Texas Instruments TIBPAL16R8-12MWB, TIBPAL16R8-12MJB, TIBPAL16R8-12MJ, TIBPAL16R6-12MWB, TIBPAL16R6-12MJB Datasheet

...
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
CIRCUITS
High-Performance Operation:
f
(w/o feedback)
max
TIBPAL16R’-10C Series . . . 62.5 MHz Min TIBPAL16R’-12M Series . . . 56 MHz Min
f
(with feedback)
max
TIBPAL16R’-10C Series . . . 55.5 MHz Min TIBPAL16R’-12M Series . . . 48 MHz Min
Propagation Delay
TIBPAL16L’-10C Series . . . 10 ns Max TIBPAL16L’-12M Series . . . 12 ns Max
Functionally Equivalent, but Faster than,
Existing 20-Pin PLDs
Preload Capability on Output Registers
Simplifies Testing
Power-Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage Levels at the Output Pins Go High)
Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
Security Fuse Prevents Duplication
Dependable Texas Instruments Quality and
Reliability
DEVICE
PAL16L8 10 2 0 6 PAL16R4 8 0 4 (3-state buffers) 4 PAL16R6 8 0 6 (3-state buffers) 2 PAL16R8 8 0 8 (3-state buffers) 0
I
INPUTS
description
3-STATE
O OUTPUTS
REGISTERED
Q OUTPUTS
I/O
PORT
S
TIBPAL16L8’
C SUFFIX . . . J OR N PACKAGE
M SUFFIX . . . J PACKAGE
(TOP VIEW)
I
I
I
I
4
I
I
I
I
I
GND
C SUFFIX . . . FN PACKAGE M SUFFIX . . . FK PACKAGE
I I I I I
10
TIBPAL16L8’
(TOP VIEW)
I
I
3 2 1 20 19
910111213
I
V
20
CC
O
19
I/O
18
I/O
17
I/O
16 15
I/O
14
I/O
13
I/O
12
O
11
I
CC
I
O
V
I/O
18
I/O
17
I/O
16
I/O
15
I/O
14
I
O
I/O
GND
Pin assignments in operating mode
These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT-X circuits combine the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are available for futher reduction in board space.
All of the register outputs are set to a low level during power up. Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low state. This feature simplifies testing because the registers can be set to an initial state prior to executing the test sequence.
The TIBPAL16’ C series is characterized from 0°C to 75°C. The TIBPAL16’ M series is characterized for operation over the full military temperature range of –55°C to 125°C.
These devices are covered by U.S. Patent 4,410,987. IMPACT-X is a trademark of Texas Instruments Incorporated. PAL is a registered trademark of Advanced Micro Devices Inc.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1992, Texas Instruments Incorporated
TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
CIRCUITS
TIBPAL16R4’
C SUFFIX . . . J OR N PACKAGE
M SUFFIX . . . J PACKAGE
(TOP VIEW)
CLK
I
I
I
4
I
I
I
I
I
GND
C SUFFIX . . . J OR N PACKAGE
M SUFFIX . . . J PACKAGE
GND
CLK
I I I I I I I I
10
TIBPAL16R6’
(TOP VIEW)
20 19 18 17 16 15 14 13 12 11
20 19 18 17 16 15 14 13 12 11
V I/O I/O Q Q Q Q I/O I/O OE
V I/O Q Q Q Q Q Q I/O OE
CC
CC
TIBPAL16R4’
C SUFFIX . . . FN PACKAGE
M SUFFIX . . . FK PACKAGE
(TOP VIEW)
CC
I
CLK
I/O
V
18 17 16 15 14
3 2 1 20 19
I
I
I
I
I
910111213
I
I
I/O
I/O
OE
GND
TIBPAL16R6’
C SUFFIX . . . FN PACKAGE
M SUFFIX . . . FK PACKAGE
(TOP VIEW)
I
GND
CLK
OE
CC
V
I/O
I/O
18 17 16 15 14
Q
3 2 1 20 19
I
I
I
I
I
910111213
I
I
I/O Q Q Q Q
Q Q Q Q Q
TIBPAL16R8’
C SUFFIX . . . J OR N PACKAGE
M SUFFIX . . . J PACKAGE
(TOP VIEW)
CLK
I
I
I
4
I
I
I
I
I
GND
Pin assignments in operating mode
10
V
20
CC
Q
19
Q
18
Q
17
Q
16 15
Q
14
Q
13
Q
12
Q
11
OE
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16R8’
C SUFFIX . . . FN PACKAGE
M SUFFIX . . . FK PACKAGE
(TOP VIEW)
I
GND
CLK
OE
CC
V
Q
Q
18 17 16 15 14
Q
3 2 1 20 19
I
I
I
I
I
910111213
I
I
Q Q Q Q Q
functional block diagrams (positive logic)
TIBPAL16L8-10C, TIBPAL16R4-10C
TIBPAL16L8-12M, TIBPAL16R4-12M
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
TIBPAL16L8
CIRCUITS
OE
CLK
10 16
I
16 x
&
32 X 64
166
TIBPAL16R4
EN
1
O
O
I/O
I/O
I/O
I/O
I/O
I/O
EN 2
C1
denotes fused inputs
816
I
16 x
164
&
32 X 64
1D
I = 0
Q
Q
Q
Q
I/O
I/O
I/O
I/O
1
1
EN
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16R6-10C, TIBPAL16R8-10C TIBPAL16R6-12M, TIBPAL16R8-12M HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
functional block diagrams (positive logic)
CIRCUITS
TIBPAL16R6
OE
CLK
816
I
16 x
162
&
32 X 64
EN 2
C1
1D
I = 0
Q
Q
Q
Q
Q
Q
I/O
I/O
1
1
EN
OE
CLK
denotes fused inputs
816
I
16 x
168
TIBPAL16R8
&
32 X 64
EN 2
C1
1D
I = 0
Q
Q
Q
Q
Q
Q
Q
Q
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
I
First Fuse Numbers
I
I
I
I
I
I
I
I
0 4 8 12 16 20 24 28 31
0 32 64 96
128 160 192 224
256 288 320 352 384 416 448 480
512 544 576 608 640 672 704 736
768 800 832 864 896 928 960 992
1024 1056 1088 1120 1152 1184 1216 1248
1280 1312 1344 1376 1408 1440 1472 1504
1536 1568 1600 1632 1664 1696 1728 1760
1792 1824 1856 1888 1920 1952 1984 2016
HIGH-PERFORMANCE IMPACT-XPAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
Increment
TIBPAL16L8-10C
TIBPAL16L8-12M
CIRCUITS
19
O
18
I/O
17
I/O
16
I/O
15
I/O
14
I/O
13
I/O
12
O
11
I
Fuse number = First fuse number + Increment
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16R4-10C TIBPAL16R4-12M HIGH-PERFORMANCE IMPACT-XPAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
logic diagram (positive logic)
CLK
First Fuse Numbers
I
I
I
I
I
I
I
I
0 4812 16 20 24 28 31
0 32 64 96
128 160 192 224
256 288 320 352 384 416 448 480
512 544 576 608 640 672 704 736
768 800 832 864 896 928 960 992
1024 1056 1088 1120 1152 1184 1216 1248
1280 1312 1344 1376 1408 1440 1472 1504
1536 1568 1600 1632 1664 1696 1728 1760
1792 1824 1856 1888 1920 1952 1984 2016
Fuse number = First fuse number + Increment
Increment
CIRCUITS
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
C1
C1
C1
C1
19
18
17
16
15
14
13
12
11
I/O
I/O
Q
Q
Q
Q
I/O
I/O
OE
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
CLK
First Fuse Numbers
I
I
I
I
I
I
I
I
Fuse number = First fuse number + Increment
0 4 8 12 16 20 24 28 31
0 32 64 96
128 160 192 224
256 288 320 352 384 416 448 480
512 544 576 608 640 672 704 736
768 800 832 864 896 928 960 992
1024 1056 1088 1120 1152 1184 1216 1248
1280 1312 1344 1376 1408 1440 1472 1504
1536 1568 1600 1632 1664 1696 1728 1760
1792 1824 1856 1888 1920 1952 1984 2016
HIGH-PERFORMANCE IMPACT-XPAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
Increment
TIBPAL16R6-10C
TIBPAL16R6-12M
CIRCUITS
19
I/O
I = 0
1D
C1
I = 0
1D
C1
I = 0
1D
C1
I = 0
1D
C1
I = 0
1D
C1
I = 0
1D
C1
18
17
16
15
14
13
12
11
Q
Q
Q
Q
Q
Q
I/O
OE
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16R8-10C TIBPAL16R8-12M HIGH-PERFORMANCE IMPACT-XPAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
logic diagram (positive logic)
CLK
First Fuse Numbers
I
I
I
I
I
I
I
I
0 4 8 12 16 20 24 28 31
0 32 64 96
128 160 192 224
256 288 320 352 384 416 448 480
512 544 576 608 640 672 704 736
768 800 832 864 896 928 960 992
1024 1056 1088 1120 1152 1184 1216 1248
1280 1312 1344 1376 1408 1440 1472 1504
1536 1568 1600 1632 1664 1696 1728 1760
1792 1824 1856 1888 1920 1952 1984 2016
Fuse number = First fuse number + Increment
Increment
CIRCUITS
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
I = 0
1D
C1
C1
C1
C1
C1
C1
C1
C1
19
18
17
16
15
14
13
12
11
Q
Q
Q
Q
Q
Q
Q
Q
OE
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage applied to disabled output (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range 0°C to 75°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
MIN NOM MAX UNIT
V
CC
V
IH
V
IL
I
OH
I
OL
f
clock
t
w
t
su
t
T
A
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or tester
Supply voltage 4.75 5 5.25 V High-level input voltage (see Note 2) 2 5.5 V Low-level input voltage (see Note 2) 0.8 V High-level output current –3.2 mA Low-level output current 24 mA Clock frequency 0 62.5 MHz
Pulse duration, clock (see Note 2) Setup time, input or feedback before clock 10 ns
Hold time, input or feedback after clock 0 ns Operating free-air temperature 0 25 75 °C
noise. Testing these parameters should not be attempted without suitable equipment.
High 8 Low 8
CIRCUITS
ns
electrical characteristics over recommended operating free-air temperature range
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
V
IK
V
OH
V
OL
I
OZH
I
OZL
I
I
I
IH
I
IL
I
OS
I
CC
C
i
C
C
i/o
C
clk
All typical values are at VCC = 5 V, TA = 25°C.
I/O leakage is the worst case of I
Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
VCC = 4.75 V, II = –18 mA –0.8 –1.5 V VCC = 4.75 V, IOH = –3.2 mA 2.4 3.2 V VCC = 4.75 V, IOL = 24 mA 0.3 0.5 V VCC = 5.25 V, VO = 2.4 V 100 µA VCC = 5.25 V, VO = 0.4 V –100 µA VCC = 5.25 V, VI = 5.5 V 0.2 mA VCC = 5.25 V, VI = 2.4 V 25 µA VCC = 5.25 V, VI = 0.4 V –0.08 –0.25 mA VCC = 5.25 V, VO = 0 –30 –70 –130 mA VCC = 5.25 V, VI = 0, Outputs open 140 180 mA f = 1 MHz, VI = 2 V 5 pF f = 1 MHz, VO = 2 V 6 pF f = 1 MHz, V f = 1 MHz, V
and IIL or I
OZL
OZH
= 2 V 7.5 pF
I/O
= 2 V 6 pF
CLK
and IIH respectively.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
f
max
t
pd
t
pd
t
en
t
dis
t
en
t † ‡
dis
All typical values are at VCC = 5 V, TA = 25°C.
f
(with feedback)
max
FROM
(INPUT)
With feedback 55.5 80
Without feedback 62.5 85
I, I/O O, I/O R1 = 200 Ω, 3 7 10 ns
CLK Q R2 = 390 Ω, 2 5 8 ns
OE Q See Figure 3 1 4 10 ns OE Q 1 4 10 ns I, I/O O, I/O 3 8 10 ns I, I/O O, I/O 3 8 10 ns
+
tsu)
tpd(CLK to Q)
,
CIRCUITS
TO
(OUTPUT)
f
(without feedback)
max
TEST CONDITION MIN TYP†MAX UNIT
+
twhigh)twlow
MHz
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage applied to disabled output (see Note 1) 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NOTE 1: These ratings apply except for programming pins during a programming cycle.
recommended operating conditions
MIN NOM MAX UNIT
V
CC
V
IH
V
IL
I
OH
I
OL
f
clock w
t
su
t
T
A
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or tester
Supply voltage 4.5 5 5.5 V High-level input voltage 2 5.5 V Low-level input voltage 0.8 V High-level output current –2 mA Low-level output current 12 mA
Clock frequency 0 56 MHz Pulse duration, clock (see Note 2)t Setup time, input or feedback before clock 11 ns
Hold time, input or feedback after clock 0 ns Operating free-air temperature –55 25 125 °C
noise. Testing these parameters should not be attempted without suitable equipment.
High 9 Low 9
CIRCUITS
ns
electrical characteristics over recommended operating free-air temperature range
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
V
IK
V
OH
V
OL
I
OZH
I
OZL
I
I
I
IH
I
IL
I
OS
I
CC
C
i
C
C
i/o
C
clk
All typical values are at VCC = 5 V, TA = 25°C.
I/O leakage is the worst case of I
Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. VO is set at 0.5 V to avoid test problems caused by test equipment ground degradation.
VCC = 4.5 V, II = –18 mA –0.8 –1.5 V VCC = 4.5 V, IOH = –2 mA 2.4 3.2 V VCC = 4.5 V, IOL = 12 mA 0.3 0.5 V
VCC = 5.5 V, VO = 2.4 V 100 µA VCC = 5.5 V, VO = 0.4 V –100 µA
VCC = 5.5 V, VI = 5.5 V 0.2 mA VCC = 5.5 V, VI = 2.4 V 25 µA VCC = 5.5 V, VI = 0.4 V –0.08 –0.25 mA VCC = 5.5 V, VO = 0.5 V –30 –70 –250 mA
VCC = 5.5 V, VI = GND, Outputs open 140 220 mA f = 1 MHz, VI = 2 V 5 pF f = 1 MHz, VO = 2 V 6 pF f = 1 MHz, V f = 1 MHz, V
and IIL or I
OZL
OZH
= 2 V 7.5 pF
I/O
= 2 V 6 pF
CLK
and IIH respectively.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
f
max
t
pd
t
pd
t
en
t
dis
t
en
t † ‡
dis
All typical values are at VCC = 5 V, TA = 25°C.
f
(with feedback)
max
FROM
(INPUT)
With feedback 48 80
Without feedback 56 85
I, I/O O, I/O R1 = 390 Ω, 3 7 12 ns
CLK Q R2 = 750 Ω, 2 5 10 ns
OE Q See Figure 3 1 4 10 ns OE Q 1 4 10 ns I, I/O O, I/O 3 8 14 ns I, I/O O, I/O 2 8 12 ns
+
tsu)
tpd(CLK to Q)
,
CIRCUITS
TO
(OUTPUT)
f
(without feedback)
max
TEST CONDITION MIN TYP†MAX UNIT
+
twhigh)twlow
MHz
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
programming information
Texas Instruments programmable logic devices can be programmed using widely available software and inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming T exas Instruments programmable logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.
preload procedure for registered outputs (see Figure 1 and Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below.
Step 1. With V
at 5 volts and Pin 1 at VIL, raise Pin 11 to V
CC
Step 2. Apply either VIL or VIH to the output corresponding to the register to be preloaded. Step 3. Pulse Pin 1, clocking in preload data. Step 4. Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing the
voltage level at the output pin.
Pin 11
t
Pin 1
t
d
su
t
w
.
IHH
t
d
CIRCUITS
V
IHH
V
IL
V
IH
V
IL
Registered I/O Input Output
NOTE 3: td = tsu = th = 100 ns to 1000 ns V
Figure 1. Preload Waveforms
= 10.25 V to 10.75 v
IHH
V
IH
V
IL
V
OH
V
OL
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
4 V
CIRCUITS
t
pd
(600 ns TYP, 1000 ns MAX)
1.5 V
1.5 V
t
w
t
su
1.5 V
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
power-up reset (see Figure 2)
Following power up, all registers are reset to zero. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the rise of VCC be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met.
V
CC
Active Low
Registered Output
CLK
5 V
V
V
V
V
OH
OL
IH
IL
This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.
This is the setup time for input or feedback.
Figure 2. Power-Up Reset Waveforms
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
PARAMETER MEASUREMENT INFORMATION
5 V
S1
R1
From Output Under Test
Test Point
CIRCUITS
Timing
Input
Data
Input
Input
In-Phase
Output
Out-of-Phase
Output
(see Note D)
1.5 V
t
su
1.5 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
1.5 V 1.5 V
t
pd
1.5 V
t
pd
1.5 V 1.5 V
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
(see Note A)
t
h
1.5 V
t
pd
1.5 V
t
pd
C
L
LOAD CIRCUIT FOR
3-STATE OUTPUTS
(3.5 V) [3 V]
(0.3 V) [0]
(3.5 V) [3 V]
(0.3 V) [0]
(3.5 V) [3 V]
(0.3 V) [0]
V
OH
V
OL
V
OH
V
OL
R2
High-Level
Pulse
Low-Level
Pulse
VOLTAGE WAVEFORMS
Output
Control
(low-level
enabling)
t
en
Waveform 1
S1 Closed
(see Note B)
t
en
Waveform 2
S1 Open
(see Note B)
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
VOLTAGE WAVEFORMS
1.5 V 1.5 V
t
w
1.5 V 1.5 V
PULSE DURATIONS
1.5 V 1.5 V
t
dis
1.5 V
t
dis
1.5 V
(3.5 V) [3 V]
(0.3 V) [0]
(3.5 V) [3 V]
(0.3 V) [0]
(3.5 V) [3 V]
(0.3 V) [0]
3.3 V
VOL +0.5 V
V
OL
V
OH
VOH –0.5 V
0 V
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for t
B. W aveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2
is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For C suffix, use the voltage levels indicated in parentheses ( ), PRR 1 MHz,
tr = tf = 2 ns, duty cycle = 50%; For M suffix, use the voltage levels indicated in brackets [ ], PRR 10 MHz, tr and tf 2 ns, duty
cycle = 50% D. When measuring propagation delay times of 3-state outputs, switch S1 is closed. E. Equivalent loads may be used for testing.
Figure 3. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
dis
.
15
TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
metastable characteristics of TIBPAL16R4-10C, TIBPAL16R6-10C, and TIBPAL16R8-10C
At some point a system designer is faced with the problem of synchronizing two digital signals operating at two different frequencies. This problem is typically overcome by synchronizing one of the signals to the local clock through use of a flip-flop. However, this solution presents an awkward dilemma since the setup and hold time specifications associated with the flip-flop are sure to be violated. The metastable characteristics of the flip-flop can influence overall system reliability.
Whenever the setup and hold times of a flip-flop are violated, its output response becomes uncertain and is said to be in the metastable state if the output hangs up in the region between V lasts until the flip-flop falls into one of its two stable states, which takes longer than the specified maximum propagation delay time (CLK to Q max).
From a system engineering standpoint, a designer cannot use the specified data sheet maximum for propagation delay time when using the flip-flop as a data synchronizer – how long to wait after the specified data sheet maximum must be known before using the data in order to guarantee reliable system operation.
The circuit shown in Figure 4 can be used to evaluate MTBF (Mean Time Between Failure) and t for a selected flip-flop. Whenever the Q output of the DUT is between 0.8 V and 2 V , the comparators are in opposite states. When the Q output of the DUT is higher than 2 V or lower than 0.8 V , the comparators are at the same logic level. The outputs of the two comparators are sampled a selected time (t) after SCLK. The exclusive OR gate detects the occurrence of a failure and increments the failure counter.
Noise
Generator
DATA IN
SCLK
DUT
Comparator
1D
Comparator
C1
CIRCUITS
and VIH. This metastable condition
IL
V
IH
1D
C1
V
IL
1D
C1
1D
C1
MTBF
Counter
+
SCLK + ∆t
Figure 4. Metastable Evaluation Test Circuit
In order to maximize the possibility of forcing the DUT into a metastable state, the input data signal is applied so that it always violates the setup and hold time. This condition is illustrated in the timing diagram in Figure 5. Any other relationship of SCLK to data will provide less chance for the device to enter into the metastable state.
Data
SCLK
SCLK + t
MTBF
t
rec
Time (sec)
+
# Failures
= ∆t – CLK to Q (max)
t
t
Figure 5. Timing Diagram
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
By using the described test circuit, MTBF can be determined for several different values of t (see Figure 4). Plotting this information on semilog scale demonstrates the metastable characteristics of the selected flip-flop. Figure 6 shows the results for the TIBPAL16’-10C operating at 1 MHz.
10 10 10 10 10
MTBF (s)
10 10 10 10
10 yr
1 yr
1 mo
1 wk
1 day
1 hr
1 min 10 s
0 10203040506070
t (ns)
f
clk
f
data
= 1 MHz
= 500 kHz
CIRCUITS
Figure 6. Metastable Characteristics
From the data taken in the above experiment, an equation can be derived for the metastable characteristics at other clock frequencies.
The metastable equation:
1
MTBF
+
f
SCLK
xf
data
xC1e
(*C2 xDt)
The constants C1 and C2 describe the metastable characteristics of the device. From the experimental data, these constants can be solved for: C1 = 9.15 X 10–7 and C2 = 0.959
Therefore
1
MTBF
+
f
SCLK
xf
x9.15x10
data
*
7e(*0.959 xDt)
definition of variables
DUT (Device Under Test): The DUT is a 10-ns registered PLD programmed with the equation Q : = D. MTBF (Mean Time Between Failures): The average time (s) between metastable occurrences that cause a
violation of the device specifications. f
(system clock frequency): Actual clock frequency for the DUT.
SCLK
(data frequency): Actual data frequency for a specified input to the DUT.
f
data
C1: Calculated constant that defines the magnitude of the curve. C2: Calculated constant that defines the slope of the curve. t
(metastability recovery time): Minimum time required to guarantee recovery from metastability , at a given
rec
MTBF failure rate. t t: The time difference (ns) from when the synchronizing flip-flop is clocked to when its output is sampled.
rec
= ∆t –
(CLK to Q, max)
tpd
The test described above has shown the metastable characteristics of the TIBP AL16R4/R6/R8-10C series. For additional information on metastable characteristics of Texas Instruments logic circuits, please refer to TI Applications publication SDAA004, ”Metastable Characteristics, Design Considerations for ALS, AS, and LS Circuits.’’
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
TYPICAL CHARACTERISTICS
CIRCUITS
PROPAGATION DELAY TIME
FREE-AIR TEMPERATURE
VCC = 5 V CL = 50 pF R1 = 200
R2 = 390 1 Output Switching
t
(CLK to Q)
PHL
Propagation Delay Time – ns
–75 –50 –25 0 25 50
t
(CLK to Q)
PLH
TA – Free-Air Temperature – °C
Figure 7
vs
t
(I, I/O to O, I/O)
PHL
t
PLH
(I, I/O to O, I/O)
75 100 125
PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
TA = 25 °C CL = 50 pF R1 = 200
R2 = 390
t
(I, I/O to O, I/O)
t
PHL
t
PLH
PHL
t
(I, I/O to O, I/O)
PLH
(CLK to Q)
(CLK to Q)
Propagation Delay Time – ns
4.5 4.75 5 5.25 5.5 VCC – Supply Voltage – V
Figure 8
PROPAGATION DELAY TIME
NUMBER OF OUTPUTS SWITCHING
11
VCC = 5 V TA = 25 °C
10
CL = 50 pF R1 = 200 R2 = 390
t
Propagation Delay Time – ns
012345
(I, I/O to O, I/O)
PLH
t
(CLK to Q)
PHL
t
(CLK to Q)
PLH
Number of Outputs Switching
Figure 9
vs
t
(I, I/O to O, I/O)
PHL
678
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
18
VCC = 5 V TA = 25 °C
16
R1 = 200 R2 = 390
1 Output Switching
14
12
TIBPAL16L8-10C, TIBPAL16R4-10C, TIBPAL16R6-10C, TIBPAL16R8-10C
TIBPAL16L8-12M, TIBPAL16R4-12M, TIBPAL16R6-12M, TIBPAL16R8-12M
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE
HIGH-PERFORMANCE IMPACT-X PAL
SRPS017 – D3023, MA Y 1987 – REVISED MARCH 1992
POWER DISSIPATION
vs
FREQUENCY
8-BIT COUNTER MODE
900
VCC = 5 V
800
CIRCUITS
10
Propagation Delay Time – ns
0 600
100 200 300 400
CL – Load Capacitance – pF
t
PLH
t
(I, I/O to O, I/O)
PHL
t
PLH
t
PHL
(I, I/O to O, I/O)
Figure 10
180
Unprogrammed Device
170
160
150
(CLK to Q)
(CLK to Q)
500
FREE-AIR TEMPERATURE
– Power Dissipation – mW
D
P
SUPPLY CURRENT
vs
VCC = 5.5 V
VCC = 5.25 V
TA = 0 °C
700
600
TA = 25 °C
TA = 80 °C
1 4 10 40 100
F – Frequency – MHz
Figure 11
140
130
– Supply Current – mA
CC
120
I
110
100
–75 –50 –25 0 25 50
VCC = 5 V
VCC = 4.75 V
TA – Free-Air Temperature – °C
Figure 12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
VCC = 4.5 V
75 100 125
19
TI North American Sales Offices
ALABAMA: Huntsville: (205) 837-7530 ARIZONA: Phoenix: (602) 995-1007 CALIFORNIA: Irvine: (714) 660-1200
San Diego: (619) 278-9600 Santa Clara: (408) 980-9000 Woodland Hills: (818) 704-8100
COLORADO: Aurora: (303) 368-8000 CONNECTICUT: W allingford: (203) 269-0074 FLORIDA: Altamonte Springs: (407) 260-2116
Fort Lauderdale: (305) 973-8502 Tampa: (813) 885-7588
GEORGIA: Norcross: (404) 662-7967 ILLINOIS: Arlington Heights: (708) 640-3000 INDIANA: Carmel: (317) 573-6400
Fort Wayne: (219) 489-4697 KANSAS: Overland Park: (913) 451-4511 MARYLAND: Columbia: (410) 964-2003 MASSACHUSETTS: Waltham: (617) 895-9100 MICHIGAN: Farmington Hills: (313) 553-1581 MINNESOTA: Eden Prairie: (612) 828-9300 MISSOURI: St. Louis: (314) 821-8400 NEW JERSEY: Iselin: (908) 750-1050 NEW MEXICO: Albuquerque: (505) 345-2555 NEW YORK: East Syracuse: (315) 463-9291
Fishkill: (914) 897-2900 Melville: (516) 454-6600 Pittsford: (716) 385-6770
NORTH CAROLINA: Charlotte: (704) 527-0930 Raleigh: (919) 876-2725
OHIO: Beachwood: (216) 765-7258 Beavercreek: (513) 427-6200
OREGON: Beaverton: (503) 643-6758 PENNSYLVANIA: Blue Bell: (215) 825-9500 PUERTO RICO: Hato Rey: (809) 753-8700 TEXAS: Austin: (512) 250-6769
Dallas: (214) 917-1264 Houston: (713) 778-6592 Midland: (915) 561-7137
UTAH: Salt Lake CIty: (801) 466-8972 WISCONSIN: Waukesha: (414) 798-1001 CANADA: Nepean: (613) 726-1970
Richmond Hill: (416) 884-9181 St. Laurent: (514) 335-8392
TI Regional Technology Centers
CALIFORNIA: Irvine: (714) 660-8140 Santa Clara: (408) 748-2222
GEORGIA: Norcross: (404) 662-7945 ILLINOIS: Arlington Heights: (708) 640-2909 INDIANA: Indianapolis: (317) 573-6400 MASSACHUSETTS: Waltham: (617) 895-9196 MEXICO: Mexico City: 491-70834 MINNESOTA: Minneapolis: (612) 828-9300 TEXAS: Dallas: (214) 917-3881 CANADA: Nepean: (613) 726-1970
TI Authorized North American Distributors
Alliance Electronics, Inc. (military product only) Almac/Arrow Anthem Electronics Arrow/Schweber Future Electronics (Canada) GRS Electronics Co., Inc. Hall-Mark Electronics Marshall Industries Newark Electronics Rochester Electronics, Inc. (obsolete product only (508) 462-9332) Wyle Laboratories Zeus Components
TI Distributors
ALABAMA: Arrow/Schweber (205) 837-6955; Hall-Mark (205) 837-8700; Marshall (205) 881-9235.
ARIZONA: Anthem (602) 966-6600; Arrow/Schweber (602) 437-0750; Hall-Mark (602) 431-0030; Marshall (602) 496-0290; Wyle (602) 437-2088.
CALIFORNIA: Los Angeles/Orange County: Anthem (818) 775-1333, (714) 768-4444; Arrow/Schweber (818) 380-9686, (714) 838-5422; Hall-Mark (818) 773-4500, (714) 727-6000; Marshall (818) 878-7000, (714) 458-5301; Wyle (818) 880-9000, (714) 863-9953; Zeus (714) 921-9000, (818) 889-3838;
Sacramento: Anthem (916) 624-9744; Hall-Mark (916) 624-9781; Marshall (916) 635-9700; Wyle (916) 638-5282;
San Diego: Anthem (619) 453-9005; Arrow/Schweber (619) 565-4800; Hall-Mark (619) 268-1201; Marshall (619) 578-9600; Wyle (619) 565-9171; Zeus (619) 277-9681.
San Francisco Bay Area: Anthem (408) 453-1200; Arrow/Schweber (408) 441-9700, (510) 490-9477; Hall-Mark (408) 432-4000; Marshall (408) 942-4600; Wyle (408) 727-2500; Zeus (408) 629-4789.
COLORADO: Anthem (303) 790-4500; Arrow/Schweber (303) 799-0258; Hall-Mark (303) 790-1662; Marshall (303) 451-8383; Wyle (303) 457-9953.
CONNECTICUT: Anthem (203) 575-1575; Arrow/Schweber (203) 265-7741; Hall-Mark (203) 271-2844; Marshall (203) 265-3822.
FLORIDA:Fort Lauderdale:Arrow/Schweber (305) 429-8200; Halll-Mark (305) 971-9280; Marshall (305) 977-4880.
Orlando: Arrow/Schweber (407) 333-9300; Hall-Mark (407) 830-5855; Marshall (407) 767-8585; Zeus (407) 788-9100.
Tampa: Hall-Mark (813) 541-7440; Marshall (813) 573-1399.
GEORGIA: Arrow/Schweber (404) 497-1300; Hall-Mark (404) 623-4400; Marshall (404) 923-5750.
ILLINOIS: Anthem (708) 884-0200; Arrow/Schweber (708) 250-0500; Hall-Mark (312) 860-3800; Marshall (708) 490-0155; Newark (312)784-5100.
INDIANA: Arrow/Schweber (317) 299-2071; Hall-Mark (317) 872-8875; Marshall (317) 297-0483.
IOWA: Arrow/Schweber (319) 395-7230. KANSAS: Arrow/Schweber (913) 541-9542; Hall-Mark
(913) 888-4747; Marshall (913) 492-3121. MARYLAND: Anthem (301) 995-6640; Arrow/Schweber
(301) 596-7800; Hall-Mark (301) 988-9800; Marshall (301) 622-1118; Zeus (301) 997-1118.
MASSACHUSETTS: Anthem (508) 657-5170; Arrow/Schweber (508) 658-0900; Hall-Mark (508) 667-0902; Marshall (508) 658-0810; Wyle (617) 272-7300; Zeus (617) 246-8200.
MICHIGAN: Detroit: Arrow/Schweber (313) 462-2290; Hall-Mark (313) 416-5800; Marshall (313) 525-5850; Newark (313) 967-0600.
MINNESOTA: Anthem (612) 944-5454; Arrow/Schweber (612) 941-5280; Hall-Mark (612) 881-2600; Marshall (612) 559-2211.
MISSOURI: Arrow/Schweber (314) 567-6888; Hall-Mark (314) 291-5350; Marshall (314) 291-4650.
NEW JERSEY: Anthem (201) 227-7960; Arrow/Schweber (201) 227-7880, (609) 596-8000; Hall-Mark (201) 515-3000, (609) 235-1900; Marshall (201) 882-0320, (609) 234-9100.
NEW MEXICO: Alliance (505) 292-3360. NEW YORK: Long Island: Anthem (516) 864-6600;
Arrow/Schweber (516) 231-1000; Hall-Mark (516) 737-0600; Marshall (516) 273-2424; Zeus (914) 937-7400.
Rochester: Arrow/Schweber (716) 427-0300; Hall-Mark (716) 425-3300; Marshall (716) 235-7620.
Syracuse: Marshall (607) 785-2345. NORTH CAROLINA: Arrow/Schweber (919) 876-3132;
Hall-Mark (919) 872-0712; Marshall (919) 878-9882. OHIO: Cleveland: Arrow/Schweber (216) 248-3990;
Hall-Mark (216) 349-4632; Marshall (216) 248-1788.
Columbus: Hall-Mark (614) 888-3313. Dayton: Arrow/Schweber (513) 435-5563; Marshall (513)
898-4480; Zeus (513) 293-6162. OKLAHOMA: Arrow/Schweber (918) 252-7537; Hall-Mark
(918) 254-6110. OREGON: Almac/Arrow (503) 629-8090; Anthem (503)
643-1114; Marshall (503) 644-5050; Wyle (503) 643-7900. PENNSYLVANIA: Anthem (215) 443-5150;
Arrow/Schweber (215) 928-1800; GRS (215) 922-7037; (609) 964-8560; Marshall (412) 788-0441.
TEXAS: Austin: Arrow/Schweber (512) 835-4180; Hall-Mark (512) 258-8848; Marshall (512) 837-1991; Wyle (512) 345-8853;
Dallas: Anthem (214) 238-7100; Arrow/Schweber (214) 380-6464; Hall-Mark (214) 553-4300; Marshall (214) 233-5200; Wyle (214) 235-9953; Zeus (214) 783-7010;
Houston: Arrow/Schweber (713) 530-4700; Hall-Mark (713) 781-6100; Marshall (713) 467-1666; Wyle (713) 879-9953.
UTAH: Anthem (801) 973-8555; Arrow/Schweber (801) 973-6913; Marshall (801) 973-2288; Wyle (801) 974-9953.
WASHINGTON: Almac/Arrow (206) 643-9992, Anthem (206) 483-1700; Marshall (206) 486-5747; Wyle (206) 881-1150.
WISCONSIN: Arrow/Schweber (414) 792-0150; Hall-Mark (414) 797-7844; Marshall (414) 797-8400.
CANADA: Calgary: Future (403) 235-5325; Edmonton: Future (403) 438-2858; Montreal: Arrow/Schweber (514) 421-7411; Future (514)
694-7710; Marshall (514) 694-8142 Ottawa: Arrow/Schweber (613) 226-6903; Future (613) 820-8313.
Quebec: Future (418) 897-6666. Toronto: Arrow/Schweber (416) 670-7769;
Future (416) 612-9200; Marshall (416) 458-8046. Vancouver: Arrow/Schweber (604) 421-2333;
Future (604) 294-1166.
TI Die Processors
Chip Supply (407) 298-7100 Elmo Semiconductor (818) 768-7400 Minco T echnology Labs (512) 834-2022
Customer Response Center
TOLL FREE: (800) 336-5236 OUTSIDE USA: (214) 995-6611
(8:00 a.m. – 5:00 p.m. CST)
1992 T exas Instruments Incorporated
D0892
SRPS017
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...