TEXAS INSTRUMENTS TAS5142 Technical data

TAS5142

TM

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

 

STEREO DIGITAL AMPLIFIER POWER STAGE

FEATURES

2×100 W at 10% THD+N Into 4-Ω BTL (1)

2×80 W at 10% THD+N Into 6-Ω BTL

2×65 W at 10% THD+N Into 8-Ω BTL

4×40 W at 10% THD+N Into 3-Ω SE

4×30 W at 10% THD+N Into 4-Ω SE

1×160 W at 10% THD+N Into 3-Ω PBTL

1×200 W at 10% THD+N Into 2-Ω PBTL (1)

>100 dB SNR (A-Weighted)

<0.1% THD+N at 1 W

Two Thermally Enhanced Package Options:

DKD (36-pin PSOP3)

DDV (44-pin HTSSOP)

High-Efficiency Power Stage (>90%) With 140-mΩ Output MOSFETs

Power-On Reset for Protection on Power Up Without Any Power-Supply Sequencing

Integrated Self-Protection Circuits Including Undervoltage, Overtemperature, Overload, Short Circuit

Error Reporting

EMI Compliant When Used With Recommended System Design

Intelligent Gate Drive

APPLICATIONS

Mini/Micro Audio System

DVD Receiver

Home Theater

DESCRIPTION

The TAS5142 is a third-generation, high-perform- ance, integrated stereo digital amplifier power stage with an improved protection system. The TAS5142 is capable of driving a 4-Ω bridge-tied load (BTL) at up to 100 W per channel with low integrated noise at the output, low THD+N performance, and low idle power dissipation.

A low-cost, high-fidelity audio system can be built using a TI chipset, comprising a modulator (e.g., TAS5508) and the TAS5142. This system only requires a simple passive LC demodulation filter to

deliver high-quality, high-efficiency audio amplification with proven EMI compliance. This device requires two power supplies, at 12 V for GVDD and VDD, and at 32 V for PVDD. The TAS5142 does not require power-up sequencing due to internal power-on reset. The efficiency of this digital amplifier is greater than 90% into 6 Ω, which enables the use of smaller power supplies and heatsinks.

The TAS5142 has an innovative protection system integrated on-chip, safeguarding the device against a wide range of fault conditions that could damage the system. These safeguards are short-circuit protection, overcurrent protection, undervoltage protection, and overtemperature protection. The TAS5142 has a new proprietary current-limiting circuit that reduces the possibility of device shutdown during high-level music transients. A new programmable overcurrent detector allows the use of lower-cost inductors in the demodulation output filter.

BTL OUTPUT POWER vs SUPPLY VOLTAGE

 

120

 

 

 

 

 

 

 

 

 

110

TC = 75°C

 

 

 

 

 

 

 

THD+N @ 10%

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

− W

90

 

 

 

 

4

Ω

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

Power

70

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

− Output

 

 

 

6

Ω

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

8 Ω

 

 

10

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0

4

8

12

16

20

24

28

32

 

 

 

PVDD − Supply Voltage − V

 

 

G002

(1) It is not recommended to drive 200 W (total power) into the DDV package continuously. For multichannel systems that require two channels to be driven at full power with the DDV package option, it is recommended to design the system so that the two channels are in two separate devices.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PurePath Digital, PowerPad are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date.

Copyright © 2004–2005, Texas Instruments Incorporated

Products conform to specifications per the terms of the Texas

 

Instruments standard warranty. Production processing does not

 

necessarily include testing of all parameters.

 

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

GENERAL INFORMATION

Terminal Assignment

The TAS5142 is available in two thermally enhanced packages:

36-pin PSOP3 package (DKD)

44-pin HTSSOP PowerPad™ package (DDV)

Both package types contain a heat slug that is located on the top side of the device for convenient thermal coupling to the heatsink.

 

 

 

 

 

 

 

DKD PACKAGE

 

 

 

 

 

 

 

 

 

 

DDV PACKAGE

 

 

 

 

 

 

 

 

 

 

(TOP VIEW)

 

 

 

 

 

 

 

 

 

 

 

(TOP VIEW)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GVDD_B

 

 

 

 

 

 

 

 

 

 

 

GVDD_A

GVDD_B

 

 

1

 

 

 

36

 

 

GVDD_A

 

 

1

44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTW

 

 

2

 

 

43

 

 

 

BST_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTW

 

 

2

 

 

 

35

 

 

BST_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

 

 

3

 

 

 

42

 

 

 

NC

 

 

SD

 

 

3

 

 

 

34

 

 

PVDD_A

 

 

 

 

 

 

 

 

 

 

NC

 

 

4

 

 

 

41

 

 

 

PVDD_A

PWM_A

 

 

4

 

 

 

33

 

 

OUT_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SD

 

 

5

 

 

 

40

 

 

 

PVDD_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET_AB

 

 

5

 

 

 

32

 

 

GND_A

 

 

 

 

 

 

 

PWM_A

 

 

6

 

 

 

39

 

 

 

OUT_A

PWM_B

 

 

6

 

 

 

31

 

 

GND_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET_AB

 

 

 

7

 

 

 

38

 

 

 

GND_A

OC_ADJ

 

 

7

 

 

 

30

 

 

OUT_B

 

 

 

 

 

 

 

 

 

GND

 

 

8

 

 

 

29

 

 

PVDD_B

PWM_B

 

 

8

 

 

 

37

 

 

 

GND_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AGND

 

 

9

 

 

 

28

 

 

BST_B

OC_ADJ

 

 

9

 

 

 

36

 

 

 

OUT_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREG

 

 

10

 

 

 

27

 

 

BST_C

 

GND

 

 

10

 

 

 

35

 

 

 

PVDD_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M3

 

 

11

 

 

 

26

 

 

PVDD_C

AGND

 

 

11

 

 

 

34

 

 

 

BST_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M2

 

 

12

 

 

 

25

 

 

OUT_C

VREG

 

 

12

 

 

 

33

 

 

 

BST_C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

13

 

 

 

24

 

 

GND_C

 

 

M3

 

 

13

 

 

 

32

 

 

 

PVDD_C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM_C

 

 

14

 

 

 

23

 

 

GND_D

 

 

M2

 

 

14

 

 

 

31

 

 

 

OUT_C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

15

 

 

 

30

 

 

 

GND_C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET_CD

 

 

15

 

 

 

22

 

 

OUT_D

 

 

 

 

 

 

 

PWM_C

 

 

16

 

 

 

29

 

 

 

GND_D

PWM_D

 

 

16

 

 

 

21

 

 

PVDD_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUT_D

 

 

 

 

 

RESET_CD

 

 

17

 

 

 

28

 

 

 

 

VDD

 

 

17

 

 

 

20

 

 

BST_D

 

 

 

 

 

 

 

 

GVDD_C

 

 

18

 

 

 

19

 

 

GVDD_D

PWM_D

 

 

18

 

 

 

27

 

 

 

PVDD_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

 

 

19

 

 

 

26

 

 

 

PVDD_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0018-01

 

NC

 

20

 

 

 

25

 

 

 

NC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

21

24

 

 

 

BST_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GVDD_C

 

22

23

 

 

 

GVDD_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0016-02

2

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

GENERAL INFORMATION (continued)

MODE Selection Pins for Both Packages

 

MODE PINS

 

PWM INPUT

OUTPUT CONFIGURATION

PROTECTION SCHEME

M3

M2

M1

 

 

 

0

0

0

2N (1) AD/BD modulation

2 channels BTL output

BTL mode (2)

0

0

1

Reserved

 

 

0

1

0

1N (1) AD modulation

2 channels BTL output

BTL mode (2)

0

1

1

1N (1) AD modulation

1 channel PBTL output

PBTL mode. Only PWM_A input is used.

 

 

 

 

 

Protection works similarly to BTL mode (2). Only

1

0

0

1N (1) AD modulation

4 channels SE output

difference in SE mode is that OUT_X is Hi-Z

instead of a pulldown through internal pulldown

 

 

 

 

 

 

 

 

 

 

resistor.

1

0

1

 

 

 

1

1

0

Reserved

 

 

1

1

1

 

 

 

(1)The 1N and 2N naming convention is used to indicate the required number of PWM lines to the power stage per channel in a specific mode.

(2)An overload protection (OLP) occurring on A or B causes both channels to shut down. An OLP on C or D works similarly. Global errors like overtemperature error (OTE), undervoltage protection (UVP), and power-on reset (POR) affect all channels.

Package Heat Dissipation Ratings(1)

PARAMETER

TAS5142DKD

TAS5142DDV

RθJC (°C/W)—2 BTL or 4 SE channels (8 transistors)

1.28

1.28

RθJC (°C/W)—1 BTL or 2 SE channel(s) (4 transistors)

2.56

2.56

RθJC (°C/W)—(1 transistor)

8.6

8.6

Pad area(2)

80 mm2

36 mm2

(1)JC is junction-to-case, CH is case-to-heatsink.

(2)RθCH is an important consideration. Assume a 2-mil thickness of typical thermal grease between the pad area and the heatsink. The RθCH with this condition is 0.8°C/W for the DKD package and 1.8°C/W for the DDV package.

3

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1)

 

TAS5142

VDD to AGND

–0.3 V to 13.2 V

GVDD_X to AGND

–0.3 V to 13.2 V

PVDD_X to GND_X (2)

–0.3 V to 50 V

OUT_X to GND_X (2)

–0.3 V to 50 V

BST_X to GND_X (2)

–0.3 V to 63.2 V

VREG to AGND

–0.3 V to 4.2 V

GND_X to GND

–0.3 V to 0.3 V

GND_X to AGND

–0.3 V to 0.3 V

GND to AGND

–0.3 V to 0.3 V

PWM_X, OC_ADJ, M1, M2, M3 to AGND

–0.3 V to 4.2 V

RESET_X, SD, OTW to AGND

–0.3 V to 7 V

Maximum continuous sink current (SD, OTW)

9 mA

Maximum operating junction temperature range, TJ

0°C to 125°C

Storage temperature

–40°C to 125°C

Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds

260°C

Minimum pulse duration, low

50 ns

(1)Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)These voltages represent the dc voltage + peak ac waveform measured at the terminal of the device in all conditions.

ORDERING INFORMATION

TA

PACKAGE

DESCRIPTION

0°C to 70°C

TAS5146DKD

36-pin PSOP3

0°C to 70°C

TAS5142DDV

44-pin HTSSOP

For the most current specification and package information, see the TI Web site at www.ti.com.

4

TAS5142

www.ti.com

 

 

 

 

SLES126B –DECEMBER 2004 –REVISED MAY 2005

Terminal Functions

 

 

 

 

TERMINAL

 

FUNCTION (1)

DESCRIPTION

NAME

DKD NO.

DDV NO.

 

 

AGND

9

11

P

Analog ground

BST_A

35

43

P

HS bootstrap supply (BST), external capacitor to OUT_A required

BST_B

28

34

P

HS bootstrap supply (BST), external capacitor to OUT_B required

BST_C

27

33

P

HS bootstrap supply (BST), external capacitor to OUT_C required

BST_D

20

24

P

HS bootstrap supply (BST), external capacitor to OUT_D required

GND

8

10

P

Ground

GND_A

32

38

P

Power ground for half-bridge A

GND_B

31

37

P

Power ground for half-bridge B

GND_C

24

30

P

Power ground for half-bridge C

GND_D

23

29

P

Power ground for half-bridge D

GVDD_A

36

44

P

Gate-drive voltage supply requires 0.1-μF capacitor to AGND

GVDD_B

1

1

P

Gate-drive voltage supply requires 0.1-μF capacitor to AGND

GVDD_C

18

22

P

Gate-drive voltage supply requires 0.1-μF capacitor to AGND

GVDD_D

19

23

P

Gate-drive voltage supply requires 0.1-μF capacitor to AGND

M1

13

15

I

Mode selection pin

M2

12

14

I

Mode selection pin

M3

11

13

I

Mode selection pin

NC

3, 4, 19, 20, 25,

No connect. Pins may be grounded.

 

 

42

 

 

OC_ADJ

7

9

O

Analog overcurrent programming pin requires resistor to ground

OTW

2

2

O

Overtemperature warning signal, open-drain, active-low

OUT_A

33

39

O

Output, half-bridge A

OUT_B

30

36

O

Output, half-bridge B

OUT_C

25

31

O

Output, half-bridge C

OUT_D

22

28

O

Output, half-bridge D

PVDD_A

34

40, 41

P

Power supply input for half-bridge A requires close decoupling of

 

 

 

 

0.1-μF capacitor to GND_A.

PVDD_B

29

35

P

Power supply input for half-bridge B requires close decoupling of

 

 

 

 

0.1-μF capacitor to GND_B.

PVDD_C

26

32

P

Power supply input for half-bridge C requires close decoupling of

 

 

 

 

0.1-μF capacitor to GND_C.

PVDD_D

21

26, 27

P

Power supply input for half-bridge D requires close decoupling of

 

 

 

 

0.1-μF capacitor to GND_D.

PWM_A

4

6

I

Input signal for half-bridge A

PWM_B

6

8

I

Input signal for half-bridge B

PWM_C

14

16

I

Input signal for half-bridge C

PWM_D

16

18

I

Input signal for half-bridge D

RESET_AB

5

7

I

Reset signal for half-bridge A and half-bridge B, active-low

RESET_CD

15

17

I

Reset signal for half-bridge C and half-bridge D, active-low

SD

3

5

O

Shutdown signal, open-drain, active-low

VDD

17

21

P

Power supply for digital voltage regulator requires 0.1-μF capacitor

 

 

 

 

to GND.

VREG

10

12

P

Digital regulator supply filter pin requires 0.1-μF capacitor to AGND.

(1)I = input, O = output, P = power

5

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

SYSTEM BLOCK DIAGRAM

OTW

System

Microcontroller

SD

TAS5508

 

 

 

 

 

 

 

SD

 

OTW

BST_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bootstrap

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BST_B

Capacitors

VALID

 

 

 

RESET_AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET_CD

 

 

 

 

 

 

 

 

 

 

PWM_A

 

 

 

 

 

 

OUT_A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Left-

 

 

 

 

 

 

 

 

 

Output

 

2nd-Order L-C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input

 

 

 

Output Filter

Channel

 

 

 

 

 

 

 

H-Bridge 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H-Bridge 1

 

 

OUT_B

for Each

Output

 

 

PWM_B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Half-Bridge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-Channel

 

 

 

 

 

 

 

 

 

H-Bridge

 

 

 

 

 

 

 

 

 

BTL Mode

 

 

 

 

 

PWM_C

 

 

 

 

 

OUT_C

2nd-Order L-C

Right-

 

 

 

 

Output

 

 

 

 

 

 

 

 

Output Filter

Channel

 

 

 

Input

 

H-Bridge 2

OUT_D

for Each

Output

 

 

 

H-Bridge 2

 

 

 

Half-Bridge

PWM_D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

B,A,PVDDC, D

C,B,A,GNDD

B,A,GVDDC, D GND VDD VREG

AGND

ADJOC

 

 

 

Hardwire

 

BST_C

 

 

 

 

 

 

 

 

 

 

M2

 

 

 

 

 

 

Bootstrap

 

Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control

M3

 

 

 

 

 

BST_D

Capacitors

 

 

 

 

 

 

 

 

 

 

 

 

4

4

4

 

 

 

 

 

 

 

PVDD

GVDD

 

 

 

 

32 V

PVDD

 

Power

VDD

 

Hardwire

 

 

 

Supply

VREG

 

 

System

 

 

 

OC Limit

 

 

 

Decoupling

Power Supply

 

Power

 

 

 

 

Decoupling

 

 

 

Supply

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 V

GVDD (12 V)/VDD (12 V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAC

 

 

 

 

 

 

 

 

 

B0047-01

6

TEXAS INSTRUMENTS TAS5142 Technical data

TAS5142

www.ti.com

SLES126B –DECEMBER 2004 –REVISED MAY 2005

FUNCTIONAL BLOCK DIAGRAM

OTW

SD

M1

M2

M3

RESET_AB

RESET_CD

PWM_D

PWM_C

PWM_B

PWM_A

 

 

 

 

 

VDD

 

 

 

Under-

4

 

 

 

 

voltage

 

 

Internal Pullup

 

 

Protection

VREG

VREG

 

 

 

Resistors to VREG

 

 

 

 

 

 

 

 

Power

 

 

 

 

 

On

 

 

 

Protection

 

Reset

 

AGND

 

 

 

 

 

 

and

 

 

 

 

 

I/O Logic

 

 

 

 

 

 

 

Temp.

 

 

 

 

 

Sense

 

GND

 

 

 

Overload

Isense

OC_ADJ

 

 

 

Protection

 

 

 

 

 

GVDD_D

 

 

 

 

 

BST_D

 

 

 

 

 

PVDD_D

PWM

Ctrl.

Timing

Gate

 

OUT_D

Rcv.

Drive

 

 

 

 

 

 

 

 

 

 

BTL/PBTL−Configuration

 

 

 

 

 

Pulldown Resistor

 

 

 

 

 

GND_D

 

 

 

 

 

GVDD_C

 

 

 

 

 

BST_C

 

 

 

 

 

PVDD_C

PWM

Ctrl.

Timing

Gate

 

OUT_C

Rcv.

Drive

 

 

 

 

 

 

 

 

 

 

BTL/PBTL−Configuration

 

 

 

 

 

Pulldown Resistor

 

 

 

 

 

GND_C

 

 

 

 

 

GVDD_B

 

 

 

 

 

BST_B

 

 

 

 

 

PVDD_B

PWM

Ctrl.

Timing

Gate

 

OUT_B

Rcv.

Drive

 

 

 

 

 

 

 

 

 

 

BTL/PBTL−Configuration

 

 

 

 

 

Pulldown Resistor

 

 

 

 

 

GND_B

 

 

 

 

 

GVDD_A

 

 

 

 

 

BST_A

 

 

 

 

 

PVDD_A

PWM

Ctrl.

Timing

Gate

 

OUT_A

Rcv.

Drive

 

 

 

 

 

 

 

 

 

 

BTL/PBTL−Configuration

 

 

 

 

 

Pulldown Resistor

 

 

 

 

 

GND_A

B0034-02

7

TAS5142

SLES126B –DECEMBER 2004 –REVISED MAY 2005

RECOMMENDED OPERATING CONDITIONS

PVDD_X

Half-bridge supply

GVDD_X

Supply for logic regulators and gate-drive

circuitry

 

VDD

Digital regulator input

RL (BTL)

 

RL (SE)

Load impedance

RL (PBTL)

 

LOutput (BTL)

 

LOutput (SE)

Output-filter inductance

LOutput (PBTL)

 

FPWM

PWM frame rate

TJ

Junction temperature

DC supply voltage

DC supply voltage

DC supply voltage

Output filter: L = 10 μH, C = 470 nF. Output AD modulation, switching fre-

quency > 350 kHz

Minimum output inductance under short-circuit condition

www.ti.com

MIN

TYP

MAX

UNIT

0

32

34

V

10.8

12

13.2

V

10.8

12

13.2

V

3

4

 

 

2

3

 

Ω

1.52

5

10

 

 

5

10

 

μH

5

10

 

 

192

384

432

kHz

0

 

125

°C

AUDIO SPECIFICATIONS (BTL)

PVDD_X = 32 V, GVDD = VDD = 12 V, BTL mode, RL = 4 Ω, audio frequency = 1 kHz, AES17 filter, FPWM = 384 kHz, case temperature = 75°C, unless otherwise noted. Audio performance is recorded as a chipset, using TAS5508 PWM processor

with an effective modulation index limit of 96.1%. All performance is in accordance with recommended operating conditions unless otherwise specified.

 

PARAMETER

TEST CONDITIONS

TAS5142

UNIT

 

TYP

 

 

MIN

MAX

 

 

RL = 4 Ω, 10% THD, clipped input

100

 

 

 

signal

 

 

 

 

RL = 6 Ω, 10% THD, clipped input

80

 

 

 

signal

 

 

 

 

RL = 8 Ω, 10% THD, clipped input

65

W

PO

Power output per channel, DKD package

signal

 

 

RL = 4 Ω, 0 dBFS, unclipped input

 

 

 

 

80

 

 

 

signal

 

 

 

 

RL = 6 Ω, 0 dBFS, unclipped input

60

 

 

 

signal

 

 

 

 

RL = 8 Ω, 0 dBFS, unclipped input

50

 

 

 

signal

 

 

THD+N

Total harmonic distortion + noise

0 dBFS

0.3%

 

1 W

0.1%

 

 

 

 

Vn

Output integrated noise

A-weighted

140

μV

SNR

Signal-to-noise ratio (1)

A-weighted

102

dB

 

 

A-weighted, input level = –60 dBFS

102

 

 

 

using TAS5508 modulator

 

DNR

Dynamic range

 

dB

A-weighted, input level = –60 dBFS

 

 

 

110

 

 

 

using TAS5518 modulator

 

 

 

 

 

P

Power dissipation due to idle losses (IPVDD_X)

P = 0 W, 4 channels switching(2)

2

W

idle

 

O

 

 

(1)SNR is calculated relative to 0-dBFS input level.

(2)Actual system idle losses are affected by core losses of output inductors.

8

Loading...
+ 18 hidden pages