1 TMS320C6454 Fixed-Point Digital Signal Processor
1.1 Features
• High-Performance Fixed-Point DSP (C6454)
– 1.39-, 1.17-, and 1-ns Instruction Cycle Time
– 720-MHz, 850-MHz, and 1-GHz Clock Rate
– Eight 32-Bit Instructions/Cycle
– 8000 MIPS/MMACS (16-Bits)
– Commercial Temperature [0°C to 90°C]
• TMS320C64x+™ DSP Core
– Dedicated SPLOOP Instruction
– Compact Instructions (16-Bit)
– Instruction Set Enhancements
– Exception Handling
• TMS320C64x+ Megamodule L1/L2 Memory
Architecture:
– 256K-Bit (32K-Byte) L1P Program Cache
[Direct Mapped]
– 256K-Bit (32K-Byte) L1D Data Cache
[2-Way Set-Associative]
– 8M-Bit (1048K-Byte) L2 Unified Mapped
RAM/Cache [Flexible Allocation]
– 256K-Bit (32K-Byte) L2 ROM
– Time Stamp Counter
• Endianess: Little Endian, Big Endian
• 64-Bit External Memory Interface (EMIFA)
– Glueless Interface to Asynchronous
Memories (SRAM, Flash, and EEPROM) and
Synchronous Memories (SBSRAM and ZBT
SRAM)
– Supports Interface to Standard Sync
Devices and Custom Logic (FPGA, CPLD,
ASICs, etc.)
– 32M-Byte Total Addressable External
Memory Space
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
• 32-Bit DDR2 Memory Controller (DDR2-533
SDRAM)
• EDMA3 Controller (64 Independent Channels)
• 32-/16-Bit Host-Port Interface (HPI)
• 32-Bit 33-/66-MHz, 3.3-V Peripheral Component
Interconnect (PCI) Master/Slave Interface
Conforms to PCI Specification 2.3
• One Inter-Integrated Circuit (I 2C) Bus
• Two McBSPs
• 10/100/1000 Mb/s Ethernet MAC (EMAC)
– IEEE 802.3 Compliant
– Supports Multiple Media Independent
Interfaces (MII, GMII, RMII, and RGMII)
– 8 Independent Transmit (TX) and
8 Independent Receive (RX) Channels
• Two 64-Bit General-Purpose Timers,
Configurable as Four 32-Bit Timers
• 16 General-Purpose I/O (GPIO) Pins
• System PLL and PLL Controller
• Secondary PLL and PLL Controller, Dedicated
to EMAC and DDR2 Memory Controller
• IEEE-1149.1 (JTAG™)
Boundary-Scan-Compatible
• 697-Pin Ball Grid Array (BGA) Package
(ZTZ or GTZ Suffix), 0.8-mm Ball Pitch
• 0.09- µ m/7-Level Cu Metal Process (CMOS)
• 3.3-/1.8-/1.5-V I/Os, 1.25-/1.2-V Internal
• Pin-Compatible with the TMS320C6455
Fixed-Point Digital Signal Processor
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
All trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2006–2006, Texas Instruments Incorporated
ZTZ/GTZ 697-PIN BALL GRID ARRAY (BGA) PACKAGE
(BOTTOM VIEW)
A
2
B
1 345678910111213141516171819202122232425
26
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
272829
AG
AH
AJ
NOTE: The ZTZ mechanical package designator represents the version of the GTZ package with lead-free balls. For more detailed information,
see the Mechanical Data section of this document.
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
1.1.1 ZTZ/GTZ BGA Package (Bottom View)
The TMS320C6454 devices are designed for a package temperature range of 0°C to +90°C (commercial
temperature range).
Figure 1-1. ZTZ/GTZ BGA Package (Bottom View)
1.2 Description
The TMS320C64x+™ DSPs (including the TMS320C6454 device) are the highest-performance fixed-point
DSP generation in the TMS320C6000™ DSP platform. The C6454 device is based on the third-generation
high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by
Texas Instruments (TI), making these DSPs an excellent choice for applications including video and
telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+™ devices are
upward code-compatible from previous devices that are part of the C6000™ DSP platform.
The C6454 offers a lower cost pin-compatible migration path for C6455 customers who don't need the
2MB of the C6455 or the high-speed interconnect provided by Serial RapidIO. The C6454 also provides
an excellent migration path for existing C6414/6415/6416 customers who require C6454 advanced
peripherals; DDR2 at 533 MHz provides 2x performance boost over older SDRAM interface, gigabit
Ethernet provides low-cost high-performance ubiquitous packet interface, and 66-MHz PCI (revision 2.3
complaint) provides legacy high-bandwidth interconnect.
Based on 90-nm process technology and with performance of up to 8000 million instructions per second
(MIPS) [or 8000 16-bit MMACs per cycle] at a clock rate of 1 GHz, the C6454 device offers cost-effective
solutions to high-performance DSP programming challenges. The C6454 DSP possesses the operational
flexibility of high-speed controllers and the numerical capability of array processors.
TMS320C6454 Fixed-Point Digital Signal Processor 2 Submit Documentation Feedback
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier
C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles
the multiply throughput versus the C64x core by performing four 16-bit x 16-bit multiply-accumulates
(MACs) every clock cycle. Thus, eight 16-bit x 16-bit MACs can be executed every cycle on the C64x+
core. At a 1-GHz clock rate, this means 8000 16-bit MMACs can occur every second. Moreover, each
multiplier on the C64x+ core can compute one 32-bit x 32-bit MAC or four 8-bit x 8-bit MACs every clock
cycle.
The C6454 DSP integrates a large amount of on-chip memory organized as a two-level memory system.
The level-1 (L1) program and data memories on the C6454 device are 32KB each. This memory can be
configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1
program (L1P) is a direct mapped cache where as L1 data (L1D) is a two-way set associative cache. The
level 2 (L2) memory is shared between program and data space and is 1048KB in size. L2 memory can
also be configured as mapped RAM, cache, or some combination of the two. The C64x+ Megamodule
also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system
component with reset/boot control, interrupt/exception control, a power-down control, and a free-running
32-bit timer for time stamp.
The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial
ports (McBSPs); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral
component interconnect (PCI); a 16-pin general-purpose input/output port (GPIO) with programmable
interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which
provides an efficient interface between the C6454 DSP core processor and the network; a management
data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in
order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA),
which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM
interface.
The I2C ports on the C6454 allows the DSP to easily control peripheral devices and communicate with a
host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to
communicate with serial peripheral interface (SPI) mode peripheral devices.
The C6454 has a complete set of development tools which includes: a new C compiler, an assembly
optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into
source code execution.
Submit Documentation Feedback TMS320C6454 Fixed-Point Digital Signal Processor 3
L2 Memory Controller
(Memory Protect/
Bandwidth Mgmt)
DDR2
Mem Ctlr
System
(B)
C64x+ DSP Core
Data Path B
B Register File
B31−B16
B15−B0
Instruction Fetch
Data Path A
A Register File
A31−A16
A15−A0
Device
Configuration
Logic
.L1 .S1
.M1
xx
xx
.D1 .D2
.M2
xx
xx
.S2 .L2
64
SBSRAM
SRAM
L1P Cache Direct-Mapped
32K Bytes
L1D Cache
2-Way
Set-Associative
32K Bytes Total
C6454
Primary Switched Central Resource
PLL1 and
PLL1
Controller
EMIFA
ZBT SRAM
HI
Boot Configuration
ROM/FLASH
I/O Devices
I2C
GPIO16
(B)
16
McBSP0
(A)
Internal DMA
(IDMA)
M
e
g
a
m
o
d
u
l
e
L2
Cache
Memory
1048K
Bytes
L1P Memory Controller (Memory Protect/Bandwidth Mgmt)
McBSP1
(A)
HPI (32/16)
(B)
Instruction
Decode
16-/32-bit
Instruction Dispatch
Control Registers
In-Circuit Emulation
DDR2 SDRAM
32
LO
Timer1
(C)
HI
LO
Timer0
(C)
PLL2 and
PLL2
Controller
(D)
EMAC
10/100/1000
SPLOOP Buffer
Power Control
L1D Memory Controller (Memory Protect/Bandwidth Mgmt)
Interrupt and Exception Controller
EDMA 3.0
L2 ROM
32K
Bytes
(E)
Secondary
Switched Central
Resource
A. McBSPs: Framing Chips − H.100, MVIP, SCSA,T1, E1; AC97 Devices; SPI Devices; Codecs
B. The PCI peripheral pins are muxed with some of the HPI peripheral pins. For more detailed information, see the Device Configuration section
of this document.
C. Each of the TIMER peripherals (TIMER1 and TIMER0) is configurable as either two 64-bit general-purpose timers or two 32-bit general-purpose
timers or a watchdog timer.
D. The PLL2 controller also generates clocks for the EMAC.
E. When accessing the internal ROM of the DSP, the CPU frequency must always be less than 750 MHz.
MDIO
RMGII
(D)
GMII
RMII
MII
PCI66
(B)
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
1.3 Functional Block Diagram
Figure 1-2 shows the functional block diagram of the C6454 device.
Figure 1-2. Functional Block Diagram
TMS320C6454 Fixed-Point Digital Signal Processor4 Submit Documentation Feedback
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Contents
1 TMS320C6454 Fixed-Point Digital Signal 5.5 Megamodule Resets ................................ 81
Processor .................................................. 1
1.1 Features .............................................. 1
1.1.1 ZTZ/GTZ BGA Package (Bottom View) .............. 2
1.2 Description ............................................ 2
1.3 Functional Block Diagram ............................ 4
2 Device Overview ......................................... 6
2.1 Device Characteristics ................................ 6
2.2 CPU (DSP Core) Description ......................... 7
2.3 Memory Map Summary ............................. 10
2.4 Boot Sequence ...................................... 12
2.5 Pin Assignments .................................... 14
2.6 Signal Groups Description .......................... 18
2.7 Terminal Functions .................................. 24
2.8 Development ........................................ 47
3 Device Configuration .................................. 50
3.1 Device Configuration at Device Reset .............. 50
3.2 Peripheral Configuration at Device Reset ........... 52
3.3 Peripheral Selection After Device Reset ............ 53
3.4 Device State Control Registers ..................... 55
3.5 Device Status Register Description ................. 65
3.6 JTAG ID (JTAGID) Register Description ............ 67
3.7 Pullup/Pulldown Resistors ........................... 67
3.8 Configuration Examples ............................. 69
4 System Interconnect ................................... 71
4.1 Internal Buses, Bridges, and Switch Fabrics ........ 71
4.2 Data Switch Fabric Connections .................... 72
4.3 Configuration Switch Fabric ......................... 74
4.4 Priority Allocation .................................... 76
5 C64x+ Megamodule .................................... 77
5.1 Memory Architecture ................................ 77
5.2 Memory Protection .................................. 80
5.3 Bandwidth Management ............................ 80
5.4 Power-Down Control ................................ 81
5.6 Megamodule Revision ............................... 82
5.7 C64x+ Megamodule Register Description(s) ........ 83
6 Device Operating Conditions ........................ 90
6.1 Absolute Maximum Ratings Over Operating Case
Temperature Range (Unless Otherwise Noted) ..... 90
6.2 Recommended Operating Conditions ............... 90
6.3 Electrical Characteristics Over Recommended
Ranges of Supply Voltage and Operating Case
Temperature (Unless Otherwise Noted) ............ 92
7 C64x+ Peripheral Information and Electrical
Specifications ........................................... 94
7.1 Parameter Information .............................. 94
7.2 Recommended Clock and Control Signal Transition
Behavior ............................................. 96
7.3 Power Supplies ...................................... 96
7.4 Enhanced Direct Memory Access (EDMA3)
Controller ............................................ 98
7.5 Interrupts ........................................... 112
7.6 Reset Controller .................................... 116
7.7 PLL1 and PLL1 Controller ......................... 123
7.8 PLL2 and PLL2 Controller ......................... 138
7.9 DDR2 Memory Controller .......................... 147
7.10 External Memory Interface A (EMIFA) ............. 149
7.11 I2C Peripheral ...................................... 160
7.12 Host-Port Interface (HPI) Peripheral ............... 166
7.13 Multichannel Buffered Serial Port (McBSP) ........ 177
7.14 Ethernet MAC (EMAC) ............................. 187
7.15 Timers .............................................. 205
7.16 Peripheral Component Interconnect (PCI) ......... 207
7.17 General-Purpose Input/Output (GPIO) ............. 214
7.18 IEEE 1149.1 JTAG ................................. 216
8 Mechanical Data ....................................... 217
8.1 Thermal Data ...................................... 217
8.2 Packaging Information ............................. 217
Revision History ............................................ 218
Submit Documentation Feedback Contents 5
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2 Device Overview
2.1 Device Characteristics
Table 2-1 , provides an overview of the C6454 DSP. The tables show significant features of the C6454
device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type
with pin count.
HARDWARE FEATURES C6454
EMIFA (64-bit bus width)
(clock source = AECLKIN or SYSCLK4)
DDR2 Memory Controller (32-bit bus width) [1.8 V I/O]
(clock source = CLKIN2)
EDMA3 (64 independent channels) [CPU/3 clock rate] 1
Peripherals
Not all peripherals pins
are available at the same
time (For more detail, see
the Device Configuration
section).
On-Chip Memory
C64x+ Megamodule Megamodule Revision ID Register (address location:
Revision ID 0181 2000h)
JTAG BSDL_ID JTAGID register (address location: 0x02A80008)
Frequency MHz 720, 850, and 1000 (1 GHz)
Cycle Time ns
Voltage
PLL1 and PLL1
Controller Options
PLL2 x20
BGA Package 24 x 24 mm
Process Technology µm 0.09 µm
Product Status
(1)
I2C 1
HPI (32- or 16-bit user selectable) 1 (HPI16 or HPI32)
PCI (32-bit), [66-MHz or 33-MHz] 1 (PCI66 or PCI33)
McBSPs (internal CPU/6 or external clock source up
to 100 Mbps)
10/100/1000 Ethernet MAC (EMAC) 1
Management Data Input/Output (MDIO) 1
64-Bit Timers (Configurable)
(internal clock source = CPU/6 clock frequency)
General-Purpose Input/Output Port (GPIO) 16
Size (Bytes) 1144K
Organization 32KB Data Memory Controller [SRAM/Cache]
Core (V)
I/O (V)
CLKIN1 frequency multiplier Bypass (x1), x15, x20, x25, x30, x32
CLKIN2 frequency multiplier
[DDR2 Memory Controller and EMAC support only]
Product Preview (PP), Advance Information (AI),
or Production Data (PD)
Table 2-1. Characteristics of the C6454 Processor
1
1
2
2 64-bit or 4 32-bit
32K-Byte (32KB) L1 Program Memory Controller
[SRAM/Cache]
1048KB L2 Unified Memory/Cache
32KB L2 ROM
See Section 5.6 , Megamodule Revision
See Section 3.6 , JTAG ID (JTAGID) Register
Description
1.39 ns (C6454-720), 1.17 ns (C6454-850),
1 ns (C6454-1000) [1 GHz CPU]
1.25 V (-1000)
1.2 V (-850/-720)
1.5/1.8 [EMAC RGMII], and
1.8 and 3.3 V [I/O Supply Voltage]
697-Pin Flip-Chip Plastic BGA (ZTZ)
697-Pin Plastic BGA (GTZ)
PP
(1) PRODUCT PREVIEW information concerns experimental products (designated as TMX) that are in the formative or design phase of
development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or
discontinue these products without notice.
Device Overview 6 Submit Documentation Feedback
Table 2-1. Characteristics of the C6454 Processor (continued)
HARDWARE FEATURES C6454
Device Part Numbers TMX320C6454ZTZ8,
(For more details on the C64x+™ DSP part
numbering, see Figure 2-12 )
2.2 CPU (DSP Core) Description
The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 2-1 . The two general-purpose register files (A and B) each contain
32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be
data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit
data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are
stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or
32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
The C64x+ CPU extends the performance of the C64x core through enhancements and new features.
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
TMX320C6454ZTZ7,
TMX320C6454ZTZ
Each C64x+ .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, two
16 x 16 bit multiplies, two 16 x 32 bit multiplies, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add
operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There
is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms
such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes
for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex
multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and
16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for
audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Submit Documentation Feedback Device Overview 7
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Other new features include:
• SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
• Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
• Instruction Set Enhancements - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
• Exception Handling - Intended to aid the programmer in isolating bugs. The C64x+ CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
• Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
• Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a
free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the following
documents:
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732 )
• TMS320C64x+ DSP Cache User's Guide (literature number SPRU862 )
• TMS320C64x+ Megamodule Reference Guide (literature number SPRU871 )
• TMS320C6455 Technical Reference (literature number SPRU965 )
• TMS320C64x to TMS320C64x+ CPU Migration Guide (literature number SPRAA84 )
Device Overview8 Submit Documentation Feedback
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b
LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
src1
dst
src2
DA2
LD2a
LD2b
src2
.M2
src1
even dst
long src
odd dst
ST2a
ST2b
long src
.L2
src1
Data path B
Control Register
32 MSB
32 LSB
dst2
(A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B)
(A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB.
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-1. TMS320C64x+™ CPU (DSP Core) Data Paths
Submit Documentation Feedback Device Overview 9
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2.3 Memory Map Summary
Table 2-2 shows the memory map address ranges of the C6454 device. The external memory
configuration register address ranges in the C6454 device begin at the hex address location 0x7000 0000
for EMIFA and hex address location 0x7800 0000 for DDR2 Memory Controller.
MEMORY BLOCK DESCRIPTION BLOCK SIZE (BYTES) HEX ADDRESS RANGE
Reserved 1024K 0000 0000 - 000F FFFF
Internal ROM 32K 0010 0000 - 0010 7FFF
Reserved 7M - 32K 0010 8000 - 007F FFFF
Internal RAM (L2) [L2 SRAM] 1M 0080 0000 - 008F FFFF
Reserved 5M 0090 0000 - 00DF FFFF
L1P SRAM 32K 00E0 0000 - 00E0 7FFF
Reserved 1M - 32K 00E0 8000 - 00EF FFFF
L1D SRAM 32K 00F0 0000 - 00F0 7FFF
Reserved 1M - 32K 00F0 8000 - 00FF FFFF
Reserved 8M 0100 0000 - 017F FFFF
C64x+ Megamodule Registers 4M 0180 0000 - 01BF FFFF
Reserved 12.5M 01C0 0000 - 0287 FFFF
HPI Control Registers 256K 0288 0000 - 028B FFFF
McBSP 0 Registers 256K 028C 0000 - 028F FFFF
McBSP 1 Registers 256K 0290 0000 - 0293 FFFF
Timer 0 Registers 256K 0294 0000 - 0297 FFFF
Timer 1 Registers 128K 0298 0000 - 0299 FFFF
PLL1 Controller (including Reset Controller) Registers 512 029A 0000 - 029A 01FF
Reserved 256K - 512 029A 0200 - 029B FFFF
PLL2 Controller Registers 512 029C 0000 - 029C 01FF
Reserved 64K 029C 0200 - 029C FFFF
EDMA3 Channel Controller Registers 32K 02A0 0000 - 02A0 7FFF
Reserved 96K 02A0 8000 - 02A1 FFFF
EDMA3 Transfer Controller 0 Registers 32K 02A2 0000 - 02A2 7FFF
EDMA3 Transfer Controller 1 Registers 32K 02A2 8000 - 02A2 FFFF
EDMA3 Transfer Controller 2 Registers 32K 02A3 0000 - 02A3 7FFF
EDMA3 Transfer Controller 3 Registers 32K 02A3 8000 - 02A3 FFFF
Reserved 256K 02A4 0000 - 02A7 FFFF
Chip-Level Registers 256K 02A8 0000 - 02AB FFFF
Device State Control Registers 256K 02AC 0000 - 02AF FFFF
GPIO Registers 16K 02B0 0000 - 02B0 3FFF
I2C Data and Control Registers 256K 02B0 4000 - 02B3 FFFF
Reserved 720K 02B4 0000 - 02BF FFFF
PCI Control Registers 256K 02C0 0000 - 02C3 FFFF
Reserved 256K 02C4 0000 - 02C7 FFFF
EMAC Control 4K 02C8 0000 - 02C8 0FFF
EMAC Control Module Registers 2K 02C8 1000 - 02C8 17FF
MDIO Control Registers 2K 02C8 1800 - 02C8 1FFF
EMAC Descriptor Memory 8K 02C8 2000 - 02C8 3FFF
Reserved 496K 02C8 4000 - 02CF FFFF
Reserved 220M 02D0 0000 - 0FFF FFFF
Reserved 256M 1000 0000 - 1FFF FFFF
Table 2-2. C6454 Memory Map Summary
Device Overview10 Submit Documentation Feedback
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Table 2-2. C6454 Memory Map Summary (continued)
MEMORY BLOCK DESCRIPTION BLOCK SIZE (BYTES) HEX ADDRESS RANGE
Reserved 256M 2000 0000 - 2FFF FFFF
McBSP 0 Data 256 3000 0000 - 3000 00FF
Reserved 64M - 256 3000 0100 - 33FF FFFF
McBSP 1 Data 256 3400 0000 - 3400 00FF
Reserved 64M - 256 3400 0100 - 37FF FFFF
Reserved 2K 3C00 0000 - 3C00 07FF
Reserved 16M - 2K 3C00 0800 - 3CFF FFFF
Reserved 48M 3D00 0000 - 3FFF FFFF
PCI External Memory Space 256M 4000 0000 - 4FFF FFFF
Reserved 256M 5000 0000 - 5FFF FFFF
Reserved 256M 6000 0000 - 6FFF FFFF
EMIFA (EMIF64) Configuration Registers 128M 7000 0000 - 77FF FFFF
DDR2 Memory Controller Configuration Registers 128M 7800 0000 - 7FFF FFFF
Reserved 256M 8000 0000 - 8FFF FFFF
Reserved 256M 9000 0000 - 9FFF FFFF
EMIFA CE2 - SBSRAM/Async
Reserved 256M - 8M A080 0000 - AFFF FFFF
EMIFA CE3 - SBSRAM/Async
Reserved 256M - 8M B080 0000 - BFFF FFFF
EMIFA CE4 - SBSRAM/Async
Reserved 256M - 8M C080 0000 - CFFF FFFF
EMIFA CE5 - SBSRAM/Async
Reserved 256M - 8M D080 0000 - DFFF FFFF
DDR2 Memory Controller CE0 - DDR2 SDRAM 256M E000 0000 - EFFF FFFF
Reserved 256M F000 0000 - FFFF FFFF
(1) The EMIFA CE0 and CE1 are not functionally supported on the C6454 device, and therefore, are not pinned out.
(1)
(1)
(1)
(1)
8M A000 0000 - A07F FFFF
8M B000 0000 - B07F FFFF
8M C000 0000 - C07F FFFF
8M D000 0000 - D07F FFFF
TMS320C6454
Submit Documentation Feedback Device Overview 11
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2.4 Boot Sequence
The boot sequence is a process by which the DSP's internal memory is loaded with program and data
sections and the DSP's internal registers are programmed with predetermined values. The boot sequence
is started automatically after each power-on reset, warm reset, and system reset. For more details on the
initiators of these resets, see Section 7.6 , Reset Controller .
There are several methods by which the memory and register initialization can take place. Each of these
methods is referred to as a boot mode. The boot mode to be used is selected at reset through the
BOOTMODE[3:0] pins.
Each boot mode can be classified as a hardware boot mode or as a software boot mode. Software boot
modes require the use of the on-chip bootloader. The bootloader is DSP code that transfers application
code from an external source into internal or external program memory after the DSP is taken out of reset.
The bootloader is permanently stored in the internal ROM of the DSP starting at byte address 0010
0000h. Hardware boot modes are carried out by the boot configuration logic. The boot configuration logic
is actual hardware that does not require the execution of DSP code. Section 2.4.1 , Boot Modes
Supported , describes each boot mode in more detail.
When accessing the internal ROM of the DSP, the CPU frequency must always be less than 750 MHz.
Therefore, when using a software boot mode, care must be taken such that the CPU frequency does not
exceed 750 MHz at any point during the boot sequence. After the boot sequence has completed, the CPU
frequency can be programmed to the frequency required by the application.
2.4.1 Boot Modes Supported
The C6454 has six boot modes:
• No boot (BOOTMODE[3:0] = 0000b)
With no boot, the CPU executes directly from the internal L2 SRAM located at address 0x80 0000.
Note: device operations is undefined if invalid code is located at address 0x80 0000. This boot mode is
a hardware boot mode.
• Host boot (BOOTMODE[3:0] = 0001b and BOOTMODE[3:0] = 0111b)
If host boot is selected, after reset, the CPU is internally "stalled" while the remainder of the device is
released. During this period, an external host can initialize the CPU's memory space as necessary
through Host Port Interface (HPI) or the Peripheral Component Interconnect (PCI) interface. Internal
configuration registers, such as those that control the EMIF can also be initialized by the host with two
exceptions: Device State Control registers (Section 3.4 ), PLL1 and PLL2 Controller registers
(Section 7.7 and Section 7.8 ) cannot be accessed through any host interface, including HPI and PCI.
Once the host is finished with all necessary initialization, it must generate a DSP interrupt (DSPINT) to
complete the boot process. This transition causes boot configuration logic to bring the CPU out of the
"stalled" state. The CPU then begins execution from the internal L2 SRAM located at 0x80 0000. Note
that the DSP interrupt is registered in bit 0 (channel 0) of the EDMA Event Register (ER). This event
must be cleared by software before triggering transfers on DMA channel 0.
All memory, with the exceptions previously described, may be written to and read by the host. This
allows for the host to verify what it sends to the DSP if required. After the CPU is out of the "stalled"
state, the CPU needs to clear the DSPINT, otherwise, no more DSPINTs can be received.
As previously mentioned, for the C6454 device, the Host Port Interface (HPI) and the Peripheral
Component Interconnect (PCI) interface can be used for host boot. To use the HPI for host boot, the
PCI_EN pin (Y29) must be low [default] (enabling the HPI peripheral) and BOOTMODE[3:0] must be
set to 0001b at device reset. Conversely, to use the PCI interface for host boot, the PCI_EN pin (Y29)
must be high (enabling the PCI peripheral) and BOOTMODE[3:0] must be set to 0111b at device reset.
For the HPI host boot, the DSP interrupt can be generated through the use of the DSPINT bit in the
HPI Control (HPIC) register.
For the HPI host boot, the CPU is actually held in reset until a DSP interrupt is generated by the host.
The DSP interrupt can be generated through the use of the DSPINT bit in the HPI Control (HPIC)
register. Since the CPU is held in reset during HPI host boot, it will not respond to emulation software
Device Overview 12 Submit Documentation Feedback
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
such as Code Composer Studio.
For the PCI host boot, the CPU is out of reset, but it executes an IDLE instruction until a DSP interrupt
is generated by the host. The host can generate a DSP interrupt through the PCI peripheral by setting
the DSPINT bit in the Back-End Application Interrupt Enable Set Register (PCIBINTSET) and the
Status Set Register (PCISTATSET).
Note that the HPI host boot is a hardware boot mode while the PCI host boot is a software boot mode.
If PCI boot is selected, the on-chip bootloader configures the PLL1 Controller such that CLKIN1 is
multiplied by 15. More specifically, PLLM is set to 0Eh (x15) and RATIO is set to 0 (÷1) in the PLL1
Multiplier Control Register (PLLM) and PLL1 Pre-Divider Register (PREDIV), respectively. The CLKIN1
frequency must not be greater than 50 MHz so that the maximum speed of the internal ROM, 750
MHz, is not violated. The CFGGP[2:0] pins must be set to 000b during reset for proper operation of the
PCI boot mode.
As mentioned previously, a DSP interrupt must be generated at the end of the host boot process to
begin execution of the loaded application. Since the DSP interrupt generated by the HPI and PCI is
mapped to the EDMA event DSP_EVT (DMA channel 0), it will get recorded in bit 0 of the EDMA
Event Register (ER). This event must be cleared by software before triggering transfers on DMA
channel 0.
• EMIFA 8-bit ROM boot (BOOTMODE[3:0] = 0100b)
After reset, the device will begin executing software out of an Asynchronous 8-bit ROM located in
EMIFA CE3 space using the default settings in the EMIFA registers. This boot mode is a hardware
boot mode.
• Master I2C boot (BOOTMODE[3:0] = 0101b)
After reset, the DSP can act as a master to the I2C bus and copy data from an I2C EEPROM or a
device acting as an I2C slave to the DSP using a predefined boot table format. The destination
address and length are contained within the boot table. This boot mode is a software boot mode.
• Slave I2C boot (BOOTMODE[3:0] = 0110b)
A Slave I2C boot is also implemented, which programs the DSP as an I2C Slave and simply waits for a
Master to send data using a standard boot table format.
Using the Slave I2C boot, a single DSP or a device acting as an I2C Master can simultaneously boot
multiple slave DSPs connected to the same I2C bus. Note that the Master DSP may require booting
via an I2C EEPROM before acting as a Master and booting other DSPs.
The Slave I2C boot is a software boot mode.
2.4.2 2nd-Level Bootloaders
Any of the boot modes can be used to download a 2nd-level bootloader. A 2nd-level bootloader allows for
any level of customization to current boot methods as well as definition of a completely customized boot.
TI offers a few 2nd-level bootloaders, such as an EMAC bootloader, which can be loaded using the
Master I2C boot.
Submit Documentation Feedback Device Overview 13
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
13 12 11 10 9 8 7 6 5 4 3 2 1
13 12 11 10 9 8 7 6 5 4 3 2 1
CLKR1/
GP[0]
HD15/
AD15
HD2/
AD2
PGNT/
GP[12]
HD22/
AD22
DV
DD33
RSV15
PIDSEL
RSV16
HDS1/
PSERR
HINT/
PFRAME
DV
DD33
HHWIL/
PCLK
V
SS
HD12/
AD12
HD24/
AD24
RSV03
HD20/
AD20
HD18/
AD18
HD6/
AD6
HD16/
AD16
V
SS
HD28/
AD28
HD17/
AD17
HD31/
AD31
HD14/
AD14
HCNTL1/
PDEVSEL
HR/W/
PCBE2
HRDY/
PIRDY
PRST/
GP[13]
HD21/
AD21
DV
DD33
V
SS
EMU8
RSV36
EMU11
EMU1
EMU10
EMU12
RSV37
EMU15
EMU4
EMU13
DV
DD33
DV
DD33
V
SS
EMU0
V
SS
DV
DD33
RSV38 EMU6
CLKX1/
GP[3]
DV
DD33
V
SS
EMU18
DV
DD33
EMU5
V
SS
DV
DD33
HD9/
AD9
HD23/
AD23
HD3/
AD3
HD10/
AD10
GP[6]
V
SS
EMU14
GP[7]
RSV02
HD4/
AD4
HD30/
AD30
CV
DD
HD27/
AD27
V
SS
V
SS
V
SS
DV
DD33
V
SS
CV
DD
CV
DD
V
SS
DV
DD33
DV
DD33
V
SS
V
SS
DV
DD33
V
SS
V
SS
HD19/
AD19
HD13/
AD13
HD29/
AD29
DV
DD33
DV
DD33
HD25/
AD25
DV
DD33
HD0/
AD0
V
SS
HD11/
AD11
TOUTL0
EMU3
EMU7
TOUTL1
V
SS
DV
DD33
V
SS
DV
DD33
V
SS
HDS2/
PCBE1
HCNTL0/
PSTOP
HCS/
PPERR
V
SS
HD8/
AD8
V
SS
HD26/
AD26
V
SS
HD7/
AD7
HD1/
AD1
EMU2
RSV39
V
SS
DV
DD33
HAS/
PPAR
HD5/
AD5
AH
TINPL0 EMU17 TDO NMI EMU16 GP[4] V
SS
TRST
TDI
RSV27 EMU9
AJ
TINPL1 TMS V
SS
CLKS RSV40
GP[5] DV
DD33
DV
DD33
TCK
RSV26
SYSCLK4/
GP[1]
14
V
SS
DV
DD33
RESETSTAT
POR
V
SS
CV
DD
CV
DD
RESET
DV
DD33
V
SS
15
RSV64
V
SS
DV
DD33
RSV45
CV
DD
V
SS
V
SS
RSV46
V
SS
DV
DD33
14 15
V
SS
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
CV
DD
RSV68
V
SS
V
SS
CV
DD
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
AH
AJ FSX0 DR0
FSR0
DR1/
GP[8]
CLKR0
FSX1/
GP[11]
DX1/
GP[9]
CLKX0
DX0
FSR1/
GP[10]
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2.5 Pin Assignments
2.5.1 Pin Map
Figure 2-2 through Figure 2-5 show the C6454 pin assigments in four quadrants (A, B, C, and D).
Device Overview 14 Submit Documentation Feedback
Figure 2-2. C6454 Pin Map (Bottom View) [Quadrant A]
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
17 18 19 20 21 22 23 24 25 26 27 28 29
17 18 19 20 21 22 23 24 25 26 27 28 29
SDA
AED27
V
SS
ASADS/
ASRE
AED17
AHOLD
PLLV1
AEA13/
LENDIAN
AEA4/
SYSCLKOUT
_EN
AEA5/
MCBSP1
_EN
AEA6/
PCI66
AECLKOUT ACE5 ACE4
ABA0/
DDR2_EN
ABE7 ACE2 RSV41
AAOE/
ASOE
RSV42 RSV44
ABE2 ABE0
AED29
AED31
ACE3
AEA1/
CFGGP1
AEA11
AEA2/
CFGGP2
AEA14/
HPI_
WIDTH
AED21
DV
DD33
V
SS
V
SS
V
SS
DV
DD33
RSV73
RSV63
V
SS
V
SS
RSV17
V
SS
DV
DD33
V
SS
V
SS
RSV74
RSV50
DV
DD33
V
SS
DV
DD33
V
SS
AED3 V
SS
RSV49
AED7
AED1
SCL
RSV65
V
SS
RSV72
RSV48
V
SS
DV
DD33
V
SS
AED25
AED28
AED11
AED4
AED9
AED15 RSV47
AED16
ABA1/
EMIFA_EN
RSV43
ABE1
RSV71
AED24 DV
DD33
V
SS
V
SS
AED19
DV
DD33
CV
DD
CV
DD
DV
DD33
V
SS
V
SS
DV
DD33
DV
DD33
V
SS
V
SS
V
SS
DV
DD33
V
SS
AED26 V
SS
DV
DD33
AED22 AED0
AED13 AED12
AED10 RSV54 RSV75 RSV51
AED30 DV
DD33
AEA12
V
SS
V
SS
V
SS
V
SS
RSV20
AEA0/
CFGGP0
V
SS
DV
DD33
AR/W DV
DD33
PCI_EN DV
DD33
AED23
AAWE/
ASWE
RSV53 RSV52 DV
DD33
ABE3
AEA3
AED8
AH
DV
DD33
V
SS
RSV76 RSV58 AED14 RSV55 AED2 AED18
V
SS
RSV62 VSSV
SS
V
SS
RSV59
AJ
V
SS
DV
DD33
V
SS
RSV57 AED5 RSV56 AED6 AED20 DV
DD33
RSV78 RSV61 RSV60 RSV77
16
V
SS
RSV66
V
SS
DV
DD33
V
SS
RSV70
CV
DD
V
SS
DV
DD33
V
SS
16
V
SS
CV
DD
CV
DD
RSV69
V
SS
V
SS
V
SS
RSV67 V
SS
CV
DD
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
AH
AJ
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Submit Documentation Feedback Device Overview 15
Figure 2-3. C6454 Pin Map (Bottom View) [Quadrant B]
C
D
E
F
G
H
J
K
L
M
N
P
17 18 19 20 21 22 23 24 25 26 27 28 29
17 18 19 20 21 22 23 24 25 26 27 28 29
RSV09
AED52
DV
DD33
V
SS
V
SS
V
SS
AECLKIN
AEA9/
MACSEL0
CLKIN1
DV
DD33
AEA15/
AECLKIN
_SEL
AED40 AED44 AED42
AED34
ABE6
AED32
ABE4
AEA18/
BOOT
MODE2
AED37
ABUSREQ
AED46
AEA16/
BOOT
MODE0
AEA19/
BOOT
MODE3
AHOLDA
AEA10/
MACSEL1
V
SS
V
SS
DV
DD18
DED19
V
SS
CV
DD
VSSDSDDQS2
DSDDQ
GATE2
DED23
DV
DD18
DV
DD33
DSDDQS3
DSDDQS3
V
SS
DV
DD18
RSV11
RSV12 RSV33 DSDDQM2 DED26
V
SS
RSV32
RSV23
V
SS
V
SS
DEA4
DEA1
AV
DLL2
DV
DD33
DV
DD33
AED56
AED50
AED45
AED59
AED61
AED58 DEA5
AED60
AED33
AEA17/
BOOT
MODE1
DSDDQ
GATE3
RSV19
AED55 V
SS
DV
DD18
DV
DD18
AED39
DV
DD33
V
SS
V
SS
RSV30
DV
DD33
V
SS
V
SS
DV
DD18
V
SS
DV
DD18
DV
DD18
AED35 AED48 AED54 DV
DD18
V
SS
DV
DD33
AED47
DV
DD33
DV
DD33
AED57 DED27 DSDDQS2 DEA0
AED41 DSDDQM3
DV
DD33
V
SS
CV
DD
V
SS
CV
DD
V
SS
AEA8/
PCI_EEAI
RSV31
AED38
V
SS
AARDY
V
SS
AED36 AED63
V
SS
DED22 DED18 DEA6
ABE5
AEA7
AED43
B
DED29 DED31 DV
DD18
DED25
RSV22
DEA2 AED49 AED51
V
SS
DV
DD18
DED21 DED16 DEA7
A
DED28 DED30 V
SS
DED24 DV
DD18MON
DEA3 AED62 AED53 DV
DD33
V
SS
DED20 DED17 DEODT1
16
DV
DD18
CV
DD
DEODT0
DEA8
CV
DD
V
SS
V
SS
DEA9
DEA10
DEA11
16
CV
DD
V
SS
V
SS
CV
DD
V
SS
CV
DD
C
D
E
F
G
H
J
K
L
M
N
P
B
A
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-4. C6454 Pin Map (Bottom View) [Quadrant C]
Device Overview16 Submit Documentation Feedback
A
D
E
F
G
H
J
K
L
M
N
P
13 12 11 10 9 8 7 6 5 4 3 2 1
13 12 11 10 9 8 7 6 5 4 3 2 1
RGRXD2
RGTXD3
DV
DD33
MTXD2
V
SS
MTXD0/
RMTXD0
CV
DDMON
MTXD6
V
SS
PREQ/
GP[15]
PINTA/
GP[14]
MRXD2 MRXD3
MRXD0/
RMRXD0
V
SS
MTXD3 MCOL
MRXD5
MTXD1/
RMTXD1
DV
DD15
MTXD4
MCRS/
RMCRSDV
PTRDY
MTXD7
MTCLK/
RMREFCLK
MDCLK
RGRXD3
DV
DD18
DED1
DSDDQS0
DSDDQM0 DED2
DSDDQS0
DED6
DED7
DED8
DED9
DED10
DSDDQM1
DSDDQS1
DED15
DED14
V
SS
RSV25
RSV35
RSV34
V
SS
DV
DD15
V
SS
V
SS
DV
DD15
V
SS
V
SS
DSDWE
DSDRAS
DSDCAS
V
SS
DED3
RSV29
DV
DD33
RGTXD0
RGTXD1
RGREFCLK
RGTXCTL
DV
DD15MON
RGRXD1 RSV18
RSV13
GMTCLK
MTXD5
DSDDQ
GATE0
DED0
DV
DD15
DED12 DV
DD18
DED5
RGRXD0
DV
DD33
V
SS
V
SS
V
SS
DV
DD33MONVSS
RSV21 DED13 DED4 V
SS
AV
DLL1
V
SSVREFHSTL
RGMDCLK RSV24
DSDDQ
GATE1
RGRXCTL V
SS
DV
DD15
RGTXC
RGRXC DSDDQS1 DV
DD18
DV
DD18
RSV14
DV
DD18
MRXD7 V
SS
CV
DD
RSV28 CV
DD
PCBE0/
GP[2]
PCBE3 DV
DD33
MTXEN/
RMTXEN
V
SS
DV
DD33
V
SS
RGMDIO PLLV2 V
SS
DED11
DV
DD18
DV
DD18
MRXD4
MDIO
RGTXD2
B
DV
DD15
V
SS
DV
DD18
DV
DD18
RSV07 DV
DD18
CLKIN2 DV
DD33
V
SS
V
SS
V
SS
V
SS
V
SS
C
V
SS
MRXDV
MRXER/
RMRXER
CV
DD
MRXD1/
RMRXD1
MRXD6 MRCLK DV
DD15
V
SS
V
SS
14
DDR2
CLKOUT
V
REFSSTL
DSDCKE
DCE0
CV
DD
DDR2
CLKOUT
V
SS
V
SS
DV
DD18
CV
DD
15
DEA13
DBA0
DBA1
DBA2
V
SS
DEA12
CV
DD
DV
DD18
V
SS
V
SS
14 15
CV
DD
RSV04
V
SS
CV
DD
V
SS
CV
DD
RSV05
F
D
E
A
G
H
J
K
L
M
N
P
B
C
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-5. C6454 Pin Map (Bottom View) [Quadrant D]
Submit Documentation Feedback Device Overview 17
TRST
IEEE Standard
1149.1
(JTAG)
Emulation
Reserved
Reset and
Interrupts
Control/Status
TDI
TDO
TMS
TCK
NMI
RESET
RSV03
RSV04
Clock/PLL1
and
PLL Controller
CLKIN1
EMU0
EMU1
SYSCLK4/GP[1]
(A)
EMU14
EMU15
EMU16
EMU17
RSV02
EMU18
RSV06
RSV07
RSV05
RSV77
RSV78
RSV76
•
•
•
•
•
•
RESETSTAT
CLKIN2
POR
PCI_EN
Peripheral
Enable/Disable
Clock/PLL2
PLLV2
PLLV1
A. This pin functions as GP[1] by default. For more details, see the Device Configuration section of this document.
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2.6 Signal Groups Description
Figure 2-6. CPU and Peripheral Signals
Device Overview18 Submit Documentation Feedback
A. This pin functions as GP[1] by default. For more details, see the Device Configuration section of this document.
B. These McBSP1 peripheral pins are muxed with the GPIO peripheral pins and by default these signals function as GPIO peripheral pins. For
more details, see the Device Configuration section of this document.
C. These PCI peripheral pins are muxed with the GPIO peripheral pins and by default these signals function as GPIO peripheral pins. For more
details, see the Device Configuration section of this document.
GPIO
General-Purpose Input/Output 0 (GPIO) Port
CLKX1/GP[3]
(B)
PCBE0/GP[2]
(C)
SYSCLK4/GP[1]
(A)
PREQ/GP[15]
(C)
PINTA/GP[14]
(C)
PRST/GP[13]
(C)
PGNT/GP[12]
(C)
FSX1/GP[11]
(B)
FSR1/GP[10]
(B)
DX1/GP[9]
(B)
DR1/GP[8]
(B)
GP[7]
GP[6]
GP[5]
GP[4]
CLKR1/GP[0]
(B)
Timers (64-Bit)
TINPL1
Timer 1
Timer 0
TOUTL1
TINPL0
TOUTL0
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-7. Timers/GPIO Peripheral Signals
Submit Documentation Feedback Device Overview 19
ACE4
(A)
AECLKOUT
AED[63:0]
ACE3
(A)
ACE2
(A)
AEA[19:0]
AARDY
Data
Memory Map
Space Select
Address
Byte Enables
64
20
External
Memory I/F
Control
EMIFA (64-bit Data Bus)
AECLKIN
AHOLD
AHOLDA
ABUSREQ
Bus
Arbitration
ABE3
ABE2
ABE1
ABE0
ASWE/AAWE
DDR2CLKOUT
DED[31:0]
DCE0
DEA[13:0]
Data
Memory Map
Space Select
Address
Byte Enables
32
14
External
Memory I/F
Control
DDR2 Memoty Controller (32-bit Data Bus)
DSDCAS
DSDCKE
DDR2CLKOUT
DSDDQS[3:0]
DSDRAS
DSDWE
DSDDQS[3:0]
ABE7
ABE6
ABE5
ABE4
ACE5
(A)
Bank Address
ABA[1:0]
AR/W
AAOE/ASOE
ASADS/ASRE
Bank Address
DBA[2:0]
DEODT[1:0]
DSDDQGATE[0]
DSDDQM3
DSDDQM2
DSDDQM1
DSDDQM0
A. The EMIFA ACE0 and ACE1 are not functionally supported on the C6454 device.
DSDDQGATE[1]
DSDDQGATE[2]
DSDDQGATE[3]
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Device Overview 20 Submit Documentation Feedback
Figure 2-8. EMIFA/DDR2 Memory Controller Peripheral Signals
McBSPs
(Multichannel Buffered Serial Ports)
(B)
CLKX0
FSX0
DX0
CLKR0
FSR0
DR0
Transmit
McBSP0
Receive
Clock
CLKX1/GP[3]
FSX1/GP[11]
DX1/GP[9]
CLKR1/GP[0]
FSR1/GP[10]
DR1/GP[8]
Transmit
McBSP1
Receive
Clock
HHWIL/PCLK
HCNTL0/PSTOP
HCNTL1/PDEVSEL
Data
Register Select
Half-Word
Select
Control
HPI
(A)
(Host-Port Interface)
32
HAS/PPAR
HR/W/PCBE2
HCS/PPERR
HDS1/PSERR
HDS2/PCBE1
HRDY/PIRDY
HINT/PFRAME
(HPI16 ONL Y)
HD[15:0]/AD[15:0]
HD[31:16]/AD[31:16]
SCL
I2C
SDA
A. These HPI pins are muxed with the PCI peripheral. By default, these pins function as HPI. When the HPI is enabled, the number of HPI pins
used depends on the HPI configuration (HPI16 or HPI32). For more details on these muxed pins, see the Device Configuration section of this
document.
B. These McBSP1 peripheral pins are muxed with the GPIO peripheral pins and by default these signals function as GPIO peripheral pins. For
more details, see the Device Configuration section of this document.
CLKS
(SHARED)
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-9. HPI/McBSP/I2C Peripheral Signals
Submit Documentation Feedback Device Overview 21
RGTXCTL, RGRXCTL
MRXER/RMRXER,
MRXDV,
MCRS/RMCRSDV,
MCOL,
MTXEN/RMTXEN
Ethernet MAC (EMAC) and MDIO
MDIO
MDCLK
MDIO
Clock
Clocks
Error Detect
and Control
Input/Output
Receive
RGMDIO
RGMDCLK
RGTXD[3:0]
A. RGMII signals are mutually exclusive to all other EMAC signals.
RGTXC,
RGRXC,
RGREFCLK
MTXD[7:2],
MTXD[1:0]/RMTXD[1:0]
Transmit
RGMII
(A)
GMII
RMII
MII
RGRXD[3:0]
MRXD[7:2],
MRXD[1:0]/RMRXD[1:0]
RGMII
(A)
GMII
RMII
MII
RGMII
(A)
GMII
RMII
MII
RGMII
(A)
GMII
RMII
MII
RGMII
(A)
GMII
RMII
MII
GMII
RMII
MII
RGMII
(A)
MTCLK/RMREFCLK,
MRCLK,
GMTCLK
Ethernet MAC
(EMAC)
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-10. EMAC/MDIO [MII/RMII/GMII/RGMII] Peripheral Signals
Device Overview22 Submit Documentation Feedback
HD[15:0]/AD[15:0]
HR/W/PCBE2
HDS2/PCBE1
PCBE0/GP[2]
HHWIL/PCLK
HINT/PFRAME
PINTA/GP[14]
Data/Address
Arbitration
32
Clock
Control
PCI Interface
(A)
HAS/PPAR
PRST/GP[13]
HRDY/PIRDY
HCNTL0/PSTOP
PTRDY
PCBE3
PIDSEL
HCNTL1/PDEVSEL
HDS1/PSERR
Error
Command
Byte Enable
HCS/PPERR
PGNT/GP[12]
PREQ/GP[15]
HD[31:16]/AD[31:16]
A. These PCI pins are muxed with the HPI or GPIO peripherals. By default, these signals function as HPI or GPIO or EMAC. For more
details on these muxed pins, see the Device Configuration section of this document.
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Figure 2-11. PCI Peripheral Signals
Submit Documentation Feedback Device Overview 23
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
2.7 Terminal Functions
The terminal functions table (Table 2-3 ) identifies the external signal names, the associated pin (ball)
numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin
has any internal pullup/pulldown resistors, and a functional pin description. For more detailed information
on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see
Section 3 , Device Configuration .
Table 2-3. Terminal Functions
SIGNAL
NAME NO.
CLKIN1 N28 I IPD Clock Input for PLL1.
CLKIN2 G3 I IPD Clock Input for PLL2.
PLLV1 T29 A 1.8-V I/O supply voltage for PLL1
PLLV2 A5 A 1.8-V I/O supply voltage for PLL2
SYSCLK4/GP[1]
TMS AJ10 I IPU JTAG test-port mode select
TDO AH8 O/Z IPU JTAG test-port data out
TDI AH9 I IPU JTAG test-port data in
TCK AJ9 I IPU JTAG test-port clock
TRST AH7 I IPD
(4)
EMU0
(4)
EMU1
EMU2 AG9 I/O/Z IPU Emulation pin 2
EMU3 AF10 I/O/Z IPU Emulation pin 3
EMU4 AF9 I/O/Z IPU Emulation pin 4
EMU5 AE12 I/O/Z IPU Emulation pin 5
EMU6 AG8 I/O/Z IPU Emulation pin 6
EMU7 AF12 I/O/Z IPU Emulation pin 7
EMU8 AF11 I/O/Z IPU Emulation pin 8
EMU9 AH13 I/O/Z IPU Emulation pin 9
EMU10 AD10 I/O/Z IPU Emulation pin 10
EMU11 AD12 I/O/Z IPU Emulation pin 11
EMU12 AE10 I/O/Z IPU Emulation pin 12
EMU13 AD8 I/O/Z IPU Emulation pin 13
EMU14 AF13 I/O/Z IPU Emulation pin 14
EMU15 AE9 I/O/Z IPU Emulation pin 15
EMU16 AH12 I/O/Z IPU Emulation pin 16
EMU17 AH10 I/O/Z IPU Emulation pin 17
EMU18 AE13 I/O/Z IPU Emulation pin 18
RESET AG14 I Device reset
(3)
AJ13 I/O/Z IPD
AF7 I/O/Z IPU Emulation pin 0
AE11 I/O/Z IPU Emulation pin 1
(1)
TYPE
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS
(2)
IPD/IPU
CLOCK/PLL CONFIGURATIONS
SYSCLK4 is the clock output at 1/8 of the device speed ( O/Z ) or this pin can be
programmed as the GP1 pin ( I/O/Z ) [default].
JTAG EMULATION
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE
1149.1 JTAG compatibility statement portion of this document.
DESCRIPTION
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal
(2) IPD = Internal pulldown, IPU = Internal pullup. For most systems, a 1-k Ω resistor can be used to oppose the IPU/IPD. For more detailed
information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see Section 3.7 ,
Pullup/Pulldown Resistors .
(3) These pins are multiplexed pins. For more details, see Section 3 , Device Configuration .
(4) The C6454 DSP does not require external pulldown resistors on the EMU0 and EMU1 pins for normal or boundary-scan operation.
Device Overview 24 Submit Documentation Feedback
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Table 2-3. Terminal Functions (continued)
SIGNAL
NAME NO.
NMI AH4 I IPD
RESETSTAT AE14 O Reset Status pin. The RESETSTAT pin indicates when the device is in reset
POR AF14 I Power on reset.
GP[7] AG2 I/O/Z IPD
GP[6] AG3 I/O/Z IPD
GP[5] AJ2 I/O/Z IPD
GP[4] AH2 I/O/Z IPD
PREQ/GP[15] P2 I/O/Z
(5)
PINTA
PRST/GP[13] R5 I/O/Z
PGNT/GP[12] R4 I/O/Z
FSX1/GP[11] AG4 I/O/Z IPD
FSR1/GP[10] AE5 I/O/Z IPD
DX1/GP[9] AG5 I/O/Z IPD
DR1/GP[8] AH5 I/O/Z IPD
CLKX1/GP[3] AF5 I/O/Z IPD
PCBE0/GP[2] P1 I/O/Z
SYSCLK4/GP[1]
CLKR1/GP[0] AF4 I/O/Z IPD
PCI_EN Y29 I IPD
HINT/ PFRAME U3 I/O/Z Host interrupt from DSP to host ( O/Z ) or PCI frame ( I/O/Z )
HCNTL1/ PDEVSEL U4 I/O/Z
HCNTL0/ PSTOP U5 I/O/Z
HHWIL/PCLK V3 I/O/Z order)
HR/ W/ PCBE2 T5 I/O/Z Host read or write select ( I ) [default] or PCI command/byte enable 2 ( I/O/Z )
HAS/PPAR T3 I/O/Z Host address strobe ( I ) [default] or PCI parity ( I/O/Z )
HCS/ PPERR U6 I/O/Z Host chip select ( I ) [default] or PCI parity error ( I/O/Z )
HDS1/ PSERR
HDS2/ PCBE1 U1 I/O/Z Host data strobe 2 ( I ) [default] or PCI command/byte enable 1 ( I/O/Z )
HRDY/ PIRDY T4 I/O/Z Host ready from DSP to host ( O/Z ) [default] or PCI initiator ready ( I/O/Z )
PREQ/GP[15] P2 I/O/Z PCI bus request ( O/Z ) or GP[15] ( I/O/Z ) [default]
PINTA
PRST/GP[13] R5 I/O/Z PCI reset ( I ) or GP[13] ( I/O/Z ) [default]
PGNT/GP[12] R4 I/O/Z PCI bus grant ( I ) or GP[12] ( I/O/Z )[default]
PCBE0/GP[2] P1 I/O/Z PCI command/byte enable 0 ( I/O/Z ) or GP[2] ( I/O/Z )[default]
PCBE3 P5 I/O/Z PCI command/byte enable 3 ( I/O/Z ). By default, this pin has no function.
PIDSEL R3 I PCI initialization device select ( I ). By default, this pin has no function.
/GP[14] P3 I/O/Z
(3)
(5)
(5)
/GP[14] P3 I/O/Z PCI interrupt A ( O/Z ) or GP[14] ( I/O/Z ) default]
AJ13 O/Z IPD
HOST-PORT INTERFACE (HPI) or PERIPHERAL COMPONENT INTERCONNECT (PCI)
U2 I/O/Z Host data strobe 1 ( I) [default] or PCI system error ( I/O/Z)
(1)
TYPE
(2)
IPD/IPU
Nonmaskable interrupt, edge-driven (rising edge)
Any noise on the NMI pin may trigger an NMI interrupt; therefore, if the NMI pin
is not used, it is recommended that the NMI pin be grounded versus relying on
the IPD.
General-purpose input/output (GPIO) pins ( I/O/Z ).
PCI peripheral pins or general-purpose input/output (GPIO) [15:12, 2] pins
( I/O/Z ) [default]
PCI bus request ( O/Z ) or GP[15] ( I/O/Z ) [default]
PCI interrupt A ( O/Z ) or GP[14] ( I/O/Z ) [default]
PCI reset ( I ) or GP[13] ( I/O/Z ) [default]
PCI bus grant ( I ) or GP[12] ( I/O/Z ) [default]
PCI command/byte enable 0 ( I/O/Z ) or GP[2] ( I/O/Z ) [default]
McBSP1 transmit clock ( I/O/Z ) or GP[3] ( I/O/Z ) [default]
McBSP1 receive clock ( I/O/Z ) or GP[0] ( I/O/Z ) [default]
GP[1] pin ( I/O/Z ). SYSCLK4 is the clock output at 1/8 of the device speed ( O/Z )
or this pin can be programmed as a GP[1] pin ( I/O/Z ) [default].
PCI enable pin. This pin controls the selection (enable/disable) of the HPI and
GP[15:8], or PCI peripherals. This pin works in conjunction with the
MCBSP 1 _EN (AEA5 pin) to enable/disable other peripherals (for more details,
see Section 3 , Device Configuration ).
Host control - selects between control, address, or data registers ( I ) [default] or
PCI device select ( I/O/Z )
Host control - selects between control, address, or data registers ( I ) [default] or
PCI stop ( I/O/Z )
Host half-word select - first or second half-word (not necessarily high or low
[For HPI16 bus width selection only] ( I ) [default] or PCI clock ( I )
DESCRIPTION
(5) These pins function as open-drain outputs when configured as PCI pins.
Submit Documentation Feedback Device Overview 25
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
SIGNAL
NAME NO.
PTRDY P4 I/O/Z PCI target ready ( PRTDY) ( I/O/Z ). By default, this pin has no function.
HD31/AD31 AA3
HD30/AD30 AA5
HD29/AD29 AC4
HD28/AD28 AA4
HD27/AD27 AC5
HD26/AD26 Y1
HD25/AD25 AD2
HD24/AD24 W1
HD23/AD23 AC3
HD22/AD22 AE1
HD21/AD21 AD1
HD20/AD20 W2
HD19/AD19 AC1
HD18/AD18 Y2
HD17/AD17 AB1
HD16/AD16 Y3
HD15/AD15 AB2
HD14/AD14 W4
HD13/AD13 AC2
HD12/AD12 V4
HD11/AD11 AF3
HD10/AD10 AE3
HD9/AD9 AB3
HD8/AD8 W5
HD7/AD7 AB4
HD6/AD6 Y4
HD5/AD5 AD3
HD4/AD4 Y5
HD3/AD3 AD4
HD2/AD2 W6
HD1/AD1 AB5
HD0/AD0 AE2
EMIFA (64-BIT) - CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
ABA1/EMIFA_EN V25 O/Z IPD EMIFA bank address control (ABA[1:0])
ABA0/DDR2_EN V26 O/Z IPD
Table 2-3. Terminal Functions (continued)
(1)
TYPE
I/O/Z
I/O/Z Host-port data [15:0] pin ( I/O/Z ) [default] or PCI data-address bus [15:0] ( I/O/Z )
(2)
IPD/IPU
Host-port data [31:16] pin ( I/O/Z ) [default] or PCI data-address bus [31:16]
( I/O/Z )
• Active-low bank selects for the 64-bit EMIFA.
When interfacing to 16-bit Asynchronous devices, ABA1 carries bit 1 of the
byte address.
For an 8-bit Asynchronous interface, ABA[1:0] are used to carry bits 1 and
0 of the byte address
DDR2 Memory Controller enable (DDR2_EN) [ ABA0 ]
0 - DDR2 Memory Controller peripheral pins are disabled (default)
1 - DDR2 Memory Controller peripheral pins are enabled
EMIFA enable (EMIFA_EN) [ ABA1 ]
0 - EMIFA peripheral pins are disabled (default)
1 - EMIFA peripheral pins are enabled
DESCRIPTION
Device Overview26 Submit Documentation Feedback
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Table 2-3. Terminal Functions (continued)
SIGNAL
NAME NO.
ACE5 V27 O/Z IPU
ACE4 V28 O/Z IPU
ACE3 W26 O/Z IPU
ACE2 W27 O/Z IPU
ABE7 W29 O/Z IPU
ABE6 K26 O/Z IPU
ABE5 L29 O/Z IPU
ABE4 L28 O/Z IPU
ABE3 AA29 O/Z IPU
ABE2 AA28 O/Z IPU
ABE1 AA25 O/Z IPU
ABE0 AA26 O/Z IPU
AHOLDA N26 O IPU EMIFA hold-request-acknowledge to the host
AHOLD R29 I IPU EMIFA hold request from the host
ABUSREQ L27 O IPU EMIFA bus request output
EMIFA (64-BIT) - ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
AECLKIN N29 I IPD clock) is selected at reset via the pullup/pulldown resistor on the AEA[15] pin.
AECLKOUT V29 O/Z IPD EMIFA output clock [at EMIFA input clock (AECLKIN or SYSCLK4) frequency]
AAWE/ ASWE AB25 O/Z IPU
AARDY K29 I IPU Asynchronous memory ready input
AR/ W W25 O/Z IPU Asynchronous memory read/write
AAOE/ ASOE Y28 O/Z IPU Asynchronous/Programmable synchronous memory output-enable
ASADS/ ASRE R26 O/Z IPU
(1)
TYPE
IPD/IPU
(2)
EMIFA (64-BIT) - BUS ARBITRATION
DESCRIPTION
EMIFA memory space enables
• Enabled by bits 28 through 31 of the word address
• Only one pin is asserted during any external data access
Note: The C6454 device does not have ACE0 and ACE1 pins
EMIFA byte-enable control
• Decoded from the low-order address bits. The number of address bits or
byte enables used depends on the width of external memory.
• Byte-write enables for most types of memory.
EMIFA external input clock. The EMIFA input clock (AECLKIN or SYSCLK4
Note: AECLKIN is the default for the EMIFA input clock.
Asynchronous memory write-enable/Programmable synchronous interface
write-enable
Programmable synchronous address strobe or read-enable
• For programmable synchronous interface, the r_enable field in the Chip
Select x Configuration Register selects between ASADS and ASRE:
– If r_enable = 0, then the ASADS/ ASRE signal functions as the ASADS
signal.
– If r_enable = 1, then the ASADS/ ASRE signal functions as the ASRE
signal.
Submit Documentation Feedback Device Overview 27
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Table 2-3. Terminal Functions (continued)
SIGNAL
NAME NO.
AEA19/BOOTMODE3 N25 EMIFA external address (word address) ( O/Z )
AEA18/BOOTMODE2 L26
AEA17/BOOTMODE1 L25
AEA16/BOOTMODE0 P26
AEA15/AECLKIN_SEL P27
AEA14/HPI_WIDTH R25
AEA13/LENDIAN R27 O/Z IPU
AEA12 R28
AEA11 T25
TYPE
O/Z IPD
O/Z IPD
(1)
(2)
IPD/IPU
EMIFA (64-BIT) - ADDRESS
Controls initialization of the DSP modes at reset ( I ) via pullup/pulldown resistors
[For more detailed information, see Section 3 , Device Configuration .]
Note: If a configuration pin must be routed out from the device, the internal
pullup/pulldown (IPU/IPD) resistor should not be relied upon; TI recommends
the use of an external pullup/pulldown resistor.
• Boot mode - device boot mode configurations (BOOTMODE[3:0]) [ Note:
the peripheral must be enabled to use the particular boot mode.]
AEA[19:16] :
0000 - No boot (default mode)
0001 - Host boot (HPI)
0010 -Reserved
0011 - Reserved
0100 - EMIFA 8-bit ROM boot
0101 - Master I2C boot
0110 - Slave I2C boot
0111 - Host boot (PCI)
1000 thru 1111 - Reserved
For more detailed information on the boot modes, see Section 2.4 , Boot
Sequence .
CFGGP[2:0] pins must be set to 000b during reset for proper operation of
the PCI boot mode.
• EMIFA input clock source select
Clock mode select for EMIFA (AECLKIN_SEL)
AEA15 :
0 - AECLKIN (default mode)
1 - SYSCLK4 (CPU/x) Clock Rate. The SYSCLK4 clock rate is software
selectable via the Software PLL1 Controller. By default, SYSCLK4 is
selected as CPU/8 clock rate.
• HPI peripheral bus width (HPI_WIDTH) select
[Applies only when HPI is enabled; PCI_EN pin = 0]
AEA14 :
0 - HPI operates as an HPI16 (default). (HPI bus is 16 bits wide. HD[15:0]
pins are used and the remaining HD[31:16] pins are reserved pins in the
Hi-Z state.)
1 - HPI operates as an HPI32.
• Device Endian mode (LENDIAN)
AEA13 :
0 - System operates in Big Endian mode
1 - System operates in Little Endian mode(default)
Note: For proper C6454 device operation, the AEA12 and AEA11 pins must
be externally pulled down with a 1-k Ω resistor at device reset.
DESCRIPTION
Device Overview28 Submit Documentation Feedback
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
Table 2-3. Terminal Functions (continued)
SIGNAL
NAME NO.
AEA10/MACSEL1 M25
AEA9/MACSEL0 M27
AEA8/PCI_EEAI P25
AEA7 N27
AEA6/PCI66 U27
AEA5/MCBSP1_EN U28
AEA4/ [RGMII interface requires a 1.8 V or 1.5 V I/O supply]
SYSCLKOUT_EN
AEA3 T27
AEA2/CFGGP2 T26
AEA1/CFGGP1 U26
AEA0/CFGGP0 U25
T28
TYPE
O/Z IPD
(1)
(2)
IPD/IPU
• EMAC/MDIO interface select bits (MACSEL[1:0])
There are two configuration pins — MACSEL[1:0] — to select the
EMAC/MDIO interface.
AEA[10:9] : MACSEL[1:0]
00 - 10/100 EMAC/MDIO MII Mode Interface (default)
01 - 10/100 EMAC/MDIO RMII Mode Interface
10 - 10/100/1000 EMAC/MDIO GMII Mode Interface
11 - 10/100/1000 with RGMII Mode Interface
• PCI I2C EEPROM Auto-Initialization (PCI_EEAI)
AEA8 : PCI auto-initialization via external I2C EEPROM
If the PCI peripheral is disabled (PCI_EN pin = 0), this pin must not be
pulled up.
0 - PCI auto-initialization through I2C EEPROM is disabled (default).
1 - PCI auto-initialization through I2C EEPROM is enabled.
• PCI Frequency Selection (PCI66)
[The PCI peripheral needs be enabled (PCI_EN = 1) to use this function]
Selects the PCI operating frequency of 66 MHz or 33 MHz PCI operating
frequency is selected at reset via the pullup/pulldown resistor on the PCI66
pin:
AEA6 :
0 - PCI operates at 33 MHz (default).
1 - PCI operates at 66 MHz.
Note: If the PCI peripheral is disabled (PCI_EN = 0), this pin must not be
pulled up.
• McBSP1 Enable bit (MCBSP1_EN)
Selects which function is enabled on the McBSP1/GPIO muxed pins
AEA5 :
0 - GPIO pin functions enabled (default).
1 - McBSP1 pin functions enabled.
• SYSCLKOUT Enable bit (SYSCLKOUT_EN)
Selects which function is enabled on the SYSCLK4/GP[1] muxed pin
AEA4 :
0 - GP[1] pin function of the SYSCLK4/GP[1] pin enabled (default).
1 - SYSCLK4 pin function of the SYSCLK4/GP[1] pin enabled.
• Configuration GPI (CFGGP[2:0]) ( AEA[2:0] )
These pins are latched during reset and their values are shown in the
DEVSTAT register. These values can be used by software routines for boot
operations.
AEA3 :
For proper C6454 device operation, the AEA3 pin must be pulled down to V
with a 1-k Ω resistor at device reset.
DESCRIPTION
TMS320C6454
SS
Submit Documentation Feedback Device Overview 29
TMS320C6454
Fixed-Point Digital Signal Processor
SPRS311A – APRIL 2006 – REVISED DECEMBER 2006
SIGNAL
NAME NO.
AED63 F25
AED62 A27
AED61 C27
AED60 C28
AED59 E27
AED58 D28
AED57 D27
AED56 F27
AED55 G25
AED54 G26
AED53 A28
AED52 F28
AED51 B28
AED50 G27
AED49 B27
AED48 G28
AED47 H25
AED46 J26
AED45 H26
AED44 J27
AED43 H27
AED42 J28
AED41 C29
AED40 J29
AED39 D29
AED38 J25
AED37 F29
AED36 F26
AED35 G29
AED34 K28
AED33 K25
AED32 K27
AED31 AA27
AED30 AG29
AED29 AB29
AED28 AC27
AED27 AB28
AED26 AC26
AED25 AB27
AED24 AC25
AED23 AB26
AED22 AD28
Table 2-3. Terminal Functions (continued)
(1)
TYPE
I/O/Z IPU EMIFA external data
(2)
IPD/IPU
EMIFA (64-BIT) - DATA
DESCRIPTION
Device Overview30 Submit Documentation Feedback