Datasheet SN74ALVCHR162601DGGR, SN74ALVCHR162601DGVR, SN74ALVCHR162601DL, SN74ALVCHR162601DLR Datasheet (Texas Instruments)

SN74ALVCHR162601
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Widebus
Family
D
EPIC
(Enhanced-Performance Implanted
CMOS) Submicron Process
D
UBT
(Universal Bus Transceiver)
Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
D
Output Ports Have Equivalent 26- Series Resistors, So No External Resistors Are Required
D
ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
D
Latch-Up Performance Exceeds 250 mA Per JESD 17
D
Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
D
Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and 300-mil Shrink Small-Outline (DL) Packages
NOTE: For order entry:
The DGG package is abbreviated to G, and the DGV package is abbreviated to V .
description
This 18-bit universal bus transceiver is designed for 1.65-V to 3.6-V VCC operation.
The SN74ALVCHR162601 combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, clocked, and clock-enabled modes.
Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow , the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low , the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is low, the outputs are active. When OEAB
is high, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses OEBA
, LEBA, CLKBA, and CLKENBA. The outputs include equivalent 26-series resistors to reduce overshoot and undershoot. T o ensure the high-impedance state during power up or power down, OE
should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Copyright 1999, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, EPIC, and UBT are trademarks of Texas Instruments Incorporated.
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
OEAB
LEAB
A1
GND
A2 A3
V
CC
A4 A5 A6
GND
A7 A8
A9 A10 A11 A12
GND
A13 A14 A15
V
CC
A16 A17
GND
A18
OEBA
LEBA
CLKENAB CLKAB B1 GND B2 B3 V
CC
B4 B5 B6 GND B7 B8 B9 B10 B11 B12 GND B13 B14 B15 V
CC
B16 B17 GND B18 CLKBA CLKENBA
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
SN74ALVCHR162601 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
description (continued)
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The SN74ALVCHR162601 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
INPUTS
OUTPUT
CLKENAB OEAB
LEAB
CLKAB
A
B
X H X X X Z X LH XL L X LH XH H H LL XXB
0
L LL LL L LL HH L L L L or H X B
0
A-to-B data flow is shown: B-to-A flow is similar but uses OEBA
,
LEBA, CLKBA, and CLKENBA
.
Output level before the indicated steady-state input conditions were established
logic diagram (positive logic)
CE
1D C1
CLK
CE 1D C1
CLK
B1
OEAB
CLKENAB
CLKAB
LEAB
LEBA
CLKBA
CLKENBA
OEBA
A1
1
56
55
2
28
30
29
27
3
54
To 17 Other Channels
SN74ALVCHR162601
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC –0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI: Except I/O ports (see Note 1) –0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O ports (see Notes 1 and 2) –0.5 V to V
CC
+ 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage range, VO (see Notes 1 and 2) –0.5 V to VCC + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0) –50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through each V
CC
or GND ±100 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θ
JA
(see Note 3): DGG package 81°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DGV package 86°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DL package 74°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
MIN MAX UNIT
V
CC
Supply voltage 1.65 3.6 V
VCC = 1.65 V to 1.95 V 0.65 × V
CC
V
IH
High-level input voltage
VCC = 2.3 V to 2.7 V
1.7
V VCC = 2.7 V to 3.6 V 2 VCC = 1.65 V to 1.95 V 0.35 × V
CC
V
IL
Low-level input voltage
VCC = 2.3 V to 2.7 V
0.7
V VCC = 2.7 V to 3.6 V 0.8
V
I
Input voltage 0 V
CC
V
V
O
Output voltage 0 V
CC
V VCC = 1.65 V –2
p
VCC = 2.3 V –6
IOHHigh-level output current
VCC = 2.7 V –8
mA
VCC = 3 V –12 VCC = 1.65 V 2
p
VCC = 2.3 V 6
IOLLow-level output current
VCC = 2.7 V 8
mA
VCC = 3 V 12
t/v Input transition rise or fall rate 10 ns/V T
A
Operating free-air temperature –40 85 °C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs
, literature number SCBA004.
SN74ALVCHR162601 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS
V
CC
MIN TYP†MAX UNIT
IOH = –100 µA 1.65 V to 3.6 V VCC–0.2 IOH = –2 mA 1.65 V 1.2 IOH = –4 mA 2.3 V 1.9
V
OH
2.3 V 1.7
V
I
OH
= –6
mA
3 V 2.4 IOH = –8 mA 2.7 V 2 IOH = –12 mA 3 V 2 IOL = 100 µA 1.65 V to 3.6 V 0.2 IOL = 2 mA 1.65 V 0.45 IOL = 4 mA 2.3 V 0.4
V
OL
2.3 V 0.55
V
I
OL
= 6
mA
3 V 0.55 IOL = 8 mA 2.7 V 0.6 IOL = 12 mA 3 V 0.8
I
I
VI = VCC or GND 3.6 V ±5 µA VI = 0.58 V
25
VI = 1.07 V
1.65 V
–25
VI = 0.7 V
45
I
I(hold)
VI = 1.7 V
2.3 V
–45
µA
()
VI = 0.8 V
75
VI = 2 V
3 V
–75
VI = 0 to 3.6 V
3.6 V ±500
I
OZ
§
VO = VCC or GND 3.6 V ±10 µA
I
CC
VI = VCC or GND, IO = 0 3.6 V 40 µA
I
CC
One input at VCC – 0.6 V, Other inputs at VCC or GND 3 V to 3.6 V 750 µA
C
i
Control inputs VI = VCC or GND 3.3 V 4 pF
C
io
A or B ports VO = VCC or GND 3.3 V 8 pF
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§
For I/O ports, the parameter IOZ includes the input leakage current.
SN74ALVCHR162601
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)
VCC = 1.8 V
VCC = 2.5 V
± 0.2 V
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
f
clock
Clock frequency
150 150 150 MHz
Pulse
LE high
3.3 3.3 3.3
t
w
duration
CLK high or low
3.3 3.3 3.3
ns
Data before CLK
2.3 2.4 2.1
p
CLK high
2 1.6 1.6
tsuSetup time
Data before LE
CLK low
1.3 1.2 1.1
ns
CLKEN before CLK
2 2 1.7
Data after CLK
0.7 0.7 0.8
CLK high
1.3 1.6 1.4
thHold time
Data after LE
CLK low
1.7 2 1.7
ns
CLKEN after CLK
0.3 0.5 0.6
This information was not available at the time of publication.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)
PARAMETER
FROM
TO
VCC = 1.8 V
VCC = 2.5 V
± 0.2 V
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
UNIT
(INPUT)
(OUTPUT)
MIN TYP MIN MAX MIN MAX MIN MAX
f
max
150 150 150 MHz
A or B
1 4.8 5.1 1 4.4
t
pd
LEAB or LEBA
B or A
1 5.5 5.8 1 5.1
ns
CLKAB or CLKBA
1.2 5.9 6.3 1.4 5.4
t
en
OEAB or OEBA
B or A
1.1 6.3 6.6 1.1 5.6 ns
t
dis
OEAB or OEBA
B or A
1 4.2 5.1 1.6 4.7 ns
This information was not available at the time of publication.
operating characteristics, TA = 25°C
VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V
PARAMETER
TEST CONDITIONS
TYP TYP TYP
UNIT
Power dissipation
Outputs enabled
56 63
p
C
pd
capacitance
Outputs disabled
C
L
= 0,f = 10 MHz
12 13
pF
This information was not available at the time of publication.
SN74ALVCHR162601 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
V
CC
= 1.8 V
VCC/2
VCC/2
VCC/2VCC/2
VCC/2VCC/2
VCC/2
VCC/2
V
OH
V
OL
t
h
t
su
From Output
Under Test
CL = 30 pF
(see Note A)
LOAD CIRCUIT
S1
Open
GND
1 k
1 k
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × V
CC
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
t
PZL
t
PZH
t
PLZ
t
PHZ
0 V
VOL + 0.15 V
VOH – 0.15 V
0 V
V
CC
0 V
0 V
t
w
V
CC
V
CC
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
Timing
Input
Data
Input
Input
t
pd
t
PLZ/tPZL
t
PHZ/tPZH
Open
2 × V
CC
GND
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. t
PLZ
and t
PHZ
are the same as t
dis
.
F. t
PZL
and t
PZH
are the same as ten.
G. t
PLH
and t
PHL
are the same as tpd.
0 V
V
CC
VCC/2
t
PHL
VCC/2 VCC/2
V
CC
0 V
V
OH
V
OL
Input
Output
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCC/2 VCC/2
t
PLH
2 × V
CC
V
CC
Figure 1. Load Circuit and Voltage Waveforms
SN74ALVCHR162601
18-BIT UNIVERSAL BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
V
CC
= 2.5 V ± 0.2 V
VCC/2
VCC/2
VCC/2VCC/2
VCC/2VCC/2
VCC/2
VCC/2
V
OH
V
OL
t
h
t
su
From Output
Under Test
CL = 30 pF
(see Note A)
LOAD CIRCUIT
S1
Open
GND
500
500
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × V
CC
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
t
PZL
t
PZH
t
PLZ
t
PHZ
0 V
VOL + 0.15 V
VOH – 0.15 V
0 V
V
CC
0 V
0 V
t
w
V
CC
V
CC
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
Timing
Input
Data
Input
Input
t
pd
t
PLZ/tPZL
t
PHZ/tPZH
Open
2 × V
CC
GND
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr 2 ns, tf 2 ns. D. The outputs are measured one at a time with one transition per measurement.
E. t
PLZ
and t
PHZ
are the same as t
dis
.
F. t
PZL
and t
PZH
are the same as ten.
G. t
PLH
and t
PHL
are the same as tpd.
0 V
V
CC
VCC/2
t
PHL
VCC/2 VCC/2
V
CC
0 V
V
OH
V
OL
Input
Output
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VCC/2 VCC/2
t
PLH
2 × V
CC
V
CC
Figure 2. Load Circuit and Voltage Waveforms
SN74ALVCHR162601 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS
SCES123E – SEPTEMBER 1997 – REVISED FEBRUARY 1999
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
V
CC
= 2.7 V AND 3.3 V ± 0.3 V
1.5 V
1.5 V
1.5 V1.5 V
1.5 V1.5 V
1.5 V
1.5 V
V
OH
V
OL
t
h
t
su
From Output
Under Test
CL = 50 pF
(see Note A)
LOAD CIRCUIT
S1
Open
GND
500
500
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
t
PZL
t
PZH
t
PLZ
t
PHZ
0 V
VOL + 0.3 V
VOH – 0.3 V
0 V
2.7 V
0 V
0 V
t
w
2.7 V
2.7 V
3 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
Timing
Input
Data
Input
Input
t
pd
t
PLZ/tPZL
t
PHZ/tPZH
Open
6 V
GND
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. t
PLZ
and t
PHZ
are the same as t
dis
.
F. t
PZL
and t
PZH
are the same as ten.
G. t
PLH
and t
PHL
are the same as tpd.
6 V
0 V
2.7 V
1.5 V
t
PHL
1.5 V 1.5 V
2.7 V
0 V
V
OH
V
OL
Input
Output
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
1.5 V 1.5 V
t
PLH
Figure 3. Load Circuit and Voltage Waveforms
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...