Texas Instruments SN74LVC827ADBLE, SN74LVC827ADBR, SN74LVC827ADGVR, SN74LVC827ADW, SN74LVC827ADWR Datasheet

...
SN74LVC827A
10-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
D
(Enhanced-Performance Implanted
CMOS) Submicron Process
D
Typical V < 0.8 V at V
D
Typical V > 2 V at V
D
Power Off Disables Outputs, Permitting
(Output Ground Bounce)
OLP
= 3.3 V, TA = 25°C
CC
(Output VOH Undershoot)
OHV
= 3.3 V, TA = 25°C
CC
Live Insertion
D
Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With
3.3-V V
D
ESD Protection Exceeds 2000 V Per
CC
)
MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
D
Latch-Up Performance Exceeds 250 mA Per JESD 17
D
Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages
description
DB, DW, OR PW PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10 11 12
24 23 22 21 20 19 18 17 16 15 14 13
V
CC
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 OE2
OE1
A1 A2 A3 A4 A5 A6 A7 A8 A9
A10
GND
This 10-bit buffer/bus driver is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC827A provides a high-performance bus interface for wide data paths or buses carrying parity . The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1
or OE2) input is high, all ten outputs are in the high-impedance state. The SN74LVC827A provides true data at its outputs.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.
T o ensure the high-impedance state during power up or power down, OE
should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN74LVC827A is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
INPUTS
OE1 OE2 A
L L L L
L LH H HXX Z XHX Z
OUTPUT
Y
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1998, Texas Instruments Incorporated
1
SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
1 13
2 3 4 5 6 7 8 9 10 11
&
EN
1
23 22 21 20 19 18 17 16 15 14
logic symbol
OE1 OE2
A1 A2 A3 A4 A5 A6 A7 A8 A9
A10
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
1
OE1
13
OE2
223
A1 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
Y1
To Nine Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, V Input voltage range, V Voltage range applied to any output in the high-impedance or power-off state, V
–0.5 V to 6.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
(see Note 1) –0.5 V to 6.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
O
(see Note 1) –0.5 V to 6.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high or low state, V
O
(see Notes 1 and 2) –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, I Output clamp current, I Continuous output current, I Continuous current through V Package thermal impedance, θ
(VI < 0 ) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IK
(VO < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OK
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
or GND ±100 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
(see Note 3): DB package 104°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JA
DW package 81°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PW package 120°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The value of VCC is provided in the recommended operating conditions table.
3. The package thermal impedance is calculated in accordance with JESD 51.
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
VCCSuppl
oltage
V
VOOutput voltage
V
IOHHigh-level output current
mA
IOLLow-level output current
mA
SN74LVC827A
10-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
recommended operating conditions (see Note 4)
MIN MAX UNIT
pp
y v
V
V
V
t/v Input transition rise or fall rate 0 10 ns/V T
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
High-level input voltage
IH
Low-level input voltage
IL
Input voltage 0 5.5 V
I
p
p
p
Operating free-air temperature –40 85 °C
A
Implications of Slow or Floating CMOS Inputs
, literature number SCBA004.
Operating 1.65 3.6 Data retention only 1.5 VCC = 1.65 V to 1.95 V 0.65 × V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V 2 VCC = 1.65 V to 1.95 V 0.35 × V VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8
High or low state 0 V 3 state 0 5.5 VCC = 1.65 V –4 VCC = 2.3 V –8 VCC = 2.7 V –12 VCC = 3 V –24 VCC = 1.65 V 4 VCC = 2.3 V 8 VCC = 2.7 V 12 VCC = 3 V 24
CC
1.7
CC
V
CC
V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
SN74LVC827A
V
V
I
mA
I
I
0
3.6 V
A
C
V
V
GND
3.3 V
pF
(INPUT)
(OUTPUT)
CONDITIONS
C
d
f
pF
10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS
IOH = –100 µA 1.65 V to 3.6 V VCC–0.2 IOH = –4 mA 1.65 V 1.2
OH
V
OL
I
I
I
off
I
OZ
CC
I
CC
Control inputs
i
Data inputs
C
o
All typical values are at VCC = 3.3 V, TA = 25°C.
This applies in the disabled state only.
IOH = –8 mA 2.3 V 1.7
= –12
OH
IOH = –24 mA 3 V 2.2 IOL = 100 µA 1.65 V to 3.6 V 0.2 IOL = 4 mA 1.65 V 0.45 IOL = 8 mA 2.3 V 0.7 IOL = 12 mA 2.7 V 0.4 IOL = 24 mA 3 V 0.55 VI = 0 to 5.5 V 3.6 V ±5 µA VI or VO = 5.5 V 0 ±10 µA VO = 0 to 5.5 V 3.6 V ±10 µA VI = VCC or GND
3.6 V VI 5.5 V One input at VCC – 0.6 V, Other inputs at VCC or GND 2.7 V to 3.6 V 500 µA
=
I
CC
VO = VCC or GND 3.3 V 7 pF
or
V
CC
2.7 V 2.2 3 V 2.4
=
O
MIN TYP†MAX UNIT
V
10
µ
10
5 4
p
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)
PARAMETER
t
pd
t
en
t
dis
t
sk(o)
§
This information was not available at the time of publication.
Skew between any two outputs of the same package switching in the same direction
operating characteristics, T
Power dissipation capacitance
p
per buffer/driver
§
This information was not available at the time of publication.
FROM
A Y § § § § 7.1 1 6.7 ns OE OE
A
PARAMETER
TO
Y § § § § 8.5 1 7.3 ns Y § § § § 7.3 1.8 6.7 ns
= 25°C
Outputs enabled Outputs disabled
VCC = 1.8 V
± 0.15 V
MIN MAX MIN MAX MIN MAX MIN MAX
TEST
= 10 MHz
VCC = 2.5 V
± 0.2 V
VCC = 1.8 V
± 0.15 V
VCC = 2.7 V
VCC = 2.5 V
± 0.2 V
TYP TYP TYP
§ § 24
§ § 5
VCC = 3.3 V
± 0.3 V
VCC = 3.3 V
± 0.3 V
UNIT
1 ns
UNIT
p
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
From Output
Under Test
CL = 30 pF
(see Note A)
SCAS306G – MARCH 1993 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
V
= 1.8 V ± 0.15 V
CC
2 × V
Open
GND
CC
TEST S1
t
t
PLZ/tPZL
t
PHZ/tPZH
1k
1k
S1
SN74LVC827A
10-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
pd
Open
2 × V
Open
CC
LOAD CIRCUIT
Timing
Input
t
Data
Input
Input
t
PLH
Output
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. t
PLZ
F. t
PZL
G. t
PLH
VCC/2
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2 VCC/2
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
and t
PHZ
and t
PZH
and t
PHL
VCC/2
t
su
are the same as t are the same as ten.
are the same as tpd.
h
VCC/2
VCC/2 VCC/2
dis
.
t
PHL
V
0 V
V
0 V
V
0 V
V
V
CC
CC
CC
OH
OL
Input
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × V
(see Note B)
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
PULSE DURATION
t
PZL
CC
t
PZH
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VCC/2
VCC/2
t
w
V
0 V
V
0 V
V
V
V
0 V
CC
CC
CC
OL
OH
VCC/2VCC/2
VCC/2VCC/2
t
PLZ
VOL + 0.15 V
t
PHZ
VOH – 0.15 V
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
CL = 30 pF
(see Note A)
500
500
S1
V
= 2.5 V ± 0.2 V
CC
2 × V
CC
Open
GND
TEST S1
t
pd
t
PLZ/tPZL
t
PHZ/tPZH
Open
2 × V
GND
CC
LOAD CIRCUIT
Timing
Input
t
Data
Input
Input
t
PLH
Output
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. t
PLZ
F. t
PZL
G. t
PLH
VCC/2
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2 VCC/2
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
and t
PHZ
and t
PZH
and t
PHL
VCC/2
t
su
are the same as t are the same as ten. are the same as tpd.
h
VCC/2
VCC/2 VCC/2
.
dis
t
PHL
V
0 V
V
0 V
V
0 V
V
V
CC
CC
CC
OH
OL
Input
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PULSE DURATION
t
PZL
CC
t
PZH
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VCC/2
VCC/2
t
w
V
0 V
V
0 V
V
V
V
0 V
CC
CC
CC
OL
OH
VCC/2VCC/2
VCC/2VCC/2
t
PLZ
VOL + 0.15 V
t
PHZ
VOH – 0.15 V
Figure 2. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
SN74LVC827A
10-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCAS306G – MARCH 1993 – REVISED JUNE 1998
PARAMETER MEASUREMENT INFORMATION
V
= 2.7 V AND 3.3 V ± 0.3 V
CC
From Output
Under Test
CL = 50 pF
(see Note A)
Timing
Input
Data
Input
Input
t
PLH
Output
500
500
LOAD CIRCUIT
1.5 V
t
su
1.5 V 1.5 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
1.5 V 1.5 V
1.5 V 1.5 V
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
t
h
S1
t
PHL
6 V
Open
GND
2.7 V
0 V
2.7 V
0 V
2.7 V
0 V
V
V
OH
OL
Input
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
TEST S1
t
pd
t
PLZ/tPZL
t
PHZ/tPZH
1.5 V 1.5 V
VOLTAGE WAVEFORMS
PULSE DURATION
t
PZL
t
PZH
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
t
w
t
1.5 V
t
1.5 V
Open
6 V
GND
1.5 V1.5 V
PLZ
PHZ
VOL + 0.3 V
VOH – 0.3 V
2.7 V
0 V
2.7 V
0 V
3 V
V
OL
V
OH
0 V
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. t
F. t
G. t
PLZ PZL PLH
and t and t
and t
are the same as t
PHZ
are the same as ten.
PZH
are the same as tpd.
PHL
dis
.
Figure 3. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...