Texas Instruments TMS320DM641AZNZ4, TMS320DM640 Datasheet

TMS320DM641/TMS320DM640
Video/Imaging Fixed-Point Digital
Signal Processors
Data Manual
Literature Number: SPRS222E
June 2003 Revised October 2005
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
This page intentionally left blank
Revision History
3
June 2003 − Revised October 2005 SPRS222E
Revision History
This data sheet revision history highlights the technical changes made to the SPRS222D device-specific data sheet to make it an SPRS222E revision.
Scope: Applicable updates to the C64x device family, specifically relating to the TMS320DM641/TMS320DM640 devices, have been incorporated.
8bit TSI Video Port mode now supported.
Added the device-specific information supporting the TMS320DM641/TMS320DM640 silicon revision 2.0, 1.2 and
1.1 devices, which are now in the production data (PD) stage of development.
PAGE(s)
NO.
ADDS/CHANGES/DELETES
44 Terminal Functions table:
Reset, Interrupts, and GeneralPurpose Input/Output section: CLKOUT6/GPO[2]: changed “IPD” to “IPU” CLKOUT4/GPO[1]: changed “IPD” to “IPU”
47 Terminal Functions table:
EMIFA (32−BIT) − ADDRESS section: Updated the Description for Boot Configuration for AEA22:3 Signal Name from “11 EMIFA boot” to “11 EMIFA 8bit ROM boot”
66 Device Support, Device and Development-Support Tool Nomenclature:
Updated the TMS320DM64x DSP Device Nomenclature (Including the DM641 and DM640 Devices) figure
69 Device Configurations, Configurations at Reset, Device Configuration at Device Reset section:
Updated the Functional Description for Bootmode [1:0] for AEA22:21 Configuration Pin from “11 EMIFA boot” to “11 − EMIFA 8bit ROM boot”
74 Device Configurations, Device Status Register Description section:
Device Status (DEVSTAT) Register Selection Bit Descriptions table: Updated Bits 3 and 2 Bootmode1 and Bootmode0 Name Description from “11 EMIFA boot” to “11 EMIFA 8bit ROM boot”
82 Recommended Operating Conditions:
V
OS,
Maximum voltage during overshoot row
Deleted 1.0 from MIN
Added V
US,
Maximum voltage during undershoot row
85 Parameter Measurement Information section:
Added AC transient rise/fall time specifications and the following figures: AC Transient Specification Rise Time figure AC Transient Specification Fall Time figure
104 Clock PLL, Clock PLL Electrical Data/Timing (Input and Output Clocks):
Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the EMIFA Module table: Updated Parameter No. 5 from “t
d(EKIH-EKO2L)”
to “t
d(EKIL-EKO2L)”
Updated Parameter No. 5 from “Delay time, AECLKIN high to AECLKOUT2 low” to “Delay time, AECLKIN low to AECLK­OUT2 low”
Revision History
4
June 2003 − Revised October 2005SPRS222E
PAGE(s)
NO.
ADDS/CHANGES/DELETES
106 External Memory Interface (EMIF), EMIF Electrical Data Timing, Asynchronous Memory Timing section:
Timing Requirements for Asynchronous Memory Cycles for EMIFA Module table: Updated Parameter No. 7, t
h(EKO1H-ARDY)
MIN from “2.0” to “2.5”
Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory Cycles for EMIFA Module table: Updated Parameter No. 1, t
osu(SELV-AREL)
MIN from “RS*E 1.5” to “RS*E 1.8”
Updated Parameter No. 8, t
osu(SELV-AWEL)
MIN from “WS*E 1.7” to “WS*E 2.0”
109 External Memory Interface (EMIF), EMIF Electrical Data Timing, Programmable Synchronous Interface Timing section:
Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module table: Updated Parameter No. 7, t
h(EKOxH-EDV)
MIN from “1.5” to “1.8” for 400 and500 device speeds
Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous Interface Cycles for EMIFA Module table: Updated all delay times MIN for 400, 500 and 600 device speeds from “1.3” to “1.1
113 External Memory Interface (EMIF), EMIF Electrical Data Timing section, Synchronous DRAM Timing section:
Timing Requirements for Asynchronous Memory Cycles for EMIFA Module table: Updated Parameter No. 7, t
h(EKO1H-ARDY)
MIN from “2.5” to “2.8” for 400 and 500 device speeds
Updated Parameter No. 7, t
h(EKO1H-ARDY)
MIN from “1.8” to “2.1” for 600 and device speed
127128 Multichannel Audio Serial Port (McASP) Timing section::
Updated McASP Input and Output Timings figures
140 External Memory Interface (EMIF), McBSP Electrical Data/Timing, Multichannel Buffered Serial Port (McBSP) Timing section:
Switching Characteristics Over Recommended Operating Conditions for McBSP table: Updated Parameter No. 12, t
dis(CKXH-DXHZ))
, CLKX ext MIN from “2.0” to 2.1”
Updated Parameter No. 13, td
(CKXH-DXV)
CLKX ext MIN from “2.0 + D1” to 2.1 + D1”
161 Ethernet Media Access (EMAC) Control, EMAC Electrical Data/Timing:
Timing Requirements for EMAC MII Receive 10/100 Mbit/s table: Deleted paragraph
Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit 10/100 Mbit/s table: Deleted paragraph
168 IEEE 1149.1 JTAG Compatibility Statement section:
Updated/added paragraphs for clarity
Contents
5
June 2003 Revised October 2005 SPRS222E
Contents
Section Page
1 Device Overview 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Description 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Device Characteristics 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Device Compatibility 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Functional Block Diagram 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 CPU (DSP Core) Description 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6.1 CPU Core Registers 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Memory Map Summary 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.1 L2 Architecture Expanded 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8 Bootmode 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9 Pin Assignments 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9.1 Pin Map 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9.2 Signal Groups Description 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9.3 Terminal Functions 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10 Development 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.1 Development Support 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.2 Device Support 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.2.1 Device and Development-Support Tool Nomenclature 65. . . . . . . . .
1.10.2.2 Documentation Support 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.10.2.3 Device Silicon Revision 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Device Configurations 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Configurations at Reset 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Peripheral Selection at Device Reset 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Device Configuration at Device Reset 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Configurations After Reset 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Peripheral Selection After Device Reset 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Peripheral Configuration Lock 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Device Status Register Description 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Multiplexed Pin Configurations 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Debugging Considerations 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Configuration Examples 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Device Operating Conditions 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings Over Operating Case Temperature Range 82. . . . . . . . . . . . . . . . . .
3.2 Recommended Operating Conditions 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Case Temperature 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 DM641/DM640 Peripheral Information and Electrical Specifications 84. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Parameter Information 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Parameter Information Device-Specific Information 84. . . . . . . . . . . . . . . . . . . . . . .
4.1.1.1 Signal Transition Levels 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1.2 Signal Transition Rates 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents
6
June 2003 − Revised October 2005SPRS222E
Section Page
4.1.1.3 AC Transient Rise/Fall Time Specifications 85. . . . . . . . . . . . . . . . . .
4.1.1.4 Timing Parameters and Board Routing Analysis 85. . . . . . . . . . . . . .
4.2 Recommended Clock and Control Signal Transition Behavior 86. . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Power Supplies 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Power-Supply Sequencing 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Power-Supply Design Considerations 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 Power-Supply Decoupling 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4 Peripheral Power-Down Operation 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5 Power-Down Modes Logic 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6 Triggering, Wake-up, and Effects 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7 C64x Power-Down Mode with an Emulator 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Enhanced Direct Memory Access (EDMA) Controller 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 EDMA Device-Specific Information 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1.1 EDMA Channel Synchronization Events 90. . . . . . . . . . . . . . . . . . . . .
4.4.2 EDMA Peripheral Register Description(s) 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Interrupts 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Interrupt Sources and Interrupt Selector 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Interrupts Peripheral Register Description(s) 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.3 External Interrupts Electrical Data/Timing 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 Reset 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Reset Electrical Data/Timing 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Clock PLL 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Clock PLL Device-Specific Information 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Clock PLL Electrical Data/Timing (Input and Output Clocks) 101. . . . . . . . . . . . . . .
4.8 External Memory Interface (EMIIF) 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 EMIF Device-Specific Information 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.2 EMIF Peripheral Register Description(s) 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3 EMIF Electrical Data/Timing 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3.1 Asynchronous Memory Timing 106. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3.2 Programmable Synchronous Interface Timing 109. . . . . . . . . . . . . . .
4.8.3.3 Synchronous DRAM Timing 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3.4 HOLD
/HOLDA Timing 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3.5 BUSREQ Timing 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Multichannel Audio Serial Port (McASP0) Peripheral 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.1 McASP0 Device-Specific Information 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.1.1 McASP Block Diagram 121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.2 McASP0 Peripheral Register Description(s) 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.3 McASP0 Electrical Data/Timing 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.3.1 Multichannel Audio Serial Port (McASP) Timing 125. . . . . . . . . . . . .
4.10 Inter-Integrated Circuit (I2C) 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.1 I2C Device-Specific Information 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.2 I2C Peripheral Register Description(s) 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.3 I2C Electrical Data/Timing 131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.3.1 Inter-Integrated Circuits (I2C) Timing 131. . . . . . . . . . . . . . . . . . . . . . .
4.11 Host-Port Interface (HPI) [DM641 Only] 133. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.1 HPI Peripheral Register Description(s) [DM641 Only] 133. . . . . . . . . . . . . . . . . . . .
4.11.2 Host-Port Interface (HPI) Electrical Data/Timing [DM641 Only] 133. . . . . . . . . . . .
Contents
7
June 2003 Revised October 2005 SPRS222E
Section Page
4.12 Multichannel Buffered Serial Port (McBSP) 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.1 McBSP Peripheral Register Description(s) 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.2 McBSP Electrical Data/Timing 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.2.1 Multichannel Buffered Serial Port (McBSP) Timing 139. . . . . . . . . . .
4.13 Video Port 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.1 Video Port Device-Specific Information 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.2 Video Port Peripheral Register Description(s) 146. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.3 Video Port (VP0 [DM641/DM640], VP1 [DM641 Only]) Electrical
Data/Timing 149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.3.1 VCLKIN Timing (Video Capture Mode) 149. . . . . . . . . . . . . . . . . . . . .
4.13.3.2 Video Data and Control Timing (Video Capture Mode) 150. . . . . . . .
4.13.3.3 VCLKIN Timing (Video Display Mode) 151. . . . . . . . . . . . . . . . . . . . . .
4.13.3.4 Video Control Input/Output and Video Display Data Output Timing With Respect to VPxCLKINx and VPxCLKOUTx
(Video Display Mode) 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.3.5 Video Dual-Display Sync Mode Timing (With Respect to
VPxCLKINx) 153. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 VCXO Interpolated Control (VIC) 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.1 VIC Device-Specific Information 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.2 VIC Peripheral Register Description(s) 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.3 VIC Electrical Data/Timing 155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14.3.1 STCLK Timing 155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15 Ethernet Media Access Controller (EMAC) 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15.1 EMAC Device-Specific Information 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15.2 EMAC Peripheral Register Description(s) 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15.3 EMAC Electrical Data/Timing 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16 Management Data Input/Output (MDIO) 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16.1 Device-Specific Information 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16.2 Peripheral Register Description(s) 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16.3 Management Data Input/Output (MDIO) Electrical Data/Timing 163. . . . . . . . . . . .
4.17 Timer 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.17.1 Timer Device-Specific Information 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.17.2 Timer Peripheral Register Description(s) 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.17.3 Timer Electrical Data/Timing 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18 General-Purpose Input/Output (GPIO) 166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18.1 GPIO Device-Specific Information 166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18.2 GPIO Peripheral Register Description(s) 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18.3 General-Purpose Input/Output (GPIO) Electrical Data/Timing 167. . . . . . . . . . . . .
4.19 JTAG 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19.1 JTAG Device-Specific Information 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19.1.1 IEEE 1149.1 JTAG Compatibility Statement 168. . . . . . . . . . . . . . . . .
4.19.1.2 JTAG ID Register Description 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19.2 JTAG Peripheral Register Description(s) 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19.3 JTAG Test-Port Electrical Data/Timing 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Mechanical Data 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Thermal Data 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figures
8
June 2003 − Revised October 2005SPRS222E
List of Figures
Figure Page
11 Functional Block Diagram 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 TMS320C64x CPU (DSP Core) Data Paths 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 TMS320DM641/DM640 L2 Architecture Memory Configuration 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 DM641/DM640 Pin Map [Quadrant A] 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 CPU and Peripheral Signals 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 Peripheral Signals 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 TMS320DM64x DSP Device Nomenclature (Including the DM641 and DM640 Devices) 66. . . . . . . . . .
21 Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000 0x01B3F003] 70. . . .
22 VP1, VP0, McBSP1, and McBSP0 Pin Muxing 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 Peripheral Enable/Disable Flow Diagram 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] Read/Write Accesses 73. . . . . . . .
25 Device Status Register (DEVSTAT) Description 0x01B3 F004 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 Configuration Example A for DM641 (2 8-Bit Video Ports + 1 McASP0 + VIC + I2C0 + EMIF) 78. . . . .
27 Configuration Example B for DM641 (1 McASP0 + 2 McBSPs + VIC + I2C0 + EMIF) 79. . . . . . . . . . . . .
28 Configuration Example A for DM640 (1 8-Bit Video Port + 1 McASP0 + VIC + I2C0 + EMIF) 80. . . . . .
29 Configuration Example B for DM640 (1 McASP0 + 2 McBSPs + VIC + I2C0 + EMIF) 81. . . . . . . . . . . . .
41 Test Load Circuit for AC Timing Measurements 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 Input and Output Voltage Reference Levels for AC Timing Measurements 84. . . . . . . . . . . . . . . . . . . . . .
43 Rise and Fall Transition Time Voltage Reference Levels 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44 AC Transient Specification Rise Time 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 AC Transient Specification Fall Time 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 Board-Level Input/Output Timings 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47 Schottky Diode Diagram 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48 Power-Down Mode Logic 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 PWRD Field of the CSR Register 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
410 External/NMI Interrupt Timing 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
411 Reset Timing 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
412 External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode 100. . . . . . . . . . . . . . . . . . . . .
413 CLKIN Timing 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
414 CLKOUT4 Timing 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
415 CLKOUT6 Timing 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
416 AECLKIN Timing for EMIFA 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
417 AECLKOUT1 Timing for the EMIFA Module 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
418 AECLKOUT2 Timing for the EMIFA Module 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
419 Asynchronous Memory Read Timing for EMIFA 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
420 Asynchronous Memory Write Timing for EMIFA 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
421 Programmable Synchronous Interface Read Timing for EMIFA (With Read Latency = 2) 110. . . . . . . . .
Figures
9
June 2003 Revised October 2005 SPRS222E
Figure Page
422 Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 0) 111. . . . . . . . .
423 Programmable Synchronous Interface Write Timing for EMIFA (With Write Latency = 1) 112. . . . . . . . .
424 SDRAM Read Command (CAS Latency 3) for EMIFA 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
425 SDRAM Write Command for EMIFA 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
426 SDRAM ACTV Command for EMIFA 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
427 SDRAM DCAB Command for EMIFA 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
428 SDRAM DEAC Command for EMIFA 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
429 SDRAM REFR Command for EMIFA 117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
430 SDRAM MRS Command for EMIFA 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
431 SDRAM Self-Refresh Timing for EMIFA 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
432 HOLD
/HOLDA Timing for EMIFA 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
433 BUSREQ Timing for EMIFA 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
434 McASP0 Configuration 122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
435 McASP Input Timings 127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
436 McASP Output Timings 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
437 I2C0 Module Block Diagram 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
438 I2C Receive Timings 131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439 I2C Transmit Timings 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
440 HPI16 Read Timing (HAS Not Used, Tied High) [DM641 Only] 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
441 HPI16 Read Timing (HAS Used) [DM641 Only] 135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
442 HPI16 Write Timing (HAS Not Used, Tied High) [DM641 Only] 135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
443 HPI16 Write Timing (HAS Used) [DM641 Only] 136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
444 McBSP Timing 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
445 FSR Timing When GSYNC = 1 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
446 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 142. . . . . . . . . . . . . . . . . . . . . . . . . .
447 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 143. . . . . . . . . . . . . . . . . . . . . . . . . .
448 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 144. . . . . . . . . . . . . . . . . . . . . . . . . .
449 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 145. . . . . . . . . . . . . . . . . . . . . . . . . .
450 Video Port Capture VPxCLKINx TIming 149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
451 Video Port Capture Data and Control Input Timing 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
452 Video Port Display VPxCLKINx Timing 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
453 Video Port Display Data Output Timing and Control Input/Output Timing With Respect to
VPxCLKINx and VPxCLKOUTx 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
454 Video Port Dual-Display Sync Timing 153. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
455 STCLK Timing 155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
456 MRCLK Timing (EMAC Receive) 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
457 MTCLK Timing (EMAC − Transmit) 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
458 EMAC Receive Interface Timing 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
459 EMAC Transmit Interface Timing 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
460 MDIO Input Timing 163. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
461 MDIO Output Timing 163. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
462 Timer Timing 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figures
10
June 2003 − Revised October 2005SPRS222E
Figure Page
463 GPIO Enable Register (GPEN) [Hex Address: 01B0 0000] 166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
464 GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004] 166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
465 GPIO Port Timing 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
466 JTAG ID Register Description TMS320DM641/DM640 Register Value 0x0007 902F 168. . . . . . . . .
467 JTAG Test-Port Timing 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tables
11
June 2003 Revised October 2005 SPRS222E
List of Tables
Table Page
11 Characteristics of the DM641 Processor 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 Characteristics of the DM640 Processor 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 Peripherals Available on the DM641 and DM640 Devices 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 L2 Cache Registers (C64x) 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 TMS320DM641/DM640 Memory Map Summary 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 Terminal Functions 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 MAC_EN Peripheral Selection (EMAC and MDIO) 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 DM641/DM640 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], and
TOUT0/MAC_EN) 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 Peripheral Configuration (PERCFG) Register Selection Bit Descriptions 70. . . . . . . . . . . . . . . . . . . . . . . .
24 PCFGLOCK Register Selection Bit Descriptions Read Accesses 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 PCFGLOCK Register Selection Bit Descriptions Write Accesses 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 Device Status (DEVSTAT) Register Selection Bit Descriptions 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 DM641/DM640 Device Multiplexed Pin Configurations 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 Board-Level Timing Example 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 Characteristics of the Power-Down Modes 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 TMS320DM641/DM640 EDMA Channel Synchronization Events 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44 EDMA Registers (C64x) 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 Quick DMA (QDMA) and Pseudo Registers 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 EDMA Parameter RAM (C64x) 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47 DM641/DM640 DSP Interrupts 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48 Interrupt Selector Registers (C64x) 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49 Timing Requirements for External Interrupts 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
410 Timing Requirements for Reset 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
411 Switching Characteristics Over Recommended Operating Conditions During Reset 97. . . . . . . . . . . . . .
412 TMS320DM641/DM640 PLL Multiply Factor Options, Clock Frequency Ranges, and Typical
Lock Time 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
413 Timing Requirements for CLKIN for 400 Devices 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
414 Timing Requirements for CLKIN for 500 Devices 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
415 Timing Requirements for CLKIN for 600 Devices 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
416 Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 102. . . . . . . . . . . . .
417 Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 103. . . . . . . . . . . . .
418 Timing Requirements for AECLKIN for EMIFA 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
419 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the
EMIFA Module 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
420 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the
EMIFA Module 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
421 EMIFA Registers 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
422 Timing Requirements for Asynchronous Memory Cycles for EMIFA Module 106. . . . . . . . . . . . . . . . . . . .
423 Switching Characteristics Over Recommended Operating Conditions for Asynchronous Memory
Cycles for EMIFA Module 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
424 Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module 109. . . . . . .
425 Switching Characteristics Over Recommended Operating Conditions for Programmable
Synchronous Interface Cycles for EMIFA Module 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tables
12
June 2003 − Revised October 2005SPRS222E
Table Page
426 Timing Requirements for Synchronous DRAM Cycles for EMIFA Module 113. . . . . . . . . . . . . . . . . . . . . .
427 Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM
Cycles for EMIFA Module 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
428 Timing Requirements for the HOLD
/HOLDA Cycles for EMIFA Module 119. . . . . . . . . . . . . . . . . . . . . . . .
429 Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA
Cycles for EMIFA Module 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
430 Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles
for EMIFA Module 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
431 McASP0 Control Registers 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
432 McASP0 Data Registers 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
433 Timing Requirements for McASP 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
434 Switching Characteristics Over Recommended Operating Conditions for McASP 126. . . . . . . . . . . . . . .
435 I2C0 Registers 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
436 Timing Requirements for I2C Timings 131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
437 Switching Characteristics for I2C Timings 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
438 HPI Registers [DM641 Only] 133. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439 Timing Requirements for Host-Port Interface Cycles [DM641 Only] 133. . . . . . . . . . . . . . . . . . . . . . . . . . .
440 Switching Characteristics Over Recommended Operating Conditions During Host-Port Interface
Cycles [DM641 Only] 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
441 McBSP 0 Registers 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
442 McBSP 1 Registers 138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
443 Timing Requirements for McBSP 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
444 Switching Characteristics Over Recommended Operating Conditions for McBSP 140. . . . . . . . . . . . . . .
445 Timing Requirements for FSR When GSYNC = 1 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
446 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 142. . . . . . . . . .
447 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI
Master or Slave: CLKSTP = 10b, CLKXP = 0 142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
448 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 143. . . . . . . . . .
449 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI
Master or Slave: CLKSTP = 11b, CLKXP = 0 143. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
450 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 144. . . . . . . . . .
451 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI
Master or Slave: CLKSTP = 10b, CLKXP = 1 144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
452 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 145. . . . . . . . . .
453 Switching Characteristics Over Recommended Operating Conditions for McBSP as SPI
Master or Slave: CLKSTP = 11b, CLKXP = 1 145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
454 Video Port 0 and 1 (VP0 and VP1) Control Registers 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
455 Timing Requirements for Video Capture Mode for VPxCLKINx 149. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
456 Timing Requirements in Video Capture Mode for Video Data and Control Inputs 150. . . . . . . . . . . . . . . .
457 Timing Requirements for Video Display Mode for VPxCLKINx 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
458 Timing Requirements in Video Display Mode for Video Control Input Shown With Respect to
VPxCLKINx and VPxCLKOUTx 151. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
459 Switching Characteristics Over Recommended Operating Conditions in Video Display Mode
for Video Data and Control Output Shown With Respect to VPxCLKINx and VPxCLKOUTx 152. . . . . .
460 Timing Requirements for Dual-Display Sync Mode for VPxCLKINx 153. . . . . . . . . . . . . . . . . . . . . . . . . . . .
461 VCXO Interpolated Control (VIC) Port Registers 154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
462 Timing Requirments for STCLK 155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
463 Ethernet MAC (EMAC) Control Registers 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
464 EMAC Statistics Registers 159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
465 EMAC Wrapper 159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tables
13
June 2003 Revised October 2005 SPRS222E
Table Page
466 EWRAP Registers 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
467 Timing Requirements for MRCLK 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
468 Timing Requirements for MTCLK 160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
469 Timing Requirements for EMAC MII Receive 10/100 Mbit/s 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
470 Switching Characteristics Over Recommended Operating Conditions for EMAC MII Transmit
10/100 Mbit/s 161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
471 MDIO Registers 162. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
472 Timing Requirements for MDIO Input 163. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
473 Switching Characteristics Over Recommended Operating Conditions for MDIO Output 163. . . . . . . . . .
474 Timer 0 Registers 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
475 Timer 1 Registers 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
476 Timer 2 Registers 164. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
477 Timing Requirements for Timer Inputs 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
478 Switching Characteristics Over Recommended Operating Conditions for Timer Outputs 165. . . . . . . . .
479 GP0 Registers 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
480 Timing Requirements for GPIO Inputs 167. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
481 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs 167. . . . . . . . .
482 JTAG ID Register Selection Bit Descriptions 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
483 JTAG ID Register 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
484 Timing Requirements for JTAG Test Port 169. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
485 Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port 169. . . . . . . .
5
1 Thermal Resistance Characteristics (S-PBGA Package) [GDK] 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 Thermal Resistance Characteristics (S-PBGA Package) [GNZ] 170. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tables
14
June 2003 − Revised October 2005SPRS222E
This page intentionally left blank
Device Overview
15
June 2003 Revised October 2005 SPRS222E
1 Device Overview
1.1 Features
D High-Performance Digital Media Processor
(TMS320DM641/TMS320DM640)
2.5-, 2-, 1.67-ns Instruction Cycle Time
400-, 500-, 600-MHz Clock Rate
Eight 32-Bit Instructions/Cycle
3200, 4000, 4800 MIPS
Fully Software-Compatible With C64x
D VelociTI.2 Extensions to VelociTI
Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x DSP Core
Eight Highly Independent Functional
Units With VelociTI.2™ Extensions:
Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
Load-Store Architecture With Non-Aligned Support
64 32-Bit General-Purpose Registers
Instruction Packing Reduces Code Size
All Instructions Conditional
D Instruction Set Features
Byte-Addressable (8-/16-/32-/64-Bit Data)
8-Bit Overflow Protection
Bit-Field Extract, Set, Clear
Normalization, Saturation, Bit-Counting
VelociTI.2 Increased Orthogonality
D L1/L2 Memory Architecture
128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped)
128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative)
1M-Bit (128K-Byte) L2 Unified Mapped RAM/Cache (Flexible RAM/Cache Allocation)
D Endianess: Little Endian, Big Endian D 32-Bit External Memory Interface (EMIF)
Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)
1024M-Byte Total Addressable External Memory Space
D Enhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels)
D 10/100 Mb/s Ethernet MAC (EMAC)
IEEE 802.3 Compliant
Media Independent Interface (MII)
8 Independent Transmit (TX) Channels
and 1 Receive (RX) Channel
D Management Data Input/Output (MDIO) D Two Configurable Video Ports (DM641) D One Configurable Video Port (DM640)
Providing a Glueless I/F to Common Video Decoder and Encoder Devices
Supports Multiple Resolutions and Video Standards
D VCXO Interpolated Control Port (VIC)
Supports Audio/Video Synchronization
D Host-Port Interface (HPI) [16-Bit] (DM641) D Multichannel Audio Serial Port (McASP)
Four Serial Data Pins
Wide Variety of I2S and Similar Bit
Stream Format
Integrated Digital Audio I/F Transmitter Supports S/PDIF, IEC60958-1, AES-3, CP-430 Formats
D Inter-Integrated Circuit (I
2
C) Bus
D Two Multichannel Buffered Serial Ports D Three 32-Bit General-Purpose Timers D Eight General-Purpose I/O (GPIO) Pins D Flexible PLL Clock Generator D IEEE-1149.1 (JTAG
)
Boundary-Scan-Compatible
D 548-Pin Ball Grid Array (BGA) Package
(GDK and ZDK Suffixes), 0.8-mm Ball Pitch
D 548-Pin Ball Grid Array (BGA) Package
(GNZ and ZNZ Suffixes), 1.0-mm Ball Pitch
D 0.13-µm/6-Level Cu Metal Process (CMOS) D 3.3-V I/O, 1.2-V Internal (-400, -500) D 3.3-V I/O, 1.4-V Internal (-600)
C64x, VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments. All trademarks are the property of their respective owners.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
Description
16
June 2003 − Revised October 2005SPRS222E
1.2 Description
The TMS320C64x DSPs (including the TMS320DM641 and TMS320DM640 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000 DSP platform. The TMS320DM641 (DM641) and TMS320DM640 (DM640) devices are based on the second-generation high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture (VelociTI.2) developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform.
With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the DM641 device offers cost-effective solutions to high-performance DSP programming challenges.
With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the DM640 device offers cost-effective solutions to high-performance DSP programming challenges.
The DM641/DM640 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2 extensions in the eight functional units include new instructions to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI architecture. The DM641 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The DM640 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The DM641/DM640 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices.
The DM641/DM640 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 1-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: two configurable video ports (DM641); one configurable video port (DM640); a 10/100 Mb/s Ethernet MAC (EMAC); a management data input/output (MDIO) module; a VCXO interpolated control port (VIC); one 4-bit multichannel buffered audio serial port (McASP0); an inter-integrated circuit (I2C) Bus module; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a 16-bit host-port interface (HPI16) [DM641]; an 8-pin general-purpose input/output port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and peripherals.
The DM641 device has two single-channel 8-bit configurable video port peripherals (VP0 and VP1). The DM640 device has one single-channel 8-bit configurable video port peripheral (VP0). These video port peripherals provide a glueless interface to common video decoder and encoder devices. The DM641/DM640 video port peripherals support multiple resolutions and video standards (e. g., CCIR601 and ITUBT.656).
These video port peripherals are configurable and can support either video capture and/or video display modes.
For more details on the Video Port peripherals, see the TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629).
The McASP0 port supports one transmit and one receive clock zone, with four serial data pins which can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The DM641/DM640 has sufficient bandwidth to support all 4 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I
2
S)
format.
TMS320C6000, and C6000 are trademarks of Texas Instruments.
Description
17
June 2003 Revised October 2005 SPRS222E
In addition, the McASP0 transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields.
McASP0 also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock which verifies that the master clock is within a programmed frequency range.
The VCXO interpolated control (VIC) port provides digital-to-analog conversion with resolution from 9-bits to up to 16-bits. The output of the VIC is a single bit interpolated D/A output. For more details on the VIC port, see the TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629).
The ethernet media access controller (EMAC) provides an efficient interface between the DM641/DM640 DSP core processor and the network. The DM641/DM640 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex, with hardware flow control and quality of service (QOS) support. The DM641/DM640 EMAC makes use of a custom interface to the DSP core that allows efficient data transmission and reception. For more details on the EMAC, see the TMS320C6000 DSP
Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628).
The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the DSP, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the DSP, allowing the DSP to poll the link status of the device without continuously performing costly MDIO accesses. For more details on the MDIO, see the
TMS320C6000 DSP Ethernet Media Access Controller (EMAC) / Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628).
The I2C0 port on the TMS320DM641/DM640 allows the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
The DM641/DM640 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
Windows is a registered trademark of the Microsoft Corporation.
Device Characteristics
18
June 2003 Revised October 2005SPRS222E
1.3 Device Characteristics
Table 11 provides an overview of the DM641 DSP. The table shows significant features of the DM641 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count.
Table 11. Characteristics of the DM641 Processor
HARDWARE FEATURES DM641
EMIFA (32-bit bus width) (clock source = AECLKIN)
1
EDMA (64 independent channels) 1
McASP0 (uses Peripheral Clock [AUXCLK]) 1
I2C0 (uses Peripheral Clock) 1
Peripherals
HPI (16-bit) 1 (HPI16)
Not all peripherals pins are available at the same time
McBSPs (internal clock source = CPU/4 clock frequency)
2
available at the same time
(For more detail, see the
Configurable Video Ports (VP0 and VP1) 2
Device Configuration
10/100 Ethernet MAC (EMAC) 1
section).
Management Data Input/Output (MDIO) 1
VCXO Interpolated Control Port (VIC) 1
32-Bit Timers (internal clock source = CPU/8 clock frequency)
3
General-Purpose Input/Output Port (GP0) 8
Size (Bytes) 160K
On-Chip Memory
Organization
16K-Byte (16KB) L1 Program (L1P) Cache
16KB L1 Data (L1D) Cache
128KB Unified Mapped RAM/Cache (L2)
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x0C01
JTAG BSDL_ID JTAGID register (address location: 0x01B3F008) 0x0007902F
Frequency MHz 500, 600
Cycle Time ns
2 ns (DM641-500)
[500-MHz CPU, 100 MHz EMIF
]
1.67 ns (DM641-600)
[600-MHz CPU, 133 MHz EMIF†]
Voltage
Core (V)
1.2 V (-500)
1.4 V (-600)
Voltage
I/O (V) 3.3 V
PLL Options CLKIN frequency multiplier Bypass (x1), x6, x12
23 x 23 mm 548-Pin BGA (GDK and ZDK)
BGA Package
27 x 27 mm 548-Pin BGA (GNZ and ZNZ)
Process Technology µm 0.13 µm
Product Status
Product Preview (PP), Advance Information (AI), or Production Data (PD)
PD
On this DM64x device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device speed portion of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Device Characteristics
19
June 2003 Revised October 2005 SPRS222E
Table 12 provides an overview of the DM640 DSP. The table shows significant features of the DM640 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count.
Table 12. Characteristics of the DM640 Processor
HARDWARE FEATURES DM640
EMIFA (32-bit bus width) (clock source = AECLKIN)
1
EDMA (64 independent channels) 1
McASP0 (uses Peripheral Clock [AUXCLK]) 1
Peripherals
I2C0 (uses Peripheral Clock) 1
Peripherals
Not all peripherals pins are
McBSPs (internal clock source = CPU/4 clock frequency)
2
pp p
available at the same time
Configurable Video Port (VP0) 1
(For
more detail, see
th
e
Device Configuration
10/100 Ethernet MAC (EMAC) 1
Device Configuration
section).
Management Data Input/Output (MDIO) 1
VCXO Interpolated Control Port (VIC) 1
32-Bit Timers (internal clock source = CPU/8 clock frequency)
3
General-Purpose Input/Output Port (GP0) 8
Size (Bytes) 160K
On-Chip Memory
Organization
16K-Byte (16KB) L1 Program (L1P) Cache
16KB L1 Data (L1D) Cache
128KB Unified Mapped RAM/Cache (L2)
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x0C01
JTAG BSDL_ID JTAGID register (address location: 0x01B3F008) 0x0007902F
Frequency MHz 400
Cycle Time ns
2.5 ns (DM640-400)
[400-MHz CPU, 100 MHz EMIF
]
Core (V) 1.2 V (-400)
Voltage
I/O (V) 3.3 V
PLL Options CLKIN frequency multiplier Bypass (x1), x6, x12
23 x 23 mm 548-Pin BGA (GDK and ZDK)
BGA Package
27 x 27 mm 548-Pin BGA (GNZ and ZNZ)
Process Technology µm 0.13 µm
Product Status
Product Preview (PP), Advance Information (AI), or Production Data (PD)
PD
On this DM64x device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device speed portion of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Device Compatibility
20
June 2003 Revised October 2005SPRS222E
1.4 Device Compatibility
The DM641/DM640 device is a code-compatible member of the C6000 DSP platform.
The C64x DSP generation of devices has a diverse and powerful set of peripherals. The common peripheral set and pin-compatibility that the DM641 and DM640 devices offer lead to easier system designs and faster time to market.
The DM640 device is a sub-set of the DM641 device and does not support an HPI peripheral or a second Video Port (VP1) peripheral. Table 13 identifies the peripherals that are available on the DM641 and DM640 devices.
Table 13. Peripherals Available on the DM641 and DM640 Devices
†‡
PERIPHERALS/COPROCESSORS DM641 DM640
EMIFA (32-bit bus width) EDMA (64 independent channels) 10/100 EMAC MDIO HPI (16-bit) McBSPs (McBSP0, McBSP1) McASP (4-bit) 8-bit Video Port (VP0) 8-bit Video Port (VP1) VIC I2C Timers (32-bit) [TIMER0, TIMER1, TIMER2] GPIOs (GP[7:0])
— denotes peripheral/coprocessor is not available on this device.
Not all peripherals pins are available at the same time. (For more details, see the Device Configuration section.)
1.5 Functional Block Diagram
Figure 11 shows the functional block diagram of the DM641/DM640 devices.
Functional Block Diagram
21
June 2003 Revised October 2005 SPRS222E
HPI
Test
C64x DSP Core
Data Path B
B Register File
B31B16
B15B0
Instruction Fetch
Instruction Dispatch
Advanced Instruction Packet
Instruction Decode
Data Path A
A Register File
A31A16
A15A0
Power-Down
Logic
.L1 .S1 .M1 .D1 .D2 .M2 .S2 .L2
32
SDRAM
FIFO
SBSRAM
SRAM
L1P Cache
Direct-Mapped
16K Bytes Total
Control
Registers
Control
Logic
L1D Cache 2-Way Set-Associative
16K Bytes Total
Advanced
In-Circuit
Emulation
Interrupt
Control
TMS320DM641/TMS320DM640
Enhanced
DMA
Controller
(EDMA)
L2
Cache
Memory
128KBytes
PLL
(x1, x6, x12)
Timer 2
EMIF A
ZBT SRAM
Timer 1
Boot Configuration
ROM/FLASH
I/O Devices
McBSP1
OR
McASP0
Data
AND
EMAC
MDIO
GP0
I2C0
8
16
See Note A
McBSP0
OR
McASP0
Control
AND
Timer 0
8-Bit
VP0
8-Bit VP1
VCXO
Interpolated
Control Port
(VIC)
HPI and VP1 are not supported on the DM640 device.
McBSPs: Framing Chips H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs
NOTE A: The Video Port 0 (VP0) peripheral is muxed with the McBSP0 peripheral and the McASP0 control pins (DM641/DM640). The Video
Port 1 (VP1) peripheral is muxed with the McBSP1 peripheral and the McASP0 data pins (DM641 only). For more details on the multiplexed pins of these peripherals, see the Device Configurations section of this data sheet.
Figure 11. Functional Block Diagram
CPU (DSP Core) Description
22
June 2003 Revised October 2005SPRS222E
1.6 CPU (DSP Core) Description
The CPU fetches VelociTI advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other VLIW architectures. The C64x VelociTI.2™ extensions add enhancements to the TMS320C62x™ DSP VelociTI architecture. These enhancements include:
Register file enhancements
Data path extensions
Quad 8-bit and dual 16-bit extensions with data flow enhancements
Additional functional unit hardware
Increased orthogonality of the instruction set
Additional instructions that reduce code size and increase register flexibility
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the packed 16-bit and 32-/40-bit fixed-point data types found in the C62x™ VelociTI™ VLIW architecture, the C64x register files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP core) diagram, and Figure 1−2]. The four functional units on each side of the CPU can freely share the 32 registers belonging to that side. Additionally, each side features a “data cross path”—a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in the same execute packet. All functional units in the C64x CPU can access operands via the data cross path. Register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read a register via a data cross path if that register was updated in the previous clock cycle.
In addition to the C62x™ DSP fixed-point instructions, the C64x™ DSP includes a comprehensive collection of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2™ extensions allow the C64x CPU to operate directly on packed data to streamline data flow and increase instruction set efficiency. This is a key factor for video and imaging applications.
Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits) with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 64 registers. Some registers, however, are singled out to support specific addressing modes or to hold the condition for conditional instructions (if the condition is not automatically “true”).
TMS320C62x and C62x are trademarks of Texas Instruments.
CPU (DSP Core) Description
23
June 2003 Revised October 2005 SPRS222E
The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two 16 × 16-bit multiplies or four 8 ×8-bit multiplies per clock cycle. The .M unit can also perform 16 × 32-bit multiply operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit multiplies with add operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies, and bidirectional variable shift hardware.
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual 16-bit, and quad 8-bit operations.
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. A C64x DSP device enhancement now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x™/TMS320C67x™ DSP devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the C64x DSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes, half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or doubleword-addressable.
For more details on the C64x CPU functional units enhancements, see the following documents:
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189)
TMS320C64x Technical Overview (literature number SPRU395)
TMS320C67x is a trademark of Texas Instruments.
CPU (DSP Core) Description
24
June 2003 Revised October 2005SPRS222E
.L1
.S1
.M1
.D1
.D2
.M2
.S2
.L2
src1
long dst
8
8
src2
DA1 (Address)
ST1b (Store Data)
ST2a (Store Data)
Register
File A
(A0A31)
8
8
8
8
dst
Data Path A
DA2 (Address)
Register
File B
(B0 B31)
LD2a (Load Data)
Data Path B
Control Register
File
ST2b (Store Data)
LD1b (Load Data)
8
8
2X
1X
ST1a (Store Data)
See Note A See Note A
LD1a (Load Data)
LD2b (Load Data)
See Note A
See Note A
32 MSBs 32 LSBs
32 MSBs
32 LSBs
32 MSBs 32 LSBs
32 MSBs
32 LSBs
src2
src1
dst
long dst long src
long src long dst
dst
src1
src2
src1
src2
src2
src1
dst
src2
src1
dst
src2
long dst
src2
src1
dst
long dst
long dst long src
long src long dst
dst
dst
src2
src1
dst
NOTE A: For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs.
Figure 12. TMS320C64x CPU (DSP Core) Data Paths
CPU (DSP Core) Description
25
June 2003 Revised October 2005 SPRS222E
1.6.1 CPU Core Registers
Table 14. L2 Cache Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0184 0000 CCFG Cache configuration register
0184 0004 0184 0FFC Reserved
0184 1000 EDMAWEIGHT L2 EDMA access control register
0184 1004 0184 1FFC Reserved
0184 2000 L2ALLOC0 L2 allocation register 0
0184 2004 L2ALLOC1 L2 allocation register 1
0184 2008 L2ALLOC2 L2 allocation register 2
0184 200C L2ALLOC3 L2 allocation register 3
0184 2010 0184 3FFC Reserved
0184 4000 L2WBAR L2 writeback base address register
0184 4004 L2WWC L2 writeback word count register
0184 4010 L2WIBAR L2 writeback invalidate base address register
0184 4014 L2WIWC L2 writeback invalidate word count register
0184 4018 L2IBAR L2 invalidate base address register
0184 401C L2IWC L2 invalidate word count register
0184 4020 L1PIBAR L1P invalidate base address register
0184 4024 L1PIWC L1P invalidate word count register
0184 4030 L1DWIBAR L1D writeback invalidate base address register
0184 4034 L1DWIWC L1D writeback invalidate word count register
0184 4038 0184 4044 Reserved
0184 4048 L1DIBAR L1D invalidate base address register
0184 404C L1DIWC L1D invalidate word count register
0184 4050 0184 4FFC Reserved
0184 5000 L2WB L2 writeback all register
0184 5004 L2WBINV L2 writeback invalidate all register
0184 5008 0184 7FFC Reserved
0184 8000 0184 81FC
MAR0 to
MAR127
Reserved
0184 8200 MAR128 Controls EMIFA CE0 range 8000 0000 80FF FFFF
0184 8204 MAR129 Controls EMIFA CE0 range 8100 0000 81FF FFFF
0184 8208 MAR130 Controls EMIFA CE0 range 8200 0000 82FF FFFF
0184 820C MAR131 Controls EMIFA CE0 range 8300 0000 83FF FFFF
0184 8210 MAR132 Controls EMIFA CE0 range 8400 0000 84FF FFFF
0184 8214 MAR133 Controls EMIFA CE0 range 8500 0000 85FF FFFF
0184 8218 MAR134 Controls EMIFA CE0 range 8600 0000 86FF FFFF
0184 821C MAR135 Controls EMIFA CE0 range 8700 0000 87FF FFFF
0184 8220 MAR136 Controls EMIFA CE0 range 8800 0000 88FF FFFF
0184 8224 MAR137 Controls EMIFA CE0 range 8900 0000 89FF FFFF
0184 8228 MAR138 Controls EMIFA CE0 range 8A00 0000 8AFF FFFF
0184 822C MAR139 Controls EMIFA CE0 range 8B00 0000 8BFF FFFF
0184 8230 MAR140 Controls EMIFA CE0 range 8C00 0000 8CFF FFFF
0184 8234 MAR141 Controls EMIFA CE0 range 8D00 0000 8DFF FFFF
CPU (DSP Core) Description
26
June 2003 Revised October 2005SPRS222E
Table 14. L2 Cache Registers (C64x) (Continued)
HEX ADDRESS RANGE COMMENTSREGISTER NAMEACRONYM
0184 8238 MAR142 Controls EMIFA CE0 range 8E00 0000 8EFF FFFF
0184 823C MAR143 Controls EMIFA CE0 range 8F00 0000 8FFF FFFF
0184 8240 MAR144 Controls EMIFA CE1 range 9000 0000 90FF FFFF
0184 8244 MAR145 Controls EMIFA CE1 range 9100 0000 91FF FFFF
0184 8248 MAR146 Controls EMIFA CE1 range 9200 0000 92FF FFFF
0184 824C MAR147 Controls EMIFA CE1 range 9300 0000 93FF FFFF
0184 8250 MAR148 Controls EMIFA CE1 range 9400 0000 94FF FFFF
0184 8254 MAR149 Controls EMIFA CE1 range 9500 0000 95FF FFFF
0184 8258 MAR150 Controls EMIFA CE1 range 9600 0000 96FF FFFF
0184 825C MAR151 Controls EMIFA CE1 range 9700 0000 97FF FFFF
0184 8260 MAR152 Controls EMIFA CE1 range 9800 0000 98FF FFFF
0184 8264 MAR153 Controls EMIFA CE1 range 9900 0000 99FF FFFF
0184 8268 MAR154 Controls EMIFA CE1 range 9A00 0000 9AFF FFFF
0184 826C MAR155 Controls EMIFA CE1 range 9B00 0000 9BFF FFFF
0184 8270 MAR156 Controls EMIFA CE1 range 9C00 0000 9CFF FFFF
0184 8274 MAR157 Controls EMIFA CE1 range 9D00 0000 9DFF FFFF
0184 8278 MAR158 Controls EMIFA CE1 range 9E00 0000 9EFF FFFF
0184 827C MAR159 Controls EMIFA CE1 range 9F00 0000 9FFF FFFF
0184 8280 MAR160 Controls EMIFA CE2 range A000 0000 A0FF FFFF
0184 8284 MAR161 Controls EMIFA CE2 range A100 0000 A1FF FFFF
0184 8288 MAR162 Controls EMIFA CE2 range A200 0000 A2FF FFFF
0184 828C MAR163 Controls EMIFA CE2 range A300 0000 A3FF FFFF
0184 8290 MAR164 Controls EMIFA CE2 range A400 0000 A4FF FFFF
0184 8294 MAR165 Controls EMIFA CE2 range A500 0000 A5FF FFFF
0184 8298 MAR166 Controls EMIFA CE2 range A600 0000 A6FF FFFF
0184 829C MAR167 Controls EMIFA CE2 range A700 0000 A7FF FFFF
0184 82A0 MAR168 Controls EMIFA CE2 range A800 0000 A8FF FFFF
0184 82A4 MAR169 Controls EMIFA CE2 range A900 0000 A9FF FFFF
0184 82A8 MAR170 Controls EMIFA CE2 range AA00 0000 AAFF FFFF
0184 82AC MAR171 Controls EMIFA CE2 range AB00 0000 ABFF FFFF
0184 82B0 MAR172 Controls EMIFA CE2 range AC00 0000 ACFF FFFF
0184 82B4 MAR173 Controls EMIFA CE2 range AD00 0000 ADFF FFFF
0184 82B8 MAR174 Controls EMIFA CE2 range AE00 0000 AEFF FFFF
0184 82BC MAR175 Controls EMIFA CE2 range AF00 0000 AFFF FFFF
0184 82C0 MAR176 Controls EMIFA CE3 range B000 0000 B0FF FFFF
0184 82C4 MAR177 Controls EMIFA CE3 range B100 0000 B1FF FFFF
0184 82C8 MAR178 Controls EMIFA CE3 range B200 0000 B2FF FFFF
0184 82CC MAR179 Controls EMIFA CE3 range B300 0000 B3FF FFFF
0184 82D0 MAR180 Controls EMIFA CE3 range B400 0000 B4FF FFFF
0184 82D4 MAR181 Controls EMIFA CE3 range B500 0000 B5FF FFFF
0184 82D8 MAR182 Controls EMIFA CE3 range B600 0000 B6FF FFFF
0184 82DC MAR183 Controls EMIFA CE3 range B700 0000 B7FF FFFF
0184 82E0 MAR184 Controls EMIFA CE3 range B800 0000 B8FF FFFF
CPU (DSP Core) Description
27
June 2003 Revised October 2005 SPRS222E
Table 14. L2 Cache Registers (C64x) (Continued)
HEX ADDRESS RANGE COMMENTSREGISTER NAMEACRONYM
0184 82E4 MAR185 Controls EMIFA CE3 range B900 0000 B9FF FFFF
0184 82E8 MAR186 Controls EMIFA CE3 range BA00 0000 BAFF FFFF
0184 82EC MAR187 Controls EMIFA CE3 range BB00 0000 BBFF FFFF
0184 82F0 MAR188 Controls EMIFA CE3 range BC00 0000 BCFF FFFF
0184 82F4 MAR189 Controls EMIFA CE3 range BD00 0000 BDFF FFFF
0184 82F8 MAR190 Controls EMIFA CE3 range BE00 0000 BEFF FFFF
0184 82FC MAR191 Controls EMIFA CE3 range BF00 0000 BFFF FFFF
0184 8300 0184 83FC
MAR192 to
MAR255
Reserved
0184 8400 0187 FFFF Reserved
Memory Map Summary
28
June 2003 Revised October 2005SPRS222E
1.7 Memory Map Summary
Table 15 shows the memory map address ranges of the DM641/DM640 device. Internal memory is always located at address 0 and can be used as both program and data memory. The external memory address ranges in the DM641/DM640 device begin at the hex address location 0x8000 0000 for EMIFA.
Table 15. TMS320DM641/DM640 Memory Map Summary
MEMORY BLOCK DESCRIPTION
BLOCK SIZE
(BYTES)
HEX ADDRESS RANGE
Internal RAM (L2) 128K
0000 0000 – 0001 FFFF
Reserved 768K
0004 0000 – 000F FFFF
Reserved 23M
0010 0000 – 017F FFFF
External Memory Interface A (EMIFA) Registers 256K
0180 0000 – 0183 FFFF
L2 Registers 256K
0184 0000 – 0187 FFFF
HPI Registers (DM641 only)
256K
0188 0000 – 018B FFFF
McBSP 0 Registers 256K
018C 0000 – 018F FFFF
McBSP 1 Registers 256K
0190 0000 – 0193 FFFF
Timer 0 Registers 256K
0194 0000 – 0197 FFFF
Timer 1 Registers 256K
0198 0000 – 019B FFFF
Interrupt Selector Registers 256K
019C 0000 – 019F FFFF
EDMA RAM and EDMA Registers 256K
01A0 0000 – 01A3 FFFF
Reserved 512K
01A4 0000 – 01AB FFFF
Timer 2 Registers 256K
01AC 0000 – 01AF FFFF
GP0 Registers 256K 4K
01B0 0000 – 01B3 EFFF
Device Configuration Registers 4K
01B3 F000 – 01B3 FFFF
I2C0 Data and Control Registers 16K
01B4 0000 – 01B4 3FFF
Reserved 32K
01B4 4000 – 01B4 BFFF
McASP0 Control Registers 16K
01B4 C000 – 01B4 FFFF
Reserved 192K
01B5 0000 – 01B7 FFFF
Reserved 256K
01B8 0000 – 01BB FFFF
Emulation 256K
01BC 0000 – 01BF FFFF
Reserved 256K
01C0 0000 – 01C3 FFFF
VP0 Control 16K
01C4 0000 – 01C4 3FFF
VP1 Control (DM641 only)
16K
01C4 4000 – 01C4 7FFF
Reserved 32K
01C4 8000 – 01C4 FFFF
Reserved 192K
01C5 0000 – 01C7 FFFF
EMAC Control 4K
01C8 0000 – 01C8 0FFF
EMAC Wrapper 8K
01C8 1000 – 01C8 2FFF
EWRAP Registers 2K
01C8 3000 – 01C8 37FF
MDIO Control Registers 2K
01C8 3800 – 01C8 3FFF
Reserved 3.5M
01C8 4000 – 01FF FFFF
QDMA Registers 52
0200 0000 – 0200 0033
Reserved 928M – 52
0200 0034 – 2FFF FFFF
McBSP 0 Data 64M
3000 0000 – 33FF FFFF
For the DM640 device, these memory address locations are reserved.The DM640 device does not support the HPI and VP1 peripherals.
Memory Map Summary
29
June 2003 Revised October 2005 SPRS222E
Table 15. TMS320DM641/DM640 Memory Map Summary (Continued)
MEMORY BLOCK DESCRIPTION HEX ADDRESS RANGE
BLOCK SIZE
(BYTES)
McBSP 1 Data 64M
3400 0000 – 37FF FFFF
Reserved 64M
3800 0000 – 3BFF FFFF
McASP0 Data 1M
3C00 0000 – 3C0F FFFF
Reserved 64M − 1M
3C10 0000 – 3FFF FFFF
Reserved 832M
4000 0000 – 73FF FFFF
VP0 Channel A Data 32M
7400 0000 – 75FF FFFF
Reserved 32M
7600 0000 – 77FF FFFF
VP1 Channel A Data (DM641 only)
32M
7800 0000 – 79FF FFFF
Reserved 32M
7A00 0000 – 7BFF FFFF
Reserved 64M
7C00 0000 – 7FFF FFFF
EMIFA CE0 256M
8000 0000 – 8FFF FFFF
EMIFA CE1 256M
9000 0000 – 9FFF FFFF
EMIFA CE2 256M
A000 0000 – AFFF FFFF
EMIFA CE3 256M
B000 0000 – BFFF FFFF
Reserved 1G
C000 0000 – FFFF FFFF
For the DM640 device, these memory address locations are reserved.The DM640 device does not support the HPI and VP1 peripherals.
Memory Map Summary
30
June 2003 Revised October 2005SPRS222E
1.7.1 L2 Architecture Expanded
Figure 13 shows the detail of the L2 architecture on the TMS320DM641/DM640 devices. For more information on the L2MODE bits, see the cache configuration (CCFG) register bit field descriptions in the TMS320C64x Two-Level Internal Memory Reference Guide (literature number SPRU610).
011010001
0x0000 0000
000
L2 Memory Block Base Address
0x0001 8000
0x0001 0000
0x0002 0000
32K Cache
(4 Way)
64K Cache (4 Way)
128K Cache (4 Way)
128K SRAM (All)
96K SRAM
64K SRAM
64K-Byte RAM
32K-Byte RAM
0x0001 FFFF
32K-Byte RAM
The L2MODE = 111b is not supported on the DM641/DM640 devices.
L2MODE
Figure 13. TMS320DM641/DM640 L2 Architecture Memory Configuration
Bootmode
31
June 2003 Revised October 2005 SPRS222E
1.8 Bootmode
The DM641/DM640 device resets using the active-low signal RESET. While RESET is low, the device is held in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and states of device pins during reset. The release of RESET
starts the processor running with the prescribed
device configuration and boot mode.
The DM641 has three types of boot modes while the DM640 has only two types of boot modes:
Host boot [DM641 only]
If host boot is selected, upon release of RESET
, the CPU is internally “stalled” while the remainder of the device is released. During this period, an external host can initialize the CPU’s memory space as necessary through the host interface, including internal configuration registers, such as those that control the EMIF or other peripherals. For the DM641 device, the HPI peripheral is used for host boot. Once the host is finished with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot configuration logic to bring the CPU out of the “stalled” state. The CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still internally “stalled”. Also, DSPINT brings the CPU out of the “stalled” state only if the host boot process is selected. All memory may be written to and read by the host. This allows for the host to verify what it sends to the DSP if required. After the CPU is out of the “stalled” state, the CPU needs to clear the DSPINT, otherwise, no more DSPINTs can be received.
EMIF boot (using default ROM timings)
Upon the release of RESET
, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0 by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should be stored in the endian format that the system is using. In this case, the EMIF automatically assembles consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block transfer, the CPU is released from the “stalled” state and starts running from address 0.
No boot
With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation is undefined if invalid code is located at address 0.
Pin Assignments
32
June 2003 Revised October 2005SPRS222E
1.9 Pin Assignments
On Quadrants A, B, C, and D, shading denotes pin assignments that have different functionality between the DM641 and DM640 devices [DM640 denoted within ( )]. See the Terminal Functions table for details.
1.9.1 Pin Map
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
13121110987654321
13121110987654321
CLKMODE1
CLKMODE0
PLLV
RESET
VDAC
HCNTL1
(RSV107)
HCS
(RSV109)
HAS
(RSV108)
HDS1
(RSV100)
HDS2
(RSV101)
HD15
(RSV125)
HD14
(RSV124)
HD13
(RSV123)
HD12
(RSV122)
HD11
(RSV121)
HD10
(RSV120)
HD9
(RSV119)
HD8
(RSV118)
HD7
(RSV117)
HD6
(RSV116)
HD4
(RSV114)
HD3
(RSV113)
HD2
(RSV112)
HD1
(RSV111)
HD0
(RSV110)
RSV54
(RSV60)
RSV55
(RSV61)
MDCLK
RSV56
(RSV62)
MDIO
STCLK
RSV19
(RSV25)
RSV20
(RSV26)
AXR0[3]
RSV18
(RSV24)
AHCLKX0
RSV17
(RSV23)
AXR0[2]
AXR0[1]
AXR0[0]
RSV16
(RSV22)
RSV15
(RSV21)
VP1D[7] (RSV20)
VP1D[6]/
CLKR1
VP1D[5]/
FSR1
VP1D[4]/
DR1
VP1D[3]/
CLKS1
VP1D[2]/
DX1
VP1D[1]/
FSX1
VP1D[0]/
CLKX1
RSV14
(RSV19)
RSV13
(RSV18)
VP1CLK1
(RSV14)
VP1CLK0
(RSV13)
VP1CTL2
(RSV17)
VP1CTL1
(RSV16)
VP1CTL0
(RSV15)
ACLKX0
AMUTE0
AMUTEIN0
VP0CLK1
AFSX0
RSV08
RSV06
RSV00
RSV01
RSV02
RSV03
RSV04
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
VSSV
SS
V
SS
V
SS
HD5
(RSV115)
HCNTL0
(RSV106)
V
SS
Figure 14. DM641/DM640 Pin Map [Quadrant A]
Pin Assignments
33
June 2003 Revised October 2005 SPRS222E
RSV84
(RSV90)
14 15 16 17 18 19 20 21 22 23 24 25 26
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
RSV93
(RSV99)
RSV92
(RSV98)
RSV91
(RSV97)
RSV90
(RSV96)
ABUSREQ
ASOE3
AEA22
AEA21 AEA20 AEA19AEA18
AEA17 AEA16 AEA15
AEA14 AEA13
AEA12 AEA11
AEA10 AEA9 AEA8
RSV89
(RSV95)
RSV88
(RSV94)
RSV87
(RSV93)
RSV86
(RSV92)
RSV85
(RSV91)
RSV83
(RSV89)
RSV82
(RSV88)
RSV81
(RSV87)
RSV80
(RSV86)
RSV79
(RSV85)
RSV78
(RSV84)
RSV77
(RSV83)
RSV76
(RSV82)
RSV75
(RSV81)
RSV74
(RSV80)
RSV73
(RSV79)
RSV72
(RSV78)
RSV71
(RSV77)
RSV70
(RSV76)
RSV69
(RSV75)
RSV68
(RSV74)
RSV67
(RSV73)
RSV66
(RSV72)
RSV65
(RSV71)
RSV64
(RSV70)
RSV63
(RSV69)
RSV62
(RSV68)
RSV61
(RSV67)
RSV60
(RSV66)
RSV59
(RSV65)
RSV58
(RSV64)
AHCLKR0
AFSR0
ACLKR0
RSV12
RSV11
VP0D[7]
VP0D[6]/
CLKR0
VP0D[5]/
FSR0
VP0D[4]/
DR0
VP0D[3]/
CLKS0
VP0D[2]/
DX0
VP0D[1]/
FSX0
VP0D[0]/
CLKX0
RSV10
RSV09VP0CLK0
VP0CTL2
VP0CTL1
VP0CTL0
DV
DD
DV
DD
DV
DD
DVDDDV
DD
AHOLDDV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DVDDDV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
VSSV
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
14 15 16 17 18 19 20 21 22 23 24 25 26
Figure 14. DM641/DM640 Pin Map (Continued) [Quadrant B]
Pin Assignments
34
June 2003 Revised October 2005SPRS222E
RSV30
(RSV36)
N
M
L
K
J
H
G
F
E
D
C
B
A
CLKOUT6/
GP0[2]
NMI
GP0[7]/
EXT_INT7
GP0[6]/
EXT_INT6
GP0[5]/
EXT_INT5
GP0[4]/
EXT_INT4
RSV52
(RSV58)
RSV51
(RSV57)
RSV50
(RSV56)
RSV49
(RSV55)
RSV48
(RSV54)
RSV47
(RSV53)
RSV46
(RSV52)
GP0[3]
GP0[0]
RSV53
(RSV59)
HINT
(RSV103)
HHWIL
(RSV104)
HR/W
(RSV102)
HRDY
(RSV105)
MRCLK
MCRS
MRXER
MRXDV
MRXD3
MRXD2MRXD1
HD24/ AD24/
MRXD0
RSV57
(RSV63)
13121110987654321
MTCLK
MCOL
MTXENMTXD3
MTXD2MTXD1 MTXD0
RSV45
(RSV51)
RSV44
(RSV50)
RSV42
(RSV48)
RSV41
(RSV47)
RSV40
(RSV46)
RSV38
(RSV44)
RSV36
(RSV42)
RSV34
(RSV40)
RSV32
(RSV38)
RSV28
(RSV34)
RSV26
(RSV32)
RSV21
(RSV27)
RSV22
(RSV28)
RSV25
(RSV31)
TOUT1/
LENDIAN
TINP1
TOUT0/
MAC_EN
TINP0
SCL0
RSV07
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DVDDDV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
VSSV
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
SDA0 DV
DD
CLKOUT4/
GP0[1]
RSV24
(RSV30)
RSV27
(RSV33)
RSV31
(RSV37)
RSV35
(RSV41)
RSV39
(RSV45)
RSV43
(RSV49)
RSV23
(RSV29)
RSV29
(RSV35)
RSV33
(RSV39)
RSV37
(RSV43)
13121110987654321
Figure 14. DM641/DM640 Pin Map (Continued) [Quadrant C]
Pin Assignments
35
June 2003 Revised October 2005 SPRS222E
N
M
L
K
J
H
G
F
E
D
C
B
A
14 15 16 17 18 19 20 21 22 23 24 25 26
14 15 16 17 18 19 20 21 22 23 24 25 26
TMS
TDO
TDITCK
TRST
EMU11
EMU10
EMU9
EMU8
EMU7
EMU6
EMU5
EMU4
EMU3
EMU2
EMU1
EMU0
ACE3
ACE2 ACE1 ACE0
ABE3 ABE2
ABE1 ABE0
APDT
AHOLDA
AECLKIN
AAOE
/
ASDRAS
/
ASOE
AARDY
AECLKOUT1
AARE
/
ASDCAS
/
ASADS/
ASRE
AAWE/
ASDWE
/
ASWE
ASDCKE
AEA7 AEA6 AEA5
AEA4AEA4 AEA3
AED31AED30
AED29AED28
AED27 AED26
AED25 AED24AED23 AED22
AED21 AED20AED19 AED18
AED17 AED16
AED15
AED14
AED13
AED12
AED11
AED10
AED9
AED8
AED7
AED6 AED4
AED3
AED5
AED2
AED1
AED0
RSV05
DV
DD
V
SS
V
SS
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
V
SS
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DV
DD
DVDDDV
DD
DV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
AECLKOUT2
CV
DD
Figure 14. DM641/DM640 Pin Map (Continued) [Quadrant D]
Pin Assignments
36
June 2003 Revised October 2005SPRS222E
1.9.2 Signal Groups Description
TRST
GP0[7]/EXT_INT7
IEEE Standard
1149.1
(JTAG)
Emulation
Reserved
Reset and Interrupts
Control/Status
TDI
TDO
TMS
TCK
EMU0 EMU1
NMI
GP0[6]/EXT_INT6
GP0[5]/EXT_INT5
GP0[4]/EXT_INT4
RESET
RSV01 RSV02
Clock/PLL
CLKIN
CLKMODE1 CLKMODE0
PLLV
EMU2 EMU3 EMU4 EMU5
GP0
(8-Bit)
General-Purpose Input/Output 0 (GP0) Port
GP0[7]/EXT_INT7
GP0[6]/EXT_INT6
GP0[5]/EXT_INT5
GP0[4]/EXT_INT4
GP0[3] CLKOUT6/GP0[2]
CLKOUT4/GP0[1]
GP0[0]
CLKOUT6/GP0[2]
CLKOUT4/GP0[1]
EMU6 EMU7 EMU8 EMU9
EMU10
These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more details, see the Device Configurations section of this data sheet.
These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO as input-only.
RSV00
EMU11
RSV92(124) RSV93(125)
RSV91(123)
Peripheral
Control/Status
TOUT0/MAC_EN
Figure 15. CPU and Peripheral Signals
Pin Assignments
37
June 2003 Revised October 2005 SPRS222E
ACE3
AECLKOUT1
AED[31:0]
ACE2
ACE1 ACE0
AEA[22:3]
AARDY
Data
Memory Map
Space Select
Address
Byte Enables
32
20
External
Memory I/F
Control
EMIFA (32-bit)
AECLKIN
AHOLD AHOLDA ABUSREQ
Bus
Arbitration
AARE/ASDCAS/ASADS/ASRE
ASDCKE
AECLKOUT2
ASOE3
ABE3 ABE2 ABE1 ABE0
AAOE/ASDRAS/ASOE AAWE/ASDWE/ASWE
APDT
VDAC
VCXO Interpolated
Control Port (VIC)
Data
HHWIL
HCNTL0
HCNTL1
Data
Register Select
Half-Word
Select
Control
HPI
(Host-Port Interface)
[DM641 only]
16
HD[15:0]
HAS
HR/W HCS HDS1 HDS2 HRDY
HINT
Figure 16. Peripheral Signals
Pin Assignments
38
June 2003 Revised October 2005SPRS222E
McBSPs
(Multichannel Buffered Serial Ports)
VP0D[0]/CLKX0
†‡
VP0D[1]/FSX0
†‡
VP0D[2]/DX0
†‡
VP0D[6]/CLKR0
†‡
VP0D[5]/FSR0
†‡
VP0D[4]/DR0
†‡
VP0D[3]/CLKS0
†‡
Transmit
McBSP0
Receive
Clock
VP1D[0]/CLKX1
†§
VP1D[1]/FSX1
†§
VP1D[2]/DX1
†§
VP1D[6]/CLKR1
†§
VP1D[5]/FSR1
†§
VP1D[4]/DR1
†§
VP1D[3]/CLKS1
†§
Transmit
McBSP1
Receive
Clock
TOUT0/MAC_EN
Timers
TINP0
TOUT1/LENDIAN
Timer 1
TINP1
Timer 2
Timer 0
SCL0
I2C0
I2C0
SDA0
For DM641, these McBSP1 and McBSP0 pins are muxed with the Video Port 1 (VP1) and Video Port 0 (VP0) peripherals, respectively. By default, these signals function as VP1 and VP0, respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet.
For DM640, these McBSP0 pins are muxed with the Video Port 0 (VP0) peripheral. By default, these signals function as VP0. For more details on these muxed pins, see the Device Configurations section of this data sheet.
§
The DM640 device does not support the VP1 peripheral; therefore, the McBSP1 peripheral pins are standalone perpheral functions, not muxed.
DM641/DM640
Figure 16. Peripheral Signals (Continued)
Pin Assignments
39
June 2003 Revised October 2005 SPRS222E
MCOL
MRXDV
MRXER
MTXEN
Ethernet MAC (EMAC)
and MDIO
MDIO
MDCLK
MDIO
Clock
MTXD0 MTXD1 MTXD2
MRXD1 MRXD2 MRXD3
EMAC
Transmit
MRXD0
MTXD3
Clocks
MRCLK
MTCLK
MCRS
Error Detect and Control
Input/Output
Receive
Figure 16. Peripheral Signals (Continued)
Pin Assignments
40
June 2003 Revised October 2005SPRS222E
VP0D[0]/CLKX0
VP0D[1]/FSX0
VP0D[2]/DX0
VP0D[3]/CLKS0
VP0D[4]/DR0 VP0D[5]/FSR0 VP0D[6]/CLKR0 VP0D[7]
Capture/Display
Buffer
(2560 Bytes)
VP0CLK0
VP0CLK1
VP0CTL0 VP0CTL1
VP0CTL2
Timing and
Control Logic
Video Port 0 (VP0)
Channel A
Channel A supports: BT.656 (8-bit) display pipeline mode and BT.656 (8-bit) capture pipeline mode [TSI (8-bit) capture pipeline mode].
STCLK
Figure 16. Peripheral Signals (Continued)
Pin Assignments
41
June 2003 Revised October 2005 SPRS222E
VP1D[0]/CLKX1
VP1D[1]/FSX1
VP1D[2]/DX1
VP1D[3]/CLKS1
VP1D[4]/DR1 VP1D[5]/FSR1 VP1D[6]/CLKR1 VP1D[7]
Capture/Display
Buffer
(2560 Bytes)
VP1CLK0
VP1CLK1
VP1CTL0 VP1CTL1
VP1CTL2
Timing and
Control Logic
Video Port 1 (VP1) [DM641 only]
Channel A
Channel A supports: BT.656 (8-bit) display pipeline mode and BT.656 (8-bit) capture pipeline mode [TSI (8-bit) capture pipeline mode].
For DM641, the same STCLK signal is used for both video ports (VP0 and VP1).
STCLK
Figure 16. Peripheral Signals (Continued)
Pin Assignments
42
June 2003 Revised October 2005SPRS222E
McASP0
(Multichannel Audio Serial Port 0)
ACLKX0 AHCLKX0
Transmit
Clock
Generator
AMUTEIN0
Auto Mute
Logic
AMUTE0
AFSX0
Transmit
Frame Sync
AFSR0
Receive
Frame Sync
ACLKR0
AHCLKR0
Receive Clock
Generator
AXR0[3]
AXR0[2]
AXR0[1]
AXR0[0]
8-Serial Ports
Flexible
Partitioning
Tx, Rx, OFF
Transmit
Clock Check
Circuit
Receive Clock
Check Circuit
Error Detect
(see Note A )
(Transmit/Receive Data Pins)(Transmit/Receive Data Pins)
(Receive Bit Clock)
(Transmit Bit Clock)
(Receive Master Clock) (Transmit Master Clock)
(Receive Frame Sync or
Left/Right Clock)
(Transmit Frame Sync or Left/Right Clock)
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 16. Peripheral Signals (Continued)
1.9.3 Terminal Functions
The terminal functions table (Table 16) identifies the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device Configurations section of this data sheet.
Pin Assignments
43
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions
SIGNAL
IPD/
NAME DM641 DM640
TYPE
IPD/
IPU
DESCRIPTION
CLOCK/PLL CONFIGURATION
CLKIN AC2 AC2 I Clock Input. This clock is the input to the on-chip PLL.
CLKOUT4/GP0[1]
§
D6 D6 I/O/Z IPU
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z).
CLKOUT6/GP0[2]
§
C6 C6 I/O/Z IPU
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z).
CLKMODE1 AE4 AE4 I IPD
Clock mode select
Selects whether the CPU clock frequency = input clock frequency x1
CLKMODE0 AA2 AA2 I IPD
(Bypass), x6, or x12. For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet.
PLLV
V6 V6 A
#
PLL voltage supply
JTAG EMULATION
TMS E15 E15 I IPU JTAG test-port mode select
TDO B18 B18 O/Z IPU JTAG test-port data out
TDI A18 A18 I IPU JTAG test-port data in
TCK A16 A16 I IPU JTAG test-port clock
TRST D14 D14 I IPD
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE
1149.1 JTAG compatibility statement portion of this data sheet.
EMU11 D17 D17 I/O/Z IPU Emulation pin 11. Reserved for future use, leave unconnected.
EMU10 C17 C17 I/O/Z IPU Emulation pin 10. Reserved for future use, leave unconnected.
EMU9 B17 B17 I/O/Z IPU Emulation pin 9. Reserved for future use, leave unconnected.
EMU8 D16 D16 I/O/Z IPU Emulation pin 8. Reserved for future use, leave unconnected.
EMU7 A17 A17 I/O/Z IPU Emulation pin 7. Reserved for future use, leave unconnected.
EMU6 C16 C16 I/O/Z IPU Emulation pin 6. Reserved for future use, leave unconnected.
EMU5 B16 B16 I/O/Z IPU Emulation pin 5. Reserved for future use, leave unconnected.
EMU4 D15 D15 I/O/Z IPU Emulation pin 4. Reserved for future use, leave unconnected.
EMU3 C15 C15 I/O/Z IPU Emulation pin 3. Reserved for future use, leave unconnected.
EMU2 B15 B15 I/O/Z IPU Emulation pin 2. Reserved for future use, leave unconnected.
EMU1 C14 C14 I/O/Z IPU Emulation pin 1
||
EMU0 A15 A15 I/O/Z IPU Emulation pin 0
||
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
PLLV is not part of external voltage supply. See the Clock PLL section for information on how to connect this pin.
#
A = Analog signal (PLL Filter)
||
The EMU0 and EMU1 pins are internally pulled up with 30-k resistors; therefore, for emulation and normal operation, no external pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-k resistor.
Pin Assignments
44
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
IPD/
NAME DM641 DM640
TYPE
IPD/
IPU
DESCRIPTION
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS
RESET P4 P4 I Device reset
NMI B4 B4 I IPD
Nonmaskable interrupt, edge-driven (rising edge) Note: Any noise on the NMI pin may trigger an NMI interrupt; therefore, if the NMI pin is not used, it is recommended that the NMI pin be grounded versus relying on the IPD.
GP0[7]/EXT_INT7 E1 E1 I/O/Z IPU
General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts
GP0[6]/EXT_INT6 F2 F2 I/O/Z IPU
pp p p ( )p ( )p
(input only). The default after reset setting is GPIO enabled as input-only.
When these
p
ins function as External Interrupts [by selecting the
GP0[5]/EXT_INT5 F3 F3 I/O/Z IPU
When these pins function as External Interrupts [by selecting the
corresponding interrupt enable register bit (IER.[7:4])], they are
GP0[4]/EXT_INT4 F4 F4 I/O/Z IPU
edge-driven and the polarity can be independently selected via the External Interrupt Polarity Register bits (EXTPOL.[3:0]).
GP0[3] L5 L5 I/O/Z IPD The general-purpose 0 pin (GP0[3]) (I/O/Z).
GP0[0] M5 M5 I/O/Z IPD
GP0 0 pin (I/O/Z) [default] This pin can be programmed as GPIO 0 (input only) [default] or as GP0[0] (output only) pin or output as a general-purpose interrupt (GP0INT) signal (output only). Note: This pin must remain low during device reset.
CLKOUT6/ GP0[2]
§
C6 C6 I/O/Z IPU
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 2 pin (I/O/Z).
CLKOUT4/ GP0[1]
§
D6 D6 I/O/Z IPU
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as a GP0 1 pin (I/O/Z).
HOST-PORT INTERFACE (HPI) [DM641 ONLY]
HINT N4 I/O/Z Host interrupt from DSP to host (O) [default]
HCNTL1 P1 I/O/Z Host control selects between control, address, or data registers (I) [default]
HCNTL0 R3 I/O/Z Host control selects between control, address, or data registers (I) [default]
HHWIL N3 I/O/Z
Host half-word select first or second half-word (not necessarily high or low order) [For HPI16 bus width selection only] (I) [default]
HR/W M1 I/O/Z Host read or write select (I) [default]
HAS P3 I/O/Z Host address strobe (I) [default]
HCS R1 I/O/Z Host chip select (I) [default]
HDS1 R2 I/O/Z Host data strobe 1 (I) [default]
HDS2 T2 I/O/Z Host data strobe 2 (I) [default]
HRDY N1 I/O/Z Host ready from DSP to host (O) [default]
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
45
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
HOST-PORT INTERFACE (HPI) [DM641 ONLY] (CONTINUED)
HD15 T3
HD14 U1
HD13 U3
HD12 U2
HD11 U4
HD10 V1
-
HD9 V3
Host-port data (I/O/Z) [DM641 Only]
HD8 V2
As HPI data bus
HD7 W2
I/O/Z
Used for transfer of data, address, and control
HD6 W4
For proper DM641 device operation, the HD5 pin at device reset must be
HD5 Y1
pp p , p
pulldown via a 10-kΩ resistor.
HD4 W3
HD3 Y2
HD2 Y4
HD1 AA1
HD0 Y3
EMIFA (32-BIT) CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
ACE3 L26 L26 O/Z IPU
ACE2 K23 K23 O/Z IPU
EMIFA memory space enables
ACE1 K24 K24 O/Z IPU
Enabled by bits 28 through 31 of the word address
Only one p
in is
asserted d
uring any external data
access
ACE0 K25 K25 O/Z IPU
Only one pin is asserted during any external data access
ABE3 M25 M25 O/Z IPU
EMIFA byte-enable control
ABE2 M26 M26 O/Z IPU
y
Decoded from the low-order address bits. The number of address bits
or b
y
te enables used depends on the width of external memory.
ABE1 L23 L23 O/Z IPU
or byte enables used depends on the width of external memory
.
Byte-write enables for most types of memory
ABE0 L24 L24 O/Z IPU
Can be directly connected to SDRAM read and write mask
signal (SDQM)
APDT M22 M22 O/Z IPU
EMIFA peripheral data transfer, allows direct transfer between external peripherals
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
46
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
EMIFA (32-BIT) BUS ARBITRATION
AHOLDA N22 N22 O IPU EMIFA hold-request-acknowledge to the host
AHOLD W24 W24 I IPU EMIFA hold request from the host
ABUSREQ P22 P22 O IPU EMIFA bus request output
EMIFA (32-BIT) ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
AECLKIN H25 H25 I IPD
EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins. AECLKIN is the default for the EMIFA input clock.
AECLKOUT2 J23 J23 O/Z IPD
EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency divided-by-1, -2, or -4.
AECLKOUT1 J26 J26 O/Z IPD
EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) frequency].
AARE/ ASDCAS
/
ASADS
/ASRE
J25 J25 O/Z IPU
EMIFA asynchronous memory read-enable/SDRAM column-address strobe/programmable synchronous interface-address strobe or read-enable
For programmable synchronous interface, the RENEN field in the CE
Space Secondary Control Register (CExSEC) selects between ASADS and ASRE
:
If RENEN = 0, then the ASADS
/ASRE signal functions as the ASADS signal. If RENEN = 1, then the ASADS
/ASRE signal functions as the ASRE signal.
AAOE/ ASDRAS
/
ASOE
J24 J24 O/Z IPU
EMIFA asynchronous memory output-enable/SDRAM row-address strobe/programmable synchronous interface output-enable
AAWE/ ASDWE
/
ASWE
K26 K26 O/Z IPU
EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable synchronous interface write-enable
ASDCKE L25 L25 O/Z IPU
EMIFA SDRAM clock-enable (used for self-refresh mode).
If SDRAM is not in system, ASDCKE can be used as a general-purpose
output.
ASOE3 R22 R22 O/Z IPU
EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface)
AARDY L22 L22 I IPU Asynchronous memory ready input
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
47
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
EMIFA (32-BIT) − ADDRESS
AEA22 U23 U23
AEA21 V24 V24
EMIFA external address (doubleword address)
AEA20 V25 V25
EMIFA add
ress numbering for
the DM641/DM640 devi
ces start w
ith AEA3 t
o
maintain signal name compatibility with other C64x devices (e.g., C6414,
AEA19 V26 V26
maintain signal name compatibility with other C64x devices (e.g., C6414
,
C6415, and C6416) [see the 32-bit EMIF addressing scheme in the
AEA18 V23 V23
TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide
AEA17 U24 U24
(lit
erature number
SPRU266)]
.
AEA16 U25 U25
Boot Configuration:
AEA15 U26 U26
Controls initialization of DSP modes at reset (I) via pullup/pulldown
AEA14 T24 T24
resistors
Boot mode (AEA[22:21]):
AEA13 T25 T25
Boot mode (AEA[22:21]):
00 – No boot (default mode)
AEA12 R23 R23
O/Z IPD
01 HPI [DM641 only]; Reserved [For DM640 device]
AEA11 R24 R24
10−Reserved
11 EMIFA 8−bit ROM boot
AEA10 P23 P23
8 b O boo
AEA9 P24 P24
EMIF clock select
AEA8 P26 P26
AEA[20:19]: Clock mode select for EMIFA (AECLKIN_SEL[1:0])
AEA7 N23 N23
[] (
_
[])
00 – AECLKIN (default mode)
AEA6 N24 N24
01 CPU/4 Clock Rate 10 CPU/6 Clock Rate
AEA5 N26 N26
10−CPU/6 Clock Rate
11 − Reserved
AEA4 M23 M23
AEA3 M24 M24
For
more details, see the Device Configurations section of this data sheet.
EMIFA (32-BIT) − DATA
AED31 C26 C26
AED30 C25 C25
AED29 D26 D26
AED28 D25 D25
AED27 E24 E24
AED26 E25 E25
AED25 F24 F24
AED24 F25 F25
AED23 F23 F23
AED22 F26 F26
I/O/Z IPU EMIFA external data
AED21 G24 G24
AED20 G25 G25
AED19 G23 G23
AED18 G26 G26
AED17 H23 H23
AED16 H24 H24
AED15 C19 C19
AED14 D19 D19
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
48
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
EMIFA (32-BIT) DATA (CONTINUED)
AED13 A20 A20
AED12 D20 D20
AED11 B20 B20
AED10 C20 C20
AED9 A21 A21
AED8 D21 D21
AED7 B21 B21
AED6 C21 C21
I/O/Z IPU EMIFA external data
AED5 A23 A23
AED4 C22 C22
AED3 B22 B22
AED2 B23 B23
AED1 A24 A24
AED0 B24 B24
MANAGEMENT DATA INPUT/OUTPUT (MDIO)
MDCLK R5 R5 I/O/Z IPD MDIO serial clock input/output (I/O/Z).
MDIO P5 P5 I/O/Z IPU MDIO serial data input/output (I/O/Z).
VCX0 INTERPOLATED CONTROL PORT (VIC)
VDAC AD1 AD1 O/Z IPD
VCXO Interpolated Control Port (VIC) single-bit digital-to-analog converter (VDAC) output [output only].
VIDEO PORTS (VP0 [DM641/DM640] AND VP1 [DM641 ONLY])
STCLK AC1 AC1 I IPD The STCLK signal drives the hardware counter on the video ports.
8-BIT VIDEO PORT 1 (VP1) [DM641 ONLY]
VP1D[7] AC8
VP1D[6]/CLKR1
§
AD8 ***
Video port 1 (VP1) data input/output (I/O/Z) or McBSP1 data input/output
VP1D[5]/FSR1
§
AC7 ***
(I/O/Z) [default] [DM641 only]
VP1D[4]/DR1
§
AD7 ***
*** The DM640 device does not support the VP1 peripheral; therefore, the
VP1D[3]/CLKS1
§
AE7 ***
I/O/Z IPD
McBSP1 peripheral pins are standalone peripheral functions, not muxed.
VP1D[2]/DX1
§
AC6 ***
For more details on the McBSP1 pin functions [for both the DM641 and
VP1D[1]/FSX1
§
AD6 ***
For more details on the McBSP1 pin functions [for both the DM641 and
DM640 devices], see McBSP1 section of this table and the Device
VP1D[0]/CLKX1
§
AE6 ***
Configurations section of this data sheet.
VP1CLK1 AF10 I/O/Z IPD VP1 clock 1 (I/O/Z)
VP1CLK0 AF8 I IPD VP1 clock 0 (I)
VP1CTL2 AD5 VP1 control 2 (I/O/Z)
VP1CTL1 AE5
I/O/Z IPD
VP1 control 1 (I/O/Z)
VP1CTL0 AF4
I/O/Z
IPD
VP1 control 0 (I/O/Z)
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
49
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
8-BIT VIDEO PORT 0 (VP0) [DM641 AND DM640]
VP0D[7] AD15 AD15
VP0D[6]/CLKR0
§
AE15 AE15
VP0D[5]/FSR0
§
AB16 AB16
Video port 0 (VP0) data input/output (I/O/Z) or McBSP0 data input/output
VP0D[4]/DR0
§
AC16 AC16
Video port 0 (VP0) data input/output (I/O/Z) or McBSP0 data input/output
(I/O/Z) [default]
VP0D[3]/CLKS0
§
AD16 AD16
I/O/Z IPD
VP0D[2]/DX0
§
AE16 AE16
For more details on the McBSP0 pin functions, see McBSP0 section of this
table and the Device Configurations section of this data sheet.
VP0D[1]/FSX0
§
AF16 AF16
table and the Device Configurations section of this data sheet.
VP0D[0]/CLKX0
§
AF17 AF17
VP0CLK1 AF12 AF12 I/O/Z IPD VP0 clock 1 (I/O/Z)
VP0CLK0 AF14 AF14 I IPD VP0 clock 0 (I)
VP0CTL2 AD17 AD17 VP0 control 2 (I/O/Z)
VP0CTL1 AC17 AC17
I/O/Z IPD
VP0 control 1 (I/O/Z)
VP0CTL0 AE17 AE17
I/O/Z
IPD
VP0control 0 (I/O/Z)
TIMER 2
No external pins. The timer 2 peripheral pins are not pinned out as external pins.
TIMER 1
TOUT1/LENDIAN B5 B5 O/Z IPU
Timer 1 output (O/Z) Boot Configuration: Device endian mode [LENDIAN] (I). Controls initialization of DSP modes at reset via pullup/pulldown resistors
Device Endian mode 0 – Big Endian
1 Little Endian (default) For more details on LENDIAN, see the Device Configurations section of this data sheet.
TINP1 A5 A5 I IPD Timer 1 or general-purpose input
TIMER 0
TOUT0/MAC_EN C5 C5 O/Z IPD
Timer 0 output (O/Z) Boot Configuration: MAC enable pin [MAC_EN] (I) The MAC_EN pin controls the selection (enable/disable) of the EMAC and MDIO peripherals.
For more details, see the Device Configurations section of this data sheet.
TINP0 A4 A4 I IPD Timer 0 or general-purpose input
INTER-INTEGRATED CIRCUIT 0 (I2C0)
SCL0 E4 E4 I/O/Z I2C0 clock.
SDA0 D3 D3 I/O/Z I2C0 data.
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
50
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1) [DM641 ONLY]
VP1D[6]/CLKR1
§
AD8 I/O/Z IPD
Video Port 1 (VP1) input/output data 6 pin (I/O/Z) or McBSP1 receive clock (I/O/Z) [default]
VP1D[5]/FSR1
§
AC7 I/O/Z IPD
VP1 input/output data 5 pin (I/O/Z) or McBSP1 receive frame sync (I/O/Z) [default]
VP1D[4]/DR1
§
AD7 I IPD VP1 input/output data 4 pin (I/O/Z) or McBSP1 receive data (I) [default]
VP1D[3]/CLKS1
§
AE7 I IPD
VP1 input/output data 3 pin (I/O/Z) or McBSP1 external clock source (I) (as opposed to internal) [default]
VP1D[2]/DX1
§
AC6 I/O/Z IPD VP1 input/output data 2 pin (I/O/Z) or McBSP1 transmit data (O/Z) [default]
VP1D[1]/FSX1
§
AD6 I/O/Z IPD
VP1 input/output data 1 pin (I/O/Z) or McBSP1 transmit frame sync (I/O/Z) [default]
VP1D[0]/CLKX1
§
AE6 I/O/Z IPD VP1 input/output data 0 pin (I/O/Z) or McBSP1 transmit clock (I/O/Z) [default]
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1) [DM640 ONLY]
CLKR1 AD8 I/O/Z IPD McBSP1 receive clock (I/O/Z)
FSR1 AC7 I/O/Z IPD McBSP1 receive frame sync (I/O/Z)
DR1 AD7 I IPD McBSP1 receive data (I)
CLKS1 AE7 I IPD McBSP1 external clock source (I) (as opposed to internal)
DX1 AC6 I/O/Z IPD McBSP1 transmit data (O/Z)
FSX1 AD6 I/O/Z IPD McBSP1 transmit frame sync (I/O/Z)
CLKX1 AE6 I/O/Z IPD McBSP1 transmit clock (I/O/Z)
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)
VP0D[6]/CLKR0
§
AE15 AE15 I/O/Z IPD
Video Port 0 (VP0) input/output data 6 pin (I/O/Z) or McBSP0 receive clock (I/O/Z) [default]
VP0D[5]/FSR0
§
AB16 AB16 I/O/Z IPD
VP0 input/output data 5 pin (I/O/Z) or McBSP0 receive frame sync (I/O/Z) [default]
VP0D[4]/DR0
§
AC16 AC16 I IPD VP0 input/output data 4 pin (I/O/Z) or McBSP0 receive data (I) [default]
VP0D[3]/CLKS0
§
AD16 AD16 I IPD
VP0 input/output data 3 pin (I/O/Z) or McBSP0 external clock source (I) (as opposed to internal) [default]
VP0D[2]/DX0
§
AE16 AE16 O/Z IPD VP0 input/output data 2 pin (I/O/Z) or McBSP0 transmit data (O/Z) [default]
VP0D[1]/FSX0
§
AF16 AF16 I/O/Z IPD
VP0 input/output data 1 pin (I/O/Z) or McBSP0 transmit frame sync (I/O/Z) [default]
VP0D[0]/CLKX0
§
AF17 AF17 I/O/Z IPD VP0 input/output data 0 pin (I/O/Z) or McBSP0 transmit clock (I/O/Z) [default]
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
51
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
ETHERNET MAC (EMAC)
MRCLK G1 G1 I
EMAC Media Independent I/F (MII) data, clocks, and control pins for
MCRS H3 H3 I
p/(),, p
Transmit/Receive. MII transmit clock
(
MTCLK),
MRXER G2 G2 I
MII transmit clock (MTCLK),
Transmit clock source from the attached PHY.
MRXDV J4 J4 I
MII t
ransm
it data (MTXD[3:0]),
Transmit data nibble synchronous with transmit clock (MTCLK).
MRXD3 H2 H2 I
MII transmit enable (MTXEN),
This signal indicates a valid transmit data on the transmit data pins
MRXD2 J3 J3 I
This signal indicates a valid transmit data on the transmit data pins
(MTDX[3:0]). MII collision sense
(
MCOL)
MRXD1 J1 J1 I
MII collision sense (MCOL)
Assertion of this signal during half-duplex operation indicates network
MRXD0 K4 K4 I
co
llisi
on.
During full-duplex operation, transmission of new frames will not begin if
MTCLK L4 L4 I
gg
this pin is asserted. MII carrier sense (MCRS)
MCOL K2 K2 I
MII carrier sense (MCRS)
Indicates a frame carrier signal is being received.
MTXEN L3 L3 O/Z
MII receive data (MRXD[3:0]),
Receive data nibble synchronous with receive clock (MRCLK).
MTXD3 L2 L2 O/Z
MII receive clock (MRCLK),
Receive clock source from the attached PHY.
MTXD2 M4 M4 O/Z
MII receive data valid (MRXDV),
This signal indicates a valid data nibble on the receive data pins
MTXD1 M2 M2 O/Z
This signal indicates a valid data nibble on the receive data pins
(MRDX[3:0]).
MTXD0 M3 M3 O/Z
MII receive error (MRXER),
Indicates reception of a coding error on the receive data.
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) CONTROL
AHCLKX0 AC12 AC12 I/O/Z IPD McASP0 transmit high-frequency master clock (I/O/Z).
AFSX0 AD12 AD12 I/O/Z IPD McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z).
ACLKX0 AB13 AB13 I/O/Z IPD McASP0 transmit bit clock (I/O/Z).
AMUTE0 AC13 AC13 O/Z IPD McASP0 mute output (O/Z).
AMUTEIN0 AD13 AD13 I/O/Z IPD McASP0 mute input (I/O/Z).
AHCLKR0 AB14 AB14 I/O/Z IPD McASP0 receive high-frequency master clock (I/O/Z).
AFSR0 AC14 AC14 I/O/Z IPD McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z).
ACLKR0 AD14 AD14 I/O/Z IPD McASP0 receive bit clock (I/O/Z).
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0) DATA
AXR0[3] AE11 AE11
AXR0[2] AC10 AC10
AXR0[1] AD10 AD10
I/O/Z IPD McASP0 TX/RX data pins [3:0] (I/O/Z).
AXR0[0] AC9 AC9
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Pin Assignments
52
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
IPD/
NAME DM641 DM640
TYPE
IPD/
IPU
DESCRIPTION
RESERVED FOR TEST
RSV E2 E2 I IPD
Reserved. For proper DM641/DM640 device operation, this pin at device reset must be pulled down via a 10-kresistor.
RSV Y1 I/O/Z
Reserved [for DM640 Only]. For proper DM640 device operation, this pin at device reset must be pulled down via a 10-kresistor.
RSV H7 H7 A
Reserved. This pin must be connected directly to CVDD for proper device operation.
RSV R6 R6 A
Reserved. This pin must be connected directly to DVDD for proper device operation.
ADDITIONAL RESERVED FOR TEST
A7 A7 I IPD
A9 A9 I/O/Z IPD
A10 A10 I/O/Z IPD
A11 A11 I/O/Z IPD
A13 A13 I/O/Z IPD
B8 B8 I/O/Z IPD
Reserved (leave unconnected, do not connect to power or ground)
B9 B9 I/O/Z IPD
B10 B10 I/O/Z IPD
B11 B11 I/O/Z IPD
B12 B12 I/O/Z IPD
C1 C1 I/O/Z Pull down via a 10-k resistor
C7 C7 I/O/Z IPD
C8 C8 I/O/Z IPD
C9 C9 I/O/Z IPD
C10 C10 I/O/Z IPD
RSV
C11 C11 I/O/Z IPD
RSV
C12 C12 I/O/Z IPD
D7 D7 I/O/Z IPD
D8 D8 I/O/Z IPD
D9 D9 I/O/Z IPD
Reserved (leave unconnected, do not connect to power or ground)
D10 D10 I/O/Z IPD
D11 D11 I/O/Z IPD
D12 D12 I/O/Z IPD
E11 E11 I/O/Z IPD
E12 E12 I/O/Z IPD
E13 E13 I/O/Z IPD
E14 E14 I IPD
F1 F1 I/O/Z
G3 G3 I/O/Z
G4 G4 I/O/Z
Pull down via a 10-k resistor
H4 H4 I/O/Z
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
53
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
J2 J2 I/O/Z
K1 K1 I/O/Z
Pull down via a 10-k resistor
K3 K3 I/O/Z
Pull down via a 10 k resistor
R4 R4 I IPU
R25 R25 O/Z IPU
R26 R26 O/Z IPU
T4 T4 O IPD
Reserved (leave unconnected, do not connect to power or ground)
T22 T22 O/Z IPU
T23 T23 O/Z IPU
V4 V4 I/O/Z Pull down via a 10-k resistor
W7 W7 A
W23 W23 I/O/Z IPU
Y23 Y23 I/O/Z IPU
Y24 Y24 I/O/Z IPU
Y25 Y25 I/O/Z IPU
Y26 Y26 I/O/Z IPU
AA3 AA3 A
AA23 AA23 I/O/Z IPU
AA24 AA24 I/O/Z IPU
RSV
AA25 AA25 I/O/Z IPU
RSV
AA26 AA26 I/O/Z IPU
AB3 AB3 I
AB11 AB11 I/O/Z IPD
AB12 AB12 I/O/Z IPD
AB15 AB15 I/O/Z IPD
AB23 AB23 I/O/Z IPU
Reserved (leave unconnected, do not connect to power or ground)
AB24 AB24 I/O/Z IPU
AB25 AB25 I/O/Z IPU
AC4 AC4 O/Z
AC11 AC11 I/O/Z IPD
AC15 AC15 I/O/Z IPD
AC19 AC19 I/O/Z IPU
AC20 AC20 I/O/Z IPU
AC21 AC21 I/O/Z IPU
AC25 AC25 I/O/Z IPU
AC26 AC26 I/O/Z IPU
AD3 AD3 O/Z
AD9 AD9 I/O/Z IPD
AD11 AD11 I/O/Z IPD
AD19 AD19 I/O/Z IPU
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
54
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/ IPU
TYPE
NAME
DESCRIPTION
IPD/ IPU
TYPE
DM640DM641
AD20 AD20 I/O/Z IPU
AD21 AD21 I/O/Z IPU
AD22 AD22 I/O/Z IPU
AD23 AD23 I/O/Z IPU
AD25 AD25 I/O/Z IPU
AD26 AD26 I/O/Z IPU
AE9 AE9 I/O/Z IPD
AE18 AE18 I/O/Z IPD
AE20 AE20 I/O/Z IPU
AE21 AE21 I/O/Z IPU
AE22 AE22 I/O/Z IPU
Reserved (leave unconnected, do not connect to power or ground)
AE23 AE23 I/O/Z IPU
AF3 AF3 O IPU
AF5 AF5 I/O/Z IPD
AF6 AF6 I/O/Z IPD
AF18 AF18 I/O/Z IPD
AF20 AF20 I/O/Z IPU
AF21 AF21 I/O/Z IPU
AF23 AF23 I/O/Z IPU
RSV
AF24 AF24 I/O/Z IPU
RSV
M1 I/O/Z Pull up via a 10-k resistor — N1 I/O/Z Pull down via a 10-k resistor
N3 I/O/Z
N4 I/O/Z
P1 I/O/Z
P3 I/O/Z
R1 I/O/Z
Pull up via a 10-k resistor
R2 I/O/Z
R3 I/O/Z
T2 I/O/Z
T3 I/O/Z
U1 I/O/Z
U2 I/O/Z
U3 I/O/Z
U4 I/O/Z
V1 I/O/Z
Pull down via a 10-k resistor
V2 I/O/Z
V3 I/O/Z
W2 I/O/Z
W3 I/O/Z
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
55
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
W4 I/O/Z
Y2 I/O/Z
Y3 I/O/Z
Pull down via a 10-k resistor
Y4 I/O/Z
Pull down via a 10 k resistor
AA1 I/O/Z
RSV
AC8 I/O/Z IPD
RSV
AD5 I/O/Z IPD
AE5 I/O/Z IPD
AF4 I/O/Z IPD
Reserved (leave unconnected, do not connect to power or ground)
AF8 I IPD
AF10 I/O/Z IPD
SUPPLY VOLTAGE PINS
A2 A2
A25 A25
B1 B1
B2 B2
B14 B14
B25 B25
B26 B26
C3 C3
C24 C24
D4 D4
D23 D23
DV
DD
E5 E5
S 3.3-V supply voltage
E7 E7
E8 E8
E10 E10
E17 E17
E19 E19
E20 E20
E22 E22
F9 F9
F12 F12
F15 F15
F18 F18
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
56
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/ IPU
TYPE
NAME
DESCRIPTION
IPD/ IPU
TYPE
DM640DM641
SUPPLY VOLTAGE PINS (CONTINUED)
G5 G5
G22 G22
H5 H5
H22 H22
J6 J6
J21 J21
K5 K5
K22 K22
M6 M6
M21 M21
N2 N2
P25 P25
R21 R21
U5 U5
U22 U22
V21 V21
DV
DD
W5 W5
S 3.3-V supply voltage
W22 W22
W25 W25
Y5 Y5
Y22 Y22
AA9 AA9
AA12 AA12
AA15 AA15
AA18 AA18
AB5 AB5
AB7 AB7
AB8 AB8
AB10 AB10
AB17 AB17
AB19 AB19
AB20 AB20
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
57
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
SUPPLY VOLTAGE PINS (CONTINUED)
AB22 AB22
AC23 AC23
AD24 AD24
AE1 AE1
AE2 AE2
DV
DD
AE13 AE13
S 3.3-V supply voltage
AE25 AE25
AE26 AE26
AF2 AF2
AF25 AF25
F6 F6
F7 F7
F20 F20
F21 F21
G6 G6
G7 G7
G8 G8
G10 G10
G11 G11
G13 G13
G14 G14
G16 G16
1.2-V supply voltage (-400, -500 devices)
CV
DD
G17 G17
S
1.2 V supply voltage ( 400, 500 devices)
1.4-V supply voltage (-600 device)
G19 G19
G20 G20
G21 G21
H20 H20
K7 K7
K20 K20
L7 L7
L20 L20
M12 M12
M14 M14
N7 N7
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
58
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/ IPU
TYPE
NAME
DESCRIPTION
IPD/ IPU
TYPE
DM640DM641
SUPPLY VOLTAGE PINS (CONTINUED)
N13 N13
N15 N15
N20 N20
P7 P7
P12 P12
P14 P14
P20 P20
R13 R13
R15 R15
T7 T7
T20 T20
U7 U7
U20 U20
W20 W20
Y6 Y6
1.2-V supply voltage (-400, -500 devices)
CV
DD
Y7 Y7
S
1.2 V supply voltage ( 400, 500 devices)
1.4-V supply voltage (-600 device)
Y8 Y8
Y10 Y10
Y11 Y11
Y13 Y13
Y14 Y14
Y16 Y16
Y17 Y17
Y19 Y19
Y20 Y20
Y21 Y21
AA6 AA6
AA7 AA7
AA20 AA20
AA21 AA21
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
59
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
GROUND PINS
A1 A1
A3 A3
A6 A6
A8 A8
A12 A12
A14 A14
A19 A19
A22 A22
A26 A26
B3 B3
B6 B6
B7 B7
B13 B13
B19 B19
C2 C2
C4 C4
C13 C13
V
SS
C18 C18
GND Ground pins
C23 C23
D1 D1
D2 D2
D5 D5
D13 D13
D18 D18
D22 D22
D24 D24
E3 E3
E6 E6
E9 E9
E16 E16
E18 E18
E21 E21
E23 E23
E26 E26
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
60
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/ IPU
TYPE
NAME
DESCRIPTION
IPD/ IPU
TYPE
DM640DM641
GROUND PINS (CONTINUED)
F5 F5
F8 F8
F10 F10
F11 F11
F13 F13
F14 F14
F16 F16
F17 F17
F19 F19
F22 F22
G9 G9
G12 G12
G15 G15
G18 G18
H1 H1
H6 H6
H21 H21
V
SS
H26 H26
GND Ground pins
J5 J5
J7 J7
J20 J20
J22 J22
K6 K6
K21 K21
L1 L1
L6 L6
L21 L21
M7 M7
M13 M13
M15 M15
M20 M20
N5 N5
N6 N6
N12 N12
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
61
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
GROUND PINS (CONTINUED)
N14 N14
N21 N21
N25 N25
P2 P2
P6 P6
P13 P13
P15 P15
P21 P21
R7 R7
R12 R12
R14 R14
R20 R20
T1 T1
T5 T5
T6 T6
T21 T21
T26 T26
V
SS
U6 U6
GND Ground pins
U21 U21
V5 V5
V7 V7
V20 V20
V22 V22
W1 W1
W6 W6
W21 W21
W26 W26
Y9 Y9
Y12 Y12
Y15 Y15
Y18 Y18
AA4 AA4
AA5 AA5
AA8 AA8
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
62
June 2003 Revised October 2005SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/ IPU
TYPE
NAME
DESCRIPTION
IPD/ IPU
TYPE
DM640DM641
GROUND PINS (CONTINUED)
AA10 AA10
AA11 AA11
AA13 AA13
AA14 AA14
AA16 AA16
AA17 AA17
AA19 AA19
AA22 AA22
AB1 AB1
AB2 AB2
AB4 AB4
AB6 AB6
AB9 AB9
AB18 AB18
AB21 AB21
AB26 AB26
V
SS
AC3 AC3
GND Ground pins
AC5 AC5
AC18 AC18
AC22 AC22
AC24 AC24
AD2 AD2
AD4 AD4
AD18 AD18
AE3 AE3
AE8 AE8
AE10 AE10
AE12 AE12
AE14 AE14
AE19 AE19
AE24 AE24
AF1 AF1
AF7 AF7
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Pin Assignments
63
June 2003 Revised October 2005 SPRS222E
Table 16. Terminal Functions (Continued)
SIGNAL
DESCRIPTION
IPD/
IPU
TYPE
NAME
DESCRIPTION
IPD/
IPU
TYPE
DM640DM641
GROUND PINS (CONTINUED)
AF9 AF9
AF11 AF11
AF13 AF13
V
SS
AF15 AF15
GND Ground pins
SS
AF19 AF19
p
AF22 AF22
AF26 AF26
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite supply rail, a 1-kresistor should be used.)
Development
64
June 2003 − Revised October 2005SPRS222E
1.10 Development
1.10.1 Development Support
TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.
The following products support development of C6000 DSP-based applications:
Software Development Tools:
Code Composer Studio Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any DSP application.
Hardware Development Tools:
Extended Development System (XDS) Emulator (supports C6000 DSP multiprocessor system debug) EVM (Evaluation Module)
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.
Code Composer Studio, DSP/BIOS, and XDS are trademarks of Texas Instruments.
Development
65
June 2003 Revised October 2005 SPRS222E
1.10.2 Device Support
1.10.2.1 Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320DM641GDK600). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/ TMDX) through fully qualified production devices/tools (TMS /TMDS).
Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device’s electrical specifications
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality
and reliability verification
TMS Fully qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification
testing.
TMDS Fully qualified development-support product
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:
“Developmental product is intended for internal evaluation purposes.”
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GDK), the temperature range (for example, blank is the default commercial temperature range), and the device speed range in megahertz (for example, -600 is 600 MHz). Figure 17 provides a legend for reading the complete device name for any DSP platform member.
The ZDK package, like the GDK package, is a 548-ball plastic BGA only with Pb-free balls. The ZNZ package is the Pbfree version of the GNZ package.
For device part numbers and further ordering information for TMS320DM641/DM640 in the GDK, GNZ, ZDK and ZNZ package types, see the TI website (http://www.ti.com) or contact your TI sales representative.
Development
66
June 2003 − Revised October 2005SPRS222E
DM64x DSP:
643 642 641 640
PREFIX DEVICE SPEED RANGE
TMS 320 DM641 GDK 600
TMX = Experimental device TMP = Prototype device TMS = Qualified device SMX= Experimental device, MIL SMJ = MIL-PRF-38535, QML SM = High Rel (non-38535)
DEVICE FAMILY
320 = TMS320t DSP family
PACKAGE TYPE
§
GDK = 548-pin plastic BGA GNZ = 548-pin plastic BGA ZDK = 548-pin plastic BGA, with Pb-free soldered balls ZNZ = 548-pin plastic BGA, with Pb-free soldered balls
DEVICE
The extended temperature “A version” devices may have different operating conditions than the commercial temperature devices. For more details, see the recommended operating conditions portion of this data sheet.
BGA = Ball Grid Array
§
The ZDK and ZNZ mechanical package designators represent the version of the GDK and GNZ packages with Pb-free balls. For more detailed information, see the Mechanical Data section of this document.
For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)
( )
Blank = 0°C to 90°C, commercial temperature A=−40°C to 105°C, extended temperature
400 (400-MHz CPU, 100-MHz EMIF) 500 (500-MHz CPU, 100-MHz EMIF) 600 (600-MHz CPU, 133-MHz EMIF)
Figure 17. TMS320DM64x DSP Device Nomenclature (Including the DM641 and DM640 Devices)
1.10.2.2 Documentation Support
Extensive documentation supports all TMS320 DSP family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user’s reference guides for all devices and tools; technical briefs; development-support tools; on-line help; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices:
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the C6000 DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts.
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an overview and briefly describes the functionality of the peripherals available on the C6000™ DSP platform of devices. This document also includes a table listing the peripherals available on the C6000 devices along with literature numbers and hyperlinks to the associated peripheral documents.
The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x digital signal processor, and discusses the application areas that are enhanced by the C64x™ DSP VelociTI.2 VLIW architecture.
The TMS320C64x DSP Video Port/VCXO Interpolated Control (VIC) Port Reference Guide (literature number SPRU629) describes the functionality of the Video Port and VIC Port peripherals.
The TMS320C6000 DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041) describes the functionality of the McASP peripheral.
TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175) describes the functionality of the I
2
C peripheral.
TMS320C6000 DSP Ethernet Media Access Controller (EMAC)/ Management Data Input/Output (MDIO) Module Reference Guide (literature number SPRU628) describes the functionality of the EMAC and MDIO
peripherals.
Development
67
June 2003 Revised October 2005 SPRS222E
The TMS320DM641/TMS320DM640 Digital Signal Processors Silicon Errata (literature number SPRZ201) describes the known exceptions to the functional specifications for particular silicon revisions of the TMS320DM641 and TMS320DM640 devices.
The TMS320DM64x Power Consumption Summary application report (literature number SPRA962) discusses the power consumption for user applications with the TMS320DM641/DM640 DSP devices.
The TMS320DM640/1 Hardware Designer’s Resource Guide (literature number SPRAA50) is organized by development flow and functional areas to make design efforts as seamless as possible. This document includes getting started, board design, system testing, and checklists to aid in initial designs and debug efforts. Each section of this document includes pointers to valuable information including: technical documentation, models, symbols, and reference designs for use in each phase of design. Particular attention is given to peripheral interfacing and system-level design concerns.
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to properly use IBIS models to attain accurate timing analysis for a given system.
The tools support documentation is electronically available within the Code Composer Studio Integrated Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).
1.10.2.3 Device Silicon Revision
The device silicon revision can be determined by the “Die PG code” marked on the top of the package. For more detailed information on the DM641/DM640 silicon revision, package markings, and the known exceptions to the functional specifications as well as any usage notes, refer to the device-specific silicon errata: TMS320DM641, TMS320DM640 Digital Signal Processors Silicon Errata (literature number SPRZ201).
Device Configurations
68
June 2003 Revised October 2005SPRS222E
2 Device Configurations
On the DM641/DM640 device, bootmode and certain device configurations/peripheral selections are determined at device reset, while other device configurations/peripheral selections are software-configurable via the peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset.
2.1 Configurations at Reset
For proper device operation; the following external pins must be configured correctly:
For proper DM641 device operation, the HD5 [pin Y1] at device reset must be pulled down via a 10-k
resistor.
For proper DM641/DM640 device operation, the reserved (RSV) [E2] pin at device reset must be pulled down via a 10-kΩ resistor.
For proper DM641/DM640 device operation, the GP0[0] [pin M5] (IPD) must remain low at device reset.
2.1.1 Peripheral Selection at Device Reset
On the DM641/DM640 devices there are NO peripherals sharing the same pins (internally muxed, yet mutually exclusive) that are controlled via external pins.
EMAC and MDIO peripherals
The MAC_EN pin is latched at reset. This pin determines specific peripheral selection, summarized in Table 21.
Table 21. MAC_EN Peripheral Selection (EMAC and MDIO)
PERIPHERAL SELECTION PERIPHERALS SELECTED
MAC_EN
Pin [C5]
HPI Data
(16-Bit) [DM641 Only]
EMAC and MDIO
0 Disabled 1
Device Configurations
69
June 2003 Revised October 2005 SPRS222E
2.1.2 Device Configuration at Device Reset
Table 22 describes the DM641/DM640 device configuration pins, which are set up via external pullup/pulldown resistors through the specified EMIFA address bus pins (AEA[22:19]) and the TOUT1/LENDIAN pin (all of which are latched during device reset).
Table 22. DM641/DM640 Device Configuration Pins
(TOUT1/LENDIAN, AEA[22:19], and TOUT0/MAC_EN)
CONFIGURATION
PIN
NO. FUNCTIONAL DESCRIPTION
TOUT1/LENDIAN B5
Device Endian mode (LEND)
0 – System operates in Big Endian mode 1 System operates in Little Endian mode (default)
AEA[22:21]
[U23,
V24]
Bootmode [1:0]
Boot mode (AEA[22:21]): 00 – No boot (default mode) 01 HPI [DM641 only]; Reserved [For DM640 device] 10 Reserved 11 EMIFA 8bit ROM boot
AEA[20:19]
[V25,
V26]
EMIFA input clock select
Clock mode select for EMIFA (AECLKIN_SEL[1:0]) 00 – AECLKIN (default mode) 01 CPU/4 Clock Rate 10 CPU/6 Clock Rate 11 − Reserved
TOUT0/MAC_EN C5
Peripheral Selection
1 EMAC and MDIO enabled 0 EMAC and MDIO disabled
2.2 Configurations After Reset
2.2.1 Peripheral Selection After Device Reset
Video Ports, McBSP1, McBSP0, McASP0, and I2C0
The DM641/DM640 device has designated registers for peripheral configuration (PERCFG), device status (DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the CFGBUS.
The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the Video Ports (VP0 and VP1 [DM641 only]) McBSP0, McBSP1, McASP0, and I2C0 peripherals. For more detailed information on the PERCFG register control bits, see Figure 21 and Table 2−3.
Device Configurations
70
June 2003 Revised October 2005SPRS222E
31 24
Reserved
R-0
23
16
Reserved
R-0
15
8
Reserved
R-0
76543
210
Reserved
Reserved VP1EN
VP0EN I2C0EN MCBSP1EN MCBSP0EN MCASP0EN
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
The DM640 device does not support the VP1 peripheral; therefore, this bit is Reserved.
Figure 21. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000 0x01B3F003]
Table 23. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:6 Reserved Reserved. Read-only, writes have no effect.
5 VP1EN
VP1 Enable bit [DM641 only]. Determines whether the VP1 peripheral is enabled or disabled.
0 = VP1 is disabled, and the module is powered down (default).
(This feature allows power savings by disabling the peripheral when not in use.)
1 = VP1 is enabled.
The DM640 device does not support the VP1 peripheral; therefore, this bit is Reserved.
4 VP0EN
VP0 Enable bit. Determines whether the VP0 peripheral is enabled or disabled.
0 = VP0 is disabled, and the module is powered down (default).
(This feature allows power savings by disabling the peripheral when not in use.)
1 = VP0 is enabled.
3 I2C0EN
Inter-integrated circuit 0 (I2C0) enable bit. Selects whether I2C0 peripheral is enabled or disabled (default).
0 = I2C0 is disabled, and the module is powered down (default). 1 = I2C0 is enabled.
2 MCBSP1EN
Video Port 1 (VP1) lower data pins vs. McBSP1 enable bit. Selects whether VP1 peripheral lower-data pins or the McBSP1 peripheral is enabled.
0 = VP1 lower-data pins are enabled and function (if VP1EN=1), McBSP1 is disabled; the
remaining VP1 upper-data pins are dependent on the MCASP0EN bit and the VP1EN bit settings.
1 = McBSP1 is enabled, VP1 lower-data pin functions are disabled (default). For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and the signal pins controlled/selected, see Figure 22.
Device Configurations
71
June 2003 Revised October 2005 SPRS222E
Table 23. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions (Continued)
DESCRIPTIONNAMEBIT
1 MCBSP0EN
Video Port 0 (VP0) lower data pins vs. McBSP0 enable bit. Selects whether VP0 peripheral lower-data pins or the McBSP1 peripheral is enabled.
0 = VP0 lower-data pins are enabled and function (if VP0EN=1), McBSP0 is disabled; the
remaining VP0 upper-data pins are dependent on the MCASP0EN bit and the VP1EN bit settings.
1 = McBSP0 is enabled, VP0 lower-data pin functions are disabled (default). For a graphic (logic) representation of this Peripheral Configuration (PERCFG) Register selection bit and the signal pins controlled/selected, see Figure 22.
0 MCASP0EN
McASP0 select bit. Selects whether the McASP0 peripheral or the VP0 and VP1 upper-data pins are enabled.
0 = Reserved [default].
1 = McASP0 is enabled.
For proper DM641/DM640 device operation, the pin must be set to a “1”.
1
0
VP0 Data (8 pins)
VP0 (Channel A)
McBSP0
McBSP0EN [PERCFG.1]
1
0
VP1 Data (8 pins)
VP1 (Channel A) [DM641 Only]
McBSP1
McBSP1EN [PERCFG.2]
VP0D[6:0] Muxed
VP0D[7] Standalone
VP1D[6:0] Muxed
VP1D[7] Standalone
Consists of: VP0D[6]/CLKR0, VP0D[5]/FSR0, VP0D[4]/DR0, VP0D[3]/CLKS0, VP0D[2]/DX0, VP0D[1]/FSX0, VP0D[0]/CLKX0.
Consists of: VP1D[6]/CLKR1, VP1D[5]/FSR1, VP1D[4]/DR1, VP1D[3]/CLKS1, VP1D[2]/DX1, VP1D[1]/FSX1, VP1D[0]/CLKX1.
Figure 22. VP1, VP0, McBSP1, and McBSP0 Pin Muxing
Device Configurations
72
June 2003 Revised October 2005SPRS222E
2.3 Peripheral Configuration Lock
By default, the McASP0, VP0, VP1 [DM641 only], and I2C peripherals are disabled on power up. In order to use these peripherals on the DM641/DM640 device, the peripheral must first be enabled in the Peripheral Configuration register (PERCFG). Software muxed pins should not be programmed to switch
functionalities during run-time. Care should also be taken to ensure that no accesses are being performed before disabling the peripherals. To help minimize power consumption in the DM641/DM640
device, unused peripherals may be disabled.
Figure 23 shows the flow needed to enable (or disable) a given peripheral on the DM641/DM640 devices.
Unlock the PERCFG Register
Using the PCFGLOCK Register
Write to
PERCFG Register
to Enable/Disable Peripherals
Read from
PERCFG Register
Wait 128 CPU Cycles Before
Accessing Enabled Peripherals
Figure 23. Peripheral Enable/Disable Flow Diagram
A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register (PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT bit = 0), see Figure 2−4. A peripheral can only be enabled when the PERCFG register is “unlocked” (LOCKSTAT bit = 0).
Device Configurations
73
June 2003 Revised October 2005 SPRS222E
Read Accesses
31 10
Reserved
LOCKSTAT
R-0 R-1
Write Accesses
31 0
LOCK
W-0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 24. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] Read/Write Accesses
Table 24. PCFGLOCK Register Selection Bit Descriptions Read Accesses
BIT NAME DESCRIPTION
31:1 Reserved Reserved. Read-only, writes have no effect.
0 LOCKSTAT
Lock status bit. Determines whether the PERCFG register is locked or unlocked.
0 = Unlocked, read accesses to the PERCFG register allowed.
1 = Locked, write accesses to the PERCFG register do not modify the register state [default]. Reads are unaffected by Lock Status.
Table 25. PCFGLOCK Register Selection Bit Descriptions Write Accesses
BIT NAME DESCRIPTION
31:0 LOCK
Lock bits. 0x10C0010C = Unlocks PERCFG register accesses.
Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the PERCFG register with the necessary enable bits set.
Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur.
Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a peripheral while it is disabled.
Device Configurations
74
June 2003 Revised October 2005SPRS222E
2.4 Device Status Register Description
The device status register depicts the status of the device peripheral selection. For the actual register bit names and their associated bit field descriptions, see Figure 25 and Table 2−6.
31 24
Reserved
R-0
23
16
Reserved
R-0
15 14 13 12 11
10 9 8
Reserved
MAC_EN Reserved Reserved Reserved
R-0 R-x R-0 R-x R-0
76543
210
Reserved
CLKMODE1 CLKMODE0 LENDIAN BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0
R-x R-x R-x R-x R-x R-x R-x R-x
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 25. Device Status Register (DEVSTAT) Description − 0x01B3 F004
Table 26. Device Status (DEVSTAT) Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:12 Reserved Reserved. Read-only, writes have no effect.
11 MAC_EN
EMAC enable bit. Shows the status of whether EMAC peripheral is enabled or disabled (default).
0 = EMAC is disabled, and the module is powered down (default). 1 = EMAC is enabled.
10:7 Reserved Reserved. Read-only, writes have no effect.
6 CLKMODE1
Clock mode select bits Shows the status of whether the CPU clock frequency equals the input clock frequency X1 (Bypass), x6, or x12.
Clock mode select for CPU clock frequency (CLKMODE[1:0]) 00 – B
yp
ass (x1) (default mode
)
5 CLKMODE0
00 – Bypass (x1) (default mode)
01 x6 10 x12
11 − Reserved For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this data sheet.
4 LENDIAN
Device Endian mode (LEND) Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default).
0 – System is operating in Big Endian mode
1 System is operating in Little Endian mode (default)
3 BOOTMODE1
Bootmode configuration bits Shows the status of what device bootmode configuration is operational. Bootmode [1:0]
2 BOOTMODE0
00 – No boot (default mode)
01 HPI [DM641 only]; Reserved [For DM640 device]
10 Reserved
11 EMIFA 8bit ROM boot
Device Configurations
75
June 2003 Revised October 2005 SPRS222E
Table 26. Device Status (DEVSTAT) Register Selection Bit Descriptions (Continued)
DESCRIPTIONNAMEBIT
1 AECLKINSEL1
EMIFA input clock select Shows the status of what clock mode is enabled or disabled for the EMIF.
Clock mode select for EMIFA (AECLKIN_SEL[1:0])
0 AECLKINSEL0
00 – AECLKIN (default mode) 01 CPU/4 Clock Rate 10 CPU/6 Clock Rate 11 − Reserved
Device Configurations
76
June 2003 Revised October 2005SPRS222E
2.5 Multiplexed Pin Configurations
Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some of these pins are configured by software, and the others are configured by external pullup/pulldown resistors only at reset. Those muxed pins that are configured by software should not be programmed to switch functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors are mutually exclusive; only one peripheral has primary control of the function of these pins after reset. Table 27 identifies the multiplexed pins on the DM641/DM640 device; shows the default (primary) function and the default settings after reset; and describes the pins, registers, etc. necessary to configure specific multiplexed functions.
Table 27. DM641/DM640 Device Multiplexed Pin Configurations
MULTIPLEXED PINS
DEFAULT DEFAULT
NAME NO.
DEFAULT
FUNCTION
DEFAULT
SETTING
DESCRIPTION
CLKOUT4/GP0[1] D6 CLKOUT4 GP1EN = 0 (disabled)
These pins are software-configurable. To use these pins as GPIO pins, the GPxEN bits in the GPIO Enable Register and the GPxDIR bits in the GPIO Direction Register must be
CLKOUT6/GP0[2] C6 CLKOUT6 GP2EN = 0 (disabled)
properly configured. GPxEN = 1: GPx pin enabled GPxDIR = 0: GPx pin is an input GPxDIR = 1: GPx pin is an output
VP1D[6]/CLKR1 AD8
Muxed on the DM641 device only
VP1D[5]/FSR1 AC7
Muxed on the DM641 device only
[The DM640 device does not support the VP1 peripheral;
VP1D[4]/DR1 AD7
VP1EN bit = 0
therefore, the McBSP1 peripheral pins are standalone
VP1D[3]/CLKS1 AE7
McBSP1
(disabled)
peripheral functions, not muxed.]
VP1D[2]/DX1 AC6
f
unctions
MCBSP1EN bit = 1 (
enabled
)
By default, the McBSP1 peripheral, function is enabled upon
VP1D[1]/FSX1 AD6
(enabled)
reset (MCBSP1EN bit = 1). T
o enable
the Vi
deo Po
rt 1 data pins, the VP1EN bit in th
e
VP1D[0]/CLKX1 AE6
To enable the Video Port 1 data pins, the VP1EN bit in the
PERCFG register must be set to a 1.
VP0D[6]/CLKR0 AE15
VP0D[5]/FSR0 AB16
VP0D[4]/DR0 AC16
VP0EN bit = 0
By default, the McBSP0 peripheral function is enabled upon
VP0D[3]/CLKS0 AD16
McBSP0
(disabled)
ypp p
reset (MCBSP0EN bit = 1).
VP0D[2]/DX0 AE16
f
unctions
MCBSP0EN bit = 1 (
enabled
)
To
enable
the Video Port 0 data pi
ns,
the VP0EN bit in th
e
PERCFG re
g
ister must be set to a 1.
VP0D[1]/FSX0 AF16
(enabled)
PERCFG register must be set to a 1
.
VP0D[0]/CLKX0 AF17
Device Configurations
77
June 2003 Revised October 2005 SPRS222E
2.6 Debugging Considerations
It is recommended that external connections be provided to device configuration pins, including TOUT1/LENDIAN, AEA[22:19] and TOUT0/MAC_EN. Although internal pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user in debugging and flexibility in switching operating modes.
Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:0]). Do not oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown resistors. If an external controller provides signals to these non-configuration pins, these signals must be driven to the default state of the pins at reset, or not be driven at all.
For the internal pullup/pulldown resistors for all device pins, see the terminal functions table.
2.7 Configuration Examples
Figure 26 through Figure 29 illustrate examples of peripheral selections that are configurable on the DM641 and DM640 devices.
Device Configurations
78
June 2003 Revised October 2005SPRS222E
Shading denotes a peripheral module not available for this configuration.
HPI
(16-Bit)
EMAC
MDIO
VP0
(8-Bit)
McBSP0
McASP0 Data
McBSP1
EMIFA
Clock
and
System
GP0
and
EXT_INT
I2C0
TIMER0
TIMER1
TIMER2
McASP0 Control
16
HD[15:0]
MTXD[3:0], MTXEN
MRXD[3:0], MRXER,
MRXDV, MCOL, MCRS,
MTCLK, MRCLK
MDIO, MDCLK
VP0CLK0
VP0CLK1,
VP0CTL[2:0],
VP0D[7:0]
VP1
(8-Bit)
VP1CLK0
VP1CLK1,
VP1CTL[2:0],
VP1D[7:0]
AED[31:0]
32
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA
, ABUSREQ,
AARE
/ASDCAS/ASADS/ASRE,
AAOE
/ASDRAS/ASOE,
AAWE
/ASDWE/ASWE
CLKIN, CLKMODE0, CLKMODE1
CLKOUT4, CLKOUT6, PLLV
SCL0
SDA0
TINP0
TOUT0/MAC_EN
TINP1
TOUT1/LENDIAN
HRDY, HINT
HCNTL0, HCNTL1,
HHWIL, HAS
, HR/W,
HCS
, HDS1, HDS2
GP0[3:0]
GP0[7:4]
STCLK
STCLK
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0,
AHCLKR0, AFSR0,
ACLKR0
AXR0[3:0]
STCLK supports both video ports (VP1 and VP0).
PERCFG Register Value: 0x0000 0039 Extenal Pins: TOUT0/MAC_EN = 1
VIC
VDAC
Figure 26. Configuration Example A for DM641
(2 8-Bit Video Ports + 1 McASP0 + VIC + I2C0 + EMIF)
[TBD Application]
Device Configurations
79
June 2003 Revised October 2005 SPRS222E
Shading denotes a peripheral module not available for this configuration.
HPI
(16-Bit)
EMAC
MDIO
VP0
(8-Bit)
McBSP0
McASP0 Data
McBSP1
EMIFA
Clock
and
System
GP0
and
EXT_INT
I2C0
TIMER0
TIMER1
TIMER2
McASP0 Control
16
HD[15:0]
MTXD[3:0], MTXEN
MRXD[3:0], MRXER,
MRXDV, MCOL, MCRS,
MTCLK, MRCLK
MDIO, MDCLK
VP1
(8-Bit)
AED[31:0]
32
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA
, ABUSREQ,
AARE
/ASDCAS/ASADS/ASRE,
AAOE
/ASDRAS/ASOE,
AAWE
/ASDWE/ASWE
CLKIN, CLKMODE0, CLKMODE1
CLKOUT4, CLKOUT6, PLLV
SCL0
SDA0
TINP0
TOUT0/MAC_EN
TINP1
TOUT1/LENDIAN
HRDY, HINT
HCNTL0, HCNTL1,
HHWIL, HAS
, HR/W,
HCS
, HDS1, HDS2
GP0[3:0]
GP0[7:4]
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0, AHCLKR0,
AFSR0, ACLKR0
AXR0[3:0]
PERCFG Register Value: 0x0000 000F Extenal Pins: TOUT0/MAC_EN = 1
CLKR1, FSR1, DR1,
CLKS1, DX1, FSX1,
CLKX1
CLKR0, FSR0, DR0,
CLKS0, DX0, FSX0,
CLKX0
VIC
VDAC
Figure 27. Configuration Example B for DM641
(1 McASP0 + 2 McBSPs + VIC + I2C0 + EMIF)
[TBD Application]
Device Configurations
80
June 2003 Revised October 2005SPRS222E
Shading denotes a peripheral module not available for this configuration.
EMAC
MDIO
VP0
(8-Bit)
McBSP0
McASP0 Data
McBSP1
EMIFA
Clock
and
System
GP0
and
EXT_INT
I2C0
TIMER0
TIMER1
TIMER2
McASP0 Control
MTXD[3:0], MTXEN
MRXD[3:0], MRXER,
MRXDV, MCOL, MCRS,
MTCLK, MRCLK
MDIO, MDCLK
VP0CLK0
VP0CLK1,
VP0CTL[2:0],
VP0D[7:0]
AED[31:0]
32
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA
, ABUSREQ,
AARE
/ASDCAS/ASADS/ASRE,
AAOE
/ASDRAS/ASOE,
AAWE
/ASDWE/ASWE
CLKIN, CLKMODE0, CLKMODE1
CLKOUT4, CLKOUT6, PLLV
SCL0
SDA0
TINP0
TOUT0/MAC_EN
TINP1
TOUT1/LENDIAN
GP0[3:0]
GP0[7:4]
STCLK
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0,
AHCLKR0, AFSR0,
ACLKR0
AXR0[3:0]
PERCFG Register Value: 0x0000 0019 Extenal Pins: TOUT0/MAC_EN = 1
VIC
VDAC
Figure 28. Configuration Example A for DM640
(1 8-Bit Video Port + 1 McASP0 + VIC + I2C0 + EMIF)
[TBD Application]
Device Configurations
81
June 2003 Revised October 2005 SPRS222E
Shading denotes a peripheral module not available for this configuration.
EMAC
MDIO
VP0
(8-Bit)
McBSP0
McASP0 Data
McBSP1
EMIFA
Clock
and
System
GP0
and
EXT_INT
I2C0
TIMER0
TIMER1
TIMER2
McASP0 Control
MTXD[3:0], MTXEN
MRXD[3:0], MRXER,
MRXDV, MCOL, MCRS,
MTCLK, MRCLK
MDIO, MDCLK
AED[31:0]
32
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0], AECLKOUT1, AECLKOUT2, ASDCKE, ASOE3, APDT, AHOLDA
, ABUSREQ,
AARE
/ASDCAS/ASADS/ASRE,
AAOE
/ASDRAS/ASOE,
AAWE
/ASDWE/ASWE
CLKIN, CLKMODE0, CLKMODE1
CLKOUT4, CLKOUT6, PLLV
SCL0
SDA0
TINP0
TOUT0/MAC_EN
TINP1
TOUT1/LENDIAN
GP0[3:0]
GP0[7:4]
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0, AHCLKR0,
AFSR0, ACLKR0
AXR0[3:0]
PERCFG Register Value: 0x0000 000F Extenal Pins: TOUT0/MAC_EN = 1
CLKR1, FSR1, DR1,
CLKS1, DX1, FSX1,
CLKX1
CLKR0, FSR0, DR0,
CLKS0, DX0, FSX0,
CLKX0
VIC
VDAC
Figure 29. Configuration Example B for DM640
(1 McASP0 + 2 McBSPs + VIC + I2C0 + EMIF)
[TBD Application]
Device Operating Conditions
82
June 2003 Revised October 2005SPRS222E
3 Device Operating Conditions
3.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted)
Supply voltage ranges: CVDD (see Note 1) 0.3 V to 1.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVDD (see Note 1) 0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage ranges: V
I
0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage ranges: V
O
0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating case temperature ranges, T
C
: (default) 0_C to 90_C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
65_C to 150_C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to V
SS
.
3.2 Recommended Operating Conditions
MIN NOM MAX UNIT
Supply voltage, Core (-400 and -500 devices)
1.14 1.2 1.26 V
CV
DD
Supply voltage, Core (-600 device)
1.36 1.4 1.44 V
DV
DD
Supply voltage, I/O 3.14 3.3 3.46 V
V
SS
Supply ground 0 0 0 V
V
IH
High-level input voltage 2 V
V
IL
Low-level input voltage 0.8 V
V
OS
Maximum voltage during overshoot (see Figure 44) 4.3
§
V
V
US
Maximum voltage during undershoot (see Figure 45) −1.0
§
V
T
C
Operating case temperature 0 90 _C
Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not incorporating a flexible supply may limit the system’s ability to easily adapt to future versions of C64x devices.
§
The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.
Device Operating Conditions
83
June 2003 Revised October 2005 SPRS222E
3.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS
MIN TYP MAX UNIT
V
OH
High-level output voltage DVDD = MIN, I
OH
= MAX 2.4 V
V
OL
Low-level output voltage DVDD = MIN, I
OL
= MAX 0.4 V
VI = VSS to DVDD no opposing internal resistor
±10 uA
I
I
Input current
V
I
= VSS to DVDD opposing internal
pullup resistor
50 100 150 uA
VI = VSS to DVDD opposing internal pulldown resistor
150 100 50 uA
EMIF, CLKOUT4, CLKOUT6, EMUx −16 mA
I
OH
High-level output current
Video Ports, Timer, TDO, GPIO (Excluding GP0[2,1]), McBSP
8 mA
HPI [DM641] −0.5 mA
EMIF, CLKOUT4, CLKOUT6, EMUx 16 mA
I
O
L
Low-level output current
Video Ports, Timer, TDO, GPIO (Excluding GP0[2,1]), McBSP
8 mA
IOLLow level output current
SCL0 and SDA0 3 mA
HPI [DM641] 1.5 mA
I
OZ
Off-state output current VO = DV
DD
or 0 V ±10 uA
CVDD = 1.4 V, CPU clock = 600 MHz 890 mA
I
CDD
Core supply current
§
CVDD = 1.2 V, CPU clock = 500 MHz 620 mA
I
CDD
Core supply current
CVDD = 1.2 V, CPU clock = 400 MHz 510 mA
DVDD = 3.3 V, CPU clock = 600 MHz 210 mA
I
DDD
I/O supply current
§
DVDD = 3.3 V, CPU clock = 500 MHz 165 mA
I
DDD
I/O supply current
DVDD = 3.3 V, CPU clock = 400 MHz 160 mA
C
i
Input capacitance 10 pF
C
o
Output capacitance 10 pF
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
§
Measured with average activity (50% high/50% low power) at 25°C case temperature and 133-MHz EMIF for -600 speed (100-MHz EMIF for
-500 and -400 speeds). This model represents a device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The high/low-DSP-activity models are defined as follows: High-DSP-Activity Model:
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions;
L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)] McBSP: 2 channels at E1 rate Timers: 2 timers at maximum rate
Low-DSP-Activity Model:
CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles;
L2/EMIF EDMA: None] McBSP: 2 channels at E1 rate Timers: 2 timers at maximum rate
The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320DMx Power Consumption
Summary application report (literature number SPRA962).
DM641/DM640 Peripheral Information and Electrical Specifications
84
June 2003 Revised October 2005SPRS222E
4 DM641/DM640 Peripheral Information and Electrical Specifications
4.1 Parameter Information
4.1.1 Parameter Information Device-Specific Information
Transmission Line
4.0 pF 1.85 pF
Z0 = 50 (see note)
Tester Pin Electronics
Data Sheet Timing Reference Point
Output Under Test
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
42 3.5 nH
Device Pin (see note)
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
Figure 41. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.
4.1.1.1 Signal Transition Levels
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.
V
ref
= 1.5 V
Figure 42. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, V
OL
MAX
and V
OH
MIN for output clocks.
V
ref
= VIL MAX (or VOL MAX)
V
ref
= VIH MIN (or VOH MIN)
Figure 43. Rise and Fall Transition Time Voltage Reference Levels
4.1.1.2 Signal Transition Rates
All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns).
Parameter Information
85
June 2003 Revised October 2005 SPRS222E
4.1.1.3 AC Transient Rise/Fall Time Specifications
Figure 44 and Figure 4−5 show the AC transient specifications for Rise and Fall Time. For device-specific information on these values, refer to the Recommended Operating Conditions section of this Data Sheet.
VOS (max)
VIH (min)
Minimum Risetime
Waveform Valid Region
t = 0.3 t
c
(max)
Ground
Figure 44. AC Transient Specification Rise Time
tc = the peripheral cycle time in nanoseconds (ns).
t = 0.3 tc(max)
VIL (max)
Ground
VUS (max)
Figure 45. AC Transient Specification Fall Time
tc = the peripheral cycle time in nanoseconds (ns).
4.1.1.4 Timing Parameters and Board Routing Analysis
The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences.
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 41 and Figure 46).
Figure 46 represents a general transfer between the DSP and an external device. The figure also represents board route delays and how they are perceived by the DSP and the external device.
Power Supplies
86
June 2003 Revised October 2005SPRS222E
Table 41. Board-Level Timing Example (see Figure 46)
NO. DESCRIPTION
1 Clock route delay
2 Minimum DSP hold time
3 Minimum DSP setup time
4 External device hold time requirement
5 External device setup time requirement
6 Control signal route delay
7 External device hold time
8 External device access time
9 DSP hold time requirement
10 DSP setup time requirement
11 Data route delay
1
2
3
4
5
6
7
8
10
11
ECLKOUTx
(Output from DSP)
ECLKOUTx
(Input to External Device)
Control Signals
(Output from DSP)
Control Signals
(Input to External Device)
Data Signals
(Output from External Device)
Data Signals
(Input to DSP)
9
† Control signals include data for Writes. ‡Data signals are generated during Reads from an external device.
Figure 46. Board-Level Input/Output Timings
4.2 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner.
4.3 Power Supplies
For more information regarding TI’s power management products and suggested devices to power TI DSPs, visit www.ti.com/dsppower.
4.3.1 Power-Supply Sequencing
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time (>1 second) if the other supply is below the proper operating voltage.
Power Supplies
87
June 2003 Revised October 2005 SPRS222E
4.3.2 Power-Supply Design Considerations
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 4−7).
DV
DD
CV
DD
V
SS
C6000
DSP
Schottky
Diode
I/O Supply
Core Supply
GND
Figure 47. Schottky Diode Diagram
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.
4.3.3 Power-Supply Decoupling
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more than
1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better because of their lower parasitic inductance. Proper capacitance values are also important. Small bypass caps (near 560 pF) should be closest to the power pins. Medium bypass caps (220 nF or as large as can be obtained in a small package) should be next closest. TI recommends no less than 8 small and 8 medium caps per supply (32 total) be placed immediately next to the BGA vias, using the “interior” BGA space and at least the corners of the “exterior”.
Eight larger caps (4 for each supply) can be placed further away for bulk decoupling. Large bulk caps (on the order of 100 µF) should be furthest away (but still as close as possible). No less than 4 large caps per supply (8 total) should be placed outside of the BGA.
Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of any component, verification of capacitor availability over the product’s production lifetime should be considered.
Power Supplies
88
June 2003 Revised October 2005SPRS222E
4.3.4 Peripheral Power-Down Operation
The DM641/DM640 device can be powered down in three ways:
Power-down due to pin configuration
Power-down due to software configuration relates to the default state of the peripheral configuration bits
in the PERCFG register.
Power-down during run-time via software configuration
On the DM641/DM640 device, the EMAC and MDIO peripherals are controlled (selected) at the pin level during chip reset (e.g., using the MAC_EN pin).
The McASP0, McBSP0, McBSP1, VP0, VP1 [DM641 only], and I2C0 peripheral functions are selected via the peripheral configuration (PERCFG) register bits.
For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the Device Configurations section of this document.
4.3.5 Power-Down Modes Logic
Figure 48 shows the power-down mode logic on the DM641/DM640.
PWRD
Internal Clock Tree
CPU
IFR
IER
CSR
PD1
PD2
Power-
Down Logic
Clock
PLL
CLKIN RESET
CLKOUT6
PD3
Internal
Peripherals
CLKOUT4
Clock
and Dividers
Distribution
External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.
TMS320DM641/DM640
Figure 48. Power-Down Mode Logic
Power Supplies
89
June 2003 Revised October 2005 SPRS222E
4.3.6 Triggering, Wake-up, and Effects
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 1510) of the control status register (CSR). The PWRD field of the CSR is shown in Figure 49 and described in Table 42. When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
31 16
15 14 13 12 11 10 9 8
Reserved
Enable or
Non-Enabled
Interrupt Wake
Enabled
Interrupt Wake
PD3 PD2 PD1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 0
Legend: R/Wx = Read/write reset value
NOTE: The shadowed bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
Figure 49. PWRD Field of the CSR Register
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to account for this delay.
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect upon PD1 mode termination by an enabled interrupt.
PD2 and PD3 modes can only be aborted by device reset. Table 42 summarizes all the power-down modes.
Enhanced Direct Memory Access (EDMA) Controller
90
June 2003 Revised October 2005SPRS222E
Table 42. Characteristics of the Power-Down Modes
PRWD FIELD (BITS 1510)
POWER-DOWN
MODE
WAKE-UP METHOD EFFECT ON CHIP’S OPERATION
000000 No power-down
001001 PD1 Wake by an enabled interrupt
CPU halted (except for the interrupt logic) Power-down mode blocks the internal clock inputs at the
010001 PD1
Wake by an enabled or non-enabled interrupt
Power down mode blocks the internal clock inputs at the
boundary of the CPU, preventing most of the CPU’s logic from switching. During PD1, EDMA transactions can proceed between peripherals and internal memory.
011010 PD2
Wake by a device reset
Output clock from PLL is halted, stopping the internal clock structure from switching and resulting in the entire chip being halted. All register and internal RAM contents are preserved. All functional I/O “freeze” in the last state when the PLL clock is turned off.
011100 PD3
Wake by a device reset
Input clock to the PLL stops generating clocks. All register and internal RAM contents are preserved. All functional I/O “freeze” in the last state when the PLL clock is turned off. Following reset, the PLL needs time to re-lock, just as it does following power-up. Wake-up from PD3 takes longer than wake-up from PD2 because the PLL needs to be re-locked, just as it does following power-up.
All others Reserved
When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions, peripherals will not operate according to specifications.
4.3.7 C64x Power-Down Mode with an Emulator
If user power-down modes are programmed, and an emulator is attached, the modes will be masked to allow the emulator access to the system. This condition prevails until the emulator is reset or the cable is removed from the header. If power measurements are to be performed when in a power-down mode, the emulator cable should be removed.
When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will fail. A DSP reset will be required to get the DSP out of PD2/PD3.
4.4 Enhanced Direct Memory Access (EDMA) Controller
The EDMA controller handles all data transfers between the level-two (L2) cache/memory controller and the device peripherals on the DM641/DM640 DSP. These data transfers include cache servicing, non-cacheable memory accesses, user-programmed data transfers, and host accesses.
4.4.1
EDMA Device-Specific Information
4.4.1.1 EDMA Channel Synchronization Events
The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory. Table 43 lists the source of C64x EDMA synchronization events associated with each of the programmable EDMA channels. For the DM641/DM640 device, the association of an event to a channel is fixed; each of the EDMA channels has one specific event associated with it. These specific events are captured in the EDMA event registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL, EERH). The priority of each event can be specified independently in the transfer parameters stored in the EDMA parameter RAM. For more detailed information on the EDMA module and how EDMA events are enabled, captured, processed, linked, chained, and cleared, etc., see the TMS320C6000 DSP Enhanced
Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).
Enhanced Direct Memory Access (EDMA) Controller
91
June 2003 Revised October 2005 SPRS222E
Table 43. TMS320DM641/DM640 EDMA Channel Synchronization Events†
EDMA
CHANNEL
EVENT NAME EVENT DESCRIPTION
0 DSP_INT HPI-to-DSP interrupt [For DM641 Only; “None” for DM640]
1 TINT0 Timer 0 interrupt
2 TINT1 Timer 1 interrupt
3 SD_INTA EMIFA SDRAM timer interrupt
4 GPINT4/EXT_INT4 GP0 event 4/External interrupt pin 4
5 GPINT5/EXT_INT5 GP0 event 5/External interrupt pin 5
6 GPINT6/EXT_INT6 GP0 event 6/External interrupt pin 6
7 GPINT7/EXT_INT7 GP0 event 7/External interrupt pin 7
8 GPINT0 GP0 event 0
9 GPINT1 GP0 event 1
10 GPINT2 GP0 event 2
11 GPINT3 GP0 event 3
12 XEVT0 McBSP0 transmit event
13 REVT0 McBSP0 receive event
14 XEVT1 McBSP1 transmit event
15 REVT1 McBSP1 receive event
16 VP0EVTYA VP0 Channel A Y event DMA request
17 VP0EVTUA VP0 Channel A Cb event DMA request
18 VP0EVTVA VP0 Channel A Cr event DMA request
19 TINT2 Timer 2 interrupt
2031 None
32 AXEVTE0 McASP0 transmit even event
33 AXEVTO0 McASP0 transmit odd event
34 AXEVT0 McASP0 transmit event
35 AREVTE0 McASP0 receive even event
36 AREVTO0 McASP0 receive odd event
37 AREVT0 McASP0 receive event
3843 None
44 ICREVT0 I2C0 receive event
45 ICXEVT0 I2C0 transmit event
4647 None
48 GPINT8 GP0 event 8
49 GPINT9 GP0 event 9
50 GPINT10 GP0 event 10
51 GPINT11 GP0 event 11
52 GPINT12 GP0 event 12
53 GPINT13 GP0 event 13
54 GPINT14 GP0 event 14
55 GPINT15 GP0 event 15
56 VP1EVTYA VP1 Channel A Y event DMA request [For DM641 Only; “None” for DM640]
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory
Access (EDMA) Controller Reference Guide (literature number SPRU234).
Enhanced Direct Memory Access (EDMA) Controller
92
June 2003 Revised October 2005SPRS222E
Table 43. TMS320DM641/DM640 EDMA Channel Synchronization Events† (Continued)
EDMA
CHANNEL
EVENT DESCRIPTIONEVENT NAME
57 VP1EVTUA VP1 Channel A Cb event DMA request [For DM641 Only; “None” for DM640]
58 VP1EVTVA VP1 Channel A Cr event DMA request [For DM641 Only; “None” for DM640]
5963 None
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).
4.4.2 EDMA Peripheral Register Description(s)
Table 44. EDMA Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01A0 0800 01A0 FF98 Reserved
01A0 FF9C EPRH Event polarity high register
01A0 FFA4 CIPRH Channel interrupt pending high register
01A0 FFA8 CIERH Channel interrupt enable high register
01A0 FFAC CCERH Channel chain enable high register
01A0 FFB0 ERH Event high register
01A0 FFB4 EERH Event enable high register
01A0 FFB8 ECRH Event clear high register
01A0 FFBC ESRH Event set high register
01A0 FFC0 PQAR0 Priority queue allocation register 0
01A0 FFC4 PQAR1 Priority queue allocation register 1
01A0 FFC8 PQAR2 Priority queue allocation register 2
01A0 FFCC PQAR3 Priority queue allocation register 3
01A0 FFDC EPRL Event polarity low register
01A0 FFE0 PQSR Priority queue status register
01A0 FFE4 CIPRL Channel interrupt pending low register
01A0 FFE8 CIERL Channel interrupt enable low register
01A0 FFEC CCERL Channel chain enable low register
01A0 FFF0 ERL Event low register
01A0 FFF4 EERL Event enable low register
01A0 FFF8 ECRL Event clear low register
01A0 FFFC ESRL Event set low register
01A1 0000 01A3 FFFF Reserved
Enhanced Direct Memory Access (EDMA) Controller
93
June 2003 Revised October 2005 SPRS222E
Table 45. Quick DMA (QDMA) and Pseudo Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0200 0000 QOPT QDMA options parameter register
0200 0004 QSRC QDMA source address register
0200 0008 QCNT QDMA frame count register
0200 000C QDST QDMA destination address register
0200 0010 QIDX QDMA index register
0200 0014 0200 001C Reserved
0200 0020 QSOPT QDMA pseudo options register
0200 0024 QSSRC QDMA psuedo source address register
0200 0028 QSCNT QDMA psuedo frame count register
0200 002C QSDST QDMA destination address register
0200 0030 QSIDX QDMA psuedo index register
Enhanced Direct Memory Access (EDMA) Controller
94
June 2003 Revised October 2005SPRS222E
Table 46. EDMA Parameter RAM (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01A0 0000 01A0 0017 Parameters for Event 0 (6 words)
Parameters for Event 0 (6 words) or Reload/Link Parameters for other Event
01A0 0018 01A0 002F Parameters for Event 1 (6 words)
01A0 0030 01A0 0047 Parameters for Event 2 (6 words)
01A0 0048 01A0 005F Parameters for Event 3 (6 words)
01A0 0060 01A0 0077 Parameters for Event 4 (6 words)
01A0 0078 01A0 008F Parameters for Event 5 (6 words)
01A0 0090 01A0 00A7 Parameters for Event 6 (6 words)
01A0 00A8 01A0 00BF Parameters for Event 7 (6 words)
01A0 00C0 01A0 00D7 Parameters for Event 8 (6 words)
01A0 00D8 01A0 00EF Parameters for Event 9 (6 words)
01A0 00F0 01A0 00107 Parameters for Event 10 (6 words)
01A0 0108 01A0 011F Parameters for Event 11 (6 words)
01A0 0120 01A0 0137 Parameters for Event 12 (6 words)
01A0 0138 01A0 014F Parameters for Event 13 (6 words)
01A0 0150 01A0 0167 Parameters for Event 14 (6 words)
01A0 0168 01A0 017F Parameters for Event 15 (6 words)
01A0 0150 01A0 0167 Parameters for Event 16 (6 words)
01A0 0168 01A0 017F Parameters for Event 17 (6 words)
... ...
01A0 05D0 01A0 05E7 Parameters for Event 62 (6 words)
01A0 05E8 01A0 05FF Parameters for Event 63 (6 words)
01A0 0600 01A0 0617 Reload/link parameters for Event 0 (6 words)
Reload/Link Parameters for other Event 015
01A0 0618 01A0 062F Reload/link parameters for Event 1 (6 words)
... ...
01A0 07E0 01A0 07F7 Reload/link parameters for Event 20 (6 words)
01A0 07F8 01A0 080F Reload/link parameters for Event 21 (6 words)
01A0 0810 01A0 0827 Reload/link parameters for Event 22 (6 words)
... ...
01A0 13C8 01A0 13DF Reload/link parameters for Event 147 (6 words)
01A0 13E0 01A0 13F7 Reload/link parameters for Event 148 (6 words)
01A0 13F8 01A0 13FF Scratch pad area (2 words)
01A0 1400 01A3 FFFF Reserved
The DM641/DM640 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each] that can be used to reload/link EDMA transfers.
Interrupts
95
June 2003 Revised October 2005 SPRS222E
4.5 Interrupts
4.5.1 Interrupt Sources and Interrupt Selector
The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 47. The highest-priority interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts (INT_00INT_03) are non-maskable and fixed. The remaining interrupts (INT_04INT_15) are maskable and default to the interrupt source specified in Table 47. The interrupt source for interrupts 4−15 can be programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).
Table 47. DM641/DM640 DSP Interrupts
CPU
INTERRUPT
NUMBER
INTERRUPT
SELECTOR
CONTROL
REGISTER
SELECTOR
VALUE
(BINARY)
INTERRUPT
EVENT
INTERRUPT SOURCE
INT_00
RESET
INT_01
NMI
INT_02
Reserved Reserved. Do not use.
INT_03
Reserved Reserved. Do not use.
INT_04
MUXL[4:0] 00100 GPINT4/EXT_INT4 GP0 interrupt 4/External interrupt pin 4
INT_05
MUXL[9:5] 00101 GPINT5/EXT_INT5 GP0 interrupt 5/External interrupt pin 5
INT_06
MUXL[14:10] 00110 GPINT6/EXT_INT6 GP0 interrupt 6/External interrupt pin 6
INT_07
MUXL[20:16] 00111 GPINT7/EXT_INT7 GP0 interrupt 7/External interrupt pin 7
INT_08
MUXL[25:21] 01000 EDMA_INT EDMA channel (0 through 63) interrupt
INT_09
MUXL[30:26] 01001 EMU_DTDMA EMU DTDMA
INT_10
MUXH[4:0] 00011 SD_INTA EMIFA SDRAM timer interrupt
INT_11
MUXH[9:5] 01010 EMU_RTDXRX EMU real-time data exchange (RTDX) receive
INT_12
MUXH[14:10] 01011 EMU_RTDXTX EMU RTDX transmit
INT_13
MUXH[20:16] 00000 DSP_INT HPI-to-DSP interrupt [DM641 Only]
INT_14
MUXH[25:21] 00001 TINT0 Timer 0 interrupt
INT_15
MUXH[30:26] 00010 TINT1 Timer 1 interrupt
01100 XINT0 McBSP0 transmit interrupt
01101 RINT0 McBSP0 receive interrupt
01110 XINT1 McBSP1 transmit interrupt
0 1111 RINT1 McBSP1 receive interrupt
10000 GPINT0 GP0 interrupt 0
10001 Reserved Reserved. Do not use.
10010 Reserved Reserved. Do not use.
10011 TINT2 Timer 2 interrupt
10100 Reserved Reserved. Do not use.
10101 Reserved Reserved. Do not use.
10110 ICINT0 I2C0 interrupt
10111 Reserved Reserved. Do not use.
11000 EMAC_MDIO_INT EMAC/MDIO interrupt
11001 VPINT0 VP0 interrupt
Interrupts INT_00 through INT_03 are non-maskable and fixed.
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields. Table 47 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).
Reset
96
June 2003 − Revised October 2005SPRS222E
Table 47. DM641/DM640 DSP Interrupts (Continued)
CPU
INTERRUPT
NUMBER
INTERRUPT SOURCE
INTERRUPT
EVENT
SELECTOR
VALUE
(BINARY)
INTERRUPT
SELECTOR
CONTROL
REGISTER
11010 VPINT1 VP1 interrupt [DM641 Only]
11011 Reserved Reserved. Do not use.
11100 AXINT0 McASP0 transmit interrupt
11101 ARINT0 McASP0 receive interrupt
1111 0 11111 Reserved Reserved. Do not use.
Interrupts INT_00 through INT_03 are non-maskable and fixed.
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields. Table 47 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).
4.5.2 Interrupts Peripheral Register Description(s)
Table 48. Interrupt Selector Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
019C 0000 MUXH Interrupt multiplexer high
Selects which interrupts drive CPU interrupts 1015 (INT10INT15)
019C 0004 MUXL Interrupt multiplexer low
Selects which interrupts drive CPU interrupts 49 (INT04INT09)
019C 0008 EXTPOL External interrupt polarity
Sets the polarity of the external interrupts (EXT_INT4EXT_INT7)
019C 000C 019F FFFF Reserved
4.5.3 External Interrupts Electrical Data/Timing
Table 49. Timing Requirements for External Interrupts
(see Figure 4−10)
NO.
400
500
600
UNIT
MIN MAX
Width of the NMI interrupt pulse low 4P ns
1 t
w(ILOW)
Width of the EXT_INT interrupt pulse low 8P ns
Width of the NMI interrupt pulse high 4P ns
2 t
w(IHIGH)
Width of the EXT_INT interrupt pulse high 8P ns
P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.
2
1
EXT_INTx, NMI
Figure 410. External/NMI Interrupt Timing
4.6 Reset
A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The RESET signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core and I/O voltages have reached their proper operating conditions. As a best practice, reset should be held low during power-up. Prior to deasserting RESET
(low-to-high transition), the core and I/O voltages should be at their proper
operating conditions and CLKIN should also be running at the correct frequency.
Reset
97
June 2003 Revised October 2005 SPRS222E
For information on peripheral selection at the rising edge of RESET, see the Device Configuration section of this data manual.
4.6.1 Reset Electrical Data/Timing
Table 410. Timing Requirements for Reset (see Figure 411)
NO.
400
500
600
UNIT
MIN MAX
1 t
w(RST)
Width of the RESET pulse 250 µs
16 t
su(boot)
Setup time, boot configuration bits valid before RESET high
4E or 4C
ns
17 t
h(boot)
Hold time, boot configuration bits valid after RESET high
4P
§
ns
AEA[22:19], LENDIAN, and HD5 are the boot configuration pins during device reset.
E = 1/AECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns. Select the MIN parameter value, whichever value is larger.
§
P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.
Table 411. Switching Characteristics Over Recommended Operating Conditions During Reset
§¶#
(see Figure 4−11)
NO. PARAMETER
400
500
600
UNIT
MIN MAX
2 t
d(RSTL-ECKI)
Delay time, RESET low to AECLKIN synchronized internally 2E 3P + 20E ns
3 t
d(RSTH-ECKI)
Delay time, RESET high to AECLKIN synchronized internally 2E 8P + 20E ns
4 t
d(RSTL-ECKO1HZ)
Delay time, RESET low to AECLKOUT1 high impedance 2E ns
5 t
d(RSTH-ECKO1V)
Delay time, RESET high to AECLKOUT1 valid 8P + 20E ns
6 t
d(RSTL-EMIFZHZ)
Delay time, RESET low to EMIF Z high impedance 2E 3P + 4E ns
7 t
d(RSTH-EMIFZV)
Delay time, RESET high to EMIF Z valid 16E 8P + 20E ns
8 t
d(RSTL-EMIFHIV)
Delay time, RESET low to EMIF high group invalid 2E ns
9 t
d(RSTH-EMIFHV)
Delay time, RESET high to EMIF high group valid 8P + 20E ns
10 t
d(RSTL-EMIFLIV)
Delay time, RESET low to EMIF low group invalid 2E ns
11 t
d(RSTH-EMIFLV)
Delay time, RESET high to EMIF low group valid 8P + 20E ns
12 t
d(RSTL-LOWIV)
Delay time, RESET low to low group invalid 0 ns
13 t
d(RSTH-LOWV)
Delay time, RESET high to low group valid 11 P ns
14 t
d(RSTL-ZHZ)
Delay time, RESET low to Z group high impedance 0 ns
15 t
d(RSTH-ZV)
Delay time, RESET high to Z group valid 2P 8P ns
§
P = 1/CPU clock frequency in ns. For example, when running parts at 600 MHz, use P = 1.67 ns.
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
#
EMIF Z group consists of: AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,
AAOE
/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT.
EMIF high group consists of: AHOLDA
(when the corresponding AHOLD input is high)
EMIF low group consists of: ABUSREQ; AHOLDA
(when the corresponding AHOLD input is low) Low group consists of: Z group consists of: HD[15:0], VP0D[0]/CLKX0, VP0D[1]/FSX0, VP0D[2]/DX0, CLKR0, VP0D[5]/FSR0, TOUT0, TOUT1, VDAC,
GP0[7:0], HR/W
, HDS2, HDS1, HCS, HCNTL1, HAS, HCNTL0, HHWIL (16-bit HPI mode only), HRDY, HINT, and
VP0D[4,3].
VP1 signals apply to DM641 only:
VP1D[0]/CLKX1, VP1D[1]/FSX1, VP1D[2]/DX1, VP1D[6]/CLKR1, VP1D[5]/FSR1, and VP1D[4,3].
Reset
98
June 2003 − Revised October 2005SPRS222E
AECLKOUT2
17
14
1
CLKOUT4
CLKOUT6
RESET
AECLKIN
Boot and Device
Configuration Inputs
§
16
15
32
10
8
11
9
76
13
12
AECLKOUT1
54
Low Group
Z Group
†‡
EMIF Z Group
†‡
EMIF High Group
EMIF Low Group
EMIF Z group consists of: AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,
AAOE
/ASDRAS/ASOE, ASOE3, ASDCKE, and APDT.
EMIF high group consists of: AHOLDA
(when the corresponding AHOLD input is high)
EMIF low group consists of: ABUSREQ; AHOLDA
(when the corresponding AHOLD input is low) Low group consists of: Z group consists of: HD[15:0], VP0D[0]/CLKX0, VP0D[1]/FSX0, VP0D[2]/DX0, CLKR0, VP0D[5]/FSR0, TOUT0, TOUT1, VDAC,
GP0[7:0], HR/W
, HDS2, HDS1, HCS, HCNTL1, HAS, HCNTL0, HHWIL (16-bit HPI mode only), HRDY, HINT, and
VP0D[4,3].
VP1 signals apply to DM641 only:
VP1D[0]/CLKX1, VP1D[1]/FSX1, VP1D[2]/DX1, VP1D[6]/CLKR1, VP1D[5]/FSR1, and VP1D[4,3].
If AEA[22:19], LENDIAN, and HD5 pins are actively driven, care must be taken to ensure no timing contention between parameters 6, 7, 14, 15, 16, and 17.
§
Boot and Device Configurations Inputs (during reset) include: AEA[22:19], LENDIAN, and HD5.
Figure 411. Reset Timing
Clock PLL
99
June 2003 Revised October 2005 SPRS222E
4.7 Clock PLL
The PLL controller features hardware-configurable PLL multiplier controller, dividers (/2, /4, /6, and /8), and reset controller. The PLL controller accepts an input clock, as determined by the logic state on the CLKMODE[1:0] pins, from the CLKIN pin. The resulting clock outputs are passed to the DSP core, peripherals, and other modules inside the C6000 DSP.
4.7.1 Clock PLL Device-Specific Information
Most of the internal C64x™ DSP clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock, or bypasses the PLL to become the internal CPU clock.
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 412 shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes.
To minimize the clock jitter, a single clean power supply should power both the C64x DSP device and the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input clock timing requirements, see the input and output clocks electricals section.
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended ranges of supply voltage and operating case temperature table and the input and output clocks electricals section).
Clock PLL
100
June 2003 Revised October 2005SPRS222E
PLLMULT
1
0
PLLCLK
CLKMODE0 CLKMODE1
CLKIN
C2C1
EMI
filter
3.3 V
/2
/8
/4
/6
00 01 10
CPU Clock
Peripheral Bus, EDMA Clock
Timer Internal Clock
CLKOUT4, Peripheral Clock (AUXCLK for McASP), McBSP Internal Clock
CLKOUT6
/2
/4
EMIF 00 01 10
EK2RATE (GBLCTL.[19,18])
ECLKOUT2ECLKOUT1
PLL
x6, x12
10 µF 0.1 µF
AEA[20:19]
(For the PLL Options, CLKMODE Pins Setup, and PLL Clock Frequency Ranges, see Table 9.)
Internal to DM641/DM640
PLLV
ECLKIN
NOTES: A. Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000 DSP device as possible. For the best
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than the ones shown.
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI
Filter).
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV
DD
.
D. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.
Figure 412. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode
Loading...