Texas Instruments SN74AVC16245DGGR, SN74AVC16245DGVR Datasheet

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
SN74A VC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES142L – JULY 1998 – REVISED FEBRUAR Y 2000
1
D
Member of the Texas Instruments
Widebus
Family
D
EPIC
(Enhanced-Performance Implanted
CMOS) Submicron Process
D
DOC
(Dynamic Output Control) Circuit
Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
D
Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V
CC
D
Dynamic Drive Capability Is Equivalent to Standard Outputs With I
OH
and IOL of
±24 mA at 2.5-V V
CC
D
Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
D
I
off
Supports Partial-Power-Down Mode
Operation
D
ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A)
D
Latch-Up Performance Exceeds 250 mA Per JESD 78
D
Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages
description
A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V
OL
vs IOL and VOH vs IOH curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports,
AVC
Logic Family T echnology and Applications
, literature number SCEA006, and
Dynamic Output Control (DOC)
Circuitry Technology and Applications
, literature number SCEA009.
136
–128–144–160
0.4
0.8
1.2
1.6
2.0
2.4
2.8
17015311910285685134170
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2 TA = 25°C
Process = Nominal
IOL – Output Current – mA
VCC = 3.3 V
VCC = 2.5 V
VCC = 1.8 V
– Output Voltage – V
OL
V
TA = 25°C Process = Nominal
IOH – Output Current – mA
VCC = 3.3 V
VCC = 2.5 V
VCC = 1.8 V
– Output Voltage – V
OH
V
–80–96–112 –32–48–64 0–16
Figure 1. Output Voltage vs Output Current
This 16-bit (dual octal) noninverting bus transceiver is operational at 1.2-V to 3.6-V VCC, but is designed specifically for 1.65-V to 3.6-V VCC operation.
The SN74A VC16245 is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright 2000, Texas Instruments Incorporated
DOC, EPIC, and Widebus are trademarks of Texas Instruments Incorporated.
SN74AVC16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES142L – JULY 1998 – REVISED FEBRUAR Y 2000
2
description (continued)
T o ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
This device is fully specified for partial-power-down applications using I
off
. The I
off
circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down. The SN74AVC16245 is characterized for operation from –40°C to 85°C.
terminal assignments
DGG OR DGV PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
1DIR
1B1 1B2
GND
1B3 1B4
V
CC
1B5 1B6
GND
1B7 1B8 2B1 2B2
GND
2B3 2B4
V
CC
2B5 2B6
GND
2B7 2B8
2DIR
1OE 1A1 1A2 GND 1A3 1A4 V
CC
1A5 1A6 GND 1A7 1A8 2A1 2A2 GND 2A3 2A4 V
CC
2A5 2A6 GND 2A7 2A8 2OE
FUNCTION TABLE
(each 8-bit transceiver)
INPUTS
OE DIR
OPERATION
L L B data to A bus L H A data to B bus H X Isolation
SN74AVC16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES142L – JULY 1998 – REVISED FEBRUAR Y 2000
3
logic symbol
1A2
46
1A3
44
1A4
43
1A5
41
1A6
40
1A7
38
1A8
37
2A2
35
2A3
33
2A4
32
2A5
30
2A6
29
2A7
27
2A8
26
1OE
2OE
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
1A1
47
G3
48
3 EN1 [BA]
1
1DIR
3 EN2 [AB] G6
25
6 EN4 [BA]
24
2DIR
6 EN5 [AB]
1B1
2
1B2
3
1B3
5
1B4
6
1B5
8
1B6
9
1B7
11
1B8
12
2A1
36
2B1
13
2B2
14
2B3
16
2B4
17
2B5
19
2B6
20
2B7
22
2B8
23
1
2
4
5
logic diagram (positive logic)
To Seven Other Channels
1DIR
1A1
1B1
1OE
To Seven Other Channels
2DIR
2A1
2B1
2OE
1
47
24
36
48
2
25
13
SN74AVC16245 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES142L – JULY 1998 – REVISED FEBRUAR Y 2000
4
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC –0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (see Note 1) –0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any input/output
when the output is in the high-impedance or power-off state, V
O
(see Note 1) –0.5 V to 4.6 V. . . . . . . . . .
Voltage range applied to any input/output
when the output is in the high or low state, V
O
(see Notes 1 and 2) –0.5 V to VCC + 0.5 V. . . . . . . . . . . . .
Input clamp current, IIK (VI < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, I
OK
(VO < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through each VCC or GND ±100 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Note 3): DGG package 70°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGV package 58°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
3. The package thermal impedance is calculated in accordance with JESD 51.
Loading...
+ 7 hidden pages