Datasheet SN74LV541ADBR, SN74LV541ADGVR, SN74LV541ADW, SN74LV541ADWR, SN74LV541APWR Datasheet (Texas Instruments)

SN54LV541A, SN74LV541A
OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
D
(Enhanced-Performance Implanted
CMOS) Process
D
Typical V < 0.8 V at V
D
Typical V > 2 V at V
D
Latch-Up Performance Exceeds 250 mA Per
(Output Ground Bounce)
OLP
, TA = 25°C
CC
(Output VOH Undershoot)
OHV
, TA = 25°C
CC
JESD 17
D
ESD Protection Exceeds 200 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
D
Package Options Include Plastic Small-Outline (DW, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Package, Chip Carriers (FK), and DIPs (J)
description
The ’LV541A devices are octal buffers/drivers designed for 2-V to 5.5-V V
These devices are ideal for driving bus lines or buffer memory address registers. They feature inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.
The 3-state control gate is a two-input AND gate with active-low inputs so that if either output-enable (OE1
or OE2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide noninverted data when they are not in the high-impedance state.
operation.
CC
SN74LV541A. . . DB, DGV, DW, NS, OR PW PACKAGE
SN54LV541A...J OR W PACKAGE
(TOP VIEW)
OE1
1
A1
2
A2
3
A3
4
A4
5
A5
6
A6
7
A7
8 9
A8
GND
SN54LV541A. . . FK PACKAGE
A3 A4 A5 A6 A7
10
(TOP VIEW)
A2A1OE1
3212019
4 5 6 7 8
910111213
A8
GND
Y8
20 19 18 17 16 15 14 13 12 11
V
CC
Y7
V
CC
OE2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
18 17 16 15 14
Y6 OE2
Y1 Y2 Y3 Y4 Y5
T o ensure the high-impedance state during power up or power down, OE
should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54LV541A is characterized for operation over the full military temperature range of –55°C to 125°C.
The SN74LV541A is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(each buffer/driver)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC is a trademark of Texas Instruments Incorporated.
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
INPUTS
OE1 OE2 A
L L L L
L LH H HXX Z XHX Z
OUTPUT
Y
Copyright 1998, Texas Instruments Incorporated
1
SN54LV541A, SN74LV541A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
logic symbol
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
OE1 OE2
A1 A2 A3 A4 A5 A6 A7 A8
1 19
2 3 4 5 6 7 8 9
&
EN
1
logic diagram (positive logic)
OE1 OE2
1 19
18 17 16 15 14 13 12 11
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
218
A1
To Seven Other Channels
Y1
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, V Input voltage range, V Output voltage range applied in the high or low state, V Output voltage range applied in high-impedance or power-off state, V Input clamp current, I Output clamp current, I Continuous output current, I Continuous current through V Package thermal impedance, θ
Storage temperature range, T
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 7 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
–0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
(see Note 1) –0.5 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
(VI < 0) –20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IK
(VO < 0 or VO > VCC) ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OK
(VO = 0 to VCC) ±35 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
or GND ±70 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
(see Note 3): DB package 115°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JA
(see Notes 1 and 2) –0.5 V to VCC + 0.5 V. . . . . .
O
(see Note 1) –0.5 V to 7 V. . . . . . .
O
DGV package 146°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DW package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NS package 100°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PW package 128°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
UNIT
VIHHigh-level input voltage
V
VILLow-level input voltage
V
VOOutput voltage
V
IOHHigh-level output current
IOLLow-level output current
SN54LV541A, SN74LV541A
OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
recommended operating conditions (see Note 4)
SN54LV541A SN74LV541A
MIN MAX MIN MAX
V
V
t/v Input transition rise or fall rate
T
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Supply voltage 2 5.5 2 5.5 V
CC
VCC = 2 V 1.5 1.5
p
p
Input voltage 0 5.5 0 5.5 V
I
p
p
p
Operating free-air temperature –55 125 –40 85 °C
A
Implications of Slow or Floating CMOS Inputs
VCC = 2.3 V to 2.7 V VCC× 0.7 VCC× 0.7 VCC = 3 V to 3.6 V VCC× 0.7 VCC× 0.7 VCC = 4.5 V to 5.5 V VCC× 0.7 VCC× 0.7 VCC = 2 V 0.5 0.5 VCC = 2.3 V to 2.7 V VCC× 0.3 VCC× 0.3 VCC = 3 V to 3.6 V VCC× 0.3 VCC× 0.3 VCC = 4.5 V to 5.5 V VCC× 0.3 VCC× 0.3
High or low state 0 V 3-state 0 5.5 0 5.5 VCC = 2 V –50 –50 µA VCC = 2.3 V to 2.7 V –2 –2 VCC = 3 V to 3.6 V –8 –8 VCC = 4.5 V to 5.5 V –16 –16 VCC = 2 V 50 50 µA VCC = 2.3 V to 2.7 V 2 2 VCC = 3 V to 3.6 V 8 8 VCC = 4.5 V to 5.5 V 16 16 VCC = 2.3 V to 2.7 V 0 200 0 200 VCC = 3 V to 3.6 V 0 100 0 100 VCC = 4.5 V to 5.5 V 0 20 0 20
, literature number SCBA004.
CC
0 V
CC
mA
mA
ns/V
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
SN54LV541A, SN74LV541A
PARAMETER
TEST CONDITIONS
V
UNIT
V
V
V
V
PARAMETER
UNIT
C
F
PARAMETER
UNIT
C
F
OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
SN54LV541A SN74LV541A
MIN TYP MAX MIN T Y P MAX
I I I I C
OH
OL
I OZ CC off
i
CC
IOH = –50 µA 2 V to 5.5 V VCC–0.1 VCC–0.1 IOH = –2 mA 2.3 V 2 2 IOH = –8 mA 3 V 2.48 2.48 IOH = –16 mA 4.5 V 3.8 3.8 IOL = 50 µA 2 V to 5.5 V 0.1 0.1 IOL = 2 mA 2.3 V 0.4 0.4 IOL = 8 mA 3 V 0.44 0.44 IOL = 16 mA 4.5 V 0.55 0.55 VI = VCC or GND 5.5 V ±1 ±1 µA VO = VCC or GND 5.5 V ±5 ±5 µA VI = VCC or GND, IO = 0 5.5 V 20 20 µA VI or VO = 0 to 5.5 V 0 V 5 5 µA VI = VCC or GND 3.3 V 1.9 1.9 pF
switching characteristics over recommended operating free-air temperature range,
= 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)
V
CC
FROM TO LOAD
(INPUT) (OUTPUT) CAPACIT ANCE
t
pd
t
en
t
dis
t
pd
t
en
t
dis
t
sk(o)
On products compliant to MIL-PRF-38535, this parameter is not production tested.
Skew between any two outputs of the same package switching in the same direction
A Y 6.7 11.3 1 13.5 1 13.5 OE OE
A Y 8.7 15.9 1 18.5 1 18.5 OE OE
Y Y 8.4 13.1 1 15 1 15
Y Y
CL = 15 pF
= 50 p
L
TA = 25°C SN54LV541A SN74LV541A
MIN TYP MAX MIN MAX MIN MAX
8.5 16.6 1 19.5 1 19.5
10.5 20.7 1 24 1 24
12.3 17.9 1 20 1 20 2 2
switching characteristics over recommended operating free-air temperature range,
= 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
V
CC
FROM TO LOAD
(INPUT) (OUTPUT) CAPACIT ANCE
t
pd
t
en
t
dis
t
pd
t
en
t
dis
t
sk(o)
On products compliant to MIL-PRF-38535, this parameter is not production tested.
Skew between any two outputs of the same package switching in the same direction
A Y 4.8 7 1 8.5 1 8.5 OE OE
A Y 6.1 10.5 1 12 1 12 OE OE
Y Y 5.8 11 1 12 1 12
Y Y
CL = 15 pF
= 50 p
L
TA = 25°C SN54LV541A SN74LV541A
MIN TYP MAX MIN MAX MIN MAX
6.1 10.5 1 11 1 11
7.4 14 1 16 1 16
8.8 15.4 1 17.5 1 17.5
1.5 1.5
ns
ns
ns
ns
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER
UNIT
C
F
PARAMETER
UNIT
CpdPower dissipation capacitance
Outputs enabled
C
50 pF
pF
SN54LV541A, SN74LV541A
OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
switching characteristics over recommended operating free-air temperature range,
= 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
V
CC
FROM TO LOAD
(INPUT) (OUTPUT) CAPACIT ANCE
t
pd
t
en
t
dis
t
pd
t
en
t
dis
t
sk(o)
On products compliant to MIL-PRF-38535, this parameter is not production tested.
Skew between any two outputs of the same package switching in the same direction
A Y 3.5 5 1 6 1 6 OE OE
A Y 4.3 7 1 8 1 8 OE OE
Y Y 3.9 7 1 8 1 8
Y Y
CL = 15 pF
= 50 p
L
TA = 25°C SN54LV541A SN74LV541A
MIN TYP MAX MIN MAX MIN MAX
4.3 7.2 1 8.5 1 8.5
5.3 9.2 1 10.5 1 10.5
5.6 8.8 1 10 1 10 1 1
ns
ns
noise characteristics, V
V
OL(P)
V
OL(V)
V
OH(V)
V
IH(D)
V
IL(D)
NOTE 5: Characteristics are for surface-mount packages only.
Quiet output, maximum dynamic V Quiet output, minimum dynamic V Quiet output, minimum dynamic V High-level dynamic input voltage 2.31 V Low-level dynamic input voltage 0.99 V
= 3.3 V, CL = 50 pF, TA = 25°C (see Note 5)
CC
OL OL OH
operating characteristics, TA = 25°C
PARAMETER TEST CONDITIONS V
p
p
SN74LV541A
MIN TYP MAX
0.53 0.8 V
–0.37 –0.8 V
2.86 V
TYP UNIT
CC
p
p
,f = 10 MHz
=
L
3.3 V 16.3 5 V 17.8
p
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
SN54LV541A, SN74LV541A OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
SCLS410C – APRIL 1998 – REVISED JUL Y 1998
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
(see Note A)
Test Point
C
L
From Output
Under Test
(see Note A)
V
RL = 1 k
C
L
S1
CC
Open
GND
TEST S1
t
PLH/tPHL
t
PLZ/tPZL
t
PHZ/tPZH
Open Drain
Open
V
CC
GND V
CC
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
t
w
Input
Input
In-Phase
Output
Out-of-Phase
Output
INVERTING AND NONINVERTING OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, ZO = 50 , tr 3 ns, tf 3 ns. D. The outputs are measured one at a time with one input transition per measurement. E. t F. t
G. t
50% V
CC
VOLTAGE WAVEFORMS
PULSE DURATION
50% V
CC
t
PLH
50% V
CC
t
PHL
50% V
CC
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
PLZ PZL PHL
and t and t
and t
are the same as t
PHZ
are the same as ten.
PZH
are the same as tpd.
PLH
3-STATE AND OPEN-DRAIN OUTPUTS
50% V
50% V
dis
CC
t
PHL
50% V
t
PLH
50% V
.
LOAD CIRCUIT FOR
V
CC
CC
0 V
V
CC
0 V
V
OH
CC
V
OL
V
OH
CC
V
OL
Timing Input
Data Input
Output
Control
Output
Waveform 1
S1 at V
(see Note B)
Waveform 2
(see Note B)
CC
Output
S1 at GND
50% V
CC
t
CC
CC
h
50% V
50% V
CC
CC
VOL + 0.3 V
VOH – 0.3 V
t
su
50% V
CC
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
50% V
CC
t
PZL
t
PZH
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
t
PLZ
50% V
t
PHZ
50% V
V
CC
0 V
V
CC
0 V
V
CC
0 V
V
V
OL
V
OH
0 V
CC
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...