Texas Instruments TLV2444IPWR, TLV2444IPW, TLV2444IDR, TLV2444ID, TLV2444CPWR Datasheet

...
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
D
No Phase Inversion
D
Low Noise . . . 16 nV/√Hz Typ at f = 1 kHz
D
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV244xA)
D
Low Input Bias Current ...1 pA Typ
D
600- Output Drive
D
High-Gain Bandwidth . . . 1.8 MHz Typ
D
Low Supply Current . . . 750 µA Per Channel Typ
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards
description
The TLV244x and TLV244xA are low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range of these devices has been extended over typical standard CMOS amplifiers, making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applica­tions. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. Both devices offer comparable ac performance while having lower noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLV244x has increased output drive over previous rail-to-rail operational amplifiers and can drive 600-Ω loads for telecommunications applications.
The other members in the TL V244x family are the low-power , TLV243x, and micro-power, TLV2422, versions. The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TL V244xA is available with a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TL V2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high density, battery-powered equipment.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Figure 1
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
– High-Level Output Voltage – V
V
OH
3
2.5
2
1.5
1
0.5
0
024 681012
IOH – High-Level Output Current – mA
VDD = 3 V
TA = 125°C
TA = 85°C TA = 25°C
TA = –40°C
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2442 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC FLAT
PACK
(U)
0°C to 70°C 2.5 mV TLV2442CD TLV2442CPW
°
°
950 µV TLV2442AID TLV2442AIPW
40°C to 85°C
µ
2.5 mV
TLV2442ID
°
°
950 µV TLV2442AQD
40°C to 125°C
µ
2.5 mV
TLV2442QD
°
°
950 µV TLV2442AMFK TLV2442AMJG TLV2442AMU
55°C to 125°C
µ
2.5 mV
TLV2442MFK TLV2442MJG TLV2442MU
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TL V2442CDR).
TLV2444 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
TSSOP
(PW)
0°C to 70°C 2.5 mV TLV2444CD TLV2444CPW
°
°
950 µV TLV2444AID TLV2444AIPW
40°C to 125°C
µ
2.5 mV
TLV2444ID TLV2444IPW
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TL V2444CDR).
1 2 3
4
8 7 6 5
1OUT
1IN–
1IN+
V
DD –
/GND
V
DD+
2OUT 2IN– 2IN+
1 2 3 4
8 7 6 5
1OUT
1IN– 1IN+
V
DD–
/GND
V
DD+
2OUT 2IN– 2IN+
NC V
DD
+ 2OUT 2IN – 2IN +
NC
1OUT
1IN – 1IN +
V
DD–
/GND
1 2 3 4 5
10
9 8 7 6
3 2 1 20 19
910111213
4 5 6 7 8
18 17 16 15 14
NC 2OUT NC 2IN– NC
NC
1IN–
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC
NC
NC
NC
V
DD+
V
DD–
TLV2442
FK PACKAGE
(TOP VIEW)
/GND
NC – No internal connection
1 2 3 4 5 6 7
14 13 12 11 10
9 8
1OUT
1IN–
1IN+
V
DD
+
2IN+
2IN–
2OUT
4OUT 4IN– 4IN+ V
DD–
/GND 3IN+ 3IN– 3OUT
(TOP VIEW)
TLV2444
D OR PW PACKAGE
TLV2442
U PACKAGE
(TOP VIEW)
TLV2442
D OR JG PACKAGE
(TOP VIEW)
TLV2442
PW PACKAGE
(TOP VIEW)
TLV2442, TLV2442A, TLV2444, TLV2444A
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
RAIL-TO-RAIL OUTPUTAdvanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33
Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
V
DD+
V
DD–
/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3
R4
VB2
IN+
IN–
VB1
COMPONENT
COUNT
Transistors Diodes Resistors Capacitors
69
5
26
6
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, V
I
(any input, see Note 1) –0.3 V to V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (any input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
DD+
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of V
DD–
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
A
: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (dual) –40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (quad) –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
DD+
and V
DD –
.
2. Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below V
DD–
– 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
T
25°C DERATING FACTOR T
= 70°C T
= 85°C T
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°CAPOWER RATINGAPOWER RATINGAPOWER RATING
D (8)
D (14)
FK JG
PW (8)
PW (14)
U
725 mW 1022 mW 1375 mW 1050 mW
525 mW
720 mW
675 mW
5.8 mW/°C
7.6 mW/°C
11.0 mW/°C
8.4 mW/°C
4.2 mW/°C
5.6 mW/°C
5.4 mW/°C
464 mW 900 mW 880 mW 672 mW 336 mW 634 mW 432 mW
377 mW 777 mW 715 mW 546 mW 273 mW 547 mW 350 mW
145 mW 450 mW 275 mW 210 mW 105 mW 317 mW 135 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, V
DD
2.7 10 2.7 10 2.7 10 2.7 10 V
Input voltage range, V
I
V
DD–VDD+
– 1 V
DD–VDD+
– 1 V
DD–
V
DD+
– 1.3 V
DD–
V
DD+
– 1.3 V
Common-mode input voltage, V
IC
V
DD–VDD+
– 1 V
DD–VDD+
– 1 V
DD–
+ 2 V
DD+
– 1.3 V
DD–
+ 2 V
DD+
– 1.3 V
Operating free-air temperature, T
A
0 70 –40 125 –40 125 –55 125 °C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV2442
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
TLV244xC
25°C 300 2000
TLV244xI
Full range 2500
p
25°C 300 950
VIOInput offset voltage
TLV244xAI
Full range 1500
µ
V
TLV2442AQ
25°C 300 950
TLV2442AM
Full range 1600
Temperature coefficient of input 25°C
°
α
VIO
offset voltage
to 85°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
V
IC
=
1.5 V
, VO = 1.5 V, R
= 50
25°C 0.002 µV/mo
p
R
S
50
25°C 0.5
p
IIOInput offset current
Full range 150
pA
25°C 1
p
–40°C to
85°C
150
p
IIBInput bias current
125°C 350
pA
TLV2442Q/AQ TLV2442M/AM
Full range 260
25°C
0
to
2.25
–0.25
to
2.5
Common-mode input voltage
Full range
0
to
2
V
ICR
g
range
|VIO| ≤ 5 mV
,
R
S
= 50
25°C to
–55°C
0
to
2.25
–0.25
to
2.5
V
125°C
0
to
2
IO = –100 µA 25°C 2.98
V
OH
High-level output voltage
25°C 2.5
V
I
O
= –3
mA
Full range 2.25
VIC = 1.5 V, IO = 100 µA 25°C 0.02
V
OL
Low-level output voltage
25°C 0.63
V
V
IC
= 1.5 V,
I
O
=
3
m
A
Full range 1
25°C 0.7 1
A
VD
Large-signal differential
p
VO = 1 V to 2 V
R
L
=
600 Ω
Full range 0.4
V/mV
voltage am lification
RL = 1 M 25°C 750
r
id
Differential input resistance 25°C 1000 G
r
i
Common-mode input resistance 25°C 1000 G
c
i
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 1 MHz, AV = 10 25°C 130
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
NOTE 4: Typical values are based on the input of fset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued)
TLV2442
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 65 75
VIC = 0 to 2.25 V,
Full range 55
CMRR
Common-mode rejection ratio
V
O
= 1.5 V,
RS = 50
TLV2442Q/AQ TLV2442M/AM
Full range 50
dB
Supply-voltage rejection ratio V
= 2.7 V to 8 V, V
= V
/2,
25°C 80 95
k
SVR
ygj
(V
DD±
/VIO)
DD
,
IC DD
,
No load
Full range 80
dB
pp
p
VO = 1.5 V,
25°C 725 1100
IDDSupply current (per channel)
O
No load
Full range 1100
µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V
TLV244x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.65 1.3
SR Slew rate at unity gain
VO = 1 V to 2 V, RL = 600 Ω,
Full
range
0.65 V/µs
CL = 100 pF
TLV2442Q/AQ TLV2442M/AM
Full
range
0.4
p
f = 10 Hz 25°C 170
VnEquivalent input noise voltage
f = 1 kHz 25°C 18
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 2.6
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 5.1
µ
V
I
n
Equivalent input noise current 25°C 0.6
fA/Hz
=
AV = 1 0.08%
THD + N Total harmonic distortion plus noise
V
O
= 0.5 V to 2.5 V,
RL = 600 Ω,
AV = 10
25°C
0.3%
f = 1 kHz
AV = 100 2%
p
f =10 kHz, R
= 600 Ω,
°
Gain-bandwidth product
,
CL = 100 pF
L
,
25°C
1.75
MH
z
p
V
= 1 V, R
= 600 Ω,
°
BOMMaximum output-swing bandwidth
O(PP)
,
AV = 1,
L
,
CL = 100 pF
25°C
0.9
MH
z
=–
A
V
= 1,
Step = –2.3 V to 2.3 V,
To 0.1%
°
1.5
tsSettling time
,
RL = 600 Ω,
25°Cµs
L
CL = 100 pF
To 0.01%
3.2
φ
m
Phase margin at unity gain
p
25°C 65°
Gain margin
R
L
=
600 Ω
,
C
L
=
100 pF
25°C 9 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLV244x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
TLV244xC
25°C 300 2000
TLV244xI
Full range 2500
p
25°C 300 950
VIOInput offset voltage
TLV244xA
Full range 1500
µ
V
TLV2442AQ
25°C 300 950
TLV2442AM
Full range 1600
Temperature coefficient of input 25°C
°
α
VIO
offset voltage to 85°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
V
DD±
= ±2.5 V,
VO = 0,
VIC = 0, RS = 50
25°C 0.002 µV/mo
p
25°C 0.5
p
IIOInput offset current
Full range 150
pA
25°C 1
p
–40°C to
85°C
150
p
IIBInput bias current
125°C 350
pA
TLV2442Q/AQ TLV2442M/AM
Full range 260
Common-mode input voltage
25°C
0
to
4.25
–0.25
to
4.5
V
ICR
g
range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4
V
IOH = –100 µA 25°C 4.97
V
OH
High-level output voltage
25°C 4 4.35
V
I
OH
= –5
mA
Full range 4
VIC = 2.5 V, IOL = 100 µA 25°C 0.01
V
OL
Low-level output voltage
25°C 0.8
V
V
IC
=
2.5 V
,
I
OL
=
5 m
A
Full range 1.25
25°C 0.9 1.3
A
VD
Large-signal differential
p
VIC = 2.5 V,
R
L
=
600 Ω
Full range 0.5
V/mV
VD
voltage am lification
V
O
= 1 V to 4
V
RL = 1 M
25°C 950
r
id
Differential input resistance 25°C 1000
G
r
i
Common-mode input resistance 25°C 1000
G
c
i
Common-mode input capacitance
f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 1 MHz, AV = 10 25°C 140
V
= 0 to 4.25 V, V
= 2.5 V,
25°C 70 75
CMRR
Common-mode rejection ratio
IC
,
RS = 50
O
,
Full range 70
dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued)
TLV244x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
pp
V
= 4.4 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (V
DD/∆VIO
)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
p
25°C 750 1100
IDDSupply current (per channel)
V
O
= 2.5 V,
No load
Full range 1100
µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V
TLV244x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C
0.75 1.4
VO = 0.5 V to 2.5 V,
Full range 0.75
SR
Slew rate at unity gain
R
L
=
600 Ω
,
CL = 100 pF
TLV2442Q/AQ TLV2442M/AM
Full range 0.5
V/µs
p
f = 10 Hz 25°C 130
VnEquivalent input noise voltage
f = 1 kHz 25°C 16
n
V/H
z
Peak-to-peak equivalent input noise
f = 0.1 Hz to 1 Hz 25°C 1.8
V
N(PP)
q
voltage
f = 0.1 Hz to 10 Hz
25°C 3.6
µ
V
I
n
Equivalent input noise current 25°C 0.6
fA/Hz
V
= 1.5 V to 3.5 V
,
AV = 1 0.017%
THD + N Total harmonic distortion plus noise
V
O
1.5 V to 3.5 V,
f = 1 kHz,
AV = 10
25°C
0.17%
RL = 600
AV = 100 1.5%
Gain-bandwidth product
f =10 kHz, CL = 100 pF
RL = 600 ‡,
25°C 1.81 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 600 ‡,
AV = 1, CL = 100 pF
25°C 0.5 MHz
AV = –1,
Step = 0.5 V to 2.5 V ,
To 0.1%
°
1.5
tsSettling time
,
RL = 600 ‡, CL = 100 pF
To 0.01%
25°C
2.6
µ
s
φ
m
Phase margin at unity gain
p
25°C 68°
Gain margin
R
L
=
600 Ω
,
C
L
=
100 pF
25°C 8 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is –40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
Referenced to 2.5 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
p
Distribution 2, 3
VIOInput offset voltage
vs Common-mode voltage
,
4, 5
α
VIO
Input offset voltage temperature coefficient Distribution 6, 7
IIB/I
IO
Input bias and input offset currents vs Free-air temperature 8
V
OH
High-level output voltage vs High-level output current 9, 10
V
OL
Low-level output voltage vs Low-level output current 1 1, 12
V
O(PP)
Maximum peak-to-peak output voltage vs Frequency 13
p
vs Supply voltage 14
IOSShort-circuit output current
yg
vs Free-air temperature 15
V
O
Output voltage vs Differential Input voltage 16, 17
A
VD
Differential voltage amplification vs Load resistance 18
p
vs Frequency 19, 20
AVDLarge-signal differential voltage amplification
qy
vs Free-air temperature
,
21, 22
z
o
Output impedance vs Frequency 23, 24
vs Frequency 25
CMRR
Common-mode rejection ratio
qy
vs Free-air temperature 26
pp
vs Frequency 27, 28
k
SVR
Suppl
y-v
oltage rejection ratio
qy
vs Free-air temperature
,
29
I
DD
Supply current vs Supply voltage 30
vs Load capacitance 31
SR
Slew rate
vs Free-air temperature 32 Inverting large-signal pulse response 33, 34 Voltage-follower large-signal pulse response 35, 36
V
O
Inverting small-signal pulse response 37, 38 Voltage-follower small-signal pulse response 39, 40
V
n
Equivalent input noise voltage vs Frequency 41, 42 Noise voltage Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44, 45
p
vs Free-air temperature 46
Gain-bandwidth product
vs Supply voltage 47
vs Frequency 19, 20
φmPhase margin
qy
vs Load capacitance
,
48
Gain margin vs Load capacitance 49
B
1
Unity-gain bandwidth vs Load capacitance 50
For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
VIO – Input Offset Voltage – µV
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
–700
16
14
12
10
8
6
4
2 0
20
18
–500
–300
–100
100
300
500
700
900
868 Amplifiers From 1 Wafer Lot VDD = ±1.5 V
TA = 25°C
0
–200
–400
–600
200
400
600
800
Figure 3
VIO – Input Offset Voltage – µV
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
–700
16
14
12
10
8
6
4
2 0
20
18
–500
–300
–100
100
300
500
700
900
868 Amplifiers From 1 Wafer Lot VDD = ±2.5 V
TA = 25°C
0
–200
–400
–600
200
400
600
800
Figure 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1.5
1
0.5
0
–0.5
–1
–1.5
–2
–0.5 0 0.5 1 1.5 2 2.5 3
VIC – Common-Mode Input Voltage – V
VDD = 3 V TA = 25°C
– Input Offset Voltage – mV
V
IO
Figure 5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
– Input Offset Voltage – mV
V
IO
2
1.5
1
0.5
0
–0.5
–1
–1.5
–2
–0.5 0 0.5 1 1.5 2 2.5 3
VIC – Common-Mode Input Voltage – V
VDD = 5 V TA = 25°C
3.5 4 4.5 5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
9
6
3
0
Percentage of Amplifiers – %
12
15
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO – Temperature Coefficient – µV/°C
–8 –7 –6 –5
–4 –3 –2 –1 0123 4
32 Amplifiers From 1 Wafer Lot VDD = ±1.5 V P Package 25°C to 125°C
Figure 7
9
6
3
0
Percentage of Amplifiers – %
12
15
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO – Temperature Coefficient – µV/°C
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4–8
18
32 Amplifiers From 2 Wafer Lots VDD = ±2.5 V P Package 25°C to 125°C
Figure 8
15
10
5
0
25 45 65 85
20
25
30
105 125
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
35
VDD = ±2.5 V VIC = 0 VO = 0 RS = 50
I
IB
I
IO
IIB and IIO – Input Bias and Input Offset Currents – pA
IB
I
I
IO
Figure 9
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
– High-Level Output Voltage – V
V
OH
3
2.5
2
1.5
1
0.5
0
024 681012
IOH – High-Level Output Current – mA
VDD = 3 V
TA = 125°C
TA = 85°C TA = 25°C
TA = –40°C
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
– High-Level Output Voltage – V
V
OH
3
2.5 2
1.5
1
0.5 0
0 5 10 15 20 25
IOH – High-Level Output Current – mA
VDD = 5 V
TA = 85°C
TA = 125°C
5
4.5 4
3.5
TA = –40°C
TA = 25°C
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
– Low-Level Output Voltage – V
V
OL
3
2.5
2
1.5
1
0.5
0
0246810
IOL – Low-Level Output Current – mA
VDD = 3 V
TA = 25°C
TA = 125°C
TA = 85°C
TA = –40°C
Figure 12
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
– Low-Level Output Voltage – V
V
OL
2.5
2
1.5
1
0.5
0
0246810
IOL – Low-Level Output Current – mA
VDD = 5 V
TA = 25°C
TA = 125°C
TA = 85°C
TA = –40°C
Figure 13
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
– Maximum Peak-to-Peak Output Voltage – V
V
O(PP)
5
4
3
2
1
0 100 1 k 10 k 100 k 1 M 10 M
f – Frequency – Hz
RL = 600
VDD = 3 V
VDD = 5 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
– Short-Circuit Output Current – mA
I
OS
15
10
5
0
–5
–10 –15
–20 –25
23456789
VDD – Supply Voltage – V
VO = VDD/2 VIC = VDD/2 TA = 25°C
25
20
10
VID = 100 mV
VID = –100 mV
Figure 15
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
– Short-Circuit Output Current – mA
I
OS
15
10
5
0
–5
–10 –15
–20 –25
–75 –50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
VDD = 5 V VO = 2.5 V
25
20
125
VID = 100 mV
VID = –100 mV
Figure 16
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VDD = 3 V VIC = 1.5 V RL = 600 TA = 25°C
–1000 –750 –500 –250 0
VID – Differential Input Voltage – µV
250 500 750 1000
– Output Voltage – VV
O
2.5
2
1.5
1
0.5
0
3
Figure 17
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
– Output Voltage – VV
O
5
4
3
2
1
0
–1000 –750 –500 –250 0
VID – Differential Input Voltage – µV
VDD = 5 V VIC = 2.5 V RL = 600 TA = 25°C
250 500 750 1000
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
– Differential Voltage Amplification – V/mV
A
VD
100
10
1
0.1 1 10 100 1000 RL – Load Resistance – k
V
O(PP)
= 2 V
TA = 25°C
VDD = 3 V
VDD = 5 V
Figure 18
0
20
10 k 100 k 1 M
40
60
80
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
f – Frequency – Hz
10 M
VDD = 3 V RL = 600 CL = 600 pF TA = 25°C
–20
–40
–90°
–45°
0°
45°
90°
135°
180°
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
m
φ – Phase Margin
Figure 19
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
40
20
0
–20
–40
10 k 100 k 1 M 10 M
f – Frequency – Hz
VDD = 5 V RL = 600 CL = 600 pF TA = 25°C
80 180°
135°
90°
45°
0°
–45°
–90°
m
φ – Phase Margin
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
Figure 20
Figure 21
10
1
0.1
1000
100
–75 –25 25 75 125
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
VDD = 3 V VIC = 2.5 V VO = 1 V to 4 V
RL = 1 M
RL = 600
–50 0 50 100
AVD – Large-Signal Differential
A
VD
TA – Free-Air Temperature – °C
Voltage Amplification – V/mV
Figure 22
10
1
0.1
1000
100
–75 –25 25 75 125
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V
RL = 1 M
RL = 600
–50 0 50 100
AVD – Large-Signal Differential
A
VD
TA – Free-Air Temperature – °C
Voltage Amplification – V/mV
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
10
1
0.1
1000
100
100 1 k 10 k 100 k 1 M
zo – Output Impedance – O
f – Frequency – Hz
z
o
OUTPUT IMPEDANCE
vs
FREQUENCY
VDD = 3 V TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 24
10
1
0.1
100
100 1 k 10 k 100 k 1 M
zo – Output Impedance – O
f – Frequency – Hz
z
o
OUTPUT IMPEDANCE
vs
FREQUENCY
VDD = 5 V TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 25
60
40
20
0
10 100 1 k 10 k
CMRR – Common-Mode Rejection Ratio – dB
80
100
100 k 1 M
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
f – Frequency – Hz
10 M
VDD = 5 V VIC = 2.5 V
VDD = 3 V VIC = 1.5 V
TA = 25°C
Figure 26
TA – Free-Air Temperature – °C
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
90
80
70
60
100
–75 –50 –25 0 25 50 75 100 125
VDD = 5 V
VDD = 3 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
40
20
0
10 100 1 k
kSVR – Supply-Voltage Rejection Ratio – dB
60
80
f – Frequency – Hz
100
10 k 100 k 1 M 10 M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
k
SVR
VDD = 3 V TA = 25°C
k
SVR+
k
SVR–
Figure 28
40
20
0
10 100 1 k
kSVR – Supply-Voltage Rejection Ratio – dB
60
80
f – Frequency – Hz
100
10 k 100 k 1 M 10 M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
k
SVR
VDD = 5 V TA = 25°C
k
SVR+
k
SVR–
Figure 29
TA – Free-Air Temperature – °C
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
96
94
92
90
100
–75 –50 –25 0 25 50 75 100 125
VDD = 2.5 V to 8 V
98
kSVR – Supply-Voltage Rejection Ratio – dB
k
SVR
Figure 30
02468
0
0.5
1
1.5
2
2.5
IDD – Supply Current – mA
DD
I
VDD – Supply Voltage – V
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TA = 25°C
TA = 85°C
TA = –40°C
10
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
µs
SR – Slew Rate – V/
0
1
1.5
2
CL – Load Capacitance – pF
SLEW RATE
vs
LOAD CAPACITANCE
100 k1 k10010
2.5
3
10 k
SR +
VDD = 5 V AV = –1 TA = 25°C
SR –
0.5
Figure 32
1.5
1
0.5
2
µs
SR – Slew Rate – V/
–75 –50 – 25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
SLEW RATE
vs
FREE-AIR TEMPERATURE
SR +
SR –
0
2.5
3
VDD = 5 V RL = 600 CL = 100 pF AV = 1
Figure 33
2
1
0
1234536789
VO – Output Voltage – V
V
O
t – Time – µs
INVERTING LARGE-SIGNAL PULSE RESPONSE
0
VDD = 3 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
10
Figure 34
0
4
12345
2
1
3
5
6789
VO – Output Voltage – V
V
O
t – Time – µs
VDD = 5 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
INVERTING LARGE-SIGNAL PULSE RESPONSE
010
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
3
2
1
0
123456789
VO – Output Voltage – V
V
O
t – Time – µs
VDD = 3 V RL = 600 CL = 100 pF AV = 1 TA = 25°C
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
0 10
Figure 36
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
4
0.5 1 1.5 2 2.5
2
1
3
5
3 3.5 4 4.5
t – Time – µs
VDD = 5 V RL = 600 CL = 100 pF AV = 1 TA = 25°C
0
0
5
VO – Output Voltage – V
V
O
Figure 37
1.48
1.46
1.44 12345
1.52
1.56
1.58
7910
VO – Output Voltage – V
V
O
t – Time – µs
VDD = 3 V RL = 600 CL = 100 pF AV = –1 TA = 25°C
INVERTING SMALL-SIGNAL PULSE RESPONSE
06
8
1.5
1.54
Figure 38
012345678
t – Time – µs
INVERTING SMALL-SIGNAL PULSE RESPONS
E
VDD = 5 V RL = 600 CL = 100 pF AV = –1 TA = 25°C
2.44
2.46
2.48
2.5
2.52
2.54
2.56
2.58
910
VO – Output Voltage – V
V
O
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
1.44 0 0.5 1 1.5
VO – Output Voltage – V
V
O
t – Time – µs
VDD = 3 V RL = 600 CL = 100 pF AV = –1 TA = 25°C
1.46
1.48
1.5
1.52
1.54
1.56
1.58
2 2.5 3 3.5
4
4.5 5
Figure 40
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
2.44 0 0.5 1 1.5
t – Time – µs
VDD = 5 V RL = 600 CL = 100 pF AV = –1 TA = 25°C
2.46
2.48
2.5
2.52
2.54
2.56
2.58
2 2.5 3 3.5 4 4.5 5
VO – Output Voltage – V
V
O
Figure 41
100
80
40
0
160
180
200
10 100 1 k
Vn – Equivalent Input Noise Voltage – nV Hz
f – Frequency – Hz
10 k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
V
n
nV/ Hz
140
120
60
20
VDD = 3 V RS = 20 TA = 25°C
Figure 42
60
40
0
10 100 1 k
Vn – Equivalent Input Noise Voltage – nV Hz
80
f – Frequency – Hz
100
10
k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
140
V
n
nV/ Hz
VDD = 5 V RS = 20 TA = 25°C
20
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 43
–1500
–2000
246
0
500
810
Noise Voltage – nV
t – Time – s
NOISE VOLTAGE
OVER A 10-SECOND PERIOD
0
VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C
1000
1500
2000
–500
–1000
1357 9
Figure 44
10 1 k 10 k 100 k
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
0.1
10
VDD = 3 V RL = 600 TA = 25°C
AV = 100
AV = 10
AV = 1
1
100
Figure 45
10 1 k 10 k 100 k
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
0.1
10
VDD = 5 V RL = 600 TA = 25°C
AV = 100
AV = 10
AV = 1
1
100
Figure 46
–50 –25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
Gain-Bandwidth Product – MHz
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
1.5
1
2
2.5
3
RL = 600 CL = 100 pF f = 10 kHz
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 47
Gain-Bandwidth Product – MHz
1.6
1.5 012345
1.7
1.8
678
|V
DD±
| – Supply Voltage – V
1.9
2
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
RL = 600 CL = 100 pF f = 10 kHz TA = 25°C
Figure 48
10
om – Phase Margin
100 k
CL – Load Capacitance – pF
φ
m
PHASE MARGIN
vs
LOAD CAPACITANCE
1 k100
RL = 600 TA = 25°C
75°
60°
45°
30°
15°
0°
R
null
= 0
R
null
= 100
R
null
= 50
R
null
= 20
10 k
Figure 49
5
0
10
Gain Margin – dB
10
15
100 K
CL – Load Capacitance – pF
20
25
GAIN MARGIN
vs
LOAD CAPACITANCE
1 K100
RL = 600 TA = 25°C
10 K
R
null
= 100
R
null
= 50
R
null
= 20
R
null
= 0
Figure 50
0.5
0
10
1
100 k
CL – Load Capacitance – pF
1.5
2
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
1 k100
RL = 600 TA = 25°C
10 k
– Unity-Gain Bandwidth – kHz B
1
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using
PSpice Parts
model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 were generated using the TL V244x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integated Circuit Operational Amplifiers,”
IEEE Journal
of Solid-State Circuits,
SC-9, 353 (1974).
OUT
+
+
+
+
+ –
+
+
+
+
.SUBCKT TLV2442 1 2 3 4 5 C1 11 12 14E–12 C2 6 7 60.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POL Y (2) (3,0) (4,) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP VLN 0 + 984.9E3 –1E6 1E6 1E6 –1E6 GA 6 0 11 12 377.0E–6 GCM 0 6 10 99 134E–9 ISS 3 10 DC 216.OE–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.OE3
RD1 60 11 2.653E3 RD2 60 12 2.653E3 R01 8 5 50 R02 7 99 50 RP 3 4 4.310E3 RSS 10 99 925.9E3 VAD 60 4 –.5 VB 9 0 DC 0 VC 3 53 DC .78 VE 54 4 DC .78 VLIM 7 8 DC 0 VLP 91 0 DC 1.9 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=1.500E–12BETA=1.316E-3 + VTO=–.270) .ENDS
V
CC+
RP
IN –
2
IN+
1
V
CC–
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54
DE
DP
VC
DC
4
C1
53
R2
6
9
EGND
VB
FB
C2
GCM
GA
VLIM
8
5
RO1
RO2
HLIM
90
DLP
91
DLN
92
VLNVLP
99
7
Figure 51. Boyle Macromodel and Subcircuit
PSpice
and
Parts
are registered trademarks of MicroSim Corporation.
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/D 10/96
28 TERMINAL SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342
(8,69)
MIN
(11,23)
(16,26)
0.640
0.739
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ
22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated. E. Falls within JEDEC MS-004
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,20)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. E. Falls within MIL-STD-1835 GDIP1-T8
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/E 08/96
14 PIN SHOWN
Seating Plane
1,20 MAX
1
A
7
14
0,19
4,50 4,30
8
6,20
6,60
0,30
0,75 0,50
0,25
Gage Plane
0,15 NOM
0,65
M
0,10
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
0,15 0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
1
10
5
6
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only. E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...