T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MA Y INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
About This Manual
This user’s guide describes techniques for designing synchronous buck
converters using TI’s SL VP11 1 1–114 evaluation modules (EVM) and TPS56xx
ripple regulator controllers.
This is an example of a caution statement.
A caution statement describes a situation that could potentially
damage your software or equipment.
This is an example of a warning statement.
A warning statement describes a situation that could potentially
cause harm to you
.
The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.
Read This First
iii
Trademarks
Related Documentation From Texas Instruments
Synchronous Buck Converter Design Using TPS56xx Controllers in
SLVP10x EVMs User’s Guide
TPS56xx data sheet (literature number SLVS177A)
(literature number SLVU007).
Designer’s Notebook
The TPS56xx Family of Power Supply Controllers
(literature number SLVT140A)
Designing Fast Response Synchronous Buck Regulators Using the
TPS5210 (literaure number SLVA044).
FCC Warning
This equipment is intended for use in a laboratory test environment only . It generates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.
Trademarks
TI is a trademark of Texas Instruments Incorporated.
The SLVP111/112/113/114 evaluation modules (EVMs) have been designed
and tested using the TPS56xx hysteretic controllers. These boards are
synchronous dc-dc buck converters with fixed output voltages of 3.3 V , 2.5 V,
1.8 V and 1.5 V respectively. They use only surface mount components and
are design examples of how to use TI’s TPS56xx controllers in high density,
low loss applications with tight static and dynamic output voltage
requirements. Detailed test results taken from the EVMs are presented.
Design simplicity , low component count, and lower cost make buck converters
popular solutions where low input voltages are available for the converter and
where isolation is not a requirement.
This user’s guide describes techniques for designing synchronous buck
converters using TI’s SLVP111–114 EVMs and TPS56xx ripple regulator
controllers. Synchronous buck converters provide an elegant power supply
solution for rapidly transitioning DSP loads (such as the Texas Instruments
TMS320C62x/67x family), fast memory, and similar processors. An order of
magnitude improvement in dynamic response of this converter over standard
control methods reduces hold-up capacitance needs near the transitioning
loads, thus saving cost and board space.
The synchronous buck converter is a variation of the traditional buck
converter. The main switching device is usually a power MOSFET and is
driven in the same manner as in a traditional buck converter. The freewheeling
rectifier, usually a Schottky device, is replaced by a power MOSFET and is
driven in a complementary or synchronous fashion relative to the main
switching device; when one MOSFET is on, the other is off. The freewheeling
MOSFET is selected so that its ON voltage drop is less than the forward drop
of the original freewheeling rectifier, thus increasing conversion efficiency. A
very important design issue when using a synchronous buck converter is
preventing cross-conduction of the two power MOSFET s, i.e., preventing both
MOSFETs from being on simultaneously. A small amount of deadtime is
necessary.
Figure 1 shows a simplified schematic of a synchronous buck converter. The
TPS56xx senses the output voltage and then drives Q1 and Q2 depending on
the sensed voltage. The TPS56xx senses the voltage at the junction of Q1, Q2,
and L1 and uses it to actively prevent simultaneous conduction of Q1 and Q2.
Hysteretic control, also called bang-bang control or ripple regulator control,
maintains the output voltage within the hysteresis band centered about the
internal reference voltage. Figure 1–2 shows a simplified example of a
hysteretic controlled output voltage using the TPS5625 with a reference
voltage of 2.500 V and a hysteresis band of 50 mV. If the output voltage is at
or below the level of the reference minus one-half of the hysteresis band
(V
= 2.475 V), the TPS5625 turns off the low-side MOSFET (Q2 in Figure
Lo
1–1) and turns on the high-side MOSFET (Q1 in Figure 1–1) of the
synchronous buck converter power stage. This is the power stage on-state,
and it causes the output voltage to increase. When the output voltage reaches
or exceeds the reference plus one-half of the hysteresis band (V
the TPS5625 turns off the high-side MOSFET and turns on the low-side
MOSFET. This is the power stage off-state, and it causes the output voltage
to decrease. This hysteretic method of control keeps the output voltage within
the hysteresis band around the reference voltage. If output-load current steps
or input-voltage transients force the output voltage out of the hysteresis band,
the TPS5625 sets the power-stage MOSFET s in the continuous on or off state
as required to return the output voltage to the hysteresis band. Thus, the
output voltage is corrected as quickly as the output filter allows. There are no
error amplifier sensing and adjusting delays, as is the case with either voltageor current-mode controllers. Other advantages of hysteretic control include no
loop compensation design and no input filter interaction problems.
Hysteretic Control Operation
= 2.525 V),
Hi
Figure 1–2.Simplified Hysteretic Controlled Output Voltage Waveform
Output
Voltage
2.525 V
2.500 V
2.475 V
On TimeOff Time
T
s
V
Hi
V
Lo
Time
Hysteresis
Introduction
1-3
Design Strategy
1.3Design Strategy
The SLVP111–114 evaluation modules (EVMs) are optimized for 5-V main
input voltage and 6-A output current. The EVMs need an additional low current
12-V (30 mA max) input voltage for the controller. TI’s application report,
Providing a DSP Power Solution from 5 V or 3.3 V Only Systems
number SPRA525 describes how one can implement a simple boost circuit for
5-V only input voltage applications. These EVMs are pin to pin compatible with
SLVP104/105/106/115 evaluation boards with 8 A output current, which
combine surface mount and through hole components. This surface mount
version has the same length, 2″, and width, 0.75″, but the height is significantly
lower, 0.375″ versus 0.6″ for through hole version.
The TI SLVP111–114 evaluation modules (EVM) provide synchronous buck
converter circuits for evaluating the capabilities of the TPS56xx family of ripple
regulator controllers. The EVM converters can provide proven, demonstrated
reference designs to aid in the rapid development of application-specific
synchronous buck converters. Output capacities of the EVM converters are
optimized for the Siliconix Si4410 power MOSFET device.
The 6-ampere output current level is a reasonable selection criteria for
powering circuit cards with multiple DSPs, and for providing the regulated
voltage to other hardware on the circuit card. Component size can be reduced
for designs requiring lower power levels.
, TI literature
The TPS56xx controllers each provide one of four popular output voltage
levels. The last two digits of the part number correlate to the set-point voltage
level: TPS5633 is the 3.3-V controller, TPS5625 is the 2.5-V controller,
TPS5618 is the 1.8-V controller, and TPS5615 is the 1.5-V controller. Many
digital devices, memories, and DSP I/O circuits use the 3.3-V level. The core
of the TMS320C6201 requires 2.5-V . All of the other DSPs in the TMS320C62x
and the TMS320C67x family need 1.8 V. The GTL bus, as well as various
processors and future DSPs, may require the 1.5-V controller. An external
resistor divider can be used to fine tune the output voltages of these controllers
for other applications including output voltages up to approximately
V
– 0.5 V.
IN
Table 1–1 summarizes the four EVM converter modules.
Table 1–1.Summary of EVM Converter Modules
EVM Part NumberEVM Board
TPS5633EVM–111SLVP111TPS56333.3 V6 A
TPS5625EVM–112SLVP112TPS56252.5 V6 A
TPS5618EVM–113SLVP113TPS56181.8 V6 A
TPS5615EVM–114SLVP114TPS56151.5 V6 A
Number
ControllerOutput
Voltage
Max. Output
Current
†
†
†
†
1-4
†
Output current is limited by the temperature rise of the power MOSFETs chosen. Higher or
lower current designs are possible
.
1.4Design Specification Summary
g
y
k
Oeratingfrequency
()
S
)
This section summarizes the design requirements of the EVM converters.
Although every attempt was made to accurately describe the performance of
the EVM converters and the TPS56xx controllers, in case of conflicts, the
TPS56xx data sheet takes precedence over this document.
The TPS56xx family of controllers provides the necessary regulation
functions. In addition to a reference voltage accuracy of ±1% over the full
operating temperature range, the controller has remote sense inputs to
provide a precisely regulated output voltage. The controller also provides
undervoltage lock-out, overload protection, overvoltage protection, and
overtemperature protection. The controller has a logic level INHIBIT input to
control the converter turn-on and turn-off and a power good output to indicate
output voltage status. Undervoltage lock-out prevents operation of the power
supply when the 12 Vdc input voltage is not sufficient for proper operation.
Overload protection protects the power supply from accidental overloads or
short circuits. Overvoltage protection prevents damage to the load in the event
of an internal power supply failure or presence of high voltages on the output
from an external condition. Both overvoltage and overcurrent cause a latched
shutdown. Both power MOSFETs are driven to an OFF state. Recovery from
shutdown requires removal of the 12 V control input supply for reset. T able 1–2
lists the operating specifications of the EVM converters.
Design Specification Summary
Table 1–2.EVM Converter Operating Specifications
SpecificationMinTypMaxUnits
Power input voltage range4.56V
Control input voltage range10.813.2V
Static voltage tolerance
Vi = 5 V, Io stepped repetitively from 0 A to 6.5 A
#
Output current rating is limited by thermal considerations. Load currents above this rating may
cause damage to the power supply.
||
Unless otherwise specified, all test conditions are TA = 25_C, Vi = 5 V, Io = 6 A, Vo = nominal.
k
Vi = 5 V, Io = 6 A, Vo = nominal
91.6%
88.6%
85.1%
81.9%
1-6
1.5Schematic
Figure 1–3 shows the EVM converter schematic diagram. The schematic
diagrams for the other EVM converters are identical except for the controller
IC used.