TEXAS INSTRUMENTS THS0842 Technical data

查询THS0842EVM供应商

User’s Guide
September 2000 AAP Data Conversion
SLAU043C
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 2000, Texas Instruments Incorporated
About This Manual
How to Use This Manual
Preface
Read This First
This document presents a description of the THS0842 evaluation module.
How to Use This Manual
This document contains the following chapters:
- Chapter 1 – Overview
- Chapter 2 – Circuit Functionality
- Chapter 3 – Layout, Decoupling, and Grounding Considerations
- Chapter 4 – PC Board and Bill of Materials
- Appendix A – Schematics
Read This First
iii
iv
Running Title—Attribute Reference
Contents
1 Overview 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Purpose 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 EVM Basic Function 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Power Requirements 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1 Voltage Limits 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 THS0842 EVM Operational Procedure 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Circuit Functionality 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Circuit Function 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Analog Inputs 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Single-Ended Transformer Coupled Interface 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Differential Interface 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Digital Inputs 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Internal Clock 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 External Clock 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Analog Output 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Digital Output 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 References 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Power 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Layout, Decoupling, and Grounding Considerations 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 PC Board and Bill of Materials 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Printed-Circuit Board 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Bill of Materials 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Schematics A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter Title—Attribute Reference
v
Running Title—Attribute Reference
Figures
1–1 Block Diagram 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 Printed-Circuit Board (Top) 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–2 Printed-Circuit Board Layer 1 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–3 Printed-Circuit Board Layer 2 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–4 Printed-Circuit Board Layer 3 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–5 Printed-Circuit Board Layer 4 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–6 Printed-Circuit Board Layer 5 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–7 Printed-Circuit Board Layer 6 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–8 Printed-Circuit Board (Bottom) 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T ables
1–1 Jumper List Table 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–2 Default Jumper Positions 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–1 Daughtercard Connector J2 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Daughtercard Connector J5 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 Minimum/Maximum Reference Input Levels 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
Chapter 1
Overview
This chapter gives a general overview of the THS0842 evaluation module (EVM), and describes some of the factors that must be considered in using the module.
T opic Page
1.1 Purpose 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 EVM Basic Function 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Power Requirements 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 THS0842 EVM Operational Procedure 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview
1-1
Purpose
T
T
1.1 Purpose
The THS0842 evaluation module (EVM) provides a platform for evaluating the THS0842 analog-to-digital converter (ADC) under various signal, reference, and supply conditions. The system block diagram is shown below. This illustra­tion provides a general indication of the features and functions available. It should be read in combination with the circuit schematic supplied.
Figure 1–1.Block Diagram
AIN+
AIN–
1:1
Xfmr
A
IN
1:1
Xfmr
A
IN
IIN+
IIN– CML
QIN+
QIN–
THS0842
DA7 DA0
COUT
COUT
I
THS5651A
Buffer
8
J2 – I OUT
OU
AIN–
AIN+
Clock
80 MHz
Osc
Optional External
Reference
CLK REFT
REFB
DB7 DB0
8
Buffer
THS5651A
J5 – Q OUT
I
OU
1-2
1.2 EVM Basic Function
Analog inputs to the ADC are provided via six external SMB connectors. Two pairs of SMB connectors provide true differential inputs, or two individual SMB connectors provide single-ended transformer-coupled signals to the inputs of the device.
The EVM provides an external SMB connection for input of the ADC clock. A crystal oscillator is provided on the board to perform this function and can be used when required. Refer to the section on clocking for correct provisioning.
Digital output from the EVM is via two 25-pin connectors. The digital lines from the ADC are buffered before going to the connectors. More information on these connectors can be found in the ADC output section.
Analog output from the EVM is via two SMB connectors (J1 and J3). A pair of THS5651 10-bit DACS are used to recreate the analog signal from the ADC’s digital data. More information on this can be found in the ADC analog output section.
Power connections to the EVM are via a pair of screw-down connectors. Separate input connectors are provided for the analog and digital supplies.
EVM Basic Function
1.3 Power Requirements
The EVM is powered directly through independent 3.3-V analog and digital supplies.
1.3.1 Voltage Limits
Exceeding the 3.3-V maximum can damage EVM components. Under voltage may cause improper operation of some or all of the EVM components.
Overview
1-3
THS0842 EVM Operational Procedure
1.4 THS0842 EVM Operational Procedure
The THS0842 EVM provides a flexible means of evaluating the THS0842 in a number of modes of operation. A basic setup procedure that can be used as a board confidence check follows:
1) Verify all jumper settings against the schematic jumper list in Table 1–1:
Table 1–1.Jumper List Table
Jumper Function Installed Removed Default
W1 Reserved for future use Required Do not use Installed W2 Reserved for future use Required Do not use Installed W3 Oscillator power down Power down Active Installed W4 Reference select Internal External Installed W5 THS0842 standby Active Power down Installed W6 Select clock source Onboard Offboard Removed W7 Digital bus output enable 3-state bus Active Removed W8 Single/dual bus mode Dual mode Single mode Installed W9 External REFB source 1–2 onboard 2–3 offboard 1–2 W10 External REFB feed External Internal Removed W1 1 External REFT feed External Internal Removed W12 Q+ Input select 1–2 differential 2–3 single-ended 2–3 W13 Q– Input select 1–2 differential 2–3 single-ended 2–3 W14 I+ Input select 1–2 differential 2–3 single-ended 2–3 W15 I– Input select 1–2 differential 2–3 single-ended 2–3 W16 External REFT source 1–2 onboard 2–3 offboard 1–2
Table 1–2.Default Jumper Positions
EVM Jumper Table (connection)
THS0842 W1, W2, W3, W4, W5, W7, W9 (1–2), W12 (2–3), W13 (2–3), W14(2–3), W15 (2–3), W16(1–2)
1) Set both dc power supplies to read 3.3 V at the output terminals. Connect GND of the first power supply to the AGND(J6–2) terminal on the EVM, and GND of the other power supply to the DGND(J7–2) terminal on the EVM. Then connect the first power supply’s 3.3-V output to the A VDD pow­er (J6–1) terminal of the EVM, and the other power supply’s 3.3-V output to the DVDD(J7–1) terminal of the EVM.
1-4
2) Switch power supplies on.
3) Set function generator number one to output a square wave at a frequency of 80 MHz, 0-V offset, and an amplitude of 3.3 V on the 50- output.
4) Use a 50- coaxial cable with BNC/SMB connectors to connect generator number 1 to J4 (clock input).
THS0842 EVM Operational Procedure
5) Set function generator number 2 to output a sine wave at a frequency of 1 MHz, 0-V offset, and an amplitude of 0.8 Vp-p on the 50- output.
6) Use a 50- coaxial cable with BNC/SMB connectors to connect generator number 2 to J8 (Q input). Use a T-splitter to connect the test signal to chan­nel 1 of the oscilloscope.
7) Use a 50- coaxial cable with BNC/SMB connectors to connect the se­cond channel of the oscilloscope to J3 (Q-output). The two sine waves should have the same period (their amplitudes may differ).
8) Repeat Step 5 with the SMB connected to J11 (I-input).
9) Repeat Step 6, except connect to J1 (I-output).
Overview
1-5
1-6
Chapter 2
Circuit Functionality
This chapter describes the digital interface-master clock, ADC data, and power supply.
Topic Page
2.1 Circuit Function 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Analog Inputs 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Digital Inputs 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Analog Output 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Digital Output 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 References 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Power 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Functionality
2-1
Circuit Function
2.1 Circuit Function
The following sections describe the function of individual circuits. Refer to the relevant data sheet for device operating characteristics.
2.2 Analog Inputs
The ADC has either transformer-coupled single-ended or differential-analog inputs. These are provided on the EVM via SMB connectors J8 and J11 for single-ended inputs, or J9/J10 and J12/J13 for differential inputs, and can be configured in two ways, as discussed in Sections 2.2.1 and 2.2.2.
2.2.1 Single-Ended Transformer Coupled Interface
Connectors J8 (Q) and J1 1 (I) are single-ended inputs that use a 1:1 transform­er to provide differential analog inputs to the I+/I– and Q+/Q– inputs of U11 (THS0842). The signal input is nominally 0.89 Vpp.
W12, W13, W14, and W15 should be strapped across pins 2 and 3. The inputs have 50- terminators.
2.2.2 Differential Interface
Connectors J9 (Q+), J10 (Q–), J12 (I–), and J13 (I+) are used to connect ac­coupled differential signals directly to U1 1 (THS0842). The signal input is nom­inally a 0.44 Vpp.
W12, W13, W14, and W15 should be strapped across pins 1 and 2.
2.3 Digital Inputs
The THS0842 EVM utilizes jumpers for all digital inputs, with the exception of the external clock. There are no connectors for setting the digital inputs. Refer to the jumper table (T able 1–1 ) for a description of the jumpers and their func­tion.
2.3.1 Internal Clock
The EVM provides flexibility as to the source of the ADC’s conversion clock. This clock can come from an external signal generator, as described in Section
2.3.2, or by enabling onboard 80-MHz oscillator X1. Removing the shorting bar from W3 will enable oscillator X1. Adding a shorting bar to jumper pins W6 will direct clock oscillations from oscillator X1 to buffer amplifier U10A and to the rest of the circuit. The EVM is shipped with external clock selected, W6 open, and W3 shorted.
2-2
Note:
R49 must be removed to avoid loading the output of X1.
2.3.2 External Clock
2.4 Analog Output
2.5 Digital Output
Circuit Function
SMB Connector J4 can be used to input a clock signal to the board from an external source. The input source should be a 50- L VTTL square wave signal with an amplitude of 3.3 V referenced to digital ground. This is the default setup for the EVM.
The ADC digital data is buffered and sent to a pair of THS5651A DACs. The 5651 DACs latch the THS0842 data on COUT (Q-DAC) or /COUT (I-DAC). An analog signal is generated on J1 for the I-output and J3 for the Q-output. The DAC outputs can only be used when the THS0842 EVM is set up for dual-bus mode (W8 installed, SELB low). For further information on the THS5651A, please refer to the product folder on TI’s website:
http://www.ti.com/sc/docs/products/analog/ths5651a.html
.
The digital-output codes of the ADC are made available on two 26-pin headers along with COUT and COUT
. J2 provides access to the data from the I-input and J5 provides access to the data from the Q-input. The output is 3.3 V TTL­compatible.
Table 2–1.Daughtercard Connector J2
J2 Pin Name Function J2 Pin Name Function
1 DA0 I 3 DA1 I 5 DA2 I 7 DA3 I 9 DA4 I 11 DA5 I 13 DA6 I 15 DA7 I 17 RSVD NC 18 DGND Ground 19 RSVD NC 20 DGND Ground 21 COUT COUT clock 22 DGND Ground 23 COUT COUT clock 24 DGND Ground 25 80 MHz 80-MHz clock 26 DGND Ground
0 2 DGND Ground
OUT
1 4 DGND Ground
OUT
2 6 DGND Ground
OUT
3 8 DGND Ground
OUT
4 10 DGND Ground
OUT
5 12 DGND Ground
OUT
6 14 DGND Ground
OUT
7 16 DGND Ground
OUT
Circuit Functionality
2-3
Circuit Function
Table 2–2.Daughtercard Connector J5
J2 Pin Name Function J2 Pin Name Function
2.6 References
1 DB0 Q 3 DB1 Q 5 DB2 Q 7 DB3 Q 9 DB4 Q 11 DB5 Q 13 DB6 Q 15 DB7 Q 17 RSVD NC 18 DGND Ground 19 RSVD NC 20 DGND Ground 21 COUT COUT clock 22 DGND Ground 23 COUT COUT clock 24 DGND Ground 25 80 MHz 80-MHz clock 26 DGND Ground
0 2 DGND Ground
OUT
1 4 DGND Ground
OUT
2 6 DGND Ground
OUT
3 8 DGND Ground
OUT
4 10 DGND Ground
OUT
5 12 DGND Ground
OUT
6 14 DGND Ground
OUT
7 16 DGND Ground
OUT
The EVM can use either the THS0842 internal reference, a tunable external reference generated on the EVM board, or a customer-provided external reference.
The THS0842’s input range is determined by the voltages on its V V
pins. Since the part has an internal-voltage reference generator, it must
REFT
REFB
and
be powered down (W4 removed) before applying an external voltage to the REFT and REFB pins. It is advantageous to have a wider analog input range, especially at higher sampling rates. This can be achieved by using external
= 3.3 V , the full-scale range can be
voltage references. For example, at AV
DD
extended from 1 Vpp (internal reference) to 1.3 Vpp (external reference), as
not
shown in Table 3–3. These voltages should
be derived from a power­supply source via a voltage divider. Use instead a bandgap-derived voltage reference to derive both references via an operational-amplifier circuit. Refer to the schematic of the THS0842 evaluation module for an example circuit.
The full-scale ADC input range and its dc position can be adjusted when using external references. The full-scale ADC range is always equal to V
REFT
– VREFB. The maximum full-scale range is dependent on AVDD, as shown in the THS0842 data sheet specifications section. Aside from the constraint on their difference, there are limitations on the useful range of V
REFT
and V
REFB
individually, depending on the value of AVDD. Table 3–3 summarizes these limits for three cases.
2-4
Table 2–3.Minimum/Maximum Reference Input Levels
Circuit Function
AV
DD
3.0 V 0.8 V 1.2 V 1.8 V 2.2 V 1.0 V
3.3 V 0.8 V 1.2 V 2.1 V 2.5 V 1.3 V
3.6 V 0.8 V 1.2 V 2.4 V 2.8 V 1.6 V
V
REFB(min)
V
REFB(max)
V
REFT(min)
V
REFT(max)
[V
REFT–VREFB]max
2.7 Power
Power is supplied to the EVM via screw-down connectors. For best perfor­mance use a separate low-noise analog power supply connected to J6–1 (+3.3 V) and J6–2 (GND). Use a separate low-noise digital power supply connected to J7–1 (+3.3 V) and J7–2 (GND). The positive side is marked by a + on the EVM’s silkscreen placed next to the connectors themselves.
Circuit Functionality
2-5
2-6
Chapter 3
Layout, Decoupling, and Grounding
Considerations
Proper grounding and layout of the PCB is essential to achieve the stated performance. It is advised to use separate analog and digital ground planes that are spliced underneath the device. The THS0842 has digital and analog terminals on opposite sides of the package to make this easier. Since there is no internal connection between analog and digital grounds, they have to be joined on the PCB. This should be done at one point in close proximity to the THS0842.
Separate analog and digital power-supply terminals are provided on the device (A V kept separate. Lowering the voltage on this supply to 3 V instead of the nominal
3.3 V improves performance due to the lower switching noise caused by the output buffers.
/DVDD). The supply to the digital-output drivers (DRVDD) is also
DD
Because of the high sampling rate and switched-capacitor architecture, the THS0842 generates transients on the supply and reference lines. Proper decoupling of these lines is essential. Decoupling as shown in the schematic of the THS0842 EVM is recommended.
Layout, Decoupling, and Grounding Considerations
3-1
3-2
Chapter 4
PC Board and Bill of Materials
This chapter presents the PC board design and a listing of the parts required to build this evaluation module
Topic Page
4.1 Printed-Circuit Board 4–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Bill of Materials 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PC Board and Bill of Materials
4-1
Printed-Circuit Board
4.1 Printed-Circuit Board
This section presents the printed-circuit board for the THS0842 EVM.
Figure 4–1.Printed-Circuit Board (Top)
4-2
Figure 4–2.Printed-Circuit Board Layer 1
Printed-Circuit Board
PC Board and Bill of Materials
4-3
Printed-Circuit Board
Figure 4–3.Printed-Circuit Board Layer 2
4-4
Figure 4–4.Printed-Circuit Board Layer 3
Printed-Circuit Board
PC Board and Bill of Materials
4-5
Printed-Circuit Board
Figure 4–5.Printed-Circuit Board Layer 4
4-6
Figure 4–6.Printed-Circuit Board Layer 5
Printed-Circuit Board
PC Board and Bill of Materials
4-7
Printed-Circuit Board
Figure 4–7.Printed-Circuit Board Layer 6
4-8
Figure 4–8.Printed-Circuit Board (Bottom)
Printed-Circuit Board
PC Board and Bill of Materials
4-9
Bill of Materials
4.2 Bill of Materials
Part Type Designator Footprint Description Manufacturer Part Number
10 µF C4, C8, C12,
C14, C16, C18, C21, C23, C29, C44, C48, C49, C52, C54, C59, C60, C61, C62, C86, C88, C90
0.1 µF C2, C3, C5, C10, C11, C17, C65, C71
0.1 µF C6, C13, C15, C19, C24, C34, C37, C38, C40, C42, C45, C46, C47, C50, C53, C63, C67, C68, C69, C72, C73, C75, C76, C77, C78, C80, C82, C84, C85, C87, C89, C91
4.7 µF C43, C51 3216 Low profile tantalum
470 pF C7, C12, C20,
C22, C26, C33, C35, C36, C39, C41, C64, C66, C70, C74, C79
1.0 µF C25, C28, C31, C32
0.01 µF C1, C9, C27, C30, C55, C56, C57, C58, C81, C83
GREEN LED D1, D2 LED–1206 LED with LENS Lumex 67–1357–1 SMA JACK J3 SMA_JACK PCB mount SMA jack Johnson
KRMZ2 J6, J7 2term_screw_con 2 Terminal screw
SMA J1, J4, J8, J9,
J10, J11, J12, J13
26PIN_IDC J2, J5 13×2×0.1 26 Pin header TSW–113–07–L–D
4.7 µH L1, L3 DO1608C DO1608C-Series –
1.0 µH L2 DO1608C DO1608C-Series –
20 R4, R5, R6, R8,
R9, R11, R12, R13, R14, R15, R17, R18, R19, R20, R21, R24, R25, R26, R27, R28, R48
49.9 R39, R40, R41, R42, R49, R57, R58, R61, R62, R63, R64
3528 Low profile tantalum
capacitor
1206 Multilayer ceramic –
variable footprint
805 Multilayer ceramic Mouser 77–VJ08Y50V104K
capacitor
805 Multilayer ceramic Mouser 77–VJ08A100V471J
805 Multilayer ceramic Digikey PCC1807CT–ND
805 Multilayer ceramic Mouser 77–VJ08Y50V103K
connector
SMA_JACK PCB mount SMA jack Johnson
Coil Craft
Coil Craft
1206 Mouser 263–20
1206 1/4W 1210 Chip
resistor
Digikey PCS1156CT–ND
Mouser 77–VJ12U50V104M
Digikey PCS1475CT–ND
142–0701–206
Components
506–5UL V02
142–0701–206
Components
Mouser 290–49.9
4-10
Bill of Materials
Part Type Part NumberManufacturerDescriptionFootprintDesignator
750 R36 1206 1/4W 1206 Chip
0 R16, R23, R35,
2.49K 1% R38 1206 1/4W 1206 Chip
1.0 K R22, R44, R56,
2K POT R29, R30 BOURNS Digikey 3214W–202ECT–ND 33 R1, R3, R10 2NBS16 Bourns 2NBS Series 4816P–1–330 2K R2, R7 1206 1/4W 1206 Chip
10K R31, R32, R33,
1.0K R44 1206 1/4W 1206 Chip
T1–1T–KK81 T1, T2, T3, T4 MC_KK81 RF transformer
TSW–101–07–LS TP1, TP2, TP3,
REF– REF+
74LVC827A U1, U2, U4, U5,
SN74HC04D U8 14–SOP(D) Hex inverter TI SN74HC04D SN74LVC08A U10 14–SOP(D) Quad NAND gate TI SN74LVC08AD TL1431CD U14 8–SOP(D) Precision
TLV2772 U13 8–SOP(D) Dual op amp in 8 pin
THS0842 U11 48–TQFP(PFB) THS0842 TI THS0842IPFB THS56X1 U3, U6 28–SOIC(DW) 2.7–5.5V, 10 bit,
TSW–102–07–LS W1, W2, W3,
3POS_JUMPER W9, W12, W13,
XTAL X1 4PIN_XTL_DC Crystal oscillator
R37, R51, R52
R59
R34, R43, R45, R46, R47, R50, R53, R54, R55, R60,
TP4, TP5, TP6, TP7, TP9, TP10, TP11, TP12, TP14, TP15, TP16, TP17
TP8 TP13
U7, U9, U12
W4, W5, W6, W7, W8, W9, W10, W11
W14, W15, W16
1206 1/4W 1206 Chip
1206 1/4W 1206 Chip
1206 1/4W 1206 Chip
test_point2 T urret terminal test
test_point2 T urret terminal test
24 SOP (DW) 10-Bit bus interface FF
2pos_jump 2 Position jumper _
3pos_jump 3 Position jumper _
resistor 1%
resistor
resistor
resistor
resistor
resistor
resistor
MINI-circuits T1–1T–KK81
point
point
3SO
programmable reference
SOP package
125 MHz, communications DAC
0.1” spacing
0.1” spacing
80 MHz
Mouser 290–750
Mouser 263–0
Mouser 263–2.49K
Mouser 263–1K
Mouser 263–2.00K
Mouser 263–10K
Mouser 263–1K
Samtec TSW–101–07–LS
Samtec TSW–101–07–LS
TI SN74LVC827ADW
TI TL1431QD
TI TLV2772ID
TI THS5651IDW
Samtec TSW–102–07–L–S
TSW–103–07–L–S
Digikey SG–8002DC–
SCC–80.00 MHz
PC Board and Bill of Materials
4-1 1
4-12
Schematics
This Appendix contains the THS0842 EVM schematics.
Appendix A
Schematics
A-1
A-2
C41
C40
470pF
0.1uF
OE11OE213A12A23A34A45A56A67A78A89A910A10
U7
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA[0..9]
DA7
DA8
11
DA9
74LVC827A
OE11OE213A12A23A34A45A56A67A78A89A910A10
U9
11
OE11OE213A12A23A34A45A56A67A78A89A910A10
U12
74LVC827A
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
11
DB9
DB[0..9]
74LVC827A
T3
J8
Qin
R57
49.9
T1-1T-KK81
DRV3
DRV3 DV3
C22
C77
C33
C85
AV3 AV3
470pF
0.1uF
470pF
0.1uF
C26
C24
C36
470pF
0.1uF
470pF
U11
27
13
45
DRVdd1DRVdd
AVdd
AVdd
AVdd
41
37
DVdd
DA0
DA1
DA2
DA3
DA4
DA5
DA6
DA7
DA8
DA9
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DB8
DB9
20
R4 20
R8 20
R9 20
R12 20
R1320R14 20
R6 20
R5 20
23
22
D0A
Q-35Q+
34
38
R15
R17 20
R20 20
R21 20
NC14NC
STBY
W5
11
44
R18 20
10
D0B
SELB
R19 20
OE
48
W7
R11 20
15
D7A16D6A17D5A18D4A19D3A20D2A21D1A
I-39I+
CLK
42
47
20
R25 20
R2620R27 20
R28
R24 20
3
D7B4D6B5D5B6D4B7D3B8D2B9D1B
BG
31
29
NC2NC
REFT
25
REFB
30
26
C_OUT
C_OUT
PWDN_REF
33
32
W4
CML
28
43
DVss
AVss40AVss36AVss
24
DRVss12DRVss
Vss
46
THS0842
C27
.01uF
R58
W14
49.9
W15
I-
I+
AV3
C37
0.1uF
R47
REFB
C81
C28
10k
.01uF
1.0uF
R50
10k
R53
10k
C39
470pF
C38
0.1uF
W8
R54
10k
DV3
80M
I-
I+
Q-
Q+
D
C
REFT
C84
0.1uF
C25
C31
C83
1.0uF
1.0uF
.01uF
T4
T1-1T-KK81
J11
Iin
B
C58
.01uF
J13
I
nstalled
I
for
THS0842
nstalled
for
THS0842
DACA[0..9]
U3
14
NC111NC212NC313NC4
IOUT122IOUT2
21
DACA0
DACA1
DACA2
DACA3
DACA4
DACA5
DACA6
DACA7
DACA8
D010D19D28D37D46D55D64D73D82D9
EXTLO16EXTIO17BIASJ
DACA9
1
18
C2
0.1uF
R2
28
2K
CLK
AV3
15
SLEEP
24
AVDD
C65
25
MODE
COMP119COMP2
0.1uF
DACB[0..9]
C5
0.1uF
DV3
26
DVDD27DGND
DACB0
DACB1
DACB2
DACB3
DACB4
DACB5
DACB6
DACB7
DACB8
DACB9
25
CLK
15
SLEEP
MODE
14
D010D19D28D37D46D55D64D73D82D9
NC111NC212NC313NC4
1
28
U6
THS56X1
AGND
20
23
C3
0.1uF
IOUT122IOUT2
21
EXTLO16EXTIO17BIASJ
18
C10
0.1uF
R7
2K
AV3
AVDD
24
C71
19
0.1uF
C1
0.01uF
R40
49.9
T1
T1-1T-KK81
R39
COUTB
R42
49.9
T2
T1-1T-KK81
R41
C9
0.01uF
I out
J1
D
C
Q out
J3
B
+
+
AV3
AV3
TP5
D2
+
C14
+
C42
10uF
C43
0.1uF
4.7uF
R22
1.0K
DV3
DV3
DRV3
TP10
TP6
C88
10uF
R60
10K
TP8
D1
R44
1.0K
C23
10uF
+
C48
10uF
+
0.1uF
C78
C87
0.1uF
L2
1.0uH
4.7uF
C51
+
0.1uF
C15
TP13
TP11
R30
REF+
2K POT
W16
AV3
R59
R35
1.0K
750
R36
0
REF-
W9
1K
R56
C91
0.1uF
+
10uF
C90
U14
TL1431CD
R37
C49
+
0
10uF
R38
2.49K
R55
10uF
C86
10K
R29
L1
9 $QDORJ
4.7uH
1
C4
+
C45
C54
+
C44
+
C21
+
C89
10uF
10uF
C76
10uF
C46
10uF
J6
0.1uF
0.1uF
0.1uF
0.1uF
2
L3
9 'LJLWDO
4.7uH
1
C18
C52
C16
C8
C29
10uF
+
10uF
+
10uF
+
10uF
+
10uF
+
C80
C82
C68
C72
C53
J7
0.1uF
0.1uF
0.1uF
0.1uF
2
DV3
DV3
.1uF
VCC
GNDOUT
OE
X1
W6
W3
R46
10k
U10A
1
J4
80M
R48
20
3
2
R49
49.9
CLOCK IN
SN74LVC08A
U8C
U10B
4
5 6
6
SN74LVC08A9U10C
5
SN74X04
U8D
9 8
D
C
B
Loading...