled.
2 TSIFRX0 0 = Clock enabled.
1 CRG1 0 = Clock enabled.
0 CRG0 0 = Clock enabled.
VPIF Channel 3 Clock Disable. 1 = Clock disabled.
VPIF Channel 2 Clock Disable. 1 = Clock disabled.
VPIF Channel 1 Clock Disable. 1 = Clock disabled.
VPIF Channel 0 Clock Disable. 1 = Clock disabled.
TSIF1 Counter Clock Disable. 1 = Clock disabled.
TSIF0 Counter Clock Disable. 1 = Clock disabled.
TSIF1 Transmit Clock Disable. 1 = Clock disabled.
TSIF0 Transmit Clock Disable. 1 = Clock disabled.
TSIF1 Receive Clock Disable. 1 = Clock disabled.
TSIF0 Receive Clock Disable. 1 = Clock disabled.
CRGEN1 Clock Disable. 1 = Clock disabled.
CRGEN0 Clock Disable. 1 = Clock disabled.
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 91
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com

4.3.3 Clock and Oscillator Control

The Clock and Oscillator Control (CLKCTL) register allows the user to disable the OSC pwrdwn and pwr disable
31 26 25 24 23 20 19 16
RESERVED OSCPWRDN OSCDIS RESERVED CLKOUT
R-0000 00 R/W-0 R/W-1 R-0000 R/W-1000
15 12 11 8 7 4 3 0
RESERVED AUD_CLK1 RESERVED AUD_CLK0
R-0000 R/W-0000 R-0000 R/W-0000
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-5. CLKCTL Register [0x01C4 005C]
Table 4-7. CLKCTL Register Bit Descriptions
BIT NAME DESCRIPTION
31:26 RESERVED Reserved. Read returns "0".
25 OSCPWRDN Auxiliary Oscillator Powerdown.
24 OSCDIS Auxiliary Oscillator Disable.
23:20 RESERVED Reserved. Read returns "0". 19:16 CLKOUT CLKOUT0 Source
15:12 RESERVED Reserved. Read returns "0".
This bit controls the internal bias resistor conection. 0 = Internal bias resistor connected (normal operation) 1 = Internal bias resistor disconnected (external bias resistor required or clock input used)
This bit disables the oscillator. 0 = Oscillator enabled (normal operation). 1 = Oscillator disabled (clock input used or no Auxiliary clock required).
(1)
This field selects the clock source for the CLKOUT0 output. 0000 = Disabled 0001 = PLL1 AUXCLK 0010 = Reserved 0011 = SYSCLK3 0100 = SYSCLK4 0101 = SYSCLK5 0110 = SYSCLK6 0111 = Reserved 1000 = SYSCLK8 1001 = SYSCLK9 1010 = AUX_MXI 1011 = Reserved 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved
(1) The maximum frequency allowed for the CLKOUT0 pin is 148.5 MHz. Do not configure the CLKOUT bits to any SYSCLKx that is greater
than 148.5 MHz. For more details on the CLKOUT0 timings, see Table 7-14, Switching Characteristics Over Recommended Operating Conditions for CLKOUT0.
92 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 4-7. CLKCTL Register Bit Descriptions (continued)
BIT NAME DESCRIPTION
11:8 AUD_CLK1 AUDIO_CLK1 Source.
This field selects the clock source for the AUDIO_CLK1 output. 0000 = Disabled 0001 = PLL1 AUXCLK 0010 = CRG0_VCXI 0011 = CRG1_VCXI 0100 = VP_CLKIN0 0101 = VP_CLKIN1 0110 = VP_CLKIN2 0111 = VP_CLKIN3 1000 = AUX_MXI 1001 = STC_CLKIN 1010 = Reserved 1011 = Reserved 1100 = Reserved 1101 = Reserved 1110 = Reserved
1111 = Reserved 7:4 RESERVED Reserved. Read returns "0". 3:0 AUD_CLK0 AUDIO_CLK0 Source.
This field selects the clock source for the AUDIO_CLK0 output.
0000 = Disabled
0001 = PLL1 AUXCLK
0010 = CRG0_VCXI
0011 = CRG1_VCXI
0100 = VP_CLKIN0
0101 = VP_CLKIN1
0110 = VP_CLKIN2
0111 = VP_CLKIN3
1000 = AUX_MXI
1001 = STC_CLKIN
1010 = Reserved
1011 = Reserved
1100 = Reserved
1101 = Reserved
1110 = Reserved
1111 = Reserved
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 93
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010

4.4 Boot Sequence

The boot sequence is a process by which the device's memory is loaded with program and data sections, and by which some of the device's internal registers are programmed with predetermined values. The boot sequence is started automatically after each device-level global reset. For more details on device-level global resets, see Section 7.7, Reset.
There are several methods by which the memory and register initialization can take place. Each of these methods is referred to as a boot mode. The boot mode to be used is selected at reset. For more information on the bootmode selections, see Section 4.4.1, Boot Modes.
The device is booted through multiple means—primary bootloaders within internal ROM or EMIFA, and secondary user bootloaders from peripherals or external memories. Boot modes, pin configurations, and register configurations required for booting the device, are described in the following subsections.

4.4.1 Boot Modes

The DM6467T boot modes are determined by these device boot and configuration pins. For information on how these pins are sampled at device reset, see Section 7.7.1.2, Latching Boot and Configuration Pins.
BTMODE[3:0]
PCIEN
CS2BW
DSPBOOT
www.ti.com
The TMS320DM646x DMSoC ARM can boot either from asynchronous EMIF/NOR Flash or from ARM ROM, as determined by the device boot and configuration pins at reset (BTMODE[3:0] and PCIEN). The PCIEN pin configuration is used to select the default configuration of the EMIFA/PCI/HPI pins at reset. This allows the DM646xT DMSoC to be PCI-compliant at reset. When PCIEN = 1, the PCI module controls the multiplexed pins with the appropriate pullup/pulldown configuration. For all other bootmodes (non-PCI bootmodes), the PCIEN must be cleared to "0".
For a more detailed description of the ROM boot modes supported by the DM646xT DMSoC, see Using the TMS320DM646x Bootloader Application Report (literature number SPRAAS0).

4.4.2 Boot Mode Registers

The DSPBOOTADDR, BOOTCMPLT, BOOTCMD, and BOOTCFG registers are used to control boot and device configurations.
4.4.2.1 DSPBOOTADDR Register
The DSPBOOTADDR register contains the upper 22 bits of the DSP reset vector.
31 10 9 0
BOOTADDR[21:0] RESERVED
R/W-0100 0010 0010 0000 0000 00 R-00 0000 0000
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-6. DSPBOOTADDR Register
Table 4-8. DSPBOOTADDR Register Bit Descriptions
BIT NAME DESCRIPTION
31:10 BOOTADDR[21:0] Upper 22 bits of the C64x+ DSP boot address.
9:0 RESERVED Reserved
94 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
SPRS605B–JULY 2009–REVISED JULY 2010
4.4.2.2 BOOTSTAT Register
The Boot Status (BOOTSTAT) register indicates the status of the device boot process (e.g., boot error, boot complete, or watchdog timer reset).
31 30 20 19 16
WDRST RESERVED BOOTERR
R/W-0 R-000 0000 0000 R-0000
15 1 0
RESERVED BC
R-0000 0000 0000 000 R/W-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-7. BOOTSTAT Register
Table 4-9. BOOTSTAT Register Bit Descriptions
BIT NAME DESCRIPTION
Watchdog Timer Reset.
0 = Device reset was not a result of a watchdog timer timeout.
31 WDRST This is a "sticky" bit that can be used to debug WD timeout conditions. The bit is set when a WD
30:20 RESERVED Reserved. Read returns "0".
19:16 BOOTERR
15:1 RESERVED Reserved. Read returns "0".
0 BC
1 = Device reset was a result of a watchdog timer timeout.
timeout occurs (TOUT2). This bit is reset (to "0") by a POR reset only; otherwise it retains its value.
It is not cleared by a Warm Reset or Soft Reset.
The bit may be cleared by writing a "1".
Boot Error.
0000 = No boot error [default].
Others = Bootloader detected boot error.
The exact meaning of the various error codes will be determined by the bootloader software.
Boot Complete.
0 = Host has not completed the boot sequence [default].
1 = Host has completed the boot sequence.
This bit may be optionally set by a host boot device (such as PCI or HPI) to indicate that it has
finished loading code. The ARM926 can poll this bit to determine whether to continue the boot
process.
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 95
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
4.4.2.3 BOOTCFG Register
The Boot Configuration (BOOTCFG) register is a read-only register that indicates the value of the device bootmode and configuration pins latched at the end of reset. During a hard reset (POR or RESET pin active [low]), the values of the CFG pins (i.e., BTMODE[3:0], CS2BW, PCIEN, DSPBOOT) are propagated through the BOOTCFG register to the Boot Controller. When RESET or POR is de-asserted, the value of the pins is latched. The BOOTCFG value does not change as a result of a soft reset, instead the value latched at the end of the previous global reset is retained.
31 18 17 16
RESERVED DSP_BT PCIEN
R-0000 0000 0000 00 R-L R-L
15 9 8 7 4 3 0
RESERVED CS2_BW RESERVED BOOTMODE
R-0000000 R-L R-0000 R-LLLL
LEGEND: R = Read only; L = Latched pin value; -n = value after reset
Figure 4-8. BOOTCFG Register
www.ti.com
96 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 4-10. BOOTCFG Register Bit Descriptions
BIT NAME DESCRIPTION
31:18 RESERVED Reserved. Read returns "0".
DSP Boot. Latched from DSPBOOT input at the rising edge of RESET or POR.
0 = ARM boots C64x+.
17 DSP_BT
16 PCIEN 1 = PCI enabled.
15:9 RESERVED Reserved. Read returns "0".
8 CS2_BW
7:4 RESERVED Reserved. Read returns "0".
3:0 BOOTMODE 0110 = I2C boot.
1 = C64x+ self-boots.
This bit will cause the DSP to be released from reset automatically. The C64x+ will boot from
EMIFA (default DSPBOOTADDR address 0x4220 0000). If BOOTMODE = 0010 or 0011,
or PCIEN = 1, then the C64x+ self-boot will fail since EMIFA will be disabled.
PCI Enable. Latched from PCIEN input at the rising edge of RESET or POR.
0 = PCI disabled.
PCIEN = 1 disables the internal pullup and pulldown resistors on the PCI pins and configures the
pin muxing for PCI.
EMIFA EM_CS2 Default Bus Width. Latched from CS2BW input at the rising edge of RESET or
POR.
0 = Default to 8-bit operation.
1 = Default to 16-bit operation.
This bit determines the default bus width of the EMIFA EM_CS2 memory space. This ensures that
boot from EMIFA (ARM or DSP) will correctly read the attached memory.
Boot Mode Configuration Bits. Bit values latched from BTMODE[3:0] at the rising edge of RESET or
POR.
0000 = Emulation boot.
0001 = Reserved.
0010 = HPI-16 (if PCIEN = 0).
PCI without autoinitialization (if PCIEN = 1).
0011 = HPI-32 (if PCIEN = 0).
PCI with autoinitialization (if PCIEN = 1). 0100 = EMIFA direct boot (ROM/NOR) (if PCIEN = 0; error if PCIEN = 1 defaults to UART0). 0101 = Reserved.
0111 = NAND Flash boot (if PCIEN = 0; error if PCIEN = 1 defaults to UART0).
SPRS605B–JULY 2009–REVISED JULY 2010
1000 = UART0 boot. 1001 = Reserved. 1010 = Reserved. 1011 = Reserved. 1100 = Reserved. 1101 = Reserved. 1110 = SPI boot. 1111 = Reserved.
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 97
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
4.4.2.4 ARMBOOT Register
The ARM Boot Configuration (ARMBOOT) register is used to control the ARM926 boot. The ARMBOOT value does not change as a result of a soft reset, instead the last value written is retained.
When ROM boot is selected (BTMODE[3:0] 0100), a jump to the internal TCM ROM (0x0000 8000) is forced into the first fetched instruction word. The embedded ROM boot loader (RBL) code can then perform certain configuration steps, read the BOOTCFG register to determine the desired boot method, and branch to an appropriate secondary loader utility.
If EMIFA boot is selected (BTMODE[3:0] = 0100), a jump to the highest branch address (0x0200 0000) is forced into the first fetched instruction word. This must be modified to address 0x4200 0000 in order to map to the EMIFA. The ARM will then continue executing from external memory using the default EMIFA timings until modified by software. Note: that either NOR Flash or ROM must be connected to the first EMIFA chip select space (EM_CS2). The EMIFA does not support direct execution from NAND Flash.
31 5 4 3 1 0
RESERVED ADDRMOD RESERVED TRAMBOOT
R-0000 0000 0000 0000 0000 0000 000 R/W-C R-000 R/W-0
LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset
Figure 4-9. ARMBOOT Register
Table 4-11. ARMBOOT Register Bit Descriptions
BIT NAME DESCRIPTION
31:5 RESERVED Reserved. Read returns "0".
IAHB Address Modification. 0 = No address modification. 1 = Address bit 30 is tied high to modify IAHB fetch address to point to EMIFA. The default value for this bit is determined by the BOOTMODE configuration bits (BTMODE[3:0]). If BTMODE[3:0] = 0100 [EMIFA direct boot (ROM/NOR)] , then ADDRMOD defaults to "1" so that
4 ADDRMOD instruction fetches from the ARM will point to EMIFA CS2 memory space. For all other
BTMODE[3:0] values, ADDRMOD defaults to "0" because ARM will boot from its TCM (ROM or RAM). The ADDRMOD value is ignored when TRAMBOOT is set (1) [address modification is disabled]. After branching into the EMIFA CS2 space, software should clear this bit as part of the reset routine so that subsequent IAHB access addresses are not modified.
3:1 RESERVED Reserved. Read returns "0".
ARM TCM RAM Boot. 0 = Use BTMODE[3:0] selected boot mode 1 = Boot from ITCM RAM
0 TRAMBOOT This is a "sticky" bit that can be used to force the ARM926 to boot from ITCM RAM. On POR reset,
this bit will be initialized to "0" because TCM RAM is not initialized; otherwise, the bit retains the value. After initializing ITCM RAM, software can set this bit so that subsequent Warm Reset (RESET) or Soft Reset will boot from the ITCM.
www.ti.com
4.4.2.5 ARMWAIT Register
The ARM Wait State Control (ARMWAIT) register is used to control ARM926 accesses to its TCM RAM. At normal ARM operating frequency, a wait state must be inserted when accessing TCM RAM. When the device is operated at low speeds, performance may be increased by removing the wait state. Note: TCM ROM will always operate with a wait state enabled.
31 1 0
RESERVED RAMWAIT
R-0000 0000 0000 0000 0000 0000 0000 000 R/W-1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figure 4-10. ARMWAIT Register
98 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
www.ti.com
Table 4-12. ARMWAIT Register Bit Descriptions
BIT NAME DESCRIPTION
31:1 RESERVED Reserved. Read returns "0".
ARM TCM RAM Wait State Configuration.
0 RAMWAIT 0 = TCM RAM wait state disabled.
1 = TCM RAM wait state enabled.
SPRS605B–JULY 2009–REVISED JULY 2010
Copyright © 2009–2010, Texas Instruments Incorporated Device Configurations 99
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
TMS320DM6467T
SPRS605B–JULY 2009–REVISED JULY 2010
www.ti.com

4.5 Configurations At Reset

Some device configurations are determined at reset. The following subsections give more details.

4.5.1 Device and Peripheral Configurations at Device Reset

Table 3-5, BOOT Terminal Functions lists the device boot and configuration pins that are latched at device
reset for configuring basic device settings for proper device operation. Table 4-13, summarizes the device boot and configuration pins, and the device functions that they affect.
Table 4-13. Default Functions Affected by Device Boot and Configuration Pins
DEVICE BOOT AND
CONFIGURATION PINS
BOOTMODE[3:0] Boot Mode PINMUX0/PINMUX1 I/O Pin Power: PSC/Peripherals:
CS2BW EMIFA Direct Boot Mode PINMUX0.HPIEN = 0 The default width of the
(1)
PCIEN
BOOT SELECTED PIN MUX CONTROL GLOBAL SETTING PERIPHERAL SETTING
Registers: Based on Based on
Based on BOOTMODE[3:0], the BOOTMODE[3:0], the BOOTMODE[3:0], the bootloader code programs bootloader code programs bootloader code programs VDD3P3V_PWDN register the PSC to put PINMUX0 and PINMUX1 to power up the I/O pins boot-related peripheral(s) registers to select the required for boot. in the Enable State, and appropriate pin functions programs the peripheral(s) required for boot. for boot operation.
PINMUX0.PCIEN = 0 first EMIFA chip select PINMUIX0.ATAEN = 0 space (CS2) is
Host Boot: PINMUX0.PCIEN: PSC/Peripheral PCIEN selects the type of sets this field to control (Applicable to Host Boot Host Boot the PCI pin muxing in . only): (HPI Boot or PCI Boot)
(1) (2)
determined by the CS2BW value. If CS2BW = 0, the space defaults to 8-bits wide. If CS2BW = 1, it defaults to 16-bits wide. This allows the ARM to make full use of the width of the attached memory device when booting from EMIFA.
Based on the Host Boot type (PCI or HPI), the bootloader code programs the PSC to put the corresponding peripheral in the Enable State, and programs the peripheral for boot operation.
(1) Software can modify all PINMUX0 and PINMUX1 bit fields from their defaults. (2) In addition to pin mux control, PCIEN also affects the internal pullup/down resistors of the PCI capable pins. When PCIEN = 0, internal
pullup/down resistors on the PCI capable pins are enabled. When PCIEN = 1, internal pullup/down resistors on the PCI capable pins are disabled to be compliant to the PCI Local Bus Specification Revision 2.3.
100 Device Configurations Copyright © 2009–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): TMS320DM6467T
Loading...