DOutput Common-Mode Control
DWide Power Supply Voltage Range: 5 V, ±5 V,
12 V, 15 V
DInput Common-Mode Range Shifted to
Include the Negative Power Supply Rail
DPower-Down Capability (THS4504)
DEvaluation Module Available
DESCRIPTION
The THS4504 and THS4505 are high-performance fully
differential amplifiers from Texas Instruments. The
THS4504, featuring power-down capability, and the
THS4505, without power-down capability, set new
performance standards for fully differential amplifiers
with unsurpassed linearity, supporting 12-bit operation
through 40 MHz. Package options include the 8-pin
SOIC and the 8-pin MSOP with PowerPAD for a
smaller footprint, enhanced ac performance, and
improved thermal dissipation capability.
APPLICATION CIRCUIT DIAGRAM
APPLICATIONS
DHigh Linearity Analog-to-Digital Converter
Preamplifier
DWireless Communication Receiver Chains
DSingle-Ended to Differential Conversion
DDifferential Line Driver
DActive Filtering of Differential Signals
over operat i n g f ree-air temperature range unless otherwise noted
UNIT
Supply voltage, V
Input voltage, V
Output current, IO
S
I
(2)
Differential input voltage, V
ID
16.5 V
±V
S
150 mA
4 V
Continuous power dissipation See Dissipation Rating Table
Maximum junction temperature, T
Operating free-air temperature range, T
Storage temperature range, T
J
A
stg
Lead temperature
1,6 mm (1/16 inch) from case for 10 seconds
(1)
Stresses above these ratings may cause permanent damage.
150°C
−40°C to 85°C
−65°C to
150°C
300°C
Exposure to absolute maximum conditions for extended periods
may degrade device reliability. These are stress ratings only, and
functional operation of the device at these or any other conditions
beyond those specified is not implied.
(2)
The THS450x may incorporate a PowerPAD on the underside of
the chip. This acts as a heatsink and must be connected to a
thermally dissipative plane for proper power dissipation. Failure
to do so may result in exceeding the maximum junction
temperature which could permanently damage the device. See TI
technical brief SLMA002 for more information about utilizing the
PowerPAD thermally enhanced package.
PIN ASSIGNMENTS
THS4504
(TOP VIEW)
D AND DGN
(1)
This integrated circuit can be damaged by ESD. Texas
Instruments recommends that all integrated circuits be
handled with appropriate precautions. Failure to observe
proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to
complete device failure. Precision integrated circuits may be more
susceptible t o damage because very small parametric changes could
cause the device not to meet its published specifications.
PACKAGE DISSIPATION RATINGS
θ
(°C/W)
θ
(°C/W)
D (8 pin)38.3167740 mW390 mW
DGN (8 pin)4.758.42.14 W1.11 W
POWER RATING
TA ≤ 25°CTA = 85°C
RECOMMENDED OPERATING CONDITIONS
MINNOM MAX UNIT
Dual supply±5±7.5
Single supply4.5515
Operating free-air temperature, TA−4085°C
PACKAGE/ORDERING INFORMATION
ORDERABLE PACKAGE AND NUMBER
PLASTIC
SMALL OUTLINE
(1)
(D)
THS4504DTHS4504DGNBDB
THS4505DTHS4505DGNBDC
(1)
This package is available taped and reeled. To order this
packaging option, add an R suffix to the part number (e.g.,
THS4504DR).
Open-loop voltage gain55525050dBMin
Input offset voltage−4−7 / −1−8 / 0−9 / +1mVMax
Average offset voltage drift±10±10µV/°CTyp
Input bias current44.655.2µAMax
Average bias current drift±10±10nA/°CTyp
Input offset current0.5122µAMax
Average offset current drift±40±40nA/°CTyp
Open-loop voltage gain54514949dBMin
Input offset voltage−4−7 / −1−8 / 0−9 / +1mVMax
Average offset voltage drift±10±10µV/°CTyp
Input bias current44.655.2µAMax
Average bias current drift±10±10nA/°CTyp
Input offset current0.50.71.21.2µAMax
Average offset current drift±20±20nA/°CTyp
Specified operating voltage5151515VMax
Maximum quiescent current14171921mAMax
Minimum quiescent current1411108mAMin
Power supply rejection (+PSRR)75726966dBMin
= 2.5 V1233µAMax
OCM
left floating2.52.552.62.6VMax
OCM
left floating2.52.452.42.4VMin
OCM
0°C to
70°C
−40°C
to 85°C
www.ti.com
UNITS
MIN/
MAX
POWER DOWN (THS4505 ONL Y)
Enable voltage thresholdDevice enabled ON above 2.1 V2.1VMin
Disable voltage thresholdDevice disabled OFF below 0.7 V0.7VMax
Power-down quiescent current60080012001200µAMax
Input bias current100125140140µAMax
Input impedance50 || 1kΩ || pFTyp
Turnon time delay1000nsTyp
Turnoff time delay800nsTyp
6
www.ti.com
SLOS363A − AUGUST 2002 − REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
Table of Graphs (±5 V)
Small signal unity gain frequency response1
Small signal frequency response2
0.1 dB gain flatness frequency response3
Large signal frequency response4
Harmonic distortion (single-ended input to differential output) vs Frequency5
Harmonic distortion (single-ended input to differential output) vs Output voltage swing6, 7
Harmonic distortion (single-ended input to differential output) vs Load resistance8
Third order intermodulation distortion (single-ended input to differential output) vs Frequency9
Third order output intercept point vs Frequency10
Slew rate vs Differential output voltage step11
Settling time12, 13
Large signal transient response14
Small signal transient response15
Overdrive recovery16, 17
Voltage and current noise vs Frequency18
Rejection ratios vs Frequency19
Rejection ratios vs Case temperature20
Output balance error vs Frequency21
Open-loop gain and phase vs Frequency22
Open-loop gain vs Case temperature23
Input bias offset current vs Case temperature24
Quiescent current vs Supply voltage25
Input offset voltage vs Case temperature26
Common-mode rejection ratio vs Input common-mode range27
Output voltage vs Load resistance28
Closed-loop output impedance vs Frequency29
Harmonic distortion (single-ended and differential input to differential output) vs Output common-mode voltage30
Small signal frequency response at V
Output offset voltage at V
Quiescent current vs Power-down voltage33
Turnon and turnoff delay times34
Single-ended output impedance in power down vs Frequency35
Power-down quiescent current vs Case temperature36
Power-down quiescent current vs Supply voltage37
OCM
OCM
vs Output common-mode voltage32
FIGURE
31
7
SLOS363A − AUGUST 2002 − REVISED AUGUST 2003
TYPICAL CHARACTERISTICS
Table of Graphs (5 V)
Small signal unity gain frequency response38
Small signal frequency response39
0.1 dB gain flatness frequency response40
Large signal frequency response41
Harmonic distortion (single-ended input to differential output) vs Frequency42
Harmonic distortion (single-ended input to differential output) vs Output voltage swing43, 44
Harmonic distortion (single-ended input to differential output) vs Load resistance45
Third-order intermodulation distortion vs Frequency46
Third-order intercept point vs Frequency47
Slew rate vs Differential output voltage step48
Settling time49, 50
Overdrive recovery51, 52
Large-signal transient response53
Small-signal transient response54
Voltage and current noise vs Frequency55
Rejection ratios vs Frequency56
Rejection ratios vs Case temperature57
Output balance error vs Frequency58
Open-loop gain and phase vs Frequency59
Open-loop gain vs Case temperature60
Input bias offset current vs Case temperature61
Quiescent current vs Supply voltage62
Input offset voltage vs Case temperature63
Common-mode rejection ratio vs Input common-mode range64
Output voltage vs Load resistance65
Closed-loop output impedance vs Frequency66
Harmonic distortion (single-ended and differential input) vs Output common-mode voltage67
Small signal frequency response at V
Output offset voltage vs Output common-mode voltage69
Quiescent current vs Power-down voltage70
Turnon and turnoff delay times71
Single-ended output impedance in power down vs Frequency72
Power-down quiescent current vs Case temperature73
Power-down quiescent current vs Supply voltage74
OCM
www.ti.com
FIGURE
68
8
www.ti.com
SLOS363A − AUGUST 2002 − REVISED AUGUST 2003
TYPICAL CHARACTERISTICS (±5 V Graphs)
SMALL SIGNAL UNITY GAIN FREQUENCY
RESPONSE
1
0.5
0
−0.5
−1
−1.5
−2
Gain = 1
−2.5
RL = 800 Ω
Rf = 499 Ω
−3
Small Signal Unity Gain − dB
PIN = −20 dBm
−3.5
VS = ±5 V
−4
0.11101001000
f − Frequency − MHz
Figure 1
LARGE SIGNAL FREQUENCY RESPONSE
25
Gain = 10, Rf = 1.8 kΩ
20
Gain = 5, Rf = 1.8 kΩ
15
10
Gain = 2, Rf = 1.8 kΩ
5
Large Signal Gain − dB
Gain = 1, Rf = 499 Ω
0
−5
0.11101001000
f − Frequency − MHz
RL = 800 Ω
VO = 2 V
VS = ±5 V
PP
Figure 4
SMALL SIGNAL FREQUENCY RESPONSE
22
Gain = 10
20
18
16
Gain = 5
14
12
10
8
Gain = 2
6
RL = 800 Ω
4
Small Signal Gain − dB
Rf =499 Ω
2
PIN = −20 dBm
0
VS = ±5 V
−2
0.11101001000
f − Frequency − MHz
Figure 2
HARMONIC DISTORTION
vs
FREQUENCY
0
Single-Ended Input to
−10
Differential Output
Gain = 1
−20
RL = 800 Ω
−30
Rf = 499 Ω
VO = 2 V
−40
−50
−60
−70
−80
Harmonic Distortion − dBc
−90
−100
0.1110100
VS = ±5 V
PP
HD2
HD3
f − Frequency − MHz
Figure 5
0.1 dB GAIN FLATNESS
FREQUENCY RESPONSE
0.05
Rf = 499 Ω
0
−0.05
−0.1
−0.15
Gain = 1
−0.2
−0.25
−0.3
RL = 800 Ω
PIN = −20 dBm
VS = ±5 V
1
101001000
f − Frequency − MHz
0.1 dB Gain Flatness − dB
Figure 3
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
0
Single-Ended Input to
−10
Differential Output
Gain = 1
−20
RL = 800 Ω
−30
Rf = 499 Ω
f= 8 MHz
−40
VS = ±5 V
−50
−60
−70
−80
Harmonic Distortion − dBc
−90
−100
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VO − Output Voltage Swing − V
HD2
Figure 6
HD3
HARMONIC DISTORTION
vs
OUTPUT VOLTAGE SWING
0
Single Input to
−10
Differential Output
Gain = 1
−20
RL = 800 Ω
−30
Rf = 499 Ω
f= 30 MHz
−40
VS = ±5 V
−50
−60
−70
−80
Harmonic Distortion − dBc
−90
−100
HD3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VO − Output Voltage Swing − V
Figure 7
HD2
HARMONIC DISTORTION
vs
LOAD RESISTANCE
0
−10
−20
−30
−40
−50
−60
−70
Harmonic Distortion − dBc
−80
−90
HD3, 8 MHz
−100
040080012001600
RL − Load Resistance − Ω
HD3, 30 MHz
Single-Ended Input to
Differential Output
Gain = 1
VO = 2 V
PP
Rf = 499 Ω
VS = ±5 V
HD2, 30 MHz
HD2, 8 MHz
Figure 8
THIRD-ORDER INTERMODULATION
DISTORTION
vs
FREQUENCY
−30
Single-Ended Input to
Differential Output
−40
Gain = 1
RL = 800 Ω
−50
Rf = 499 Ω
VS = ±5 V
−60
−70
−80
−90
−100
Third-Order Intermodulation Distortion − dBc
10100
f − Frequency − MHz
VO = 2 V
PP
VO = 1 V
200 kHz Tone Spacing
Figure 9
PP
9
E
SLOS363A − AUGUST 2002 − REVISED AUGUST 2003
TYPICAL CHARACTERISTICS (±5 V Graphs)
www.ti.com
THIRD-ORDER OUTPUT INTERCEPT
POINT
vs
60
50
40
30
20
10
3
0
OIP − Third-Order Output Intersept Point − dBm
020406080100
FREQUENCY
Gain = 1
Rf = 499 Ω
VO = 2 V
VS = ± 5 V
200 kHz Tone Spacing
Normalized to 200 Ω
200 kHz Tone Spacing
f − Frequency − MHz
PP
Normalized to 50 Ω
RL = 800 Ω
Figure 10
SETTLING TIME
3
2
1
0
−1
− Output Voltage − V
O
V
−2
−3
0510 15 20 25 30 35 40
Rising Edge
Gain = 1
RL = 800 Ω
Rf = 499 Ω
f= 1 MHz
VS = ±5 V
t − Time − ns
Falling Edge
SLEW RATE
vs
DIFFERENTIAL OUTPUT VOLTAGE STEP
2000
Gain = 1
1800
RL = 800 Ω
Rf = 499 Ω
1600
sµ
VS = ±5 V
1400
V/
1200
1000
800
600
SR − Slew Rate −
400
200
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
VO − Differential Output Voltage Step − V
Fall
Rise
Figure 11
LARGE-SIGNAL TRANSIENT RESPONSE
2
1.5
1
0.5
0
−0.5
− Output Voltage − V
O
−1
V
−1.5
−2
−1000100200300400500
Gain = 1
RL = 800 Ω
Rf = 499 Ω
tr/tf = 300 ps
VS = ±5 V
t − Time − ns
1.5
1
0.5
0
−0.5
− Output Voltage − V
O
V
−1
−1.5
050100150 200250300
SETTLING TIME
Rising Edge
Gain = 1
RL = 800 Ω
Rf = 499 Ω
f= 1 MHz
VS = ±5 V
Falling Edge
t − Time − ns
Figure 12
SMALL-SIGNAL TRANSIENT RESPONS
0.4
0.3
0.2
0.1
0
−0.1
− Output Voltage − V
O
−0.2
V
−0.3
−0.4
−1000100200300400500
Gain = 1
RL = 800 Ω
Rf = 499 Ω
tr/tf = 300 ps
VS = ±5 V
t − Time − ns
OVERDRIVE RECOVERY
5
Gain = 4
4
RL = 800 Ω
Rf = 499 Ω
3
Overdrive = 4.5 V
2
VS = ±5 V
1
0
−1
−2
−3
Single-Ended Output Voltage − V
−4
−5
0 0.1 0.2 0.3 0.4 0.5 0.6
10
Figure 13
t − Time − µs
Figure 16
0.7 0.8 0.9 1
2.5
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
−2.5
Figure 14
OVERDRIVE RECOVERY
6
Gain = 4
5
RL = 800 Ω
4
Rf = 499 Ω
Overdrive = 5.5 V
3
VS = ±5 V
2
1
0
−1
−2
− Input Voltage − VV
I
−3
−4
Single-Ended Output Voltage − V
−5
−6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t − Time − µs
Figure 17
3
2
1
0
−1
−2
−3
Figure 15
VOLTAGE AND CURRENT NOISE
vs
FREQUENCY
100
nV/ Hz
10
− Input Voltage − VV
I
− Voltage Noise −
n
V
1
0.01 0.1110100
f − Frequency − kHz
Figure 18
V
n
I
n
1000 10 k
pA/ Hz
− Current Noise −
n
I
www.ti.com
0
INPUT OFFSET VOLTAGE
COMMON-MODE REJECTION RATIO
SLOS363A − AUGUST 2002 − REVISED AUGUST 2003
TYPICAL CHARACTERISTICS (±5 V Graphs)
REJECTION RATIOS
vs
90
80
70
60
50
40
30
20
Rejection Ratios − dB
10
0
−10
0.1110100
FREQUENCY
PSRR−
RL = 800 Ω
VS = ±5 V
f − Frequency − MHz
PSRR+
CMMR
Figure 19
OPEN-LOOP GAIN AND PHASE
vs
60
50
40
30
20
Open-Loop Gain − dB
10
0
0.010.11101001000
FREQUENCY
Gain
Phase
f − Frequency − MHz
PIN = −30 dBm
RL = 800 Ω
VS = ±5 V
Figure 22
Rejection Ratios − dB
30
0
−30
°
−60
Phase −
−90
Open-Loop Gain − dB
−120
−150
REJECTION RATIOS
vs
120
100
CASE TEMPERATURE
CMMR
80
60
40
20
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
PSRR+
RL = 800 Ω
VS = ±5 V
Case Temperature − °C
Figure 20
OPEN-LOOP GAIN
vs
CASE TEMPERATURE
58
57
56
55
54
53
52
51
50
49
−40−30−20−10 0 10 20 30 40 50 60 70 80 9
Case Temperature − °C
RL = 800 Ω
VS = ±5 V
Figure 23
OUTPUT BALANCE ERROR
vs
10
0
−10
−20
−30
−40
−50
−60
Output Balance Error − dB
−70
−80
0.1110100
FREQUENCY
PIN = 16 dBm
RL = 800 Ω
Rf = 499 Ω
VS = ±5 V
f − Frequency − MHz
Figure 21
INPUT BIAS AND OFFSET CURRENT
vs
CASE TEMPERATURE
3.4
VS = ±5 V
3.3
Aµ
3.2
3.1
3
2.9
2.8
− Input Bias Current −
2.7
IB
I
2.6
2.5
−40−30−20−100 10 20 30 40 50 60 70 80 90
I
Case Temperature − °C
IB+
I
IB−
I
OS
Figure 24
0
−0.01
Aµ
−0.02
−0.03
−0.04
−0.05
−0.06
− Input Offset Current −
−0.07
OS
I
−0.08
−0.09
QUIESCENT CURRENT
25
20
15
10
Quiescent Current − mA
5
0
SUPPLY VOLTAGE
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VS − Supply Voltage − ±V
Figure 25
vs
TA = 85°C
TA = 25°C
TA = −40°C
CASE TEMPERATURE
5
VS = ±5 V
4
3
2
− Input Offset Voltage − mV
1
OS
V
0
−40−30−20−10 0 10 20 30 40 50 60 70 80 90
Case Temperature − °C
Figure 26
vs
INPUT COMMON-MODE RANGE
110
100
90
80
70
60
50
40
30
20
10
0
−10
CMRR − Common-Mode Rejection Ratio − dB
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
Input Common-Mode Voltage Range − V
VS = ±5 V
Figure 27
vs
11
Loading...
+ 23 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.