Texas Instruments TLV2422MUB, TLV2422MJGB, TLV2422MFKB, TLV2422IPWR, TLV2422IPW Datasheet

...
TLV2422, TLV2422A, TLV2422Y
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Output Swing Includes Both Supply Rails
Extended Common-Mode Input Voltage
No Phase Inversion
Low Noise . . . 18 nV/Hz Typ at f = 1 kHz
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV2422A)
Low Input Bias Current ...1 pA Typ
Micropower Operation ...50 µA Per
Channel
600- Output Drive
Available in Q-Temp Automotive
HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards
description
The TLV2422 and TL V2422A are dual low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range for this device has been extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, the devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TL V2422 only requires 50 µA of supply current per channel, making it ideal for battery-powered applications. The TLV2422 also has increased output drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecom applications.
Other members in the TLV2422 family are the high-power, TLV2442, and low-power, TLV2432, versions.
The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TL V2422A is available with a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TL V2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Figure 1
V
OH
– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0
816243240
IOH – High-Level Output Current – mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = –40°C
TA = 25°C
VDD = 5 V
On products compliant to MIL-STD-883, Class B, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
TLV2422, TLV2422A, TLV2422Y Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC
FLAT PACK
(U)
CHIP FORM
(Y)
0°C to 70°C 2.5 mV TLV2422CD TLV2422CPWLE
°
°
950 µV TLV2422AID TLV2422AIPWLE
40°C to 85°C
µ
2.5 mV
TLV2422ID
°
°
950 µV TLV2422AQD
TLV2422Y
40°C to 125°C
µ
2.5 mV
TLV2422QD
°
°
950 µV TLV2422AMFK TLV2422AMJG TLV2422AMU
55°C to 125°C
µ
2 mV
TLV2422MFK TLV2422MJG TLV2422MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2422CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C.
D OR JG PACKAGE
(TOP VIEW)
1 2 3
4
8 7 6 5
1OUT
1IN–
1IN+
V
DD –
/GND
V
DD+
2OUT 2IN– 2IN+
PW PACKAGE
(TOP VIEW)
NC V
DD
+ 2OUT 2IN – 2IN +
NC
1OUT
1IN – 1IN +
V
DD–
/GND
1 2 3 4 5
10
9 8 7 6
U PACKAGE
(TOP VIEW)
3212019
910111213
4 5 6 7 8
18 17 16 15 14
NC 2OUT NC 2IN– NC
NC
1IN–
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC
NC
NC
NC
V
DD+
V
DD–
FK PACKAGE
(TOP VIEW)
/GND
NC – No internal connection
1 2 3 4
8 7 6 5
1OUT
1IN– 1IN+
V
DD–
/GND
V
DD+
2OUT 2IN– 2IN+
NC – No internal connection
TLV2422, TLV2422A
RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
Advanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33
Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
V
DD+
V
DD–
/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3
R4
VB2
IN+
IN–
VB1
COMPONENT
COUNT
Transistors Diodes Resistors Capacitors
69
5
26
6
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, V
I
(any input, see Note 1): C and I suffix –0.3 V to V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
DD+
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of V
DD–
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
A
: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix –40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
DD+
and V
DD –
.
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below V
DD–
– 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
T
25°C DERATING FACTOR T
= 70°C T
= 85°C T
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°CAPOWER RATINGAPOWER RATING
A
POWER RATING
D 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW
FK
1375 mW
11.0 mW/°C
°
880 mW
715 mW
275 mW
JGPW1050 mW
525 mW
8.4 mW/°C
4.2 mW/°C
672 mW
336 mW
546 mW
273 mW
210 mW
105 mW
PWU525 mW
675 mW
4.2 mW/ C
5.4 mW/°C
336 mW
432 mW
273 mW
350 mW
105 mW
135 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, V
DD±
2.7 10 2.7 10 2.7 10 2.7 10 V
Input voltage range, V
I
V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
Common-mode input voltage, V
IC
V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
Operating free-air temperature, T
A
0 70 –40 85 –40 125 –55 125 °C
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV2422C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 300 2000
VIOInput offset voltage
Full range 2500
µ
V
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0,
VDD± = ±2.5 V,
25°C 0.003 µV/mo
p
V
O
= 0,
R
S
= 50
25°C 0.5
p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 150
pA
p
25°C
0
to
2.5
–0.25
to
2.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
2.2
V
IOH = –100 µA 25°C 2.97
V
OH
High-level output voltage
25°C 2.75
V
I
OH
= –
500 µA
Full range 2.5
VIC = 0, IOL = 100 µA 25°C 0.05
V
OL
Low-level output voltage
25°C 0.2
V
V
IC
= 0,
I
OL
=
250 µA
Full range 0.5
25°C 6 10
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
10 k
Full range 3
V/mV
VD
gg g
V
O
= 1 V to 2
V
RL = 1 M
25°C 700
r
i(d)
Differential input resistance 25°C
10
12
r
i(c)
Common-mode input resistance 25°C
10
12
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 2.5 V, V
= 1.5 V,
25°C 70 83
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 2.7 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
25°C 100 150
IDDSupply current
V
O
= 1.5 V,
No load
Full range 175
µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV2422I TLV2422AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 300 2000 300 950
VIOInput offset voltage
Full range 2500 1500
µ
V
Temperature
p
25°C
°
α
VIO
coe
fficient of i
npu
t
offset voltage
to 70°C
2
2µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, VO = 0,
VDD± = ±2.5 V, RS = 50
25°C 0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 150 150
pA
p
25°C 1 1
p
IIBInput bias current
Full range 150 150
pA
Common-mode input
25°C
0
to
2.5
–0.25
to
2.75
0
to
2.5
–0.25
to
2.75
V
ICR
voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
2.2
0
to
2.2
V
IOH = –100 µA 25°C 2.97 2.97
V
OH
High-level output
25°C 2.75 2.75
V
voltage
I
OH
= –
500 µA
Full range 2.5 2.5
VIC = 0, IOL = 100 µA 25°C 0.05 0.05
V
OL
Low-level output
25°C 0.2 0.2
V
voltage
V
IC
= 0,
I
OL
=
250 µA
Full range 0.5 0.5
-
25°C 6 10 6 10
A
VD
Large signal
differential voltage
VIC = 2.5 V,
R
L
= 10
k
Full range 3 3
V/mV
VD
amplification
V
O
= 1 V to 2
V
RL = 1 M
25°C 700 700
r
i(d)
Differential input resistance
25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 100 kHz, AV = 10 25°C 130 130
Common-mode V
= 0 to 2.5 V, V
= 1.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC
,
O
,
RS = 50
Full range 70 70
dB
Supply-voltage
V
= 2.7 V to 8 V,
25°C 80 95 80 95
k
SVR
rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 100 150 100 150
IDDSupply current
V
O
= 1.5 V,
No load
Full range 175 175
µ
A
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS
T
TLV2422C, TLV2422I
TLV2422AI
UNIT
A
MIN TYP MAX
25°C 0.01 0.02
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
CL = 100 pF
R
L
= 10
k
,
Full
range
0.008
V/µs
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 23
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 2.7
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 4
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.25%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 10 k
AV = 10
25°C
1.8%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 10 k‡,
25°C 46 kHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 1 V,
RL = 10 k‡,
AV = 1, CL = 100 pF
25°C 8.3 kHz
=–
A
V
= 1,
Step = 0.5 V to 2.5 V ,
To 0.1%
°
8.6
tsSettling time
,
RL = 10 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
16
φ
m
Phase margin at unity gain
p
25°C
62°
Gain margin
R
L
= 10
k
,
C
L
=
100 pF
25°C 11 dB
Full range for the C version is 0°C to 70°C. Full range for the I version is –40°C to 85°C.
Referenced to 2.5 V
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
TLV2422Q, TLV2422M
TLV2422AQ,
TLV2422AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 300 2000 300 950
VIOInput offset voltage
Full range 2500 1800
µ
V
Temperature
p
°
α
VIO
coe
fficient of i
npu
t
offset voltage
Full range22µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, VO = 0,
VDD± = ±1.5 V, RS = 50
25°C 0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 150 150
pA
p
25°C 1 1
p
IIBInput bias current
Full range 300 300
pA
Common-mode input
25°C
0
to
2.5
–0.25
to
2.75
0
to
2.5
–0.25
to
2.75
V
ICR
voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
2.2
0
to
2.2
V
IOH = –100 µA 25°C 2.97 2.97
V
OH
High-level output
25°C 2.75 2.75
V
voltage
I
OH
= –
500 µA
Full range 2.5 2.5
VIC = 0, IOL = 100 µA 25°C 0.05 0.05
V
OL
Low-level output
25°C 0.2 0.2
V
voltage
V
IC
= 0,
I
OL
=
250 µA
Full range 0.5 0.5
-
25°C 6 10 6 10
A
VD
Large signal
differential voltage
VIC = 1.5 V,
R
L
= 10
k
Full range 2 2
V/mV
VD
amplification
V
O
= 1 V to 2
V
RL = 1 M
25°C 700 700
r
i(d)
Differential input resistance
25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 100 kHz, AV = 10 25°C 130 130
Common-mode V
= V
min, V
= 1.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC ICR
,
O
,
RS = 50
Full range 70 70
dB
Supply-voltage
V
= 2.7 V to 8 V,
25°C 80 95 80 95
k
SVR
rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 100 150 100 150
IDDSupply current
V
O
=
1.5 V
,
No load
Full range 175 175
µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS
T
A
TLV2422Q, TLV2422M,
TLV2422AQ,
TLV2422AM
UNIT
MIN TYP MAX
25°C 0.01 0.02
SR Slew rate at unity gain
V
O
= 1.1 V to 1.9 V,
CL = 100 pF
R
L
= 10
k
,
Full
range
0.008
V/µs
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 23
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 2.7
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 4
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.25%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 10 k
AV = 10
25°C
1.8%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 10 k‡,
25°C 46 kHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 1 V,
RL = 10 k‡,
AV = 1, CL = 100 pF
25°C 8.3 kHz
=–
A
V
= 1,
Step = 0.5 V to 2.5 V ,
To 0.1%
°
8.6
tsSettling time
,
RL = 10 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
16
φ
m
Phase margin at unity gain
p
25°C
62°
Gain margin
R
L
= 10
k
,
C
L
=
100 pF
25°C 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLV2422C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 300 2000
VIOInput offset voltage
Full range 2500
µ
V
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0,
VDD± = ±2.5 V,
25°C 0.003 µV/mo
p
V
O
= 0,
R
S
= 50
25°C 0.5
p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 150
pA
p
25°C
0
to
4.5
–0.25
to
4.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4.2
V
IOH = –100 µA 25°C 4.97
V
OH
High-level output voltage
25°C 4.5 4.75
V
I
OH
= –1
mA
Full range 4.25
VIC = 2.5 V, IOL = 100 µA 25°C 0.04
V
OL
Low-level output voltage
25°C 0.15
V
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.5
25°C 8 12
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
10 k
Full range 5
V/mV
VD
gg g
V
O
= 1 V to 4
V
RL = 1 M
25°C 1000
r
i(d)
Differential input resistance 25°C
10
12
r
i(c)
Common-mode input resistance 25°C
10
12
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 4.5 V, V
= 2.5 V,
25°C 70 90
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 4.4 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
25°C 100 150
IDDSupply current
V
O
= 2.5 V,
No load
Full range 175
µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLV2422I TLV2422AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 300 2000 300 950
VIOInput offset voltage
Full range 2500 1500
µ
V
Temperature
p
25°C
°
α
VIO
coe
fficient of i
npu
t
offset voltage
to 70°C
2
2µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, VO = 0,
VDD± = ±2.5 V, RS = 50
25°C 0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 150 150
pA
p
25°C 1 1
p
IIBInput bias current
Full range 150 150
pA
Common-mode input
25°C
0
to
4.5
–0.25
to
4.75
0
to
4.5
–0.25
to
4.75
V
ICR
voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4.2
0
to
4.2
V
IOH = –100 µA 25°C 4.97 4.97
V
OH
High-level output
25°C 4.5 4.75 4.5 4.75
V
voltage
I
OH
= –
1 mA
Full range 4.25 4.25
VIC = 2.5 V, IOL = 100 µA 25°C 0.04 0.04
V
OL
Low-level output
25°C 0.15 0.15
V
voltage
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.5 0.5
-
25°C 8 12 8 12
A
VD
Large signal
differential voltage
VIC = 2.5 V,
R
L
= 10
k
Full range 5 5
V/mV
VD
amplification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1000 1000
r
i(d)
Differential input resistance
25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 100 kHz, AV = 10 25°C 130 130
Common-mode V
= 0 to 4.5 V, V
= 2.5 V,
25°C 70 90 70 90
CMRR
rejection ratio
IC
,
O
,
RS = 50
Full range 70 70
dB
Supply-voltage
V
= 4.4 V to 8 V,
25°C 80 95 80 95
k
SVR
rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 100 150 100 150
IDDSupply current
V
O
= 2.5 V,
No load
Full range 175 175
µ
A
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS
T
TLV2422C, TLV2422I
TLV2422AI
UNIT
A
MIN TYP MAX
25°C 0.01 0.02
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
=
p
R
L
= 10
k
,
Full
V/µs
C
L
=
100 F
range
0.008
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 18
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 1.9
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 2.8
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 1.5 V to 3.5 V,
AV = 1
0.24%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 10 k
AV = 10
25°C
1.7%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL =10 k‡,
25°C 52 kHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 10 k‡,
AV = 1, CL = 100 pF
25°C 5.3 kHz
=–
A
V
= 1,
Step = 1.5 V to 3.5 V ,
To 0.1%
°
8.5
tsSettling time
,
RL = 10 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
15.5
φ
m
Phase margin at unity gain
p
25°C
66°
Gain margin
R
L
=
10 k
,
C
L
=
100 pF
25°C 11 dB
Full range for the C version is 0°C to 70°C. Full range for the I version is –40°C to 85°C.
Referenced to 2.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
TLV2422Q,
TLV2422M
TLV2422AQ, TLV2422AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 300 2000 300 950
VIOInput offset voltage
Full range 2500 1800
µ
V
Temperature
p
°
α
VIO
coe
fficient of i
npu
t
offset voltage
Full range22µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, VO = 0,
VDD± = ±2.5 V, RS = 50
25°C 0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 150 150
pA
p
25°C 1 1
p
IIBInput bias current
Full range 300 300
pA
Common-mode input
25°C
0
to
4.5
–0.25
to
4.75
0
to
4.5
–0.25
to
4.75
V
ICR
voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4.2
0
to
4.2
V
IOH = –100 µA 25°C 4.97 4.97
V
OH
High-level output
25°C 4.75 4.75
V
voltage
I
OH
= –1
mA
Full range 4.5 4.5
VIC = 2.5 V, IOL = 100 µA 25°C 0.04 0.04
V
OL
Low-level output
25°C 0.15 0.15
V
voltage
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.5 0.5
-
25°C 8 12 8 12
A
VD
Large signal
differential voltage
VIC = 2.5 V,
R
L
= 10
k
Full range 3 3
V/mV
VD
amplification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1000 1000
r
i(d)
Differential input resistance
25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 100 kHz, AV = 10 25°C 130 130
Common-mode V
= V
min, V
= 2.5 V,
25°C 70 90 70 90
CMRR
rejection ratio
IC ICR
,
O
,
RS = 50
Full range 70 70
dB
Supply-voltage
V
= 4.4 V to 8 V,
25°C 80 95 80 95
k
SVR
rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 100 150 100 150
IDDSupply current
V
O
=
2.5 V
,
No load
Full range 175 175
µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS
T
A
TLV2422Q, TLV2422M,
TLV2422AQ,
TLV2422AM
UNIT
MIN TYP MAX
25°C 0.01 0.02
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
=
p
R
L
= 10
k
,
Full
V/µs
C
L
=
100 F
range
0.008
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 18
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 1.9
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 2.8
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 1.5 V to 3.5 V,
AV = 1
°
0.24%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 10 k
AV = 10
25°C
1.7%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL =10 k‡,
25°C 52 kHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 10 k‡,
AV = 1, CL = 100 pF
25°C 5.3 kHz
=–
A
V
= 1,
Step = 1.5 V to 3.5 V ,
To 0.1%
°
8.5
tsSettling time
,
RL = 10 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
15.5
φ
m
Phase margin at unity gain
p
25°C
66°
Gain margin
R
L
=
10 k
,
C
L
=
100 pF
25°C 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
p
Distribution 2,3
VIOInput offset voltage
vs Common-mode input voltage
,
4,5
α
VIO
T emperature coef ficient Distribution 6,7
IIB/I
IO
Input bias and input offset currents vs Free-air temperature 8
V
OH
High-level output voltage vs High-level output current 9,11
V
OL
Low-level output voltage vs Low-level output current 10,12
V
O(PP)
Maximum peak-to-peak output voltage vs Frequency 13
p
vs Supply voltage 14
IOSShort-circuit output current
yg
vs Free-air temperature 15
V
ID
Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18
p
vs Frequency 19,20
AVDLarge-signal differential voltage amplification
qy
vs Free-air temperature
,
21,22
z
o
Output impedance vs Frequency 23,24
vs Frequency 25
CMRR
Common-mode rejection ratio
qy
vs Free-air temperature 26
pp
vs Frequency 27,28
k
SVR
Suppl
y-v
oltage rejection ratio
qy
vs Free-air temperature
,
29
I
DD
Supply current vs Supply voltage 30
vs Load capacitance 31
SR
Slew rate
vs Free-air temperature 32
V
O
Inverting large-signal pulse response 33,34
V
O
Voltage-follower large-signal pulse response 35,36
V
O
Inverting small-signal pulse response 37,38
V
O
Voltage-follower small-signal pulse response 39,40
V
n
Equivalent input noise voltage vs Frequency 41, 42 Noise voltage (referred to input) Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44,45
p
vs Supply voltage 46
Gain-bandwidth product
yg
vs Free-air temperature 47 vs Frequency 19,20
φmPhase margin
qy
vs Load capacitance
,
48
Gain margin vs Load capacitance 49
B
1
Unity-gain bandwidth vs Load capacitance 50
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
16
14
12
10
8
6
4
2
0
–0.4
VIO – Input Offset Voltage – mV
452 Amplifiers from 1 Wafer Lot
18
–0.3
VDD = 3 V RL = 10 k TA = 25°C
–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Figure 3
454 Amplifiers from 1 Wafer Lot
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
20
15
10
5
0
VDD = 5 V RL = 10 k TA = 25°C
–0.4
VIO – Input Offset Voltage – mV
–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Figure 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
–0.5
2
1
0
–1
–2
0 0.5 1 2.5 3
VIC – Common-Mode Input Voltage – V
2
1.5
VDD = 3 V
V
IO
– Input Offset Voltage – mV
0.5
–0.5
–1.5
1.5
Figure 5
VDD = 5 V
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1
0
–1
–2
1.5
0.5
–0.5
–1.5
–0.5 0 0.5 1 2.5 5
VIC – Common-Mode Input Voltage – V
21.5 3 4.543.5
V
IO
– Input Offset Voltage – mV
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
10
5
0
–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
Figure 7
10
5
0
–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
Figure 8
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
–55
200
120
80
40
0
–40 0 25 85 125
TA – Free-Air Temperature – °C
70
I
IB
160
I
IO
VDD = ±2.5 V
I
IB
– Input Bias and Input Offset Currents – pAand I
IO
Figure 9
V
OH
– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
3
2
1
0
36 91215
IOH – High-Level Output Current – mA
TA = 85°C
VDD = 3 V
2.5
1.5
0.5
TA = 125°C
TA = 0°C
TA = 25°C
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
V
OL
– Low-Level Output Voltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1.6
1
0.4
0
12 3 4 5
IOL – Low-Level Output Current – mA
TA = 85°C
VDD = 3 V
1.2
0.8
0.2
TA = 125°C
TA = –40°C
TA = 25°C
0.6
1.4
Figure 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0
816243240
IOH – High-Level Output Current – mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = –40°C
TA = 25°C
VDD = 5 V
V
OH
– High-Level Output Voltage – V
Figure 12
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1
0.4
0
12 3 4 5
IOL – Low-Level Output Current – mA
TA = 85°C
VDD = 5 V
1.2
0.8
0.2
TA = 125°C
TA = –40°C
TA = 25°C
0.6
V
OH
– High-Level Output Voltage – V
Figure 13
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VDD = 5 V
RL = 10 k TA = 25°C
4
1
5
3
0
10
2
10
3
10
4
10
6
f – Frequency – Hz
V
O(PP)
– Maximum Peak-to-Peak Output Voltage – V
2
10
5
VDD = 3 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
I
OS
– Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
2
20
–5
–20
–30
34567
VDD – Supply Voltage – V
10
–10
–25
–15
15
VO = VDD/2 VIC = VDD/2 TA = 25°C
30
0
5
25
8910
Figure 15
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
–55
2
–4
–8
0 70 125
0
–6
–2
–40 25 85
VDD = 5 V
8
6
4
VID = –100 mV
VID = 100 mV
TA – Free-Air Temperature – °C
I
OS
– Short-Circuit Output Current – mA
Figure 16
V
ID
– Differential Input Voltage –
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
0
0
–600
–1000
123
–200
–800
–400
0.5 1.5 2.5
600
400 200
VO – Output Voltage – V
1000
800
µ
V
VDD = 3 V RL = 10 k TA = 25°C
Figure 17
012345
VDD = 5 V RL = 10 k TA = 25°C
V
ID
– Differential Input Voltage –
0
–600
–1000
–200
–800
–400
600
400 200
1000
800
µ
V
VO – Output Voltage – V
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Differential Gain – V/mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
10
10
1
1000
100
100
10000
1000
VID = 5 V
RL – Load Resistance – k
VID = 3 V
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
50
30
10
–50
f – Frequency – Hz
40
20
0
A
VD
– Large-Signal Differential
10
4
10
5
Voltage Amplification – dB
–45
–90
m
φ – Phase Margin –
°
VDD = 3 V RL = 10 k CL = 100 pF
10
6
–10
–30
–20
–40
10
3
180
45
0
90
135
GAIN
PHASE
Figure 19
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
40
20
–40
f – Frequency – Hz
50
30
10
A
VD
– Large-Signal Differential
10
3
10
4
Voltage Amplification – dB
m
φ – Phase Margin –
°
10
5
0
–20
–10
–30
10
6
–45
–90
180
45
0
90
135
GAIN
PHASE
VDD = 5 V RL = 10 k CL = 100 pF
Figure 20
Figure 21
TA – Free-Air Temperature – °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
–75
10
1
100
–50
10000
1000
VDD = 3 V
RL = 10 k
–25 0 25 50 75 100 125
A
VD
– Differential Voltage Amplication – V/mV
RL = 1 M
Figure 22
TA – Free-Air Temperature – °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
–75
10
1
100
–50
10000
1000
VDD = 5 V
RL = 10 k
–25 0 25 50 75 100 125
A
VD
– Differential Voltage Amplication – V/mV
RL = 1 M
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f – Frequency – Hz
10
2
10
3
10
5
VDD = 3 V TA = 25°C
10
4
AV = 10
AV = 1
AV = 100
z
o
– Output Impedance –
Figure 24
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f – Frequency – Hz
10
2
10
3
10
5
VDD = 5 V TA = 25°C
10
4
AV = 10
AV = 1
AV = 100
z
o
– Output Impedance –
Figure 25
80
40
0
f – Frequency – Hz
100
60
20
CMRR – Common-Mode Rejection Ratio – dB
10
2
10
3
10
6
TA = 25°C
10
4
10
5
VDD = 3 V
VDD = 5 V
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 26
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
–55
91 90
88
86
84
–40 25 70 85 125
TA – Free-Air Temperature – °C
89
87
85
0
94 93
92
VDD = 3 V
VDD = 5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f – Frequency – Hz
120
60
20
10
1
10
3
10
6
10
4
10
5
K
100
10
2
VDD = 3 V TA = 25°C
– Supply-Voltage Rejection Ratio – dB
SVR
K
SVR+
K
SVR–
Figure 28
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f – Frequency – Hz
120
60
20
10
1
10
3
10
6
10
4
10
5
K
100
10
2
VDD = 5 V TA = 25°C
– Supply-Voltage Rejection Ratio – dB
SVR
K
SVR+
K
SVR–
Figure 29
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
–55
94
92
90
–40 25 70 85 125
TA – Free-Air Temperature – °C
0
100
98
96
VDD = 2.7 V to 8 V
k – Supply-Voltage Rejection Ratio – dB
SVR
Figure 30
I
DD
– Supply Current –
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
0
100
40
0
246
80
20
60
135
160
140
120
VDD – Supply Voltage – V
VO = VDD/2 No Load
79810
TA = 25°C
TA = 85°C
TA = –40°C
µA
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
SLEW RATE
vs
LOAD CAPACITANCE
0.02
0.01
0
CL – Load Capacitance – pF
0.03
0.015
0.005
10
2
10
3
10
6
VDD = 3 V AV = –1 TA = 25°C
10
4
10
5
SR+
SR–
0.025
SR – Slew Rate – V/µs
Figure 32
SLEW RATE
vs
FREE-AIR TEMPERATURE
–55
15
10
5
–40 25 70 85 125
TA – Free-Air Temperature – °C
0
30
25
20
VDD = 5 V RL = 10 k CL = 100 pF AV = 1
SR – Slew Rate – V/ms
Figure 33
INVERTING LARGE SIGNAL
PULSE RESPONSE
–1000 –600 –200
t – Time – µs
200 600 10000
– Output Voltage – mVV
O
VDD = 3 V RL = 10 k CL = 100 pF AV = –1 TA = 25°C
2000
1500
500
–500
–2000
1000
0
–1000
–1500
Figure 34
4
3
1
–1
–4
2
0
–2
–3
INVERTING LARGE SIGNAL
PULSE RESPONSE
–1000 –600 –200
t – Time – µs
200 600 10000
– Output Voltage – mVV
O
VDD = 5 V RL = 10 k CL = 100 pF AV = –1 TA = 25°C
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
–1000
2000
1500
500
–500
–2000
–600 –200
t – Time – µs
1000
0
–1000
200 600 10000
–1500
– Output Voltage – mVV
O
VDD = 3 V RL = 10 k CL = 100 pF AV = 1 TA = 25°C
Figure 36
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
–1000
2000
1500
500
–500
–2000
–600 –200
t – Time – µs
1000
0
–1000
200 600 10000
–1500
– Output Voltage – mVV
O
VDD = 5 V RL = 10 k CL = 100 pF AV = 1 TA = 25°C
Figure 37
INVERTING SMALL SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400
–3 –1
t – Time – µs
200
0
–200
1350
–300
– Output Voltage – mVV
O
VDD = 3 V RL = 10 k CL = 100 pF AV = –1 TA = 25°C
24
–4 –2
Figure 38
INVERTING SMALL SIGNAL
PULSE RESPONSE
VDD = 5 V RL = 10 k CL = 100 pF AV = –1 TA = 25°C
400
300
100
–100
–400
200
0
–200
–300
– Output Voltage – mVV
O
–5 –3 –1
t – Time – µs
13502 4
–4 –2
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400
–2 –1
t – Time – µs
200
0
–200
0
–300
– Output Voltage – mVV
O
VDD = 3 V RL = 10 k CL = 100 pF AV = 1 TA = 25°C
–4 –3
3412 5
Figure 40
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400
–2 –1
t – Time – µs
200
0
–200
0
–300
– Output Voltage – mVV
O
VDD = 5 V RL = 10 k CL = 100 pF AV = 1 TA = 25°C
–4 –3
3412 5
Figure 41
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
80
40
0
f – Frequency – Hz
10 10
2
10
4
VDD = 3 V TA = 25°C
10
3
60
20
Hz– Equivalent Input Noise Voltage – nV/V
n
100
Figure 42
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f – Frequency – Hz
10 10
2
10
4
VDD = 5 V TA = 25°C
10
3
Hz– Equivalent Input Noise Voltage – nV/V
n
120
80
40
0
60
20
100
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
024 6810
t – Time – s
VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C
400 200
–200
–600
–1200
0
–400
–800
–1000
Noise Voltage – nV
Over a 10 Second Period
800 600
1000
13579
NOISE VOLTAGE OVER A 10-SECOND PERIOD
Figure 43
Figure 44
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
1
0.01
f – Frequency – Hz
100
10
0.1
10
1
10
2
10
5
VDD = 3 V RL = 10 k TA = 25°C
10
3
10
4
THD +N – Total Harmonic Distortion Plus Noise – %
AV = 10
AV = 1
Figure 45
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10
0.1
0.001
f – Frequency – Hz
100
1
0.01
10
1
10
2
10
5
VDD = 5 V RL = 10 k TA = 25°C
10
3
10
4
THD +N – Total Harmonic Distortion Plus Noise – %
AV = 10
AV = 1
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 46
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
3
80
60
40
20
4 678
VDD – Supply Voltage – V
70
50
30
Gain-Bandwidth Product – kHz
RL = 10 k CL = 100 pF f = 10 kHz TA = 25°C
5
Figure 47
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
–50
80
60
40
20
0
–25 25 50 75 125
TA – Free-Air Temperature – °C
50
30
10
Gain-Bandwidth Product – kHz
VDD = 5 V RL = 10 k CL = 100 pF f = 10 kHz
0 100
70
Figure 48
PHASE MARGIN
vs
LOAD CAPACITANCE
80
40
0
CL – Load Capacitance – pF
120
60
20
10 10
2
10
5
10
3
10
4
100
m
φ – Phase Margin –
°
R
null
= 1000
R
null
= 100
R
null
= 0
RL = 10 k TA = 25°C
R
null
= 500
R
null
= 200
Figure 49
GAIN MARGIN
vs
LOAD CAPACITANCE
40
20
0
CL – Load Capacitance – pF
30
10
10 10
2
10
5
10
3
10
4
Gain Margin – dB
R
null
= 1000
R
null
= 100
R
null
= 0
RL = 10 k TA = 25°C
R
null
= 500
R
null
= 200
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
40
20
0
CL – Load Capacitance – pF
60
30
10
10 10
2
10
5
10
3
10
4
50
B1 – Unity-Gain Bandwidth – kHz
Figure 50
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/D 10/96
28 TERMINAL SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342 (8,69)
MIN
(11,23)
(16,26)
0.640
0.739
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ
22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated. E. Falls within JEDEC MS-004
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,20)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T8
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/E 08/96
14 PIN SHOWN
Seating Plane
1,20 MAX
1
A
7
14
0,19
4,50 4,30
8
6,20
6,60
0,30
0,75 0,50
0,25
Gage Plane
0,15 NOM
0,65
M
0,10
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
0,15 0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
TLV2422, TLV2422A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
1
10
5
6
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...