Texas Instruments SN74LVTH574DBLE, SN74LVTH574DBR, SN74LVTH574DW, SN74LVTH574DWR, SN74LVTH574PWLE Datasheet

...
SN54LVTH574, SN74LVTH574
3.3-V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
SCBS688D – MAY 1997 – REVISED APRIL 1999
D
D
Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V
D
Support Unregulated Battery Operation Down to 2.7 V
D
Typical V < 0.8 V at V
D
I
off
and Power-Up 3-State Support Hot
(Output Ground Bounce)
OLP
= 3.3 V, TA = 25°C
CC
Insertion
D
Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
D
Latch-Up Performance Exceeds 500 mA Per JESD 17
D
ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
D
Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Ceramic (J) DIPs
description
CC
SN54LVTH574...J OR W PACKAGE
SN74LVTH574. . . DB, DW, OR PW PACKAGE
)
SN54LVTH574. . . FK PACKAGE
3D 4D 5D 6D 7D
(TOP VIEW)
OE
1
1D
2
2D
3
3D
4
4D
5
5D
6
6D
7
7D
8 9
8D
GND
10
(TOP VIEW)
2D1DOE
3212019
4 5 6 7 8
910111213
8D
GND
20 19 18 17 16 15 14 13 12
11
CLK
V
8Q
CC
V
CC
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q CLK
18 17 16 15 14
7Q 1Q
2Q 3Q 4Q 5Q 6Q
These octal flip-flops are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.
The eight flip-flops of the ’LVTH574 devices are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.
A buffered output-enable (OE
) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
OE
does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. When V
However, to ensure the high-impedance state above 1.5 V, OE
is between 0 and 1.5 V , the devices are in the high-impedance state during power up or power down.
CC
should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright 1999, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
SN54LVTH574, SN74LVTH574
3.3-V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
SCBS688D – MAY 1997 – REVISED APRIL 1999
description (continued)
These devices are fully specified for hot-insertion applications using I
and power-up 3-state. The I
off
disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
The SN54LVTH574 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVTH574 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(each flip-flop)
logic symbol
INPUTS
OE CLK D
L H H L LL LH or L X Q
H X X Z
OE
CLK
1D 2D 3D 4D 5D 6D 7D 8D
1 11
2 3 4 5 6 7 8 9
EN
C1
1D
OUTPUT
Q
0
19 18 17 16 15 14 13 12
1Q 2Q 3Q 4Q 5Q 6Q 7Q 8Q
circuitry
off
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
1
OE
11
CLK
C1
2
1D
To Seven Other Channels
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1D
19
1Q
UNIT
SN54LVTH574, SN74LVTH574
3.3-V ABT OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
SCBS688D – MAY 1997 – REVISED APRIL 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, V Input voltage range, V
–0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
(see Note 1) –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
Voltage range applied to any output in the high-impedance
or power-off state, V Voltage range applied to any output in the high state, V Current into any output in the low state, I
(see Note 1) –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
: SN54LVTH574 96 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
(see Note 1) –0.5 V to VCC + 0.5 V. . . . . . . . . . . . .
O
SN74LVTH574 128 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current into any output in the high state, I
(see Note 2): SN54LVTH574 48 mA. . . . . . . . . . . . . . . . . . . . . . .
O
SN74LVTH574 64 mA. . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, I Output clamp current, I Package thermal impedance, θ
(V
< 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IK
I
(V
< 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OK
O
(see Note 3): DB package 115°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JA
DW package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PW package 128°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51.
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
recommended operating conditions (see Note 4)
SN54LVTH574 SN74LVTH574
MIN MAX MIN MAX
V
CC
V
IH
V
IL
V
I
I
OH
I
OL
t/v Input transition rise or fall rate Outputs enabled 10 10 ns/Vt/V
T
A
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Supply voltage 2.7 3.6 2.7 3.6 V High-level input voltage 2 2 V Low-level input voltage 0.8 0.8 V Input voltage 5.5 5.5 V High-level output current –24 –32 mA Low-level output current 48 64 mA
Power-up ramp rate 200 200 µs/V
CC
Operating free-air temperature –55 125 –40 85 °C
Implications of Slow or Floating CMOS Inputs
, literature number SCBA004.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
Loading...
+ 4 hidden pages