TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
D
Output Swing Includes Both Supply Rails
D
Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and
Split-Supply Operation
D
Low Power . . . 500 µ A Max
D
Common-Mode Input Voltage Range
Includes Negative Rail
description
The TL V2262 and TLV2264 are dual and quad low
voltage operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output
performance for increased dynamic range in
single or split supply applications. The TLV226x
family offers a compromise between the micropower TLV225x and the ac performance of the
TLC227x. It has low supply current for batterypowered applications, while still having adequate
ac performance for applications that demand it.
This family is fully characterized at 3 V and 5 V and
is optimized for low-voltage applications. The
noise performance has been dramatically improved over previous generations of CMOS
amplifiers. Figure 1 depicts the low level of noise
voltage for this CMOS amplifier, which has only
200 µA (typ) of supply current per amplifier.
The TLV226x, exhibiting high input impedance
and low noise, are excellent for small-signal
conditioning for high-impedance sources, such as
piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V
operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the
rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with
analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a
maximum input offset voltage of 950 µV.
D
Low Input Offset Voltage
950 µ V Max at TA = 25°C (TLV226xA)
D
Wide Supply Voltage Range
2.7 V to 8 V
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
4
VDD = 3 V
3.5
3
2.5
2
1.5
1
– High-Level Output Voltage – V
0.5
OH
V
0
0 500 1000
TA = 125°C
TA = 25°C
TA = 85°C
TA = –40°C
| IOH | – High-Level Output Current – µA
Figure 1
1500 2000
TA = –55°C
The TL V2262/4 also makes great upgrades to the TL V2332/4 in standard designs. They offer increased output
dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to
be used in a wider range of applications. For applications that require higher output drive and wider input voltage
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the
TL V221 1/21/31 family . These devices are single rail-to-rail operational amplifiers in the SOT -23 package. Their
small size and low power consumption, make them ideal for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
1
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
0 °C to 70 °C 2.5 mV TLV2262CD — — TLV2262CP TLV2262CPWLE —
°
–
°
–
–55°C to 125°C
†
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2262CDR).
‡
The PW package is available only left-end taped and reeled.
§
Chips are tested at 25°C.
T
A
–40°C to 950 µV TLV2264AID — — TLV2264AIN TLV2264AIPWLE —
85° C
–40°C to 950 µV TLV2264AQD — — — — —
125° C
–55°C to
125°C
†
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2262IDR).
‡
The PW package is available only left-end taped and reeled.
§
Chips are tested at 25°C.
°
°
VIOmax
AT 25°C
2.5 mV
2.5 mV
950 µ V
2.5 mV
VIOmax
AT 25°C
950 µV TLV2262AID — — TLV2262AIP TLV2262AIPWLE —
2.5 mV
950 µV TLV2262AQD — — — — —
2.5 mV
950 µ V
2.5 mV
SMALL
OUTLINE
TLV2264ID — — TLV2264IN — —
TLV2264QD — — — — —
SMALL
OUTLINE
(D)
TLV2262ID — — TLV2262IP — —
TLV2262QD — — — — —
—
—
CHIP
(D)
—
—
CARRIER
TLV2264AMFK
TLV2264MFK
CHIP
CARRIER
(FK)
TLV2262AMFK
TLV2262MFK
TLV2264 AVAILABLE OPTIONS
(FK)
CERAMIC
DIP
(JG)
TLV2262AMJG
TLV2262MJG
PACKAGED DEVICES
CERAMIC
DIP
(J)
TLV2264AMJ
TLV2264MJ
PLASTIC
PLASTIC
DIP
(N)
—
—
DIP
(P)
—
—
TSSOP
(PW)
—
—
TSSOP
(PW)
—
—
FLATPACK
TLV2262AMU
TLV2262MU
CERAMIC
FLATPACK
TLV2264AMW
TLV2264MW
CERAMIC
(U)
(W)
2
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
V
V
V
TLV2262C, TLV2262AC
TLV2262I, TLV2262AI
TLV2262Q, TLV2262AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1OUT
1IN–
1IN+
/GND
DD–
TLV2262M, TLV2262AM
JG PACKAGE
(TOP VIEW)
1OUT
1IN–
1IN+
/GND
DD–
TLV2662M, TLV2262AM
U PACKAGE
(TOP VIEW)
NC
1OUT
1IN –
1IN +
/GND
CC–
1
2
3
4
1
2
3
4
5
TLV2264I, TLV2264AI
TLV2264Q, TLV2264AQ
D, N, OR PW PACKAGE
(TOP VIEW)
14
1
2
3
4
8
7
6
5
V
DD+
2OUT
2IN–
2IN+
1OUT
1IN–
1IN+
V
2IN+
2IN–
2OUT
V
8
DD+
2OUT
7
2IN–
6
2IN+
5
1OUT
1IN–
1IN+
V
2IN+
2IN–
10
9
8
7
6
NC
V
CC
2OUT
2IN –
2IN +
+
2OUT
1
2
3
4
DD+
5
6
7
TLV2264M, TLV2264AM
J OR W PACKAGE
(TOP VIEW)
1
2
3
4
DD+
5
6
7
TLV2264M, TLV2264AM
FK PACKAGE
(TOP VIEW)
13
12
11
10
14
13
12
11
10
9
8
9
8
4OUT
4IN–
4IN+
V
DD–
3IN+
3IN–
3OUT
4OUT
4IN–
4IN+
V
DD–
3IN+
3IN–
3OUT
/GND
/GND
NC
1IN–
NC
1IN+
NC
TLV2262M, TLV2262AM
FK PACKAGE
(TOP VIEW)
DD+
1OUT
/GND
DD–
V
NC
NC
V
2IN+
NC
18
17
16
15
14
NC
NC
3 2 1 20 19
4
5
6
7
8
910111213
NC
NC
2OUT
NC
2IN–
NC
1IN+
V
CC+
2IN+
NC
NC
1OUT
NC
4OUT
1IN –
3212019
4
5
6
7
8
910111213
NC
2IN –
2OUT
3OUT
4IN –
18
17
16
15
14
3IN –
4IN+
NC
V
CC–
NC
3IN+
/GND
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
IN+
IN–
Q4 Q1
R6
R5
V
DD+
C1
TLV226x, TLV226xA
OPERA TIONAL AMPLIFIERS
SLOS186A – FEBRUAR Y 1997 – REVISED JULY 1999
Advanced LinCMOS RAIL-TO-RAIL
emp
ate
e
ease
ate:
OUT
Q17 Q15 Q13
–
–
•
Q2 Q5 Q7 Q8 Q10 Q11
R3 R4 R1 R2
V
DD–/GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLV2252 TLV2254
Transistors 38 76
Resistors 28 54
Diodes 9 18
Capacitors 3 6
†
Includes both amplifiers and all ESD, bias, and trim circuitry
†
D1
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±V
Input voltage range, V
(any input, see Note 1) V
I
Input current, II (each input) ±5 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ± 50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
Total current out of V
±50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD+
±50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD–
Duration of short-circuit current (at or below) 25°C (see Note 3) unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
Storage temperature range, T
–65°C to 150°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C . . . . . . .
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to V
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below V
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DD–
– 0.3 V.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
: I suffix –40°C to 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
DD–
Q suffix –40°C to 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FK, J, JG, U, AND W packages 300°C . .
.
DD –
–0.3 V to V
DD+
†
DD
DISSIPATION RATING TABLE
T
≤ 25° C DERATING FACTOR T
POWER RATING ABOVE TA = 25°C
D–8 725 mW 5.8 mW/°C 377 mW 145 mW
D–14 950 mW 7.6 mW/° C 494 mW 190 mW
FK 1375 mW 11.0 mW/° C 715 mW 275 mW
J 1375 mW 1 1.0 mW/° C 715 mW 275 mW
JG 1050 mW 8.4 mW/° C — 210 mW
N 1150 mW 9.2 mW/° C 598 mW —
P 1000 mW 8.0 mW/° C 520 mW 200 mW
PW–8 525 mW 4.2 mW/° C 273 mW 105 mW
PW–14 700 mW 5.6 mW/° C 364 mW —
U 700 mW 5.5 mW/° C — 150 mW
W 700 mW 5.5 mW/° C 370 mW 150 mW
recommended operating conditions
I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX
Supply voltage, V
Input voltage range, V
Common-mode input voltage, V
Operating free-air temperature, T
NOTE 1: All voltage values, except differential voltages, are with respect to V
DD±
I
(see Note 1)
IC
A
2.7 8 2.7 8 2.7 8 V
V
DD–VDD+
V
DD–VDD+
–40 85 –40 125 –55 125 ° C
= 85°C T
POWER RATINGAPOWER RATING
–1.3 V
–1.3 V
.
DD –
DD–VDD+
DD–VDD+
–1.3 V
–1.3 V
= 125°C
DD–VDD+
DD–VDD+
–1.3 V
–1.3 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
5
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient
VIO
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
Full range is – 40° C to 85°C.
Referenced to 1.5 V
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode VIC = 0 to 1.7 V,
rejection ratio
Supply voltage rejection VDD = 2.7 V to 8 V,
ratio (∆V DD/∆ VIO)
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
p
erentia
p
V
VO = 0, RS = 50 Ω
IOH = –20 µA 25° C 2.99 2.99
VIC = 1.5 V, IOL = 50 µA 25° C 10 10
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 270 270
VO = 1.5 V, RS = 50 Ω
VIC = VDD/2, No load
= ±1.5 V , V IC = 0,
DD±
= 50 Ω,
= –
= –
= 1.5 V,
= 1.5 V,
= 1.5 V,
IC
= 1 V to 2
= 1.5 V,
| ≤5
=
= 1
= 50
L
RL = 1 MΩ
25° C 300 2500 300 950
Full range 3000 1500
25°C
to 85°C
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
Full range 150 150
25° C 1 1
Full range 150 150
25°C
Full range
25° C 2.85 2.85
Full range 2.825 2.825 V
25° C 2.7 2.7
Full range 2.65 2.65
25° C 100 100
Full range 150 150 mV
25°C 200 200
Full range 300 300
25°C 60 100 60 100
Full range 30 30 V/mV
‡
25° C 100 100
25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
25°C 80 95 80 100
Full range 80 80
25°C 400 500 400 500
Full range 500 500
TLV2262I TLV2262AI
MIN TYP MAX MIN TYP MAX
2 2 µ V/° C
0
1.7
–0.3
to
to
2
2.2
0
to
12
12
1.7
0
–0.3
to
to
2
2.2
0
to
12
10
12
10
p
p
Ω
Ω
Ω
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262I operating characteristics at specified free-air temperature, VDD = 3 V
TLV2262I TLV2262AI
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.03% 0.03%
0.05% 0.05%
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 85°C.
‡
Referenced to 1.5 V
Equivalent input noise
voltage
Peak-to-peak
noise voltage
Equivalent input noise
current
Total harmonic
+
distortion plus noise
Gain-bandwidth
product
Maximum
p
bandwidth
Phase margin at
unity gain
Gain margin
p
A
=
O
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
f = 0.1 Hz to 10 Hz 25°C 1 1
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 1 kHz, RL = 50 kΩ ‡,
CL = 100 pF
V
= 1 V, A
RL = 50 kΩ ‡,
A
= –1
Step = 1 V to 2 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
=
L
,
‡
‡
‡
AV = 1
AV = 10
= 1,
CL = 100 pF
25° C
,
Full
range
25°C 12 12
25°C 0.6 0.6
°
°
°
‡
25°C 55° 55°
25°C 11 11 dB
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
7
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage to 85°C
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output voltage
OH
Low-level output voltage
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is – 40° C to 85°C.
Referenced to 2.5 V
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode rejection VIC = 0 to 2.7 V,
ratio
Supply voltage rejection VDD = 4.4 V to 8 V,
ratio (∆V DD/∆ VIO)
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±2.5 V , V IC = 0,
DD±
VO = 0, RS = 50 Ω
| ≤5 mV,
IO
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
,
=
IC
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240
VO = 2.5 V, RS = 50 Ω
VIC = VDD/2, No load
= 2.5 V,
O
= 50
S
=
OL
= 1
OL
=
L
RL = 1 MΩ
25° C 300 2500 300 950
Full range 3000 1500
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
Full range 150 150
25° C 1 1
Full range 150 150
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.6 4.6
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 80 170 80 170
Full range 55 55
‡
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
25°C 400 500 400 500
Full range 500 500
TLV2262I TLV2262AI
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
10
10
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
Ω
µ
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262I operating characteristics at specified free-air temperature, VDD = 5 V
TLV2262I TLV2262AI
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 85°C.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
A
y
p
=
O
=
p
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz 25°C 1.3 1.3
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 50 kHz, RL = 50 kΩ ‡,
CL = 100 pF
= 2 V, A
RL = 50 kΩ ‡,
A
= –1
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
=
L
,
‡
‡
‡
AV = 1
AV = 10
= 1,
CL = 100 pF
25° C
,
Full
range
25°C 12 12
25°C 0.6 0.6
°
°
°
‡
25°C 56° 56°
25°C 11 11 dB
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
Full range is – 40° C to 85°C.
Referenced to 1.5 V
evel outpu
Low-level output voltage
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode
rejection ratio
Supply voltage rejection
ratio (∆V DD/∆ VIO)
Supply current
(four amplifiers)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
= ± 1.5 V,
DD±
VIC = 0,
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 2.99 2.99
= –
OH
= –
OH
VIC = 1.5 V, IOL = 50 µA 25° C 10 10
= 1.5 V,
IC
= 1.5 V,
IC
VIC = 1.5 V,
= 1 to 2
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 270 270
VIC = 0 to 1.7 V, 25°C 65 75 65 77
VO = 1.5 V,
VDD = 2.7 V to 8 V, 25°C 80 95 80 100
VIC = VDD/2, No load Full range 80 80
= 1.5 V,
| ≤5
IO
=
OL
= 1
OL
=
L
RL = 1 MΩ
RS = 50 Ω Full range 60 60
25° C 300 2500 300 950
Full range 3000 1500
to 85°C
25°C 0.003 0.003 µ V/mo
25° C 0.5 0.5
Full range 150 150
25° C 1 1
Full range 150 150
25° C
Full range
25° C 2.85 2.85
Full range 2.825 2.825 V
25° C 2.7 2.7
Full range 2.65 2.65
25° C 100 100
Full range 150 150 mV
25°C 200 200
Full range 300 300
25°C 60 100 60 100
Full range 30 30
‡
25° C 100 100
25°C 10
25°C 10
25°C 0.8 1 0.8 1
Full range 1 1
TLV2264I TLV2264AI
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2
0 0
to to
1.7 1.7
12
12
10
10
12
12
µ
°
p
p
V/mV
Ω
Ω
Ω
10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264I operating characteristics at specified free-air temperature, VDD = 3 V
TLV2264I TLV2264AI
MIN TYP MAX MIN TYP MAX
0.03% 0.03%
0.05% 0.05%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 85°C.
‡
Referenced to 1.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth
product
Maximum
bandwidth
Phase margin at
unity gain
Gain margin
p
p
A
y
= 0.7 V to 1.7 V,
O
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
p
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 1 kHz, RL = 50 kΩ ‡,
CL = 100 pF
V
RL = 50 kΩ
A
Step = 1 V to 2 V,
RL = 50 kΩ
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
= 1 V, A
= –1
‡
‡
‡,
‡,
‡
= 50
L
AV = 1
AV = 10
= 1,
CL = 100 pF
,
Full
range
25°C 12 12
25°C 1 1
25°C 0.6 0.6
°
°
°
‡
°
25°C 55° 55°
25°C 11 11 dB
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
11
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is – 40° C to 85°C.
Referenced to 2.5 V
evel outpu
ow-level outpu
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V,
ratio
Supply voltage rejection VDD = 4.4 V to 8 V,
ratio (∆V DD/∆ VIO)
Supply current
(four amplifiers)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
= ± 2.5 V,
DD±
VIC = 0,
VO = 0,
=
= 50
| ≤5 mV,
IO
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
,
=
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240 Ω
RS = 50 Ω
VIC = VDD/2, No load
= 2.5 V,
= 50
S
=
OL
= 1
OL
=
L
RL = 1 MΩ
m
25° C 300 2500 300 950
Full range 3000 1500
to 85°C
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
Full range 150 150
25° C 1 1
Full range 150 150
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82 V
25° C 4.7 4.85 4.7 4.85
Full range 4.6 4.6
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15 V
25° C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 80 170 80 170
Full range 55 55
‡
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
25°C 0.8 1 0.8 1
Full range 1 1
TLV2264I TLV2264AI
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
10
10
12
12
µ
°
p
p
V/mV
Ω
Ω
12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264I operating characteristics at specified free-air temperature, VDD = 5 V
TLV2264I TLV2264AI
MIN TYP MAX MIN TYP MAX
0.017% 0.017%
0.03% 0.03%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 85°C.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonicpVO = 0.5 V to 2.5 V,
+
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
A
y
= 1.4 V to 2.6 V,
O
=
p
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
p
f = 0.1 Hz to 10 Hz
= 20
RL = 50 kΩ
f = 50 kHz, RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡,
A
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
‡
= 2 V, A
= –1
‡
‡
= 50
L
AV = 1
AV = 10
= 1,
CL = 100 pF
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
‡
°
25°C 56° 56°
25°C 11 11 dB
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
13
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
TLV2262Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage to 125°C
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
Referenced to 1.5 V
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode VIC = 0 to 1.7 V,
rejection ratio
Supply voltage rejection VDD = 2.7 V to 8 V,
ratio (∆V DD/∆ VIO)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
p
erentia
p
V
= ±1.5 V , V IC = 0,
DD±
VO = 0, RS = 50 Ω
= 50 Ω,
IOH = –20 µA 25° C 2.99 2.99
= –
= –
VIC = 1.5 V, IOL = 50 µA 25° C 10 10
= 1.5 V,
= 1.5 V,
,
=
IC
= 1 V to 2
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 270 270
VO = 1.5 V, RS = 50 Ω
VIC = VDD/2, No load
| ≤5
=
= 1
=
L
RL = 1 MΩ
‡
T
25° C 300 2500 300 950
Full range 3000 1500
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 2.85 2.85
Full range 2.82 2.82 V
25° C 2.7 2.7
Full range 2.55 2.55
25° C 100 150 100 150
Full range 165 165 mV
25°C 200 300 200 300
Full range 300 300
25°C 60 100 60 100
Full range 25 25 V/mV
25° C 100 100
25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
25°C 80 95 80 100
Full range 80 80
TLV2262M
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2
0 0
to to
1.7 1.7
12
12
TLV2262AQ,
TLV2262AM
12
10
12
10
UNIT
°
p
p
Ω
Ω
Ω
14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
TLV2262Q,
PARAMETER TEST CONDITIONS
pp
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
= 1.5 V,
Full range 500 500
T
25° C 400 500 400 500
TLV2262M
MIN TYP MAX MIN TYP MAX
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 3 V
TLV2262Q,
PARAMETER TEST CONDITIONS
= 50
=
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
‡
Referenced to 1.5 V
Equivalent input noise
voltage
Peak-to-peak
voltage
Equivalent input noise
current
Total harmonic
+
distortion plus noise
Gain-bandwidth
product
Maximum
p
bandwidth
Phase margin at unity
gain
Gain margin
p
O
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 1 kHz, RL = 50 kΩ ‡,
CL = 100 pF
V
= 1 V, A
RL = 50 kΩ ‡,
A
= –1
Step = 1 V to 2 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
L
,
‡
‡
‡
AV = 1
AV = 10
= 1,
CL = 100 pF
,
‡
†
T
25° C
Full
range
25°C 12 12
25°C 1 1
25°C 0.6 0.6
°
°
°
25°C 55° 55°
25°C 11 11 dB
TLV2262M
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.03% 0.03%
0.05% 0.05%
TLV2262AQ,
TLV2262AM
TLV2262AQ,
TLV2262AM
UNIT
UNIT
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
15
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
TLV2262Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of 25°C
VIO
input offset voltage to 125°C
Input offset voltage
long-term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output voltage
OH
Low-level output voltage
OL
Large-signal differential
VD
Differential input resistance 25°C 10
i(d)
Common-mode input
i(c)
resistance
Common-mode input
i(c)
capacitance
Closed-loop output
o
impedance
Common-mode rejection VIC = 0 to 2.7 V,
ratio
Supply voltage rejection VDD = 4.4 V to 8 V,
SVR
ratio (∆V DD/∆ VIO)
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
Referenced to 2.5 V
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
V
= ±2.5 V , V IC = 0,
DD±
VO = 0, RS = 50 Ω
| ≤5 mV,
IO
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
,
=
IC
VIC = 2.5 V,
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240
VO = 2.5 V, RS = 50 Ω
VIC = VDD/2, No load
= 50
S
=
OL
=
OL
=
L
RL = 1 MΩ
‡
†
T
25° C 300 2500 300 950
Full range 3000 1500
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 80 170 80 170
Full range 50 50
25° C 550 550
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
TLV2262M
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
TLV2262AQ,
TLV2262AM
12
10
12
10
UNIT
µ
°
p
p
V
V
V/mV
Ω
Ω
Ω
16
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
TLV2262Q,
PARAMETER TEST CONDITIONS
pp
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
= 2.5 V,
O
†
T
25° C 400 500 400 500
Full range 500 500
TLV2262M
MIN TYP MAX MIN TYP MAX
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 5 V
TLV2262Q,
PARAMETER TEST CONDITIONS
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth
product
Maximum
p
bandwidth
Phase margin at
unity gain
Gain margin
y
p
p
= 0.5 V to 3.5 V,
O
=
p
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz 25°C 1.3 1.3
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 50 kHz, RL = 50 kΩ ‡,
CL = 100 pF
V
RL = 50 kΩ ‡,
A
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
‡
‡
= 2 V, A
= –1
‡
RL = 50 kΩ
AV = 1
AV = 10
= 1,
CL = 100 pF
‡
†
T
25° C
Full
range
25°C 12 12
25°C 0.6 0.6
°
°
°
25°C 56° 56°
25°C 11 11 dB
TLV2262M
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
TLV2262AQ,
TLV2262AM
TLV2262AQ,
TLV2262AM
UNIT
µ
UNIT
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
17
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
TLV2264Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
Referenced to 1.5 V
evel outpu
ow-level outpu
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode rejection VIC = 0 to 1.7 V, VO = 1.5 V,
ratio
Supply voltage rejection
ratio (∆V DD/∆ VIO)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
= ± 1.5 V,
DD±
VIC = 0,
VO = 0,
= 50
= 50 Ω,
S
IOH = –20 µA 25° C 2.99 2.99
= –
OH
= –
OH
VIC = 1.5 V, IOL = 50 µA 25° C 10 10
= 1.5 V,
IC
= 1.5 V,
IC
= 1.5 V,
IC
= 1 V to 2
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 270 270
RS = 50 Ω
VDD = 2.7 V to 8 V, 25°C 80 95 80 100
VIC = VDD/2, No load Full range 80 80
| ≤5
IO
=
OL
= 1
OL
=
L
RL = 1 MΩ
‡
T
25° C 300 2500 300 950
Full range 3000 1500
to 125°C
25°C 0.003 0.003 µ V/mo
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 2.85 2.85
Full range 2.82 2.82 V
25° C 2.7 2.7
Full range 2.6 2.6
25° C 100 150 100 150
Full range 150 150 mV
25°C 200 300 200 300
Full range 300 300
25°C 60 100 60 100
Full range 25 25
25° C 100 100
25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
TLV2264M
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2
0 0
to to
1.7 1.7
12
12
TLV2264AQ,
TLV2264AM
12
10
12
10
UNIT
µ
°
p
p
V/mV
Ω
Ω
Ω
18
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
TLV2264Q,
PARAMETER TEST CONDITIONS
Supply current (four
amplifiers)
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
= 1.5 V,
Full range 1 1
T
25°C 0.8 1 0.8 1
TLV2264M
MIN TYP MAX MIN TYP MAX
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 3 V
TLV2264Q,
PARAMETER TEST CONDITIONS
T
TLV2264M
MIN TYP MAX MIN TYP MAX
TLV2264AQ,
TLV2264AM
TLV2264AQ,
TLV2264AM
UNIT
UNIT
y
=
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
‡
Referenced to 1.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
p
O
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 1 kHz, RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡,
A
Step = 1 V to 2 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
= 1 V, A
= –1
,
=
L
AV = 1
‡
‡
‡
AV = 10
= 1,
CL = 100 pF
,
‡
Full
range
25°C 12 12
25°C 1 1
25°C 0.6 0.6
0.03% 0.03%
°
0.05% 0.05%
°
°
°
25°C 55° 55°
25°C 11 11 dB
V/µ s
n
fA/√ Hz
z
µ
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
19
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
TLV2264Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of 25°C
VIO
input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output voltage
OH
Low-level output voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
Referenced to 2.5 V
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V,
ratio
Supply voltage rejection
ratio (∆V DD/∆ VIO)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
= ± 2.5 V,
DD±
VIC = 0,
VO = 0,
=
= 50
IO
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
=
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240 Ω
RS = 50 Ω
VDD = 4.4 V to 8 V, 25°C 80 95 80 95
VIC = VDD/2, No load Full range 80 80
,
,
=
S
=
OL
= 1
m
OL
= 50
L
RL = 1 MΩ
‡
T
25° C 300 2500 300 950
Full range 3000 1500
to 125°C
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82 V
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15 V
25° C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 80 170 80 170
Full range 50 50
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
TLV2264M
MIN TYP MAX MIN TYP MAX
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
TLV2264AQ,
TLV2264AM
12
10
12
10
UNIT
µ
°
p
p
V/mV
Ω
Ω
20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
TLV2264Q,
PARAMETER TEST CONDITIONS
Supply current (four
amplifiers)
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
= 2.5 V,
T
25°C 0.8 1 0.8 1
Full range 1 1
TLV2264M
MIN TYP MAX MIN TYP MAX
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 5 V
TLV2264Q,
PARAMETER TEST CONDITIONS
T
TLV2264M
MIN TYP MAX MIN TYP MAX
TLV2264AQ,
TLV2264AM
TLV2264AQ,
TLV2264AM
UNIT
UNIT
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q level part, –55° C to 125° C for M level part.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth
product
Maximum
p
bandwidth
Phase margin at
unity gain
Gain margin
y
p
p
= 0.5 V to 3.5 V,
O
=
p
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz 25°C 1.3 1.3
VO = 0.5 V to 2.5 V,
= 20
RL = 50 kΩ
f = 50 kHz, RL = 50 kΩ ‡,
CL = 100 pF
V
RL = 50 kΩ ‡,
A
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
‡
‡
= 2 V, A
= –1
‡
= 50
L
AV = 1
AV = 10
= 1,
CL = 100 pF
,
‡
Full
range
25°C 12 12
25°C 0.6 0.6
0.017% 0.017%
°
0.03% 0.03%
°
°
°
25°C 56° 56°
25°C 11 11 dB
V/µ s
n
fA/√ Hz
z
µ
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
21
TLV226x, TLV226xA
IOSShort-circuit output current
AVDLarge-signal differential voltage amplification
Common-mode rejection ratio
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
p
α
VIO
IIB/I
IO
V
OH
V
OL
V
O(PP)
V
ID
A
VD
z
o
SVR
I
DD
V
O
V
O
V
O
V
O
V
n
THD + N Total harmonic distortion plus noise vs Frequency 54
B
1
Input offset voltage temperature coefficient Distribution 8 – 11
Input bias and input offset currents vs Free-air temperature 12
p
High-level output voltage vs High-level output current 15, 18
Low-level output voltage vs Low-level output current 16, 17, 19
Maximum peak-to-peak output voltage vs Frequency 20
p
Differential input voltage vs Output voltage 23, 24
Differential voltage amplification vs Load resistance 25
Output impedance vs Frequency 30, 31
pp
y-v
Supply current vs Free-air temperature 38, 39
Inverting large-signal pulse response 42, 43
Voltage-follower large-signal pulse response 44, 45
Inverting small-signal pulse response 46, 47
Voltage-follower small-signal pulse response 48, 49
Equivalent input noise voltage vs Frequency 50, 51
Input noise voltage Over a 10-second period 52
Integrated noise voltage vs Frequency 53
p
Gain margin vs Load capacitance 58
Unity-gain bandwidth vs Load capacitance 59
Overestimation of phase margin vs Load capacitance 60
Table of Graphs
p
FIGURE
Distribution 2 – 5
vs Common-mode voltage 6, 7
vs Supply voltage 13
vs Free-air temperature 14
vs Supply voltage 21
vs Free-air temperature 22
vs Frequency 26, 27
vs Free-air temperature
vs Frequency 32
vs Free-air temperature 33
vs Frequency 34, 35
vs Free-air temperature
vs Load capacitance 40
vs Free-air temperature 41
vs Supply voltage 55
vs Free-air temperature 56
vs Frequency 26, 27
vs Load capacitance
28, 29
36, 37
57
22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
DISTRIBUTION OF TLV2262
INPUT OFFSET VOLTAGE
15
841 Amplifiers From 2 Wafer Lots
V
= ± 1.5 V
DD±
TA = 25°C
12
9
6
Precentage of Amplifiers – %
3
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 2
DISTRIBUTION OF TLV2264
INPUT OFFSET VOLTAGE
20
2272 Amplifiers From 2 Wafer Lots
V
= ±1.5 V
DD±
TA = 25°C
16
DISTRIBUTION OF TLV2262
INPUT OFFSET VOLTAGE
15
841 Amplifiers From 2 Wafer Lots
V
= ± 2.5 V
DD±
TA = 25°C
12
9
6
Precentage of Amplifiers – %
3
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 3
DISTRIBUTION OF TLV2264
INPUT OFFSET VOLTAGE
20
2272 Amplifiers From 2 Wafer Lots
V
= ±2.5 V
DD±
TA = 25°C
16
12
8
Percentage of Amplifiers – %
4
0
–1.6 – 0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
12
8
Percentage of Amplifiers – %
4
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 5
23
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
1
VDD = 3 V
RS = 50 Ω
TA = 25°C
0.5
0
–0.5
– Input Offset Voltage – mV
IO
V
–1
–1 –0.5
DISTRIBUTION OF TLV2262 INPUT OFFSET
30
128 Amplifiers From 2 Wafer Lots
V
P Package
25
TA = 25° C to 85°C
INPUT OFFSET VOLTAGE
†
vs
COMMON-MODE INPUT VOLTAGE
0 0.5 1 1.5 2 2.5 3
VIC – Common-Mode Input Voltage – V
Figure 6
VOLTAGE TEMPERATURE COEFFICIENT
= ±1.5 V
DD±
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
VDD = 5 V
RS = 50 Ω
TA = 25°C
0.5
0
– Input Offset Voltage – mV
–0.5
IO
V
–1
–1 0 5 12 4 3
VIC – Common-Mode Input Voltage – V
Figure 7
DISTRIBUTION OF TLV2262 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
30
128 Amplifiers From 2 Wafer Lots
V
= ±2.5 V
DD±
P Package
25
TA = 25° C to 85°C
†
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient – µV/°C
VIO
Figure 8
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
24
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient – µV/°C
VIO
Figure 9
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
DISTRIBUTION OF TLV2264 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
35
128 Amplifiers From
2 Wafer Lots
V
= ±1.5 V
DD±
30
N Package
TA = 25° C to 125°C
25
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient
VIO
of Input Offset Voltage – µV/°C
Figure 10
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
V
= ±2.5 V
DD±
VIC = 0
30
VO = 0
RS = 50 Ω
25
20
15
10
IO
5
I
DISTRIBUTION OF TLV2264 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
35
128 Amplifiers From
2 Wafer Lots
V
30
25
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
= ±2.5 V
DD±
N Package
TA = 25° C to 125°C
α
– Temperature Coefficient
VIO
of Input Offset Voltage – µV/°C
Figure 11
†
2.5
RS = 50 Ω
2
TA = 25°C
1.5
I
IB
I
IO
1
0.5
0
–0.5
– Input Voltage – V
–1
I
V
–1.5
–2
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
| VIO | ≤5 mV
0
IB
IIB and IIO – Input Bias and Input Offset Currents – pA
I
25 45 65 85
TA – Free-Air Temperature – °C
105 125
Figure 12
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
–2.5
1 1.5 2 2.5
|V
DD±
Figure 13
3 3.5 4
| – Supply Voltage – V
25
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
INPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
5
VDD = 5 V
4
3
2
1
– Input Voltage – V
I
V
0
–1
–55 –35 –15 5 25 45 65 85
TA – Free-Air Temperature – °C
| VIO | ≤5 mV
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
VDD = 3 V
TA = 25°C
1
VIC = 0
0.8
VIC = 0.75 V
0.6
0.4
– Low-Level Output Voltage – V
0.2
OL
V
†‡
VIC = 1.5 V
105 125
‡
HIGH-LEVEL OUTPUT VOLTAGE
HIGH-LEVEL OUTPUT CURRENT
4
VDD = 3 V
3.5
3
2.5
2
1.5
1
– High-Level Output Voltage – V
0.5
OH
V
0
0 500 1000
TA = 125°C
| IOH | – High-Level Output Current – µA
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT CURRENT
1.4
VDD = 3 V
VIC = 1.5 V
1.2
1
0.8
0.6
0.4
– Low-Level Output Voltage – V
OL
V
0.2
†‡
vs
TA = –55°C
TA = 25°C
TA = 85°C
TA = –40°C
1500 2000
Figure 15
†‡
vs
TA = 125°C
TA = 85°C
TA = 25°C
TA = – 55°C
TA = – 40°C
0
0123
IOL – Low-Level Output Current – mA
45
Figure 16
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
26
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
0
012 3
IOL – Low-Level Output Current – mA
Figure 17
45
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
6
5
4
3
2
– High-Level Output Voltage – V
1
OH
V
0
0 500 1000
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
5
4
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VDD = 5 V
TA = –55°C
TA = –40°C
TA = 25°C
TA = 125°C
TA = 85°C
1500 2000 2500
| IOH | – High-Level Output Current – µA
Figure 18
vs
FREQUENCY
VDD = 5 V
†‡
RI = 10 kΩ
TA = 25°C
3000
‡
LOW-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT CURRENT
1.4
VDD = 5 V
VIC = 2.5 V
1.2
1
0.8
0.6
0.4
– Low-Level Output Voltage – V
0.2
OL
V
0
01 2 3
TA = 25°C
TA = 125°C
IOL – Low-Level Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
12
VIC = VDD/2
TA = 25°C
10
8
†‡
vs
TA = 85°C
TA = –55°C
TA = –40°C
456
Figure 19
vs
SUPPLY VOLTAGE
VID = –100 mV
3
VDD = 3 V
2
1
– Maximum Peak-to-Peak Output Voltage – V
O(PP)
0
V
10
3
4
10
f – Frequency – Hz
10
5
10
6
Figure 20
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
6
4
2
– Short-Circuit Output Current – mA
0
OS
I
–2
2345
VID = 100 mV
VDD – Supply Voltage – V
Figure 21
678
27
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
12
10
VID = –100 mV
8
6
4
2
0
– Short-Circuit Output Current – mA
–2
OS
I
–4
–75 125
VID = 100 mV
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
VO = 2.5 V
VDD = 5 V
Figure 22
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
VDD = 5 V
800
VIC = 2.5 V
600
400
200
0
RL = 50 kΩ
TA = 25°C
Vµ
†
DIFFERENTIAL INPUT VOLTAGE
‡
vs
OUTPUT VOLTAGE
1000
800
Vµ
600
400
200
–200
–400
– Differential Input Voltage –
–600
ID
V
–800
–1000
0
0 0.5 1 1.5
VO – Output Voltage – V
VDD = 3 V
RI = 50 kΩ
VIC = 1.5 V
TA = 25°C
2 2.5 3
Figure 23
‡
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
1000
V
= 2 V
O(PP)
TA = 25°C
VDD = 5 V
100
VDD = 3 V
‡
–200
– Differential Voltage Amplification – V/mV
VD
A
10
1
10
3
4
10
RL – Load Resistance – kΩ
10
5
Figure 25
–400
– Differential Input Voltage –
–600
ID
V
–800
–1000
01 3
24 5
VO – Output Voltage – V
Figure 24
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
28
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
10
6
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
VDD = 5 V
CL= 100 pF
TA = 25°C
60
†
180°
135°
40
20
0
Voltage Amplification – dB
VD
A VD – Large-Signal Differential
A
–20
–40
10
3
4
10
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
FREQUENCY
80
VDD = 3 V
CL = 100 pF
TA = 25°C
60
Gain
5
10
Figure 26
vs
Phase Margin
6
10
†
10
90°
45°
0°
–45°
–90°
7
180°
135°
m
om – Phase Margin
φ
40
20
0
Voltage Amplification – dB
VD
A VD – Large-Signal Differential
A
–20
–40
10
3
4
10
f – Frequency – Hz
Gain
10
Phase Margin
5
10
6
10
90°
45°
0°
–45°
–90°
7
m
om – Phase Margin
φ
Figure 27
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
29
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
1000
100
Amplification – V/mV
– Large-Signal Differential Voltage
VD
A
VDD = 3 V
VIC = 1.5 V
VO = 0.5 V to 2.5 V
10
–50 –25 0 25 50 75 100
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
†‡
vs
FREE-AIR TEMPERATURE
RL = 1 MΩ
RL = 50 kΩ
RL = 10 kΩ
TA – Free-Air Temperature – °C
Figure 28
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
†‡
vs
FREE-AIR TEMPERATURE
10000
Amplification – V/mV
– Large-Signal Differential Voltage
VD
A
125 –75
1000
100
10
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
RL = 50 kΩ
RL = 10 kΩ
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
125 –75
Figure 29
10
‡
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD = 5 V
TA = 25°C
100
Ω
AV = 100
10
AV = 10
0.1
1
10
AV = 1
2
3
10
f– Frequency – Hz
10
4
– Output Impedance –
o
z
4
10
5
Figure 31
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD = 3 V
TA = 25°C
AV = 100
100
Ω
AV = 10
10
0.1
1
10
AV = 1
2
– Output Impedance –
o
z
10
f– Frequency – Hz
3
Figure 30
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
10
5
30
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
VDD = 5 V
VIC = 2.5 V
80
VDD = 5 V
VIC = 1.5 V
60
40
20
CMRR – Common-Mode Rejection Ratio – dB
0
10
1
2
10
f – Frequency – Hz
10
3
10
4
Figure 32
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
80
TA = 25°C
5
10
VDD = 3 V
TA = 25°C
†
COMMON-MODE REJECTION RATIO
†‡
vs
FREE-AIR TEMPERATURE
90
88
86
10
84
82
80
78
76
74
72
CMMR – Common-Mode Rejection Ratio – dB
6
70
VDD = 5 V
VDD = 3 V
– 50 – 25 0 25 50 75 100
TA – Free-Air Temperature – °C
125 – 75
Figure 33
†
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
VDD = 5 V
80
TA = 25°C
†
60
k
SVR+
40
k
20
– Supply-Voltage Rejection Ratio – dB
0
SVR
k
–20
10
1
2
10
f – Frequency – Hz
10
SVR–
3
10
4
10
5
10
6
Figure 34
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
‡
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
60
40
20
– Supply-Voltage Rejection Ratio – dB
0
SVR
k
–20
10
1
2
10
f – Frequency – Hz
Figure 35
10
k
SVR+
k
SVR–
3
10
4
10
10
6
31
5
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
FREE-AIR TEMPERATURE
110
VDD = 2.7 V to 8 V
VIC = VO = VDD /2
105
100
95
– Supply-Voltage Rejection Ratio – dB
SVR
k
90
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
Figure 36
TL V2262
vs
†
SUPPLY-VOLTAGE REJECTION RATIO
TL V2264
†
vs
FREE-AIR TEMPERATURE
110
VDD = 2.7 V to 8 V
VIC = VO = VDD /2
105
100
95
– Supply-Voltage Rejection Ratio – dB
SVR
k
125 –75
90
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
125 –75
Figure 37
TL V2262
SUPPLY CURRENT
†‡
vs
FREE-AIR TEMPERATURE
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
600
500
Aµ
400
– Supply Current –
DD
300
I
200
–50 –25 0 25 50 75 100
FREE-AIR TEMPERATURE
VDD = 5 V
VO = 2.5 V
VDD = 3 V
VO = 1.5 V
TA – Free-Air Temperature – °C
1200
1000
Aµ
800
– Supply Current –
DD
600
I
400
125 –75
Figure 38
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
TL V2264
SUPPLY CURRENT
vs
VDD = 5 V
VO = 2.5 V
VDD = 3 V
VO = 1.5 V
Figure 39
†‡
125 –75
32
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
1
0.8
sµ
V/
0.6
0.4
SR – Slew Rate –
0.2
VDD = 5 V
AV = –1
TA = 25°C
0
1
10
INVERTING LARGE-SIGNAL PULSE
3
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
2.5
AV = –1
TA = 25°C
2
1.5
SLEW RATE
†
vs
LOAD CAPACITANCE
SR+
2
10
CL – Load Capacitance – pF
10
3
Figure 40
RESPONSE
†
SR–
10
SLEW RATE
†‡
vs
FREE-AIR TEMPERATURE
1.2
1
sµ
0.8
V/
0.6
0.4
SR – Slew Rate –
VDD = 5 V
0.2
RL = 50 kΩ
CL = 100 pF
AV = 1
0
4
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
SR–
SR+
125 –75
Figure 41
INVERTING LARGE-SIGNAL PULSE
RESPONSE
5
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
4
AV = –1
TA = 25°C
3
†
1
– Output Voltage – V
O
V
0.5
0
024681 01 2
t – Time – µs
14 16 18 20
Figure 42
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
‡
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2
– Output Voltage – V
O
V
1
0
024681 01 2
t – Time – µs
Figure 43
14 16 18 20
33
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
2.5
AV = –1
TA = 25°C
2
1.5
– Output Voltage – V
1
O
V
0.5
0
024681 01 2
Figure 44
INVERTING SMALL-SIGNAL
PULSE RESPONSE
0.95
0.85
0.9
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
t – Time – µs
†
14 16 18 20
†
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
4
AV = –1
TA = 25°C
3
2
– Output Voltage – V
O
V
1
0
024681 01 2
Figure 45
INVERTING SMALL-SIGNAL
PULSE RESPONSE
2.65
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
2.6
AV = –1
TA = 25°C
†
14 16 18 20
t – Time – µs
†
0.8
0.75
– Output Voltage – V
O
0.7
V
0.65
0.6
0 2 4 6 8 10 12
t – Time – µs
14 16 18 20
Figure 46
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
34
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4
0 2 4 6 8 10 12
14 16 18 20
t – Time – µs
Figure 47
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
0.95
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
0.9
AV = 1
TA = 25°C
0.85
0.8
O
V
VO – Output Voltage – V
0.75
0.7
024681 01 2
Figure 48
EQUIVALENT INPUT NOISE VOLTAGE
60
50
VDD = 3 V
RS = 20 Ω
TA = 25°C
Hz
nV/
t – Time – µs
vs
FREQUENCY
†
14 16 18 20
†
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
2.65
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
2.6
AV = 1
TA = 25°C
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4
0 2 4 6 8 10 12
EQUIVALENT INPUT NOISE VOLTAGE
60
50
VDD = 5 V
RS = 20 Ω
TA = 25°C
Hz
nV/
†
14 16 18 20
t – Time – µs
Figure 49
†
vs
FREQUENCY
40
30
20
10
– Equivalent Input Noise Voltage –
n
V
0
10
1
2
10
f – Frequency – Hz
10
3
10
4
Figure 50
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
40
30
20
10
– Equivalent Input Noise Voltage –
n
V
0
10
1
2
10
f – Frequency – Hz
10
3
Figure 51
10
4
35
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
1000
750
500
250
0
†
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
100
Calculated Using Ideal Pass-Band Filter
Lower Frequency = 1 Hz
TA = 25°C
Vµ
10
–250
Input Noise Voltage – nV
–500
VDD = 5 V
f = 0.1 Hz
–750
to 10 Hz
–1000
TA = 25°C
0246
t – Time – s
Figure 52
TOTAL HARMONIC DISTORTION PLUS NOISE
FREQUENCY
–1
10
AV = 100
–2
10
AV = 10
vs
81 0
†
1
Integrated Noise Voltage –
0.1
11 0110
900
860
820
780
2
f – Frequency – Hz
10
3
10
Figure 53
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
4
10
5
AV = 1
Gain-Bandwidth Product – kHz
VDD = 5 V
RL = 50 kΩ
–3
10
THD + N – Total Harmonic Distortion Plus Noise – %
10
1
2
10
f – Frequency – Hz
10
3
TA = 25°C
4
10
10
4
Figure 54
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
36
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
740
700
02 35
14 6
VDD – Supply Voltage – V
Figure 55
78
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLV226x, TLV226xA
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
1200
1000
800
600
Gain-Bandwidth Product – kHz
400
–50 –25 0 25 50 100 75
–75 125
TA – Free-Air Temperature – °C
VDD = 5 V
f = 10 kHz
CL = 100 pF
Figure 56
GAIN MARGIN
vs
LOAD CAPACITANCE
20
RL = 50 kΩ
AV = 1
TA = 25°C
R
= 100 Ω
15
null
†‡
75°
TA = 25°C
60°
45°
30°
m
om – Phase Margin
φ
15°
1000
50 kΩ
V
I
0°
10 10
TA = 25°C
800
PHASE MARGIN
vs
LOAD CAPACITANCE
R
null
R
null
R
= 20 Ω
null
R
= 10 Ω
null
50 kΩ
V
DD+
R
null
–
+
V
/GND
DD–
CL – Load Capacitance – pF
C
R
L
2
null
10
= 0
3
Figure 57
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
= 100 Ω
= 50 Ω
10
4
10
R
= 50 Ω
null
Gain Margin – dB
5
0
10 10
R
= 20 Ω
null
R
= 10 Ω
null
R
null
2
CL – Load Capacitance – pF
10
3
= 0
10
4
Figure 58
†
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
‡
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
600
– Unity-Gain Bandwidth – kHz
400
1
B
200
10 10
2
CL – Load Capacitance – pF
Figure 59
10
3
10
4
37
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
OVERESTIMATION OF PHASE MARGIN
LOAD CAPACITANCE
14°
TA = 25°C
12°
10°
8°
6°
4°
R
Overestimation of Phase Margin
†
See application information
null
2°
0
10 10
R
= 100 Ω
null
= 10 Ω
2
CL – Load Capacitance – pF
Figure 60
vs
R
null
10
= 50 Ω
R
null
3
= 20 Ω
†
4
10
38
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
driving large capacitive loads
The TLV226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 51
and Figure 52 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase
margins (R
A smaller series resistor (R
when driving large capacitive loads. Figure 51 and Figure 52 show the effects of adding series resistances of
10 Ω , 20 Ω, 50 Ω , and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zero
to the transfer function and the second is that it reduces the frequency of the pole associated with the output
load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation (1) can be used.
null
= 0).
) at the output of the device (see Figure 61) improves the gain and phase margins
null
–1
∆θm1+
Where :
∆θm1+
UGBW+ unity-gain bandwidth frequency
R
+
null
CL+
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 53). To
use equation 1, UGBW must be approximated from Figure 53.
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load
is reduced by the factor calculated in equation 2.
F
+
1) g
Where :
F
+
factor reducing frequency of pole
gm+
R
null
For the TL V226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value
varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on.
small-signal output transconductance (typically 4.83 × 10–3mhos)
+
output series resistance
ǒ
tan
improvement in phase margin
output series resistance
load capacitance
2 × π × UGBW × R
1
R
×
m
null
null
× C
Ǔ
L
(1)
(2)
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results
in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3
approximates the reduction in phase margin due to the movement of the pole associated with the load. The
result of this equation can be subtracted from the result of the equation 1 to better approximate the improvement
in phase margin.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
39
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
driving large capacitive loads (continued)
ȱ
UGBW
∆θm2+
Where :
∆θm2+
UGBW+ unity-gain bandwidth frequency
F+ factor from equation (2)
P2+
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output
series resistance to optimize the design of circuits driving large capacitive loads.
–1
tan
ȧ
ǒ
Ȳ
reduction in phase margin
unadjusted pole (70 MHz @ 10 pF, 7 MHz @100 pF, etc.)
F× P
ȳ
– tan
ȧ
Ǔ
ȴ
2
V
I
Figure 61. Series-Resistance Circuit
–1
50 kΩ
UGBW
ǒ
Ǔ
P
2
50 kΩ
V
DD+
R
/GND
null
C
L
–
+
V
DD–
(3)
40
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
macromodel information
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
Macromodel information provided was derived using Microsim
with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 62 are generated using
Parts
, the model generation software used
the TLV226x typical electrical and operating characteristics at TA = 25° C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers,”
Journal of Solid-State Circuits,
V
CC+
RP
2
IN –
DP
IN+
1
V
CC–
.SUBCKT TLV226x 1 2 3 4 5
C1 11 12 5.5E–12
C2 6 7 20.00E–12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
D P 43D X
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 8.84E6 –10E6 10E6 10E6 –10E6
GA 6 0 11 12 62.83E–6
GCM 0 6 10 99 12.34E–9
ISS 3 10 DC 11.05E–6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
SC-9, 353 (1974).
3
RSS ISS
10
J1 J2
11
RD1
VAD
+
–
12
C1
RD2
60
4
VE
+
VC
DC
DE
54
+ –
R2
–
53
6
9
GCM
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
99
EGND
+
FB
+
–
–
VB
C2
GA
RD1 60 11 15.92E3
RD2 60 12 15.92E3
R01 8 5 135
R02 7 99 135
RP 3 4 15.87E3
RSS 10 99 18.18E6
VAD 60 4 –.5
VB 9 0 DC 0
VC 3 53 DC .615
VE 54 4 DC .615
VLIM 7 8 DC 0
VLP 91 0 DC 1
VLN 0 92 DC 5.1
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=500.0E–15 BETA=325E–6
+ VTO=–.08)
.ENDS
7
VLIM
RO2
HLIM
8
5
OUT
+
–
RO1
90
+
DLP
–
+
–
DLN
92
91
–
+
IEEE
VLN VLP
PSpice
and
Figure 62. Boyle Macromodel and Subcircuit
Parts
are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
41
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
14
1
0.069 (1,75) MAX
0.050 (1,27)
A
0.020 (0,51)
0.014 (0,35)
7
0.010 (0,25)
0.004 (0,10)
8
0.010 (0,25)
0.157 (4,00)
0.150 (3,81)
M
0.244 (6,20)
0.228 (5,80)
Seating Plane
0.004 (0,10)
PINS **
DIM
A MAX
A MIN
0.008 (0,20) NOM
Gage Plane
0° –8°
8
0.197
(5,00)
0.189
(4,80)
14
0.344
(8,75)
0.337
(8,55)
0.010 (0,25)
0.044 (1,12)
0.016 (0,40)
4040047/B 03/95
16
0.394
(10,00)
0.386
(9,80)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Four center pins are connected to die mount pad.
E. Falls within JEDEC MS-012
42
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
A SQ
B SQ
24
19
20
21
22
23
25
1 28 26 27
12
13 14 15 16 18 17
0.020 (0,51)
0.010 (0,25)
MIN
0.342
(8,69)
0.442
0.640
0.740
0.938
1.141
A
0.358
(9,09)
0.458
(11,63)
0.660
(16,76)
0.761
(19,32) (18,78)
0.962
(24,43)
1.165
(29,59)
NO. OF
TERMINALS
**
11
10
9
8
7
6
5
4 3 2
20
28
44
52
68
84
0.020 (0,51)
0.010 (0,25)
(11,23)
(16,26)
(23,83)
(28,99)
MIN MAX
0.307
(7,80)
0.406
(10,31)
0.495
(12,58)
0.495
(12,58)
0.850
(21,6)
1.047
(26,6)
0.080 (2,03)
0.064 (1,63)
B
MAX
0.358
(9,09)
0.458
(11,63)
0.560
(14,22)
0.560
(14,22)
0.858
(21,8)
1.063
(27,0)
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
4040140/C 11/95
43
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
14
1
B
0.100 (2,54)
0.070 (1,78)
0.065 (1,65)
0.045 (1,14)
8
C
7
0.020 (0,51) MIN
0.200 (5,08) MAX
PINS **
DIM
A MAX
A MIN
B MAX
B MIN
C MAX
C MIN
Seating Plane
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.280
(7,11)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.300
(7,62)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.910
(23,10)
0.300
(7,62)
0.245
(6,22)
A
20 18 16 14
0.310
(7,87)
0.290
(7,37)
0.975
(24,77)
0.930
(23,62)
0.300
(7,62)
0.245
(6,22)
22
0.410
(10,41)
0.390
(9,91)
1.100
(28,00)
0.388
(9,65)
0.100 (2,54)
0.023 (0,58)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
0.130 (3,30) MIN
0° –15°
0.014 (0,36)
0.008 (0,20)
4040083/B 04/95
44
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
5 8
0.280 (7,11)
0.245 (6,22)
14
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.020 (0,51) MIN
0.290 (7,37)
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
E. Falls within MIL-STD-1835 GDIP1-T8
0.023 (0,58)
0.015 (0,38)
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0° –15°
0.015 (0,38)
0.008 (0,20)
4040107/B 04/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
45
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
16
1
0.035 (0,89) MAX
PINS **
DIM
A
9
0.260 (6,60)
0.240 (6,10)
8
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
A MAX
A MIN
Seating Plane
14
0.775
(19,69)
0.745
(18,92)
16
0.775
(19,69)
0.745
(18,92)
18
0.920
(23.37)
0.850
(21.59)
20
0.975
(24,77)
0.940
(23,88)
0.310 (7,87)
0.290 (7,37)
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
0.010 (0,25)
M
0.125 (3,18) MIN
0° –15°
0.010 (0,25) NOM
14/18 PIN ONL Y
4040049/C 08/95
46
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
5 8
0.260 (6,60)
0.240 (6,10)
4 1
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
0.010 (0,25)
M
0.310 (7,87)
0.290 (7,37)
Seating Plane
0° –15°
0.010 (0,25) NOM
4040082/B 03/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
47
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,65
14
1
1,20 MAX
A
7
0,10 MIN
0,32
0,19
8
6,70
4,50
4,30
6,10
M
0,13
Seating Plane
0,10
0,15 NOM
Gage Plane
0,25
0° –8°
0,75
0,50
PINS **
DIM
A MAX
A MIN
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
8
3,10
2,90
14
5,10
4,90
16
5,10
20
6,60
6,40 4,90
24
7,90
7,70
28
9,80
9,60
4040064/D 10/95
48
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.080 (2,03)
0.050 (1,27)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.250 (6,35)
1
0.250 (6,35)
5
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
0.300 (7,62)
1.000 (25,40)
0.750 (19,05)
10
0.350 (8,89) 0.350 (8,89)
0.250 (6,35)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
6
0.025 (0,64)
0.005 (0,13)
4040179/B 03/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
49
TLV226x, TLV226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS186A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
W (R-GDFP-F16) CERAMIC DUAL FLATPACK
0.085 (2,16)
0.045 (1,14)
0.440 (11,18)
0.371 (9,42)
0.285 (7,24)
0.245 (6,22)
0.305 (7,75)
0.355 (9,02) 0.355 (9,02)
0.235 (5,97)
0.275 (6,99)
16 1
Base and Seating Plane
0.235 (5,97)
0.006 (0,15)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
0.025 (0,64)
0.015 (0,38)
9 8
1.025 (26,04)
0.745 (18,92)
4040180-3/B 03/95
50
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated