Texas Instruments SN75LBC771DW, SN75LBC771DWR, SN75LBC771NS Datasheet

SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Supports a 9-Pin GeoPort Host Interface Standard for the Intelligent Network Port
D
Designed to Operate up to 4-Mbit/s Full Duplex
D
±5 V Supply Operation
D
Provides 6 kV ESD Protection
D
Has Driver Short-Circuit Protection
D
Includes Failsafe Mechanism for Open Inputs
D
Is Backward Compatible with AppleTalk and LocalTalk
D
Combines Multiple Components into a Single Chip Solution
D
Complements the SN75LBC772 9-Pin GeoPort Peripheral (DCE) Interface Device
D
Uses LinBiCMOSProcess Technology
description
The SN75LBC771 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/ TIA-423-B drivers and receivers to transmit data up to four-Mbit/s full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, AppleTalk, and printer ports all in one connector in addition to providing real-time data transfer capability. The SN75LBC771 provides point-to-point connec­tions between GeoPort-compatible devices with data transmission rates up to 4-Mbit/s full duplex featuring a hot-plug capability. Applications include connection to telephone, ISDN, digital sound and imaging, fax-data modems, and other traditional serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalkand AppleTalk.
While the SN75LBC771 is powered off (V
CC
and VEE = 0), the outputs are in a high-impedance state. Also, when the shutdown (SHDN) terminal is high, all outputs go into a high-impedance state. A logic high on the driver enable (DEN
) terminal places the outputs of the differential driver into a high-impedance state. All drivers and
receivers have fail-safe mechanisms that ensure a high output state when the inputs are left open. The SN75LBC771 is characterized for operation over the 0°C to 70°C temperature range.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
DA1
V
EE
NC NC
SHDN
DZ2 DY2
GND
DEN
DA2
GND V
CC
DY1 RY3 RB3 RA2 RY2 RB1 RA1 RY1
DW PACKAGE
(TOP VIEW)
DY2 DZ2
RY1
DY1
RY2
RY3
DA2
DEN
RB1
RA1
DA1
RA2
RB3
SHDN
10
9
12 13
11
1
14
5
18
15
16
17
7 6
logic diagram (positive logic)
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright 1997, Texas Instruments Incorporated
GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated. LinBICMOS is a trademark of Texas Instruments Incorporated.
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FUNCTION TABLES
SINGLE-ENDED DRIVER
DIFFERENTIAL DRIVER
INPUT
(DA1)
ENABLE
(SHDN)
OUTPUT
(DY1
)
INPUT
(DA2)
(SHDN) (DEN)
ENABLE
(DY2) (DZ2)
OUTPUT
H L
OPEN
X X
L L L H
OPEN
L H L Z Z
H L
OPEN
X X
L L L H
OPEN
L L L X X
H L H Z Z
L H L Z Z
XXXXH
OPENZZ
Z
Z
SINGLED-ENDED RECEIVER DIFFERENTIAL RECEIVER
INPUT
(RA2, RA3)
ENABLE
(SHDN)
OUTPUT
(RY2) (RY3)
INPUT
(RA1) (RB1)
ENABLE
(SHDN)
OUTPUT
(RY1)
H L H L H L L H L L L H L HL L
OPEN L H H OPEN L H
SHORT
L ? ? SHORT
L ? X H Z Z X XH Z XOPEN Z Z X X OPEN Z
H = high level, L = low level, X = irrelevant, ? = indeterminate, Z = high impedance (off)
–0.2 V < VID < 0.2 V
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
§
Positive supply voltage
range, V
CC
(see Note 1) –0.5 to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Negative supply voltage range, V
EE
(see Note 1) –7 to 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver input voltage range (RA, RB) –15 V to 15 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver differential input voltage range, V
ID
–12 V to 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver output voltage range (RY) –0.5 V to 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver output voltage range (Power Off) (DY1
, DY2, DZ2) –15 V to 15 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver output voltage range (Power On) (DY1
, DY2, DZ2) –11 V to 11 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver input voltage range (DA, SHDN, DEN
) –0.5 V to V
CC
+0.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic Discharge (see Note 2)
(All pins) Class 3, A 6 kV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(All pins) Class 3, B 500 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
A
0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
2. This rating is per MIL-STD-883C, Method 3015.7.
SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DISSIPATION RATING TABLE
PACKAGE
TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
DW 1125 mW 9.0 mW/°C 720 mW
recommended operating conditions
MIN NOM MAX UNIT
Positive supply voltage, V
CC
4.75 5 5.25 V
Negative supply voltage, V
EE
–5.25 –5 –4.75 V
High-level input voltage, V
IH
(DA, SHDN, DEN) 2 V
Low-level input voltage, V
IL
(DA, SHDN, DEN) 0.8 V
Receiver common-mode input voltage, V
IC
–7 7 V
Receiver differential input voltage, V
ID
–12 12 V
Operating free-air temperature, T
A
0 70 °C
driver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
p
RL= 12 k 3.6 4.5 V
VOHHigh-level output voltage
Single-ended,
RL= 120 2 3.6 V
p
g,
See Figure 1
RL= 12 k –4.5 –3.6 V
VOLLow-level output voltage
RL = 120 –3.6 –2 V
|VOD|
Magnitude of differential output voltage |VDY – VDZ|
R
= 120 , See Figure 2
4 V
|VOD| Change in differential voltage magnitude
L
,
g
250 mV
V
OC
Common-mode output voltage –2 2 V
|V
OC(SS)
|
Magnitude of change, common-mode steady-state output voltage
See Figure 3
200 mV
|V
OC(PP)
|
Magnitude of change, common-mode peak-to-peak output voltage
700 mV
I
CC
Positive supply current
4 10 mA
I
EE
Negative supply current
SHDN
=
DEN
= 0 V,
No Load
–2 –5 mA
I
CC
Positive supply current
100 µA
I
EE
Negative supply current
SHDN
=
DEN
= 5 V,
No Load
–100 µA
I
OZ
High-impedance output current VCC = 0 or 5 V, –10 VO 10 V ±100 µA
I
OS
Short-circuit output current
VCC = 5.25 V , See Note 3
–5 V VO 5 V,
±170 ±450 mA
NOTE 3: Not more than one output should be shorted at one time.
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
driver switching characteristics over operating free-air temperature range
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
PHL
Propagation delay time, high-to-low level output 42 75 ns
t
PLH
Propagation delay time, low-to-high level output 41 75 ns
t
PZL
Driver output enable time to low-level output 25 100 µs
t
PZH
Driver output enable time to high-level output
Single ended,
25 100 µs
t
PLZ
Driver output disable time from low-level output
SHDN
g,
See Figure 4
28 100 ns
t
PHZ
Driver output disable time from high-level output 37 100 ns
t
r
Rise time 10 25 75 ns
t
f
Fall time 10 23 75 ns
t
PHL
Propagation delay time, high-to-low level output 40 75 ns
t
PLH
Propagation delay time, low-to-high level output 42 75 ns
p
p
SHDN 25 100 µs
t
PZL
Driver output enable time to low-level output
DEN 29 150 ns
p
p
SHDN 25 100 µs
t
PZH
Driver output enable time to high-level output
DEN
Differential,
35 150 ns
p
p
SHDN
,
See Figure 5
28 100 ns
t
PLZ
Driver output disable time from low-level output
DEN 34 100 ns
p
p
SHDN 37 100 ns
t
PHZ
Driver output disable time from high-level output
DEN 34 100 ns
t
r
Rise time 10 27 75 ns
t
f
Fall time 10 26 75 ns
t
SK(p)
Pulse skew, |t
PLH
– t
PHL
| 22 ns
SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
receiver electrical characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V
IT+
Positive-going input threshold voltage 200 mV
V
IT–
Negative-going input threshold voltage
See Figure 6
–200 mV
V
hys
Differential input voltage hysteresis (V
IT+
– V
IT–
) 50 mV
V
OH
High-level output voltage (see Note 4)
VIC = 0, See Figure 6
IOH = –2 mA,
2 4.5 V
V
OL
Low-level output voltage
VIC = 0, See Figure 6
IOL = 2 mA,
0.4 0.8 V
p
VO = 0 –45 –85 mA
IOSShort-circuit output current
VO = 5.25 V 45 85 mA
R
IN
Input resistance VCC = 0 or 5.25 V, –12 V VI 12 V 6 30 k
NOTE 4: If the inputs are left unconnected, receivers one and two interpret this as a high-level input and receiver three interprets this as a low-level
input so that all outputs are at the high level.
receiver switching characteristics over recommended conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
PHL
Propagation delay time, high-to-low level output 30 75 ns
t
PLH
Propagation delay time, low-to-high level output
30 75 ns
t
r
Rise time
RL = 2 kΩ,
CL = 15 pF,
15 30 ns
t
f
Fall time
See Figure 6
15 30 ns
t
SK(P)
Pulse skew |t
PLH-tPHL
| 20 ns
t
PZL
Receiver output enable time to low-level output 35 100 ns
t
PZH
Receiver output enable time to high-level output 35 100 ns
t
PLZ
Receiver output disable time from low-level output
Differential
20 100 ns
t
PHZ
Receiver output disable time from high-level output
p
20 100 ns
t
PZL
Receiver output enable time to low-level output
C
L
= 50 pF,
See Figure 7
12 25 ns
t
PZH
Receiver output enable time to high-level output 12 25 µs
t
PLZ
Receiver output disable time from low-level output
Single-ended
25 100 µs
t
PHZ
Receiver output disable time from high-level output
125 400 ns
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
V
I
I
I
I
O
DY1
V
O
C
L
R
L
DA1
SHDN
V
I
V
O
V
O
C
L
C
L
R
L
R
L
DY2
I
O
I
O
DZ2
I
I
SHDN
or
DEN
DA2
NOTE A: CL = 50 pF
Figure 1. Single-Ended Driver DC Parameter Test Circuits
V
I
V
OD
DY2
DZ2
I
I
DA2
60
60
50 pF
I
O
SHDN
or
DEN
Figure 2. Differential Driver DC Parameter Test Circuit
V
I
V
OD
DY2
DZ2
DA2
60
60
15 pF
TEST CIRCUIT
V
OC
1.5 v
1.5 v
V
OC(PP)
V
OC(SS)
3 V
0 V
0 V
V
I
V
OC
VOLTAGE WAVEFORM
SHDN
or
DEN
NOTE A: Measured 3dB Bandwidth = 300 MHz
Figure 3. Differential Driver Common-Mode Output Voltage Test Circuit
SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
DY1
V
O
CL = 50 pF
RL = 120
DA1
SHDN
V
I
V
O
V
O
C
L
C
L
R
L
R
L
DY2
I
O
I
O
DZ2
I
I
DA2
TEST CIRCUIT
(see Note A)
SHDN
or
DEN
t
PHL
t
PHL
t
PLZ
t
PZL
t
PLH
t
PHZ
1.5 V 1.5 V 1.5 V 1.5 V
1.5 V 1.5 V
3 V
0 V
3 V
0 V
DA
DY2
V
OH
V
OL
0 V
t
PZL
t
r
t
f
90% 90%
10%
90%
90%
10% 10% 10%
V
OH
V
OL
0 V
VOLTAGE WAVEFORM
(see Note B)
50%
50%
DY1
, DZ2
SHDN
or
DEN
90%
10%
50%
90%
10%
50%
90%
90%
10%
t
PZH
t
PLH
t
f
t
PHZ
10%
t
PZH
t
r
t
PLZ
NOTES: A. CL = 50 pF, RL = 120
B. The input waveform tr, tf 10 ns.
Figure 4. Single-Ended Driver Propagation and Transition Times Test Circuits and Waveform
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
TEST CIRCUIT
t
PLH
t
PHZ
t
PZH
t
PHL
t
PLZ
t
PZL
t
r
t
f
1.5 V 1.5 V 1.5 V 1.5 V
1.5 V 1.5 V
90% 90%
10%
90%
90%
10% 10% 10%
3 V
0 V
3 V
0 V
V
OD(H)
V
OD(L)
0 V
SHDN
or
DEN
DA
V
OD
VOLTAGE WAVEFORM
(see Note A)
V
I
V
OD
DY2
DZ2
SHDN
or
DEN
DA2
RL = 60
50 pF
RL = 60
50%
50%
NOTE A: For the input waveform tr, tf < = 10 ns
Figure 5. Differential Driver Propagation and Transition Times Test Circuit and Waveforms
_
+
V
I
I
I
I
O
V
O
V
CC
2 k
15 pF
RY
RA RB
Input
SHDN
Output
t
r
t
f
t
PLH
t
PHL
0 V 0 V
2.5 V
–2.5 V
V
OH
1.5 V V
OL
90% 90%
10% 10%
V
I
V
O
TEST CIRCUIT VOLTAGE WAVEFORM
(see Note A)
NOTE A: For the input waveform tr, tf < = 10 ns
Figure 6. Receiver Propagation and Transition Times Test Circuit and Waveform
SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
_
+
CL = 50 pF
RY
RA RB
–2.5 V or 2.5 V
SHDN
t
PLZ
t
PZL
1.5 V
3 V
0 V
V
CC
V
OL
10%
90%
SHDN
V
O
TEST CIRCUIT
VOLTAGE WAVEFORM
(see Note A)
RL = 500
V
CC
10%
90%
1.5 V
t
PHZ
t
PZH
S1 at V
CC
S1 at GND
V
OH
0 V
S1
NOTE A: For the input waveform tr, tf < = 10 ns
Figure 7. Receiver Enable and Disable Test Circuit and Waveforms
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
GeoPort
Peripheral
Device
9-Pin
DCE
GeoPort
Host
SN75LBC771
9-Pin
DTE
678
34 95
12
13 12 7
6
18 15
16
RxD– RxD+
TxD+ TxD–
GND
RESET/ATT
SCLK
Power
TxHS/WAKE-UP
GeoPort
Controller
and USART
11
10
5
1 14 17
9
RxD
TxD
SHDN
DTR
RTXC
CTS RTS
Standard
Host
SN75LBC771
9-Pin
DTE
13
12
7 6
18
15
16 TxHS/WAKE-UP
Power
V
CC
GND
RxD–
RxD+
TxD+ TxD–
RESET/ATT
SCLK
V
CC
19
2
8
20
RESET/ATT SCLK
TxHS/WAKE-UP
V
EE
USART = universal synchronous asynchronous receiver transmitter
Figure 8. GeoPort 9-Pin DTE Connection Application
generator characteristics
232/V.28 423/V.10 562
PARAMETER
TEST CONDITIONS
MIN MAX MIN MAX MIN MAX
UNIT
Open circuit 25 4 6 13.2 V
|VO| Output voltage magnitude
3 k RL 7 k
5 15 NA 3.7 V
RL = 450 NA 3.6 NA V
I
OS
Short-circuit output current VO = 0 100 150 60 mA
R
(OFF)
Power-off source resistance VCC = 0, |VO| < 2 V 300 NA 300
I
O(OFF)
Power-off output current VCC = 0, |VO| < 6 V NA ±100 NA µA
SR Output voltage slew rate 30 NA 4 30 V/µs
±3.3 V to ±3.3 V NA NA 0.22 2.1 µs
t
t
Output transition time
±3 V to ±3 V 0.04 NA NA ui
10% to 90% NA 0.3 NA ui
V
O(RING)
Output voltage ring NA 10% 5%
ui is the unit interval and is the inverse of the signaling rate (bit time).
SN75LBC771
GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
receiver characteristics
232/V.28 423/V.10 562
PARAMETER
TEST CONDITIONS
MIN MAX MIN MAX MIN MAX
UNIT
|VI| Input voltage 25 10 25 V
p
|VI| < 15 V –3 3 NA –3 3 V
VITInput voltage threshold
|VI| < 10 V NA –0.2 0.2 NA V
p
3 V < |VI| < 15 V 3 7 NA 3 7 k
RIInput resistance
|VI| < 10 V NA 4 NA k
SN75LBC771 GEOPORT TRANSCEIVER
SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN
4040000/B 03/95
Seating Plane
0.400 (10,15)
0.419 (10,65)
0.104 (2,65) MAX
1
0.012 (0,30)
0.004 (0,10)
A
8
16
0.020 (0,51)
0.014 (0,35)
0.293 (7,45)
0.299 (7,59)
9
0.010 (0,25)
0.050 (1,27)
0.016 (0,40)
(15,24)
(15,49)
PINS **
0.010 (0,25) NOM
A MAX
DIM
A MIN
Gage Plane
20
0.500
(12,70)
(12,95)
0.510
(10,16)
(10,41)
0.400
0.410
16
0.600
24
0.610
(17,78)
28
0.700
(18,03)
0.710
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...