Texas Instruments TL5001EVM-097 User Manual

Page 1
TL5001EVM-097
3.3ĆV/5ĆV Selectable Output, 2.5ĆA Buck Converter Module
User’s Guide
2001 Mixed-Signal Linear Products
SLVU002B
Page 2
IMPORTANT NOTICE
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI’s standard warranty . T esting and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, license, warranty or endorsement thereof.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Resale of TI’s products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm
Mailing Address:
Texas Instruments Post Office Box 655303 Dallas, Texas 75265
Copyright 2001, Texas Instruments Incorporated
Page 3
About This Manual
Related Documentation From Texas Instruments
Preface
Read This First
This user’s guide is a reference manual for the TL5001EVM–097. This docu- ment provides information to assist managers and hardware engineers in ap­plication development.
How to Use This Manual
This manual provides the information and instructions necessary to design, construct, operate, and understand the SLVP097. Chapter 1 describes and lists the hardware requirements; Chapter 2 describes design considerations and procedures.
Related Documentation From Texas Instruments
The following books describe the TL5001 and related support tools. T o obtain a copy of any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924. When ordering, please identify the book by its title and literature number.
TL5001 Pulse-Width-Modulation Control Circuits Data Sheet (Literature
number SLVS084C).
Designing with the TL5001C PWM Controller Application Report
(Literature number SLVA034).
TPS2816, TPS2817, TPS2818, and TPS2819 Single-Channel High-Speed
MOSFET Driver Data Sheet (Literature number SLVS160)
Read This First
iii
Page 4
If You Need Assistance
(MSP)
If You Need Assistance . . .
If you want to . .. Contact T exas Instruments at . . .
Visit TI online World Wide Web: http://www.ti.com Request more information
about Texas Instruments Mixed Signal Products
Ask questions about product operation or report sus­pected problems
Order Texas Instruments documentation (see Note 1)
Make suggestions about or report errors in documenta­tion (see Note 2)
Call the Product Information
Call the Product Information
Call the Product Information
World Wide Web: http://www.ti.com/sc/docs/pic/home.htm
Center (PIC) hotline: (972) 644–5580
Send a fax: (972) 480–7800
Write to: Texas Instruments Incorporated
Product Information Center, MS 3123 P.O. Box 660246 Dallas, Texas 75266
Center (PIC) hotline:
Center (PIC) hotline:
Send a fax: MSP Marketing Documentation Correction
Write to: Texas Instruments Incorporated
(972) 644–5580
(972) 644–5580
(972) 480–3160
MSP Marketing Documentation Correction, MS 8710 P.O. Box 660199 Dallas, Texas 75266–0199
Notes: 1) The literature number for the book is required; see the lower-right corner on the back cover.
2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the publication date from the spine or front cover.
FCC Warning
This equipment is intended for use in a laboratory test environment only . It gen­erates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other en­vironments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
Trademarks
TI is a trademark of Texas Instruments Incorporated.
iv
Page 5
Running TitleAttribute Reference
Contents
1 Hardware 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Introduction 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Schematic 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Input/Output Connections 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Board Layout 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Bill of Material 1-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Test Results 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Design Procedure 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Introduction 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Operating Specifications 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Design Procedures 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Duty Cycle Estimate 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Output Filter 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 Power Switch 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.4 Rectifier 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.5 Snubber Network 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.6 Controller Functions 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.7 Loop Compensation 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter TitleAttribute Reference
v
Page 6
Running TitleAttribute Reference
Figures
1–1 Typical Buck Converter Block Diagram 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–2 SLVP097 Schematic 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–3 I/O Connections 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–4 Board Layout 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–5 Top Layer 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–6 Bottom Layer 1-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–7 Output Voltage Vs Output Current (3.3-V Mode) 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–8 Output Voltage Vs Output Current (5-V Mode) 1-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–9 Output Voltage Vs Supply Voltage (3.3-V Mode) 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–10 Output Voltage Vs Supply Voltage (5-V Mode) 1-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–11 Efficiency Vs Output Current (5-V Mode) 1-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1 Power Stage Response 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Required Compensation Response 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
Page 7
Chapter 1
Hardware
The TL5001EVM–097 (SL VP097) provides a method for evaluating the perfor­mance of a buck converter using the TL5001 pulse-width-modulation (PWM) controller coupled with a TPS2817 MOSFET driver. This manual explains how to construct basic power conversion circuits including the design of the control chip functions and the basic loop. This chapter includes the following topics:
Topic Page
1.1 Introduction 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Schematic 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Input/Output Connections 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Board Layout 1–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Bill of Materials 1–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Test Results 1–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter TitleAttribute Reference
1-1
Page 8
Introduction
1.1 Introduction
Low cost and design simplicity make buck converters popular solutions in dc/ dc step-down applications where lack of isolation from the input source is not a concern. Loop compensation for the buck converter can be set for high band­widths. This mode is desirable for the low peak-to-average current ratio, eas­ing the component worst-case design parameters.
Figure 1–1 shows a block diagram of a typical buck converter. The converter passes a duty-cycle modulated waveform through a low-pass output filter. To maintain the desired output voltage, a controller senses the output voltage, compares it to an internal reference voltage and adjusts the width of the power switch (Q1) on time, . A commutating diode (CR1) maintains continuous current through the inductor when the power switch is turned off.
Figure 1–1.Typical Buck Converter Block Diagram
CR1
L1
R1
R2
+ C2
V
O
Q1
V
I
+ C1
Controller
FB
R3
The SLVP097 buck converter uses the TI TL5001 PWM controller and the TPS2817 MOSFET driver to give a 0- to 2.5-A output with a selectable output voltage of either 3.3 V or 5 V. The converter operates over an input voltage range of 5.5 V to 12 V with a typical efficiency of 90 percent. Chapter 2 lists full design specifications.
Note: Peak currents in excess of 2.5 A may be obtained from this EVM, but due to thermal restraints, should not be subtained. This EVM shuts down when a short circuit is encountered. Input power must be re­cycled to restart the module.
1-2
Page 9
1.2 Schematic
Figure 1–2 shows the SLVP097 schematic.
Figure 1–2.SLVP097 Schematic
4.5 V to 12.6 V Input
J1
Optional
R8A
W
1–2 = 5 V
1 2
3 4
JP1
231
+
C1
C8
0.1 µF
100 20 V
µF
47 k
TL5001
R2
C2
U2
+
+ GND GND
Adjustable Output
(Replace JP1 and R8)
VO= 1.36–5 V
1.0 k
CW CCW
2–3 = 3.3 V
0.1
µFC30.1
µF
2
0.1 µF
V
CC
C9
1.8 k
CC
DTC
6
V
V DD
R4
5
1
GND
2
COMP
3
C12 .047 µF
Q1
IRF7406
30WQ04FN
4
OUT IN
3
1
OUT
FB
4
CR1
U1
TPS2817
5
SCP
GND
RT
7
R3
30.1 k 1%
C11 1000 pF
C10
+
Schematic
3.3/5 V, 2.5 A
1 2
3 4
Output
J2
+
+ GND GND
L1
µH
33
C4 1000 pF
R1
22
µF1
8
C5
220 µF
10 V
R5
330
+
0.018 µF
+
C6
220 µF
10 V
(Optional)
C13
C7
0.1 µF
R8
732 Ω
1%
Input voltage range for 3.3 V output. When using 5-V output, minimum input voltage must be greater than 5.5 V .
R7
1.00 k 1%
R6
4.02 k 1%
Notes: 1) Frequency set to 275 kHz by R3.
2) This unit and the components are thermally rated to 2.5 A. The output current should not exceed 2.5 A unless proper thermal management is put in place.
3) DO NOT change the set output voltage jumper (JP1) while power is applied to the unit.
Hardware
1-3
Page 10
Input/Output Connections
1.3 Input/Output Connections
Figure 1–3 shows the SLVP097 input and output connections.
Figure 1–3.I/O Connections
+
Power Supply
SLVP097
3.3/5 V, 2.5 AMP Rev. A.1 1997
1
J1 IN
R4
U1
C12
R5
C1
+
.330
C3
C2
CR1
C8
C11
R6
JP1
C13
U2
R7
1.0
Q1 R3 R2
C9
C10
R8
1–2 = 5 V 2–3 = 3.3 V
C4R1
C5
C6
L1
OUT
+
J2
1
C7
+
LOAD
+
Notes: 1) The input power supply should be rated at least 3 A with current limit set high enough for proper operation.
2) The load should be rated at least 2.5 A with proper power dissipation. Fixed or variable resistors may be used.
1-4
Page 11
1.4 Board Layout
Figures 1–4 through 1–6 show the SLVP097 board layout.
Figure 1–4.Board Layout
Board Layout
1
1.6
Figure 1–5.Top Layer
SLVP097
3.3/5V, 2.5 AMP Rev. A.1 1997
J1 IN
C12
R4
U1
R5
C1
+
.330
C3
C11
C13
R6
C8
JP1
C2
U2
CR1
Q1 R3 R2
C9
1.0
C10
R8
R7
1
1–2 = 5V 2–3 = 3.3V
C4R1
C5
C6
L1
OUT
+
J2
1
C7
+
2.4
1.6
2.4
Hardware
1-5
Page 12
Board Layout
Figure 1–6.Bottom Layer
1.6
2.4
1-6
Page 13
Bill of Material
1.5 Bill of Material
Table 1–1 lists materials required for the SLVP097.
Table 1–1.Bill of Materials
Reference Part Number Mfr Description
C1 20SA100M Sanyo Capacitor, Os-Con, 100 mF, 20 V, F-case C2 Capacitor, Ceramic, 0.1 mF, 50 V, 1206 C3 Capacitor, Ceramic, 0.1 mF, 50 V, 1206 C4 Capacitor, Ceramic, 1000 pF, 50 V, 1206 C5 10SA220M Sanyo Capacitor, Os-Con, 220 mF, 10 V, F-case
*
C6 C7 Capacitor, Ceramic, 0.1 mF, 50 V, 1206 C8 Capacitor, Ceramic, 0.1 mF, 50 V, 1206 C9 Capacitor, Ceramic, 0.1 mF, 50 V, 1206 C10 ECS-T1EY105R Digikey Capacitor, Tantalum, 1.0 mF, 25 V, 1206 C1 1 Capacitor, Ceramic, 1000 pF, 50 V, 1206 C12 Capacitor, Ceramic, 0.047 mF, 50 V, 1206 C13 Capacitor, Ceramic, 0.018 mF, 50 V, 1206 CR1 30WQ04FN IR Diode, Schottky , 3.3 A, 40 V, D-Pak J1 Header, 4-pin, 0.025 sq 0.100 centers J2 Header, 4-pin, 0.025 sq 0.100 centers JP1 Header, 3-pin, 0.025 sq 0.100 centers L1 SLF12565-330M2R8 TDK Inductor, 33 mH, 2.8 A, 0.041 W, 0.50 square Q1 IRF7406 MOSFET, P-Ch, 30 V, 0.045 W, 4.7 A, SO-8 R1 Resistor, CF, 22 W, 1/10 W, 5%, 1206 R2 Resistor, CF, 47 kW, 1/10 W, 5%, 0805 R3 Resistor, MF, 30.1 kW, 1/10 W, 1%, 0805 R4 Resistor, CF, 1.8 kW, 1/10 W, 5%, 0805 R5 Resistor, CF, 330 W, 1/10 W, 5%, 0805 R6 Resistor, MF, 4.02 kW, 1/10 W, 1%, 0805 R7 Resistor, MF, 1.00 kW, 1/10 W, 1%, 0805 R8 Resistor, MF, 732 W, 1/10 W, 1%, 0805
*
R8A
U1 TPS2817DBV TI MOSFET driver, noninverting, single channel,
U2 TL5001CD TI PWM controller, SO-8
–– Shunt, standard profile ––
10SA220M Sanyo Capacitor, Os-Con, 220 mF, 10 V, F-case
CT9W102-ND Digikey Potentiometer, 1 kW, 10%, 18-turn, 9mm-
square
SOT-25
SLVP097 TI PCB, TPS2817 EVM, 2.40 1.60
* Optional parts not on present board.
Hardware
1-7
Page 14
Test Results
1.6 Test Results
Figures 1–7 through 1–11 show test results for the the SLVP097.
Figure 1–7.Output Voltage Vs Output Current (3.3-V Mode)
OUTPUT VOLTAGE
vs
OUTPUT CURRENT (3.3-V MODE)
3.45 VCC = 9 V
3.4
3.35
3.3
– Output Voltage – V
3.25
O
V
3.2
3.15
0 0.5 1 1.5
IO – Output Current – A
2 2.5 3
Figure 1–8.Output Voltage Vs Output Current (5-V Mode)
OUTPUT VOLTAGE
vs
OUTPUT CURRENT (5-V MODE)
5.15 VCC = 9 V
5.1
5.05
5
– Output Voltage – VV
4.95
O
4.9
4.85
1-8
01
0.5 1.5 2.5 IO – Output Current – A
23
Page 15
Figure 1–9.Output Voltage Vs Supply Voltage (3.3-V Mode)
OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE (3.3-V MODE)
3.26
3.255
Test Results
3.25
3.245
– Output Voltage – VV
3.24
O
3.235
3.23 5678910
VCC – Supply Voltage – V
IO = 0.25 A
IO = 2.5 A
11 12 13
Figure 1–10. Output Voltage Vs Supply Voltage (5-V Mode)
OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE (5-V MODE)
4.92
IO = 0.25 A
4.915
4.91
4.905
– Output Voltage – VV
4.9
O
4.895
4.89 5678910
VCC – Supply Voltage – V
IO = 2.5 A
11 12 13
Hardware
1-9
Page 16
Test Results
Figure 1–11. Efficiency Vs Output Current (5-V Mode)
EFFICIENCY
vs
OUTPUT CURRENT
93 92
Efficiency – %
91 90 89 88 87 86 85
84 83 82 81 80
0 0.5 1 1.5
5 V
3.3 V
IO – Output Current – A
VCC = 9 V
2 2.5
1-10
Page 17
Chapter 2
Design
Procedure
The SL VP097 evaluation module provides a method for evaluating the perfor­mance of the TPS2817 MOSFET driver and the TL5001 PWM controller. The TPS2817 contains all of the circuitry necessary to drive large MOSFETs, in­cluding a voltage regulator for higher voltage applications. This section ex­plains how to construct basic power conversion circuits including the design of the control chip functions and the basic loop. This chapter includes the fol­lowing topics:
Topic Page
2.1 Introduction 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Operating Specifications 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Design Procedure 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter TitleAttribute Reference
2-1
Page 18
Introduction
2.1 Introduction
The SL VP097 is a dc-dc buck converter module that provides a 5-V or 3.3-V output at up to 2.5 A with an input voltage range of 5.5 V to 12 V . The controller is a TL5001 PWM operating at a nominal frequency of 275 kHz. The TL5001 is configured for a maximum duty cycle of 100 percent and has short-circuit protection built in. Output voltage selection is implemented with jumper JP1.
2-2
Page 19
2.2 Operating Specifications
Table 2–1 lists the operating specifications for the SLVP097.
Table 2–1.Operating Specifications
Specification Min Typ Max Units
Operating Specifications
Input Voltage Range 4.5 Output Voltage Range
5-V Mode 4.7 5.0 5.3 V
3.3-V Mode 3.1 3.3 3.5 V Output Current Range 0 2.6 A Operating Frequency 275 kHz Output Ripple 50 mV Efficiency
For 3.3 V only, minimum input voltage for 5 V output is 5.5 V.
85% 90%
12.6 V
Design Procedure
2-3
Page 20
Design Procedures
2.3 Design Procedures
Detailed steps in the design of a buck-mode converter may be found in Designing With the TL5001C PWM Controller (literature number SLVA034) from Texas Instruments. This section shows the basic steps involved in this design, using the 3.3-V output mode.
2.3.1 Duty Cycle Estimate
The duty cycle for a continuous-mode step-down converter is approximately:
D
+
VI*
Assuming the commutating diode forward voltage Vd = 0.5 V and the power switch on voltage V
0.42, and 0.32, respectively.
2.3.2 Output Filter
A buck converter uses a single-stage LC filter. Choose an inductor to maintain continuous-mode operation down to 6 percent of the rated output load:
D
IO+2
VO)
V
d
V
SAT
0.06 IO+2
= 0.1 V , the duty cycle for Vi = 5.5, 9, and 12 V is 0.70,
SAT
0.06 2.5+0.30 A
2.3.3 Power Switch
The inductor value is:
*
D
+
D
V
O
0.05
0.3
I
VO) D t
O
0.30
+
Ǔ
+
8
0.167
ǒ
275 10
ǒ
3.63 10
W
0.3
–6
Ǔ
+
33.3mH
+
3
Ǔ
0.05
2.73mF
(VI*
V
L
+
(12*0.1*3.3) 0.32
+
Assuming that all of the inductor ripple current flows through the capacitor and the effective series resistance (ESR) is zero, the capacitance needed is:
C
+
8 f
Assuming the capacitance is very large, the ESR needed to limit the ripple to 50 mV is:
ESR
+
The output filter capacitor should be rated at least ten times the calculated capacitance and 30–50 percent lower than the calculated ESR. This design used a 220-mF OS-Con capacitor in parallel with a ceramic to reduce ESR.
SAT
D
I
O
ǒ
D
V
O
D
I
O
Based on the preliminary estimate, r = 40 mW. The IRF7406 is a 30-V p-channel MOSFET with r Power dissipation (conduction + switching losses) can be estimated as:
PD+
2-4
DS(ON)
2
ǒ
I
O
r
DS(ON)
DǓ)ǒ0.5 Vi
should be less than 0.10 V 2.5 A
IO
t
r)f
DS(ON)
Ǔ
f
= 40 m
W.
Page 21
Design Procedures
Assuming total switching time, t perature, and r
PD+
The thermal impedance R inch-square pattern, thus:
TJ+
2.3.4 Rectifier
The catch rectifier conducts during the time interval when the MOSFET is off. The 30WQ04 is a 3.3-A, 40-V rectifier in a D-Pak power surface-mount package. The power dissipation is:
PD+
2.3.5 Snubber Network
A snubber network is usually needed to suppress the ringing at the node where the power switch drain, output inductor, and the rectifier connect. This is usually a trial-and-error sequence of steps to optimize the network; but as a starting point, select a snubber capacitor with a value that is 4–10 times larger than the estimated capacitance of the catch rectifier. The 30WQ04 has a capacitance of 110 pF, resulting in a snubber capacitor of 1000 pF. Then, measuring a ringing time constant of 20 ns, R is:
R
+
DS(ON)
ƪ
2.52
)ƪ0.5 5.5 2.5
ǒ
IO
C
R
q
V
D
–9
TA)
20 10
adjustment factor (for high temperature) = 1.6, then:
(0.04 1.6) 0.7
JA
ǒ
1*D
+
1000 10
, = 100 ns, a 55°C maximum ambient tem-
r+f
ƫ
*
6
ǒ0.1 10
= 90°C/W for FR-4 with 2-oz. copper and a one-
θJA
Ǔ
P
+55)
D
Ǔ
+
Min
20 10
2.5 0.6 0.68+1.02 W
–9
–12
Ǔ ǒ
275 10
(90 0.41)+92°C
+20W
3
Ǔ
ƫ
+
0.41 W
A 22- resistor is used in the design.
2.3.6 Controller Functions
The controller functions, oscillator frequency, soft-start, dead-time control, short-circuit protection, and sense-divider network are discussed in this section.
The oscillator frequency is set by selecting the resistance value from the graph in Figure 6 of the TL5001 data sheet. For 275 kHz, a value of 30.1 kWis selected.
Dead-time control provides a minimum off-time for the power switch in each cycle. Set this time by connecting a resistor between DTC and GND. For this design, a maximum duty cycle of 100% is chosen. Then R is calculated as:
ǒ
R
R
+
+
(30.1 kW)
OSC
Ǔ
)
1.25 k
1.25 kW)[1(1.4 – 0.6))0.60]+44 kWå
ƪ
W
D(V
0(100%)
– V
))V
0(0%)
Design Procedure
0(0%)
ƫ
47 k
W
2-5
Page 22
Design Procedures
Soft-start is added to reduce power-up transients. This is implemented by adding a capacitor across the dead-time resistor. In this design, a soft-start time of 5 ms is used:
t
C
+
R
The TL5001 has short circuit protection (SCP) instead of a current sense cir­cuit. If not used, the SCP terminal must be connected to ground to allow the converter to start up. If a timing capacitor is connected to SCP, it should have a time constant that is greater than the soft-start time constant. This time constant is chosen to be 75 ms:
R
DT
0.005 s
+
47 k
+
0.1mF
W
C(mF)+12.46 t
2.3.7 Loop Compensation
Loop compensation is necessary to stabilize the converter over the full range of load, line, and gain conditions. A buck-mode converter has a two-pole LC output filter with a 40-dB-per-decade rolloff. The total closed-loop response needed for stability is a 20-dB-per-decade rolloff with a minimum phase margin of 30 degrees over the full bandwidth for all conditions. In addition, sufficient bandwidth must be designed into the circuit to assure that the converter has good transient response. Both of these requirements are met by adding compensation components around the error amplifier to modify the total loop response.
The first step in design of the loop compensation network is the design of the output sense divider. This sets the output voltage and the top resistor determines the relative size of the rest of the compensation design. Since the TL5001 input bias current is 0.5 mA (worst case), the divider current should be at least 0.5 mA. Using a 1-kW resistor for the bottom of the divider gives a divider current of 1 mA. Since this is a dual-voltage output, the divider must be selectable. For a 5-V output, the divider was set for 1 kW and 4 kW. The bottom of the divider is calculated for the 3-V mode as:
R
+
VO*
+
SCP
R
T
V
REF
12.46 0.075 s+0.93mF
4k
+
W
3.3*1
+
1.74 k
W
The pulse-width modulator gain can be approximated as the change in output voltage divided by the change in PWM input voltage:
A
PWM
The LC filter has a double pole at:
1
Ǹ
2pLC and rolls off at 40-dB per decade after that until the ESR zero is reached at:
1
2pR
ESR
2-6
+
D
+
1.87 kHz
+
C
D
V
O
V
COMP
2p(0.027)
+
1.4–0.6
1
ǒ
220 10
9–0
+
11.25å21 dB
+
–6
26.8 kHz
Ǔ
Page 23
This information is enough to calculate the required compensation values. Figure 2–1 shows the power stage gain and phase plots.
Figure 2–1.Power Stage Response
FREQUENCY RESPONSE
50
Design Procedures
0
40
30
20
10
0
Gain – dB (Solid)
10
20
30
10 10
2
Frequency – Hz
10
3
Figure 2–2 shows the required error amplifier compensation response.
Figure 2–2.Required Compensation Response
BODE PLOT
40
35
10
45
90
135
180
225
270
Phase Degrees (Dashed)
315
4
10
5
–360
90
70
30
25
20
15
Gain – dB (Solid)
10
5
0
–5
10 10
2
Frequency – Hz
10
3
10
4
10
This response can be met with the following:
-
A pole at zero to give high dc gain
-
Two zeroes at 1.87 kHz to cancel the LC poles
-
A pole at 26.8 kHz to cancel the ESR zero
-
A final pole to roll off high-frequency gain above 100 kHz
50
30
10
10
30
Phase Degrees (Dashed)
50
70
90
5
Design Procedure
2-7
Page 24
Design Procedures
The sum of the gains of the modulator, the LC filter, and the error amplifier needs to be 0 dB at the selected unity-gain frequency of 20 kHz. The modulator and LC filter gain is –14 dB. The two zeroes at 1.87 kHz in the compensation network that cancels the LC poles will have a total gain of 41.2 dB at 20 kHz. Therefore, the pole at zero frequency needs to furnish 0–(–14+41.2) = –27.2 dB (voltage gain = 0.04365) at 20 kHz. R5 and C12 provide this pole. R6 is already chosen as 4 kW. Calculate C12 as:
C12)C11
+
(2p)(f)(R6)(Required Gain)
1
In practice C12 is much greater than C11, therefore:
C12
+
(2p)(20 kHz)(4 kW)(0.04365)
1
+
0.045mFUseC12+0.047mF
R4 provides the first zero at the LC break point:
R4
+
(2p)(1.87 kHz)(C12)
1
+
1.89 k
W
Use R4+1.8 k
W
C13 provides the other zero at the LC break point:
C13
(1.87 kHz)
+
1
2p(R6)
*
(20 kHz)
1
+
0.019mFUseC13+0.018mF
R5 provides the compensation for the ESR zero:
R5
+
(2p)(26.8 kHz)(C13)
1
+
330
W
Finally, C11 provides a rolloff filter at high frequency, chosen at 100 kHz:
2-8
C11
+
(2p)(100 kHz)(R4)
1
+
0.00088mFUseC11+1000 pF
Page 25
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments: TL5001EVM-097 DC/DC-CONV
Loading...