V
OUT
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
TYPICAL ARBITARY WAVEFORM
GENERATOR OUTPUT DRIVE CIRCUIT
−90
−80
−70
−60
−50
−40
−20
1 M 10 M 100 M
f − Frequency − Hz
Total Harmonic Distortion − dBc
G = 5,
RF = 715 Ω ,
RL = 100 Ω ,
VS = ± 15 V
100 k
−30
VO = 20 V
PP
VO = 10 V
PP
VO = 5 V
PP
VO = 2 V
PP
+
−
+
−
THS3092
THS3092
+
−
THS4271
IOUT1
IOUT2
DAC5686
查询THS3092供应商
HIGH-VOLTAGE, LOW-DISTORTION, CURRENT-FEEDBACK
OPERATIONAL AMPLIFIERS
FEATURES DESCRIPTION
• Low Distortion
– 66 dBc HD2 at 10 MHz, R
– 76 dBc HD3 at 10 MHz, R
• Low Noise
– 13 pA/√ Hz Noninverting Current Noise and VDSL line drivers.
– 13 pA/√ Hz Inverting Current Noise
– 2 nV/√ Hz Voltage Noise
• High Slew Rate: 5700 V/µs (G = 5, V
• Wide Bandwidth: 160 MHz (G = 5, R
• High Output Current Drive: ±250 mA
• Wide Supply Range: ±5 V to ±15 V
• Power-Down Feature: (THS3096 Only)
APPLICATIONS
• High-Voltage Arbitrary Waveform
• Power FET Driver
• Pin Driver
• VDSL Line Driver
L
L
= 100 Ω
= 100 Ω
= 20 V
O
= 100 Ω )
L
)
PP
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
The THS3092 and THS3096 are dual high-voltage,
low-distortion, high speed, current-feedback
amplifiers designed to operate over a wide supply
range of ± 5 V to ± 15 V for applications requiring
large, linear output signals such as Pin, Power FET,
The THS3096 features a power-down pin (PD) that
puts the amplifier in low power standby mode, and
lowers the quiescent current from 9.5 mA to 500 µA.
The wide supply range combined with total harmonic
distortion as low as -66 dBc at 10 MHz, in addition, to
the high slew rate of 5700 V/µs makes the
THS3092/6 ideally suited for high-voltage arbitrary
waveform driver applications. Moreover, having the
ability to handle large voltage swings driving into
high-resistance and high-capacitance loads while
maintaining good settling time performance makes
the THS3092/6 ideal for Pin driver and PowerFET
driver applications.
The THS3092 is offered in an 8-pin SOIC (D), and
the 8-pin SOIC (DDA) packages with PowerPAD™.
The THS3096 is offered in the 8-pin SOIC (D) and
the 14-pin TSSOP (PWP) packages with PowerPAD.
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily
include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PowerPAD is a trademark of Texas Instruments.
Copyright © 2003–2004, Texas Instruments Incorporated
1
2
3
4
8
7
6
5
1V
OUT
1V
IN−
1V
IN+
V
S−
V
S+
2V
OUT
2V
IN−
2V
IN+
D, DDA TOP VIEW
THS3092
NC = No Internal Connection
D, PWP TOP VIEW
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1V
OUT
1V
IN−
1V
IN+
V
S−
V
S+
2V
OUT
2V
IN−
2V
IN+
NC = No Internal Connection
THS3096
See Note A.
NC
REF
NC
NC
PD
NC
Note A: The devices with the power down option defaults to the ON state if no signal is applied to the PD pin. Additionallly, the REF pin
functional range is from VS− to (VS+ − 4 V).
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
PART NUMBER PACKAGE TYPE TRANSPORT MEDIA, QUANTITY
THS3092D Rails, 75
THS3092DR Tape and Reel, 2500
THS3092DDA Rails, 75
THS3092DDAR Tape and Reel, 2500
Power-down
THS3096D Rails, 75
THS3096DR Tape and Reel, 2500
THS3096PWP Rails, 90
THS3096PWPR Tape and Reel, 2000
ORDERING INFORMATION
SOIC-8
SOIC-8-PP
SOIC-8
TSSOP-14-PP
(1)
(1)
(1) The PowerPAD is electrically isolated from all other pins.
DISSIPATION RATING TABLE
PACKAGE Θ
D-8 38.3 97.5 1.02 W 410 mW
(3)
DDA-8
PWP-14
(1) This data was taken using the JEDEC standard High-K test PCB.
(2) Power rating is determined with a junction temperature of 125° C. This is the point where distortion starts to substantially increase.
Thermal management of the final PCB should strive to keep the junction temperature at or below 125° C for best performance and long
term reliability.
(3) The THS3092 and THS3096 may incorporate a PowerPAD™ on the underside of the chip. This acts as a heatsink and must be
connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction
temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the
PowerPAD™ thermally enhanced package.
(3)
(° C/W) Θ
JC
9.2 45.8 2.18 W 873 mW
2.07 37.5 2.67 W 1.07 W
JA
(1)
(° C/W)
TA≤ 25°C TA= 85° C
2
POWER RATING
(2)
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
RECOMMENDED OPERATING CONDITIONS
MIN MAX UNIT
Supply voltage V
Operating free-air temperature, T
A
Dual supply ± 5 ± 15
Single supply 10 30
-40 85 ° C
THS3092
THS3096
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature (unless otherwise noted)
Supply voltage, VS-to V
Input voltage, V
Differential input voltage, V
Output current, I
Continuous power dissipation See Dissipation Ratings Table
Maximum junction temperature, T
Maximum junction temperature, continuous operation, long term reliability, T
Storage temperature, T
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 300° C
ESD ratings:
(1) The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may
cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are
stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may
result in reduced reliability and/or lifetime of the device.
S+
I
ID
O
J
stg
HBM 2000
CDM 1500
MM 150
(1)
UNIT
33 V
± V
S
± 4 V
350 mA
150° C
(2)
J
125° C
-65° C to 150° C
3
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
ELECTRICAL CHARACTERISTICS
VS= ± 15 V, RF= 909 Ω , RL= 100 Ω , and G = 2 (unless otherwise noted)
TYP OVER TEMPERATURE
PARAMETER TEST CONDITIONS
AC PERFORMANCE
G = 1, RF= 1.1 kΩ , VO= 200 mV
Small-signal bandwidth, -3 dB
0.1 dB bandwidth flatness G = 2, RF= 909 Ω , VO= 200 mV
Large-signal bandwidth G = 5, RF= 715 Ω , VO= 5 V
Slew rate (25% to 75% level) V/µs TYP
Rise and fall time G = 2, VO= 5-V
Settling time to 0.1% G = -2, VO= 2 VPPstep 42
Settling time to 0.01% G = -2, VO= 2 VPPstep 72
Harmonic distortion
2nd Harmonic distortion
3rd Harmonic distortion
Input voltage noise f > 10 kHz 2 nV / √ Hz TYP
Noninverting input current noise f > 10 kHz 13 pA / √ Hz TYP
Inverting input current noise f > 10 kHz 13 pA / √ Hz TYP
Differential gain
Differential phase
Crosstalk RL= 100 Ω , dB
DC PERFORMANCE
Transimpedance VO= ± 7.5 V, Gain = 1 850 350 300 300 kΩ MIN
Input offset voltage 0.9 3 4 4 mV MAX
Average offset voltage drift ± 10 ± 10 µV/° C TYP
Noninverting input bias current 4 15 20 20 µA MAX
Average bias current drift ± 20 ± 20 µA/° C TYP
Inverting input bias current 3.5 15 20 20 µA MAX
Average bias current drift ± 20 ± 20 µA/° C TYP
Input offset current 1.7 10 15 15 µA MAX
Average offset current drift ± 20 ± 20 µA/° C TYP
INPUT CHARACTERISTICS
Common-mode input range ± 13.6 ± 13.3 ± 13 ± 13 V MIN
Common-mode rejection ratio VCM= ± 10 V 78 68 65 65 dB MIN
Noninverting input resistance 1.3 MΩ TYP
Noninverting input capacitance 0.1 pF TYP
Inverting input resistance 30 Ω TYP
Inverting input capacitance 1.4 pF TYP
G = 2, RF= 909 Ω , VO= 200 mV
G = 5, RF= 715 Ω , VO= 200 mV
G = 10, RF= 604 Ω , VO= 200 mV
G = 2, VO= 10-V step, RF= 909 Ω 4000
G = 5, VO= 20-V step, RF= 715 Ω 5700
, RF= 909 Ω 5 ns TYP
PP
G = 2,
RF= 909 Ω ,
VO= 2 VPP,
f = 10 MHz
G = 2,
RL= 150 Ω , TYP
RF= 909 Ω
G = 2, Ch 1 to 2 60
f = 10 MHz
VCM= 0 V
PP
PP
PP
PP
PP
PP
RL= 100Ω 66
RL= 1 kΩ 66
RL= 100Ω 76
RL= 1 kΩ 78
NTSC 0.013%
PAL 0.011%
NTSC 0.020°
PAL 0.026°
Ch 2 to 1 56
25° C 25° C UNIT
135
145
160
145
50
150
0° C to -40° C to MIN/TYP/
70° C 85° C MAX
MHz TYP
ns TYP
dBc TYP
4
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
ELECTRICAL CHARACTERISTICS (CONTINUED)
VS= ± 15 V, RF= 909 Ω , RL= 100 Ω , and G = 2 (unless otherwise noted)
TYP OVER TEMPERATURE
PARAMETER TEST CONDITIONS
OUTPUT CHARACTERISTICS
Output voltage swing V MIN
Output current (sourcing) RL= 40 Ω 280 225 200 200 mA MIN
Output current (sinking) RL= 40 Ω 250 200 175 175 mA MIN
Output impedance f = 1 MHz, Closed loop 0.06 Ω TYP
POWER SUPPLY
Specified operating voltage ± 15 ± 16 ± 16 ± 16 V MAX
Maximum quiescent current 9.5 10.5 11 11 mA MAX
Minimum quiescent current 9.5 8.5 8 8 mA MIN
Power supply rejection (+PSRR) VS+= 15.5 V to 14.5 V, VS-= 15 V 75 70 65 65 dB MIN
Power supply rejection (-PSRR) VS+= 15 V, VS-= -15.5 V to -14.5 V 73 68 65 65 dB MIN
POWER-DOWN CHARACTERISTICS (THS3096 ONLY)
Power-down voltage level V MAX
Power-down quiescent current PD = 0V 500 700 800 800 µA MAX
VPDquiescent current µA MAX
Turnon time delay 90% of final value 60
Turnoff time delay 10% of final value 150
RL= 1 kΩ ± 13.2 ± 12.8 ± 12.5 ± 12.5
RL= 100 Ω ± 12.5 ± 12.1 ± 11.8 ± 11.8
Per channel
Enable, REF = 0 V ≤ 0.8
Power-down , REF = 0 V ≥ 2
VPD= 0 V, REF = 0 V, 11 15 20 20
VPD= 3.3 V, REF = 0 V 11 15 20 20
25° C 25° C UNIT
0° C to -40° C to MIN/TYP/
70° C 85° C MAX
µs TYP
THS3092
THS3096
5
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
ELECTRICAL CHARACTERISTICS
VS= ± 5 V, RF= 909 Ω , RL= 100 Ω , and G = 2 (unless otherwise noted)
TYP OVER TEMPERATURE
PARAMETER TEST CONDITIONS
AC PERFORMANCE
G = 1, RF= 1.1 kΩ , VO= 200 mV
Small-signal bandwidth, -3 dB
0.1 dB bandwidth flatness G = 2, RF= 909 Ω , VO= 200 mV
Large-signal bandwidth G = 2, RF= 909 Ω , VO= 5 V
Slew rate (25% to 75% level) V/µs TYP
Rise and fall time G = 2, VO= 5-V step, RF= 909 Ω 5 ns TYP
Settling time to 0.1% G = -2, VO= 2 VPPstep 35
Settling time to 0.01% G = -2, VO= 2 VPPstep 73
Harmonic distortion
2nd Harmonic distortion
3rd Harmonic distortion
Input voltage noise f > 10 kHz 2 nV / √ Hz TYP
Noninverting input current noise f > 10 kHz 13 pA / √ Hz TYP
Inverting input current noise f > 10 kHz 13 pA / √ Hz TYP
Differential gain
Differential phase
Crosstalk RL= 100 Ω , dB
DC PERFORMANCE
Transimpedance VO= ± 2.5 V, Gain = 1 700 250 200 200 kΩ MIN
Input offset voltage 0.3 2 3 3 mV MAX
Average offset voltage drift ± 10 ± 10 µV/° C TYP
Noninverting input bias current 2 15 20 20 µA MAX
Average bias current drift ± 20 ± 20 µA/° C TYP
Inverting input bias current 5 15 20 20 µA MAX
Average bias current drift ± 20 ± 20 µA/° C TYP
Input offset current 1 10 15 15 µA MAX
Average offset current drift ± 20 ± 20 µA/° C TYP
INPUT CHARACTERISTICS
Common-mode input range ± 3.6 ± 3.3 ± 3 ± 3 V MIN
Common-mode rejection ratio VCM= ± 2.0 V, VO= 0 V 66 60 57 57 dB MIN
Noninverting input resistance 1.1 MΩ TYP
Noninverting input capacitance 1.2 pF TYP
Inverting input resistance 32 Ω TYP
Inverting input capacitance 1.5 pF TYP
G = 2, RF= 909 Ω , VO= 200 mV
G = 5, RF= 715 Ω , VO= 200 mV
G = 10, RF= 604 Ω , VO= 200 mV
G = 2, VO= 5-V step, RF= 909 Ω 1050
G = 5, VO= 5-V step, RF= 715 Ω 1350
G = 2,
RF= 909 Ω ,
VO= 2 VPP,
f = 10 MHz
G = 2,
RL= 150 Ω , TYP
RF= 909 Ω
G = 2, Ch 1 to 2 60
f = 10 kHz
VCM= 0 V
PP
PP
PP
PP
PP
PP
RL= 100Ω 64
RL= 1 kΩ 67
RL= 100Ω 75
RL= 1 kΩ 75
NTSC 0.027%
PAL 0.025%
NTSC 0.04°
PAL 0.05°
Ch 2 to 1 56
25° C 25° C UNIT
125
140
145
135
42
125
0° C to -40° C to MIN/TYP/
70° C 85° C MAX
MHz TYP
ns TYP
dBc TYP
6
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
ELECTRICAL CHARACTERISTICS (CONTINUED)
VS= ± 5 V, RF= 909 Ω , RL= 100 Ω , and G = 2 (unless otherwise noted)
TYP OVER TEMPERATURE
PARAMETER TEST CONDITIONS
OUTPUT CHARACTERISTICS
Output voltage swing V MIN
Output current (sourcing) RL= 10 Ω 200 160 140 140 mA MIN
Output current (sinking) RL= 10 Ω 180 150 125 125 mA MIN
Output impedance f = 1 MHz, Closed loop 0.09 Ω TYP
POWER SUPPLY
Specified operating voltage ± 5 ± 4.5 ± 4.5 ± 4.5 V MAX
Maximum quiescent current 8.2 9 9.5 9.5 mA MAX
Minimum quiescent current 8.2 7 6.5 6.5 mA MIN
Power supply rejection (+PSRR) VS+= 5.5 V to 4.5 V, VS-= -5 V 73 68 63 63 dB MIN
Power supply rejection (-PSRR) VS+= 5 V, VS-= -4.5 V to 5.5 V 71 65 60 60 dB MIN
POWER-DOWN CHARACTERISTICS (THS3096 ONLY)
Power-down voltage level V MAX
Power-down quiescent current PD = 0V 300 500 600 600 µA MAX
VPDquiescent current µA MAX
Turnon time delay 90% of final value 60
Turnoff time delay 10% of final value 150
RL= 1 kΩ ± 3.4 ± 3.1 ± 2.8 ± 2.8
RL= 100 Ω ± 3.1 ± 2.7 ± 2.5 ± 2.5
Per channel
Enable, REF = 0 V ≤ 0.8
Power-down , REF = 0 V ≥ 2
VPD= 0 V, REF = 0 V, 11 15 20 20
VPD= 3.3 V, REF = 0 V 11 15 20 20
25° C 25° C UNIT
0° C to -40° C to MIN/TYP/
70° C 85° C MAX
µs TYP
THS3092
THS3096
7
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS
TABLE OF GRAPHS
FIGURE
± 15-V graphs
Noninverting frequency response 1, 2
Inverting frequency response 3
0.1 dB flatness 4
Noninverting frequency response 5
Inverting frequency response 6
Frequency response capacitive load 7
Recommended R
2nd Harmonic distortion vs Frequency 9, 11
3rd Harmonic distortion vs Frequency 10, 12
Slew rate vs Output voltage step 13, 14, 15
Noise vs Frequency 16
Settling time 17, 18
Quiescent current vs Supply voltage 19
Output voltage vs Load resistance 20
Input bias and offset current vs Case temperature 21
Input offset voltage vs Case temperature 22
Transimpedance vs Frequency 23
Rejection ratio vs Frequency 24
Noninverting small signal transient response 25
Inverting large signal transient response 26, 27
Overdrive recovery time 28
Differential gain vs Number of loads 29
Differential phase vs Number of loads 30
Closed loop output impedance vs Frequency 31
Crosstalk vs Frequency 32
Power-down quiescent current vs Supply voltage 33
Turnon and turnoff time delay 34
ISO
vs Capacitive load 8
8
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
TYPICAL CHARACTERISTICS (continued)
TABLE OF GRAPHS
FIGURE
± 5-V graphs
Noninverting frequency response 35
Inverting frequency response 36
0.1 dB flatness 37
Noninverting frequency response 38
Inverting frequency response 39
Settling time 40
2nd Harmonic distortion vs Frequency 41
3rd Harmonic distortion vs Frequency 42
Slew rate vs Output voltage step 43, 44, 45
Noninverting small signal transient response 46
Output voltage load resistance 47
Input bias and offset current vs Case temperature 48
Overdrive recovery time 49
Rejection ratio vs Frequency 50
Crosstalk vs Frequency 51
9
f − Frequency − Hz
Noninverting Gain − dB
RF = 499 Ω
RF = 1.2 k Ω
Gain = 2,
RL = 100 Ω ,
VO = 200 mVPP,
VS = ± 15 V
0
1
2
3
4
5
6
7
8
9
1 M 10 M 100 M 1 G
RF = 909 Ω
−4
−2
0
2
4
6
8
10
12
14
16
18
20
22
24
1 M 10 M 100 M 1 G
f − Frequency − Hz
Noninverting Gain − dB
G = 10, RF = 604 Ω
RL = 100 Ω ,
VO = 200 mVPP, VS = ± 15 V
G = 5, RF = 715 Ω
G =2, RF = 909 Ω
G =1, RF = 1.1 kΩ
−4
−2
0
2
4
6
8
10
12
14
16
18
20
22
24
1 M
10 M 100 M 1 G
f − Frequency − Hz
Inverting Gain − dB
G = −1, RF = 909 Ω
G = −10, RF = 604 Ω
G = −5, RF = 715 Ω
G = −2, RF = 806 Ω
RL = 100 Ω ,
VO = 200 mVPP, VS = ± 15 V
5.7
5.8
5.9
6
6.1
6.2
6.3
100 k
1 M 10 M 100 M
f − Frequency − Hz
Noninverting Gain − dB
Gain = 2,
RF = 909 Ω,
RL = 200 Ω ,
VO = 200 mVPP,
VS = ± 15 V
0
2
4
6
8
10
12
16
1 M 10 M 100 M 1 G
14
f − Frequency − Hz
VO = 5 V
PP
Gain = −5,
RF = 715 Ω,
RL = 100 Ω ,
VS = ± 15 V
VO = 1 V
PP
VO = 2 V
PP
VO = 10 V
PP
VO = 20 V
PP
Inverting Gain − dB
0
2
4
6
8
10
12
14
16
1 M 10 M 100 M 1 G
f − Frequency − Hz
VO = 2V
PP
VO = 1V
PP
VO = 20V
PP
VO = 10V
PP
VO = 5V
PP
Gain = 5,
RF = 715 Ω,
RL = 100 Ω ,
VS = ± 15 V
Noninverting Gain − dB
0
5
10
15
20
25
30
35
40
45
10 100
C
L
− Capacitive Load − pF
Recommended
R
ISO
Ω
Gain = 5,
VS = ± 15 V
−
+
−
178 Ω
715 Ω
R
ISO
C
L
−90
−80
−70
−60
−50
−40
100 k 1 M 10 M 100 M
f − Frequency − Hz
2nd Harmonic Destortion − dBc
VS = ± 15 V,
VO = 2 V
PP
G = 2
RF = 909 Ω,
RL = 1 kΩ
G = 2
RF = 909 Ω,
RL = 100 Ω
G = 1
RF = 1.1 kΩ,
RL = 1 kΩ
G = 1
RF = 1.1 kΩ,
RL = 100 Ω
−2
0
2
4
6
8
10
12
14
16
10 M 100 M 1 G
f − Frequency − Hz
Signal Gain − dB
R
(ISO)
= 15 Ω
CL = 100 pF
Gain = 5
RL = 100 Ω
VS =± 15 V
R
(ISO)
= 39.2 Ω
CL = 10 pF
R
(ISO)
= 30.9 Ω
CL = 22 pF
R
(ISO)
= 20 Ω
CL = 47 pF
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
NONINVERTING NONINVERTING INVERTING
FREQUENCY RESPONSE FREQUENCY RESPONSE FREQUENCY RESPONSE
Figure 1. Figure 2. Figure 3.
TYPICAL CHARACTERISTICS (± 15 V)
0.1 dB FLATNESS FREQUENCY RESPONSE FREQUENCY RESPONSE
NONINVERTING INVERTING
Figure 4. Figure 5. Figure 6.
FREQUENCY RESPONSE vs vs
RECOMMENDED R
ISO
2ND HARMONIC DISTORTION
CAPACITIVE LOAD CAPTIVATE LOAD FREQUENCY
10
Figure 7. Figure 8. Figure 9.
−100
−90
−80
−70
−60
−50
−40
−30
100 k 1 M 10 M 100 M
f − Frequency − Hz
Harmonic Distortion −dBc
G = 5
RF = 715 Ω,
RL = 100 Ω,
Vs = ± 15 V
VO = 20 V
PP
VO = 10 V
PP
VO = 5 V
PP
VO = 2 V
PP
−90
−80
−70
−60
−50
−40
100 k 1 M 10 M 100 M
f − Frequency − Hz
3rd Harmonic Distortion − dBc
VS = ± 15 V,
VO = 2 V
PP
G = 1
RF = 1.1 kΩ,
RL = 1 kΩ
G = 2
RF = 909 Ω,
R
L
= 1 kΩ
G = 2
RF = 909 Ω,
RL = 100 Ω
G = 1
RF = 1.1 kΩ,
RL = 100 Ω
−100
−90
−80
−70
−60
−50
−40
−30
100 k
1 M
10 M 100 M
f − Frequency − Hz
Harmonic Distortion −dBc
G = 5
RF = 715 Ω,
RL = 100 Ω,
Vs = ± 15 V
VO = 20 V
PP
VO = 10 V
PP
VO = 5 V
PP
VO = 2 V
PP
0
500
1000
1500
2000
2500
3000
3500
4000
0 1 2 3 4 5 6 7 8 9 10
SR − Slew Rate − V/
V
O
− Output Voltage −V
PP
sµ
Gain = 2
RL = 100 Ω
RF = 909 Ω
VS = ± 15 V
Fall
Rise
0
1000
2000
3000
4000
5000
6000
0 2 4 6 8 10 12 14 16 18 20
SR − Slew Rate − V/
V
O
− Output Voltage −V
PP
sµ
Gain = 5
RL = 100 Ω
RF = 715 Ω
VS = ± 15 V
Fall
Rise
0
100
200
300
400
500
600
700
800
0 0.5 1 1.5 2 2.5 3 3.5 4
SR − Slew Rate − V/
V
O
− Output Voltage − V
PP
sµ
Gain = 1
RL = 100 Ω
RF = 1.1 kΩ
VS = ± 15 V
Fall
Rise
1
10
100
1000
10 100 1 k 10 k 100 k
f − Frequency − Hz
− Current Noise −
V
n
I
n
− Voltage Noise −
pA/ Hz
nV/ Hz
I
n−
I
n+
V
n
−1.25
−1
−0.75
−0.5
−0.25
0
0.25
0.5
0.75
1
1.25
0 1 2 3 4 5 6 7 8 9 10
t − Time − ns
− Output Voltage − V V
O
Gain = −2
RL = 100 Ω
RF =806 Ω
VS = ± 15 V
Rising Edge
Falling Edge
−4.5
−4
−3.5
−3
−2.5
−2
−1.5
−1
−0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 2 4 6 8 10 12
t − Time − ns
− Output Voltage − V V
O
Gain = −2
RL = 100 Ω
RF = 806 Ω
VS = ± 15 V
Rising Edge
Falling Edge
TYPICAL CHARACTERISTICS (± 15 V) (continued)
THS3092
THS3096
SLOS428A – DECEMBER 2003 – REVISED FEBRUARY 2004
3RD HARMONIC DISTORTION 2ND HARMONIC DISTORTION 3RD HARMONIC DISTORTION
vs vs vs
FREQUENCY FREQUENCY FREQUENCY
Figure 10. Figure 11. Figure 12.
SLEW RATE SLEW RATE SLEW RATE
vs vs vs
OUTPUT VOLTAGE STEP OUTPUT VOLTAGE STEP OUTPUT VOLTAGE STEP
Figure 13. Figure 14. Figure 15.
NOISE
vs
FREQUENCY SETTLING TIME SETTLING TIME
Figure 16. Figure 17. Figure 18.
11