DBrownout Detector
DBasic Timer With Real Time Clock Feature
DIntegrated LCD Driver up to 160 Segments
With Regulated Charge Pump
DFamily Members Include:
-- MSP430xG4616:
92KB+256B Flash or ROM Memory
4KB RAM
-- MSP430xG4617:
92KB+256B Flash or ROM Memory,
8KB RAM
-- MSP430xG4618:
116KB+256B Flash or ROM Memory,
8KB RAM
-- MSP430xG4619:
120KB+256B Flash or ROM Memory,
4KB RAM
DFor Complete Module Descriptions, Refer
to the MSP430x4xx Family User’s Guide
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features
a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less
than 6 μs.
The MSP430xG461x series are microcontroller configurations with two 16-bit timers, a high-performance 12-bit
A/D converter, dual 12-bit D/A converters, three configurable operational amplifiers, one universal serial
communication interface (USCI), one universal synchronous/asynchronous communication interface
(USART), DMA, 80 I/O pins, and a liquid crystal display (LCD) driver with regulated charge pump.
Typical applications for this device include portable medical applications and e-meter applications.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited
built-in ESD protection.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
General-purpose digital I/O / External reference voltage input for regulated LCD voltage
/ Input port of third most positive analog LCD level (V4 or V3)
General-purpose digital I/O / analog input a0—12-bit ADC / OA0 input multiplexer on
+ terminal and -- terminal
General-purpose digital I/O / analog input a2—12-bit ADC / OA0 input multiplexer on
+ terminal and -- terminal
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Terminal Functions (Continued)
TERMINAL
NAME
AV
SS
DV
(see Note 1)99B3Digital supply voltage, negative terminal
SS1
AV
CC
NOTE 1: All unassigned ball locations on the ZQW package should be electrically tied to the ground supply. The shortest ground return path to
the device should be established via ball location B3.
NO.PZNO.
ZQW
98A3
100A2
I/ODESCRIPTION
Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator,comparator_A,
port 1
Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A,
port 1; must not power up prior to DV
CC1
/DV
CC2
.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions,
areperformedasregisteroperationsin
conjunction with seven addressing modes for
source operand and four addressing modes for
destination operand.
The CPU is integrated with 16 registers that
provide reduced instruction execution time. The
register-to-register operation execution time is
one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register,
andconstantgeneratorrespectively.The
remainingregistersaregeneral-purpose
registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled
with all instructions.
The MSP430xG461x device family utilizes the
MSP430X CPU and is completely backwards
compatible with the MSP430 CPU. For a complete
description of the MSP430X CPU, refer to the
MSP430x4xx Family User’s Guide.
instruction set
The instruction set consists of the original 51
instructions with three formats and seven address
modes and additional instructions for the
expanded address range. Each instruction can
operate on word and byte data. Table 1 shows
examples of the three types of instruction formats;
the address modes are listed in Table 2.
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request, and restore back to
the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
DActive mode (AM)
--All clocks are active
DLow-power mode 0 (LPM0)
--CPU is disabled
ACLK and SMCLK remain active. MCLK is disabled
FLL+ loop control remains active
DLow-power mode 1 (LPM1)
--CPU is disabled
FLL+ loop control is disabled
ACLK and SMCLK remain active. MCLK is disabled
DLow-power mode 2 (LPM2)
--CPU is disabled
MCLK, FLL+ loop control and DCOCLK are disabled
DCO’s dc-generator remains enabled
ACLK remains active
DLow-power mode 3 (LPM3)
--CPU is disabled
MCLK, FLL+ loop control, and DCOCLK are disabled
DCO’s dc-generator is disabled
ACLK remains active
DLow-power mode 4 (LPM4)
--CPU is disabled
ACLK is disabled
MCLK, FLL+ loop control, and DCOCLK are disabled
DCO’s dc-generator is disabled
Crystal oscillator is stopped
12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
ReservedReserved(seeNote4
)
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
interrupt vector addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFC0h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 3. Interrupt Sources, Flags, and Vectors of MSP430xG461x Configurations
INTERRUPT SOURCEINTERRUPT FLAGSYSTEM INTERRUPT
Power-Up
External Reset
Watchdog
Flash Memory
NMI
Oscillator Fault
Flash Memory Access Violation
Timer_B7TBCCR0 CCIFG0 (see Note 2)Maskable0FFFAh29
Timer_B7
Comparator_ACAIFGMaskable0FFF6h27
Watchdog Timer+WDTIFGMaskable0FFF4h26
USCI_A0/USCI_B0 ReceiveUCA0RXIFG, UCB0RXIFG (see Note 1)Maskable0FFF2h25
USCI_A0/USCI_B0 TransmitUCA0TXIFG, UCB0TXIFG (see Note 1)Maskable0FFF0h24
ADC12ADC12IFG (see Notes 1 and 2)Maskable0FFEEh23
Timer_A3TACCR0 CCIFG0 (see Note 2)Maskable0FFECh22
Timer_A3
I/O Port P1 (Eight Flags)P1IFG.0 to P1IFG.7 (see Notes 1 and 2)Maskable0FFE8h20
USART1 ReceiveURXIFG1Maskable0FFE6h19
USART1 TransmitUTXIFG1Maskable0FFE4h18
I/O Port P2 (Eight Flags)P2IFG.0 to P2IFG.7 (see Notes 1 and 2)Maskable0FFE2h17
Basic Timer1/RTCBTIFGMaskable0FFE0h16
DMADMA0IFG, DMA1IFG, DMA2IFG
DAC12DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2)Maskable0FFDCh14
ReservedReserved (see Note 4)
NOTES: 1. Multiple source flags
2. Interrupt flags are located in the module.
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).
(Non)maskable: the individual interrupt -enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if
necessary.
5. Access and key violations, KEYV and ACCVIFG, only applicable to F devices.
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1, 2, and 5)
TBCCR1 CCIFG1 ... TBCCR6 CCIFG6,
TBIFG (see Notes 1 and 2)
TACCR1 CCIFG1 and TACCR2 CCIFG2,
TAIFG (see Notes 1 and 2)
WDTIFG
KEYV
(see Note 1 and 5)
(see Notes 1 and 2)
Reset0FFFEh31, highest
(Non)maskable
(Non)maskable
(Non)maskable
Maskable0FFF8h28
Maskable0FFEAh21
Maskable0FFDEh15
WORD
ADDRESS
0FFFCh30
0FFDAh13
......
0FFC0h0, lowest
PRIORITY
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
13
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
special function registers (SFRs)
The MSP430 SFRs are located in the lowest address space and are organized as byte mode registers. SFRs
should be accessed with byte instructions.
interrupt enable 1 and 2
Address
0hACCVIENMIIE
WDTIEWatchdog-timer interrupt enable. Inactive if watchdog mode is selected.
OFIEOscillator-fault-interrupt enable
NMIIENonmaskable-interrupt enable
ACCVIEFlash access violation interrupt enable
Address
01h
UCA0RXIEUSCI_A0 receive-interrupt enable
UCA0TXIEUSCI_A0 transmit-interrupt enable
UCB0RXIEUSCI_B0 receive-interrupt enable
UCB0TXIEUSCI_B0 transmit-interrupt enable
URXIE1USART1 UART and SPI receive-interrupt enable
UTXIE1USART1 UART and SPI transmit-interrupt enable
BTIEBasic timer interrupt enable
76540
rw–0
Active if watchdog timer is configured as a general-purpose timer.
7654032 1
BTIEUTXIE1URXIE1
rw–0
rw–0rw–0
rw–0rw–0rw–0
32 1
UCB0TXIEUCB0RXIE
rw–0rw–0
OFIEWDTIE
UCA0TXIEUCA0RXIE
rw–0rw–0
14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
interrupt flag register 1 and 2
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Address
02hNMIIFG
WDTIFG:Set on watchdog timer overflow (in watchdog mode) or security key violation
OFIFG:Flag set on oscillator fault
NMIIFG:Set via RST
Address
03h
UCA0RXIFGUSCI_A0 receive-interrupt flag
UCA0TXIFGUSCI_A0 transmit-interrupt flag
UCB0RXIFGUSCI_B0 receive-interrupt flag
UCB0TXIFGUSCI_B0 transmit-interrupt flag
URXIFG0:USART1: UART and SPI receive flag
UTXIFG0:USART1: UART and SPI transmit flag
BTIFG:Basic timer flag
76540
rw–0rw–1rw–(0)
Reset on V
7654032 1
BTIFG
rw–0
power-on or a reset condition at the RST/NMI pin in reset mode
CC
/NMI pin
UTXIFG1URXIFG1
rw–1rw–0
32 1
UCB0TXIFG UCB0RXIFG
rw–0rw–0
module enable registers 1 and 2
Address
04h
7654032 1
OFIFGWDTIFG
UCA0TXIFG UCA0RXIFG
rw–0rw–0
Address
05h
URXE1:USART1: UART mode receive enable
UTXE1:USART1: UART mode transmit enable
USPIE1:USART1: SPI mode transmit and receive enable
Legendrw:
76540
rw-0,1:
rw-(0,1):
UTXE1
rw–0rw–0
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
URXE1
USPIE1
32 1
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
15
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
memory organization
MSP430FG4616MSP430FG4617MSP430FG4618MSP430FG4619
Memory
Main: interrupt vector
Main: code memory
RAM (Total)Size4KB
ExtendedSize2KB
MirroredSize2KB
Information memorySize
Boot memorySize
RAM
(mirrored at
018FFh -- 01100h)
Peripherals16 bit
Size
Flash
Flash
Flash
ROM
Size2KB
8bit
8-bit SFR
018FFFh -- 002100h
92KB
0FFFFh -- 0FFC0h
020FFh -- 01100h
020FFh -- 01900h
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
92KB
0FFFFh -- 0FFC0h
019FFFh -- 003100h
8KB
030FFh -- 01100h
6KB
030FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
116KB
0FFFFh -- 0FFC0h
01FFFFh -- 003100h
8KB
030FFh -- 01100h
6KB
030FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
120KB
0FFFFh -- 0FFC0h
01FFFFh -- 002100h
4KB
020FFh -- 01100h
2KB
020FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
MSP430CG4616MSP430CG4617MSP430CG4618MSP430CG4619
Memory
Main: interrupt vector
Main: code memory
RAM (Total)Size4KB
ExtendedSize2KB
MirroredSize2KB
Information memorySize
Boot memory
(Optional on CG)
RAM
(mirrored at
018FFh -- 01100h)
Peripherals16 bit
Size
ROM
ROM
ROM
Size
ROM
Size2KB
8bit
8-bit SFR
018FFFh -- 002100h
92KB
0FFFFh -- 0FFC0h
020FFh -- 01100h
020FFh -- 01900h
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
92KB
0FFFFh -- 0FFC0h
019FFFh -- 003100h
8KB
030FFh -- 01100h
6KB
030FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
116KB
0FFFFh -- 0FFC0h
01FFFFh -- 003100h
8KB
030FFh -- 01100h
6KB
030FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
120KB
0FFFFh -- 0FFC0h
01FFFFh -- 002100h
4KB
020FFh -- 01100h
2KB
020FFh -- 01900h
2KB
018FFh -- 01100h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
2KB
09FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
16
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
bootstrap loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access
to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is
provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid
password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of
the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature
number SLAA089.
BSLKEYDESCRIPTION
00000hErasure of flash disabled if an invalid password is supplied
0AA55hBSL disabled
any other valueBSL enabled
BSL FUNCTIONPZ/ZQW PACKAGE PINS
Data Transmit87/A7 -- P1.0
Data Receive86/E7 -- P1.1
flash memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
DFlash memory has n segments of main memory and two segments of information memory (A and B) of 128
bytes each. Each segment in main memory is 512 bytes in size.
DSegments 0 to n may be erased in one step, or each segment may be individually erased.
DSegments A and B can be erased individually, or as a group with segments 0--n.
Segments A and B are also called information memory.
DNew devices may have some bytes programmed in the information memory (needed for test during
manufacturing). The user should perform an erase of the information memory prior to the first use.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
17
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide.
DMA controller
The DMA controller allows movement of data from one memory address to another without CPU intervention.
For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system
power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to
or from a peripheral.
oscillator and system clock
The clock system in the MSP430xG461x family of devices is supported by the FLL+ module, which includes
support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a high
frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system
cost and low-power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in
conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch
crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The
FLL+ module provides the following clock signals:
DAuxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency c rystal
DMain clock (MCLK), the system clock used by the CPU
DSub-Main clock (SMCLK), the subsystem clock used by the peripheral modules
DACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on
and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user
selectable level and supports both supply voltage supervision (the device is automatically reset) and supply
voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, V
have ramped to V
reaches V
CC(min)
CC(min)
. If desired, the SVS circuit can be used to determine when VCCreaches V
at that time. The user must insure the default FLL+ settings are not changed until V
CC(min)
digital I/O
There are ten 8-bit I/O ports implemented—ports P1 through P10:
DAll individual I/O bits are independently programmable.
DAny combination of input, output, and interrupt conditions is possible.
DEdge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
DRead/write access to port-control registers is supported by all instructions.
DPorts P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively.
CC
.
may not
CC
Basic Timer1 and Real-Time Clock
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both
timers can be read and written by software. Basic Timer1 is extended to provide an integrated real-time clock
(RTC). An internal calendar compensates for months with less than 31 days and includes leap-year correction.
18
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
LCD_A drive with regulated charge pump
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A
controller has dedicated data memory to hold segment drive information. Common and segment signals are
generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral.
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump.
Furthermore it is possible to control the level of the LCD voltage and, thus, contrast by software.
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can generate interrupts at selected time
intervals.
universal serial communication interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART,
enhanced UART with automatic baudrate detection, and IrDA.
The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA.
The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C.
USART1
The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for
serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART
communication protocols, using double-buffered transmit and receive channels.
hardware multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16,
16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication,
as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are
required.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
19
MSP430xG461x
DeviceInput
ModuleInput
Modul
e
ModuleOutpu
t
A
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_A3 Signal Connections
Input Pin Number
PZ/ZQW
82/B9 - P1.5TA C L KTA C L K
82/B9 - P1.5TACLKINCLK
87/A7 - P1.0TA0CCI0A
86/E7 - P1.1TA0CCI0B
85/D7 - P1.2TA1CCI1A
79/A10 - P2.0TA 2CCI2A
Device InputModule InputModuleModule Output
Signal
ACLKACLK
SMCLKSMCLK
DV
SS
DV
CC
CAOUT (internal)CCI1B
DV
SS
DV
CC
ACLK (internal)CCI2B
DV
SS
DV
CC
Name
GND
V
CC
GND
V
CC
GND
V
CC
Block
TimerN
CCR0TA0
CCR1TA1
CCR2TA2
Signal
Output Pin Number
PZ/ZQW
87/A7 - P1.0
85/D7 - P1.2
ADC12 (internal)
79/A10 - P2.0
20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
DeviceInput
ModuleInput
Modul
e
ModuleOutpu
t
A
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
timer_B7
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Timer_B7 Signal Connections
Input Pin Number
PZ/ZQW
Device InputModule InputModuleModule Output
Signal
83/B8 - P1.4TBCLKTBCLK
ACLKACLK
SMCLKSMCLK
83/B8 - P1.4TBCLKINCLK
78/D8 - P2.1TB0CCI0A
78/D8 - P2.1TB0CCI0B
DV
SS
DV
CC
77/E8 - P2.2TB1CCI1A
77/E8 - P2.2TB1CCI1B
DV
SS
DV
CC
76/A11 - P2.3TB2CCI2A
76/A11 - P2.3TB2CCI2B
DV
SS
DV
CC
67/E12 - P3.4TB3CCI3A
67/E12 - P3.4TB3CCI3B
DV
SS
DV
CC
66/G9 - P3.5TB4CCI4A
66/G9 - P3.5TB4CCI4B
DV
SS
DV
CC
65/F11 - P3.6TB5CCI5A
65/F11 - P3.6TB5CCI5B
DV
SS
DV
CC
64/F12 - P3.7TB6CCI6A
ACLK (internal)CCI6B
DV
SS
DV
CC
Name
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
Block
Signal
TimerN
CCR0TB0
CCR1TB1
CCR2TB2
CCR3TB3
CCR4TB4
CCR5TB5
CCR6TB6
Output Pin Number
PZ/ZQW
78/D8 - P2.1
ADC12 (internal)
77/E8 - P2.2
ADC12 (internal)
76/A11 - P2.3
67/E12 - P3.4
66/G9 - P3.5
65/F11 - P3.6
64/F12 - P3.7
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
21
MSP430xG461x
p
p
Outpu
t
Outpu
t
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
comparator_A
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions,
battery-voltage supervision, and monitoring of external analog signals.
ADC12
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without
any CPU intervention.
DAC12
The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode,
and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may
be grouped together for synchronous operation.
OA
The MSP430xG461x has three configurable low-current general-purpose operational amplifiers. Each OA input
and output terminal is software-selectable and offer a flexible choice of connections for various applications.
The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
Input Pin
Number
PZ
95 - P6.0OA0I0OA0I0
97 - P6.2OA0I1OA0I1
3- P6.4OA1I0OA1I0
13 - P5.0OA1I1OA1I1
5-P6.6OA2I0OA2I0
14 - P10.7OA2I1OA2I1
Device Input
SignalNameBlock
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
DAC12_0OUT
(internal)
DAC12_1OUT
(internal)
Module Input
DAC12_0OUT
DAC12_1OUT
DAC12_0OUT
DAC12_1OUT
DAC12_0OUT
DAC12_1OUT
OA Signal Connections
Module
OA0OA0OUT
OA1OA1OUT
OA2OA2OUT
Module
Out
ut
Signal
Device
Out
ut
Signal
OA0O96 - P6.1
OA0OADC12 (internal)
OA1O2-P6.3
OA1O13- P5.0
OA1OADC12 (internal)
OA2O4-P6.5
OA2O14 - P10.7
OA2OADC12 (internal)
Output Pin
Number
PZ
22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
peripheral file map
_
_
Watchdog+Watchdog timer controlWDTCTL0120h
Timer_B7
Timer_A3
Hardware
Multiplier
Flash
(FG devices only)
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
PERIPHERALS WITH W ORD ACCESS
Capture/compare register 6TBCCR6019Eh
Capture/compare register 5TBCCR5019Ch
Capture/compare register 4TBCCR4019Ah
Capture/compare register 3TBCCR30198h
Capture/compare register 2TBCCR20196h
Capture/compare register 1TBCCR10194h
Capture/compare register 0TBCCR00192h
Timer_B registerTBR0190h
Capture/compare control 6TBCCTL6018Eh
Capture/compare control 5TBCCTL5018Ch
Capture/compare control 4TBCCTL4018Ah
Capture/compare control 3TBCCTL30188h
Capture/compare control 2TBCCTL20186h
Capture/compare control 1TBCCTL10184h
Capture/compare control 0TBCCTL00182h
Timer_B controlTBCTL0180h
Timer_B interrupt vectorTBIV011Eh
Capture/compare register 2TACCR20176h
Capture/compare register 1TACCR10174h
Capture/compare register 0TACCR00172h
Timer_A registerTAR0170h
Capture/compare control 2TACCTL20166h
Capture/compare control 1TACCTL10164h
Capture/compare control 0TACCTL00162h
Timer_A controlTAC T L0160h
Timer_A interrupt vectorTAI V012Eh
Sum extendSUMEXT013Eh
Result high wordRESHI013Ch
Result low wordRESLO013Ah
Second operandOP20138h
Multiply signed + accumulate/operand1MACS0136h
Multiply + accumulate/operand1MAC0134h
Multiply signed/operand1MPYS0132h
Multiply unsigned/operand1MPY0130h
Flash control 3FCTL3012Ch
Flash control 2FCTL2012Ah
Flash control 1FCTL10128h
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
23
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
peripheral file map (continued)
PERIPHERALS WITH WORD ACCESS (CONTINUED)
DMA
DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA module control 0DMACTL00122h
DMA module control 1DMACTL10124h
DMA interrupt vectorDMAIV0126h
DMA channel 0 controlDMA0CTL01D0h
DMA channel 0 source addressDMA0SA01D2h
DMA channel 0 destination addressDMA0DA01D6h
DMA channel 0 transfer sizeDMA0SZ01DAh
DMA channel 1 controlDMA1CTL01DCh
DMA channel 1 source addressDMA1SA01DEh
DMA channel 1 destination addressDMA1DA01E2h
DMA channel 1 transfer sizeDMA1SZ01E6h
DMA channel 2 controlDMA2CTL01E8h
DMA channel 2 source addressDMA2SA01EAh
DMA channel 2 destination addressDMA2DA01EEh
DMA channel 2 transfer sizeDMA2SZ01F2h
24
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
peripheral file map (continued)
SeealsoPeripheral
s
y
PERIPHERALS WITH WORD ACCESS (CONTINUED)
ADC12
See also Peripherals
With Byte Access
DAC12
Port PA
Port PB
Conversion memory 15ADC12MEM15015Eh
Conversion memory 14ADC12MEM14015Ch
Conversion memory 13ADC12MEM13015Ah
Conversion memory 12ADC12MEM120158h
Conversion memory 11ADC12MEM110156h
Conversion memory 10ADC12MEM100154h
Conversion memory 9ADC12MEM90152h
Conversion memory 8ADC12MEM80150h
Conversion memory 7ADC12MEM7014Eh
Conversion memory 6ADC12MEM6014Ch
Conversion memory 5ADC12MEM5014Ah
Conversion memory 4ADC12MEM40148h
Conversion memory 3ADC12MEM30146h
Conversion memory 2ADC12MEM20144h
Conversion memory 1ADC12MEM10142h
Conversion memory 0ADC12MEM00140h
Interrupt-vector-word registerADC12IV01A8h
Inerrupt-enable registerADC12IE01A6h
Inerrupt-flag registerADC12IFG01A4h
Control register 1ADC12CTL101A2h
Control register 0ADC12CTL001A0h
DAC12_1 dataDAC12_1DAT01CAh
DAC12_1 controlDAC12_1CTL01C2h
DAC12_0 dataDAC12_0DAT01C8h
DAC12_0 controlDAC12_0CTL01C0h
Port PA selectionPASEL03Eh
Port PA directionPAD I R03Ch
Port PA outputPA OUT03Ah
Port PA inputPAI N038h
Port PB selectionPBSEL00Eh
Port PB directionPBDIR00Ch
Port PB outputPBOUT00Ah
Port PB inputPBIN008h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
25
MSP430xG461x
)
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
OA2Operational Amplifier 2 control register 1
Operational Amplifier 2 control register 0
OA1Operational Amplifier 1 control register 1
Operational Amplifier 1 control register 0
OA0Operational Amplifier 0 control register 1
Operational Amplifier 0 control register 0
LCD_ALCD Voltage Control 1
LCD Voltage Control 0
LCD Voltage Port Control 1
LCD Voltage Port Control 0
LCD memory 20
:
LCD memory 16
LCD memory 15
:
LCD memory 1
LCD control and mode
ADC12
(Memory control
registers require byte
access
USART1
ADC memory-control register 15ADC12MCTL15 08Fh
ADC memory-control register 14ADC12MCTL14 08Eh
ADC memory-control register 13ADC12MCTL13 08Dh
ADC memory-control register 12ADC12MCTL12 08Ch
ADC memory-control register 11ADC12MCTL11 08Bh
ADC memory-control register 10ADC12MCTL10 08Ah
ADC memory-control register 9ADC12MCTL9089h
ADC memory-control register 8ADC12MCTL8088h
ADC memory-control register 7ADC12MCTL7087h
ADC memory-control register 6ADC12MCTL6086h
ADC memory-control register 5ADC12MCTL5085h
ADC memory-control register 4ADC12MCTL4084h
ADC memory-control register 3ADC12MCTL3083h
ADC memory-control register 2ADC12MCTL2082h
ADC memory-control register 1ADC12MCTL1081h
ADC memory-control register 0ADC12MCTL0080h
Transmit bufferU1TXBUF07Fh
Receive bufferU1RXBUF07Eh
Baud rateU1BR107Dh
Baud rateU1BR007Ch
Modulation controlU1MCTL07Bh
Receive controlU1RCTL07Ah
Transmit controlU1TCTL079h
USART controlU1CTL078h
OA2CTL1
OA2CTL0
OA1CTL1
OA1CTL0
OA0CTL1
OA0CTL0
LCDAVCTL1
LCDAVCTL0
LCDAPCTL1
LCDAPCTL0
LCDM20
:
LCDM16
LCDM15
:
LCDM1
LCDCTL
0C5h
0C4h
0C3h
0C2h
0C1h
0C0h
0AFh
0AEh
0ADh
0ACh
0A4h
:
0A0h
09Fh
:
091h
090h
26
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
peripheral file map (continued)
p
_
(
)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
USCI
Comparator_A
BrownOUT, SVSSVS control register (Reset by brownout signal) SVSCTL056h
FLL+Clock
RTC (Basic Timer 1)
USCI I2C Slave AddressUCBI2CSA011Ah
USCI I2C Own AddressUCBI2COA0118h
USCI Synchronous Transmit BufferUCBTXBUF06Fh
USCI Synchronous Receive BufferUCBRXBUF06Eh
USCI Synchronous StatusUCBSTAT06Dh
USCI I2C Interrupt EnableUCBI2CIE06Ch
USCI Synchronous Bit Rate 1UCBBR106Bh
USCI Synchronous Bit Rate 0UCBBR006Ah
USCI Synchronous Control 1UCBCTL1069h
USCI Synchronous Control 0UCBCTL0068h
USCI Transmit BufferUCATXBUF067h
USCI Receive BufferUCARXBUF066h
USCI StatusUCASTAT065h
USCI Modulation ControlUCAMCTL064h
USCI Baud Rate 1UCABR1063h
USCI Baud Rate 0UCABR0062h
USCI Control 1UCACTL1061h
USCI Control 0UCACTL0060h
USCI IrDA Receive ControlUCAIRRCTL05Fh
USCI IrDA Transmit ControlUCAIRTCTL05Eh
USCI LIN ControlUCAABCTL05Dh
Comparator_A port disableCAPD05Bh
Comparator_A control 2CACTL205Ah
Comparator_A control 1CACTL1059h
FLL+ Control 1FLL_CTL1054h
FLL+ Control 0FLL_CTL0053h
System clock frequency controlSCFQCTL052h
System clock frequency integratorSCFI1051h
System clock frequency integratorSCFI0050h
Real Time Clock Year High ByteRTCYEARH04Fh
Real Time Clock Year Low ByteRTCYEARL04Eh
Real Time Clock MonthRTCMON04Dh
Real Time Clock Day of MonthRTCDAY04Ch
Basic Timer1 Counter 2BTCNT2047h
Basic Timer1 Counter 1BTCNT1046h
Real Time Counter 4
(Real Time Clock Day of Week)
Real Time Counter 3
(Real Time Clock Hour)
Real Time Counter 2
(Real Time Clock Minute)
Real Time Counter 1
(Real Time Clock Second)
Real Time Clock ControlRTCCTL041h
Basic Timer1 ControlBTCTL040h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
RTCNT4
(RTCDOW)
RTCNT3
(RTCHOUR)
RTCNT2
(RTCMIN)
RTCNT1
(RTCSEC)
045h
044h
043h
042h
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
27
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P10Port P10 selectionP10SEL00Fh
Port P10 directionP10DIR00Dh
Port P10 outputP10OUT00Bh
Port P10 inputP10IN009h
Port P9Port P9 selectionP9SEL00Eh
Port P9 directionP9DIR00Ch
Port P9 outputP9OUT00Ah
Port P9 inputP9IN008h
Port P8Port P8 selectionP8SEL03Fh
Port P8 directionP8DIR03Dh
Port P8 outputP8OUT03Bh
Port P8 inputP8IN039h
Port P7Port P7 selectionP7SEL03Eh
Port P7 directionP7DIR03Ch
Port P7 outputP7OUT03Ah
Port P7 inputP7IN038h
Port P6
Port P5
Port P4
Port P3
Port P2
Port P1
Port P6 selectionP6SEL037h
Port P6 directionP6DIR036h
Port P6 outputP6OUT035h
Port P6 inputP6IN034h
Port P5 selectionP5SEL033h
Port P5 directionP5DIR032h
Port P5 outputP5OUT031h
Port P5 inputP5IN030h
Port P4 selectionP4SEL01Fh
Port P4 directionP4DIR01Eh
Port P4 outputP4OUT01Dh
Port P4 inputP4IN01Ch
Port P3 selectionP3SEL01Bh
Port P3 directionP3DIR01Ah
Port P3 outputP3OUT019h
Port P3 inputP3IN018h
Port P2 selectionP2SEL02Eh
Port P2 interrupt enableP2IE02Dh
Port P2 interrupt -edge selectP2IES02Ch
Port P2 interrupt flagP2IFG02Bh
Port P2 directionP2DIR02Ah
Port P2 outputP2OUT029h
Port P2 inputP2IN028h
Port P1 selectionP1SEL026h
Port P1 interrupt enableP1IE025h
Port P1 interrupt -edge selectP1IES024h
Port P1 interrupt flagP1IFG023h
Port P1 directionP1DIR022h
Port P1 outputP1OUT021h
Port P1 inputP1IN020h
28
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
peripheral file map (continued)
p
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Special functions
SFR module enable 2ME2005h
SFR module enable 1ME1004h
SFR interrupt flag 2IFG2003h
SFR interrupt flag 1IFG1002h
SFR interrupt enable 2IE2001h
SFR interrupt enable 1IE1000h
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
29
MSP430xG461x
(
2
)
kHz
f
(Sy
)
Processorfrequency(signalMCLK),
f
(System
)
MHz
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Voltage range applied at VCCto V
Voltage range applied to any pin (see Note)--0.3 V to V
SS
†
--0.3 V to 4.1 V................................................
+0.3V...................................
CC
Diode current at any device terminal .±2mA......................................................
Storage temperature range, T
:Unprogrammed device--55°C to 150°C...........................
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only,and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE: All voltages referenced to V
to the TDI/TCLK pin when blowing the JTAG fuse.
The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied
SS.
recommended operating conditions
MINNOMMAXUNITS
Supply voltage during program execution (see Note 1),
V
(AVCC=DV
CC
Supply voltage during flash memory programming (see Note 1),
V
(AVCC=DV
CC
Supply voltage during program execution,
SVS enabled and PORON = 1 (see Note 1 and Note 2),
V
(AVCC=DV
CC
Supply voltage (see Note 1), VSS(AVSS=DV
Operating free-air temperature range, T
LFXT1 crystal frequency, f
seeNote
XT2 crystalfrequency,
Processor frequency (signal MCLK), f
NOTES: 1. It is recommended to power AVCCand DVCCfrom the s ame source. A maximum difference of 0.3 V between AVCCand DVCCcan
CC1/2=VCC
CC1/2=VCC
CC1/2=VCC
be tolerated during power up and operation.
2. The minimum operating s upply voltage is defined according to the trip point where POR is going active by decreasing the supply
voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS
circuitry.
3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
Port P1, P2: P1.x to P2.x, external trigger signal
for the interrupt flag, (see Note 1)
TA0 , TA1, TA 22.2 V62
TB0, TB1, TB2, TB3, TB4, TB5, TB6
TACLK, TBCLK, INCLK: t
(H)=t(L)
SMCLK orACLK signal selected
NOTES: 1. The external signal sets the interrupt flag every time the minimum t
shorter than t
(int)
.
leakage current -- Ports P1 to P10 (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
I
lkg(Px.y)
Leakage
current
Port Px
NOTES: 1. The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as input.
V
(see Note 2)
(Px.y)
(1 ≤ x ≤ 10, 0 ≤ y ≤ 7)
VCC=2.2V1.11.55
V
=3V1.51.98
CC
VCC=2.2V0.40.9
V
=3V0.91.3
CC
VCC=2.2V0.31.1
VCC=3V0.51
CC
MINTYPMAXUNIT
2.2 V62
3V50
3V50
2.2 V8
3V10
2.2 V8
3V10
parameters are met. It may be set even with trigger signals
(int)
VCC=2.2V/3V±50nA
ns
ns
MHz
MHz
32
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
V
V
f
CL=20pF
V
V
CL20p
F
P
1.5/TACLK/ACL
K
CL20p
F
,
P
1.1/TA0/MCL
K
,
P
1.4/TBCLK/SMCLK
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
outputs -- Ports P1 to P10
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
V
High-level output voltage
OH
V
Low-level output voltage
OL
NOTES: 1. The maximum total current, I
specified voltage drop.
2. The maximum total current, I
specified voltage drop.
output frequency
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
(Px.y)
f
(MCLK)
f
(SMCLK)
f
(ACLK)
t
(Xdc)
(1 ≤ x ≤ 10, 0 ≤ y ≤ 7)
P1.1/TA0/MCLK,
P1.4/TBCLK/SMCLK,
P1.5/TACLK/ACLK
Duty cycle of output frequency
I
I
I
I
I
I
I
I
=--1.5mA,VCC=2.2V,SeeNote1VCC--0.25V
OH(max)
=--6mA,VCC=2.2V,SeeNote2VCC-- 0 . 6V
OH(max)
=--1.5mA,VCC=3V,SeeNote1VCC--0.25V
OH(max)
=--6mA,VCC=3V,SeeNote2VCC-- 0 . 6V
OH(max)
=1.5mA,VCC=2.2V,SeeNote1V
OL(max)
=6mA,VCC=2.2V,SeeNote2V
OL(max)
=1.5mA,VCC=3V,SeeNote1V
OL(max)
=6mA,VCC=3V,SeeNote2V
OL(max)
OH(max)
OH(max)
C
I
C
and I
and I
=20pF,
= ±1.5 mA
L
=20pF
L
for all outputs combined, should not exceed ±12 mA to satisfy the maximum
OL(max),
for all outputs combined, should not exceed ±48 mA to satisfy the maximum
OL(max),
,
VCC=2.2VDC10MHz
VCC=3VDC12MHz
=2.2
CC
SS
SS
SS
SS
VCC=3VDC12MHz
C
=20pF
L
VCC=2.2V/3V
P1.1/TA0/MCLK
C
=20pF,
L
V
=2.2V/3V
CC
,
P1.4/TBCLK/SMCLK
C
=20pF,
L
V
=2.2V/3V
CC
f
(ACLK)=f(LFXT1)=f(XT1)
,
f
(ACLK)=f(LFXT1)=f(LF)
f
(ACLK)=f(LFXT1)
f
(MCLK)=f(XT1)
f
(MCLK)=f(DCOCLK)
f
(SMCLK)=f(XT2)
,
f
(SMCLK)=f(DCOCLK)
40%60%
30%70%
40%60%
50%--
15 ns
40%60%
50%--
15 ns
50%
50%
50%
CC
CC
CC
CC
VSS+0.25
VSS+0.6
VSS+0.25
VSS+0.6
10MHz
50%+
15 ns
50%+
15 ns
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
33
MSP430xG461x
A
A
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
typical characteristics -- outputs
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
25.0
VCC=2.2V
P2.0
20.0
15.0
10.0
5.0
OL
I-- Typical Low-Level Output Current -- m
0.0
0.00.51.01.52.02.5
VOL-- Low-Level Output Voltage -- V
TA=25°C
TA=85°C
Figure 2
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50.0
VCC=3V
P2.0
40.0
30.0
20.0
10.0
OL
I-- Typical Low-Level Output Current -- mA
0.0
0.00.51.01.52.02.53.03.5
VOL-- Low-Level Output Voltage -- V
Figure 3
TA=25°C
TA=85°C
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
VCC=2.2V
P2.0
-- 5 . 0
--10.0
--15.0
I-- Typical High-Level Output Current -- m
OH
--20.0
--25.0
TA=85°C
TA=25°C
0.00.51.01.52.02.5
VOH-- High-Level Output Voltage -- V
Figure 4
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
VCC=3V
P2.0
--10.0
--20.0
--30.0
TA=85°C
TA=25°C
0.00.51.01.52.02.53.03.5
VOH-- High-Level Output Voltage -- V
OH
I-- Typical High-Level Output Current -- mA
--40.0
--50.0
Figure 5
34
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
)
t
d(LPM3)
Delaytime
V
C
C
2.2V/3V
μ
s
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
wake-up LPM3
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
f=1MHz6
t
d(LPM3
Delay time
f=2MHz
f=3MHz
VCC=2.2V/3V
RAM
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
VRAMhCPUhalted(seeNote1)1.6V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
6
μs
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
35
MSP430xG461x
V
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
LCD_A
V
CC(LCD)
I
CC(LCD)
C
LCD
f
LCD
PARAMETERTEST CONDITIONS
Supply voltage (see Note 2)
Supply current (see Note 2 )
Capacitor on LCDCAP
(see Note 1 and Note 3)
Charge pump enabled
(LCDCPEN = 1; VLCDx > 0000)
V
VLCDx= 1000; all segments on,
f
no LCD connected (see Note 4)
T
Charge pump enabled
(LCDCPEN = 1; VLCDx > 0000)
=3 V; LCDCPEN = 1,
LCD(typ)
LCD =fACLK
=25°C
A
/32,
LCD frequency1.1kHz
V
CC
2.2 V3μA
VLCDx = 0000V
VLCDx = 00012.60
VLCDx = 00102.66
VLCDx = 00112.72
VLCDx = 01002.78
VLCDx = 01012.84
VLCDx = 01102.90
V
LCD
LCD voltage (see Note 3)
VLCDx = 01112.96
VLCDx = 1000
VLCDx = 10013.08
VLCDx = 10103.14
VLCDx = 10113.20
VLCDx = 11003.26
VLCDx = 11013.32
VLCDx = 11103.38
VLCDx = 11113.443.60
V
=3 V; CPEN = 1;
R
LCD
LCD driver output impedance
LCD
VLCDx = 1000, I
LOAD
= ¦ 10 μΑ
2.2 V10kΩ
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.
2. Refer to the supply current specifications I
for additional current specifications with the LCD_A module active.
(LPM3)
3. Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together
with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, V
4. Connecting an actual display will increase the current consumption depending on the size of the LCD.
MINTYPMAXUNIT
2.23.6V
4.7μF
CC
3.02
≤ AVCC.
LCD
36
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
A
A
V
TA=25
C
TA=25
C
TA=25
C
TA=25
C
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
Comparator_A (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
I
(CC)
CAON=1, CARSEL=0, CAREF=0
CAON=1, CARSEL=0, CAREF=1/2/3,
I
(Refladder/RefDiode)
V
(Ref025)
V
(Ref050)
Voltage @ 0.25 VCCnode
Voltage @ 0.5 VCCnode
V
CC
V
CC
No load at P1.6/CA0 and
P1.7/CA1
PCA0=1, CARSEL=1, CAREF=1,
No load at P1.6/CA0 and P1.7/CA1
PCA0=1, CARSEL=1, CAREF=2,
No load at P1.6/CA0 and P1.7/CA1
PCA0=1, CARSEL=1, CAREF=3,
V
(RefVT)
V
IC
Vp-- V
V
hys
Common-mode input
voltage range
Offset voltageSeeNote2VCC = 2.2 V / 3 V-- 3 030mV
S
Input hysteresisCAON = 1VCC=2.2V/3V00.71.4mV
No load at P1.6/CA0 and P1.7/CA1;
T
=85°C
A
CAON=1VCC=2.2V/3V0VCC-- 1V
T
=25°C,
,
Overdrive 10 mV, without filter: CAF = 0
t
(response LH)
T
=25°C
Overdrive 10 mV, with filter: CAF = 1
T
=25°C
Overdrive 10 mV, without filter: CAF = 0
t
(response HL)
T
=25°C,
,
Overdrive 10 mV, with filter: CAF = 1
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements.
The two successive measurements are then summed together.
VCC=2.2V2540
VCC=3V4560
VCC=2.2V3050
VCC=3V4571
VCC=2.2V/3V0.230.240.25
VCC=2.2V/3V0.470.480.5
VCC=2.2V390480540
VCC=3V400490550
VCC=2.2V160210300
VCC=3V80150240
VCC=2.2V1.41.93.4
VCC=3V0.91.52.6
VCC=2.2V130210300
VCC=3V80150240
VCC=2.2V1.41.93.4
VCC=3V0.91.52.6
specification.
lkg(Px.x)
μ
μ
m
ns
μs
ns
μs
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
37
MSP430xG461x
(
)
(
)
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
typical characteristics
REFERENCEVOLTAGE
vs
FREE-AIR TEMPERATURE
650
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5-- 2 5-- 51 53 55 57 59 5
TA-- Free-Air Temperature -- °C
Figure 6. V
vs Temperature
RefVT
V
0V
0
CC
1
CAON
VCC=3V
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5-- 2 5-- 51 53 55 57 59 5
TA-- Free-Air Temperature -- °C
Figure 7. V
CAF
vs Temperature
RefVT
VCC=2.2V
V+
V--
Low-Pass Filter
+
_
0
1
0
1
τ≈2 μs
Figure 8. Block Diagram of Comparator_A Module
V
CAOUT
V--
400 mV
V+
Overdrive
t
(response)
Figure 9. Overdrive Definition
To I n t ernal
Modules
CAOUT
Set CAIFG
Flag
38
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
POR/brownout reset (BOR) (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
t
d(BOR)
V
CC(start)
V
(B_IT--)
V
hys(B_IT--)
t
(reset)
NOTES: 1. The current consumption of the brownout module is already included in the ICCcurrent consumption data.
Brownout
(see Notes 2 and 3)
2. The voltage level V
3. During power up, the CPU begins code execution following a period of t
FLL+ settings must not be changed until V
operating frequency. See the MSP430x4xx Family User’s Guide for more information on the brownout/SVS circuit.
dVCC/dt ≤ 3 V/s (see Figure 10)0.7 × V
dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12)1.79V
dVCC/dt ≤ 3 V/s (see Figure 10)70130210mV
Pulse length needed at RST/NMI pin to accepted reset
internally, V
(B_IT--)+Vhys(B_IT--)
=2.2V/3V
CC
is ≤ 1.89V.
≥ V
CC
CC(min)
, where V
after VCC=V
d(BOR)
is the minimum supply voltage for the desired
CC(min)
2μs
(B_IT--)+Vhys(B_IT--)
typical characteristics
V
CC
(B_IT--)
2000μs
V
. The default
V
hys(B_IT--)
V
(B_IT--)
V
CC(start)
1
0
t
d(BOR)
Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage
V
2
1.5
-- V
1
=3V
V
CC
Typical Conditions
CC
3V
t
pw
CC(drop)
V
0.5
0
0.00111000
tpw-- Pulse Width -- μst
Figure 11. V
CC(drop)
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
V
CC(drop)
1ns1ns
-- Pulse Width -- μs
pw
39
MSP430xG461x
)
V
hys(SVS_I
T--)
/
V
V
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
typical characteristics (continued)
V
CC
2
V
CC
Typical Conditions
1.5
=3V
3V
-- V
1
V
CC(drop)
V
0.5
0
0.00111000
t
-- Pulse Width -- μs
pw
Figure 12. V
CC(drop)
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
CC(drop)
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
SVS (supply voltage supervisor/monitor) (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
t
(SVSR)
t
d(SVSon)
t
settle
V
(SVSstart)
V
hys(SVSIT--
(SVS_IT--)
I
CC(SVS)
(see Note 1)
†
The recommended operating voltage range is limited to 3.6 V.
‡
t
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere
settle
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTE 1: The current consumption of the SVS module is not included in the I
dVCC/dt > 30 V/ms (see Figure 13)5150
dVCC/dt ≤ 30 V/ms2000
SVS on, switch from VLD = 0 to VLD ≠ 0, VCC=3V20150μs
‡
VLD ≠ 0
VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13)1.551.7V
VLD = 170120155mV
VCC/dt ≤ 3 V/s (see Figure 13)
VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied
on A7
VLD = 2 .. 14
VLD = 154.420mV
VLD = 11.81.92.05
VLD = 21.942.12.23
VLD = 32.052.22.35
VLD = 42.142.32.46
VLD = 52.242.42.58
VLD = 62.332.52.69
V
dt ≤ 3V/s (see Figure 13)
CC
VLD = 72.462.652.84
VLD = 82.582.82.97
VLD = 92.692.93.10
VLD = 102.833.053.26
VLD = 112.943.23.39
VLD = 123.113.353.58
VLD = 133.243.53.73
VLD = 143.433.7
VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied
on A7
VLD = 151.11.21.3
VLD ≠ 0, VCC=2.2V/3V1015μA
current consumption data.
CC
t
pw
tf=t
r
t
f
t
r
tpw-- Pulse Width -- μs
V
(SVS_IT--)
x 0.001
†
12μs
V
(SVS_IT--)
x 0.016
†
†
†
3.96
μs
40
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
typical characteristics
V
V
(SVS_IT--)
V
(SVSstart)
V
(B_IT--)
V
CC(start)
Brownout
SVS
CC
1
0
Out
1
V
hys(SVS_IT--)
V
hys(B_IT--)
Brownout
Region
t
d(BOR)
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Software Sets VLD>0:
SVS is Active
SVS Circuit is Active From VLD > to VCC<V(
B_IT-- )
MSP430xG461x
Brown-
Out
Region
t
d(BOR)
Set POR
2
1.5
-- V
1
CC(drop)
V
0.5
0
0
1
undefined
0
t
d(SVSon)
Figure 13. SVS Reset (SVSR) vs Supply Voltage
Rectangular Drop
Triangular Drop
1101000
t
-- Pulse Width -- μs
pw
100
V
V
CC(drop)
V
CC
3V
CC
3V
t
d(SVSR)
t
pw
1ns1ns
t
pw
Figure 14. V
CC(drop)
V
CC(drop)
tf=t
r
t
f
t -- Pulse Width -- μs
t
r
With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
41
MSP430xG461x
f
f
f
f
f
f
f
f
f
f
StepsizebetweenadjacentDCOtaps:
Temperaturedrif
t,N
(DCO)
=01Eh,FN_8=FN_4=FN_3=FN_2=0
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
DCO
PARAMETERTEST CONDITIONSV
f
(DCOCLK)
(DCO=2)
(DCO=27)
(DCO=2)
(DCO=27)
(DCO=2)
(DCO=27)
(DCO=2)
(DCO=27)
(DCO=2)
(DCO=27)
S
n
D
t
D
V
N
=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 02.2 V/3 V1MHz
(DCO)
FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1
FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1
FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1
FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1
FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1
FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1
FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1
FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1
Stepsize between adjacent DCO taps:
Sn=f
DCO(Tap n+1)/fDCO(Tap n)
Temperature drift, N
(see Figure 16 for taps 21 to 27)
= 01Eh, FN_8=FN_4=FN_3=FN_2=0
1<TAP≤ 201.061.11
D = 2; DCOPLUS = 0
Drift with VCCvariation, N
= 01Eh, FN_8=FN_4=FN_3=FN_2=0
(DCO)
D = 2; DCOPLUS = 0
CC
2.2 V0.30.651.25
2.2 V2.55.610.5
2.2 V0.71.32.3
2.2 V5.710.818
2.2 V1.223
2.2 V915.525
2.2 V1.82.84.2
2.2 V13.521.533
2.2 V2.84.26.2
2.2 V213246
TAP = 271.071.17
2.2 V–0.2–0.3–0.4
MINTYPMAXUNIT
3V0.30.71.3
3V2.76.111.3
3V0.81.52.5
3V6.512.120
3V1.32.23.5
3V10.317.928.5
3V2.13.45.2
3V1626.641
3V4.26.39.2
3V304670
3V–0.2–0.3–0.4
0515%/V
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%/_C
f
(DCO)
f
(DCO3V)
1.0
1.83.02.43.6
f
(DCO)
f
(DCO20°C)
1.0
20604085
0-- 2 0-- 4 00
TA-- °CVCC-- V
Figure 15. DCO Frequency vs Supply Voltage VCCand vs Ambient Temperature
42
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
1.17
(DCO)
f
- Stepsize Ratio between DCO Taps
S
1.11
1.07
n
1.06
Min
12720
DCO Tap
Max
Figure 16. DCO Tap Step Size
Legend
Tolerance at Tap 27
DCO Frequency
Adjusted by Bits
9
2
to 25in SCFI1 {N
Tol e r a nce at Tap 2
{DCO}
}
FN_2=0
FN_3=0
FN_4=0
FN_8=0
Overlapping DCO Ranges:
Uninterrupted Frequency Range
FN_2=1
FN_3=0
FN_4=0
FN_8=0
FN_2=x
FN_3=1
FN_4=0
FN_8=0
FN_2=x
FN_3=x
FN_4=1
FN_8=0
FN_2=x
FN_3=x
FN_4=x
FN_8=1
Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
43
MSP430xG461x
Integratedinputcapacitanc
e
Integratedoutputcapacitance
V
/3V
V
V
/3V
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
crystal oscillator, LFXT1 oscillator (see Notes 1 and 2)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
OSCCAPx = 0h, VCC=2.2V/3V0
C
XIN
C
XOUT
V
IL
V
IH
NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is
Integrated input capacitance
(see Note 4)
Integrated output capacitance
(see Note 4)
Input levels at XINVCC=2.2
(C
XINxCXOUT
2. Toimprove E MI on the l ow-power LFXT1 oscillator,particularly in the LF mode (32 kHz), the following guidelines should be observed.
)/(C
XIN+CXOUT
OSCCAPx = 1h, V
OSCCAPx = 2h, V
OSCCAPx = 3h, VCC=2.2V/3V18
OSCCAPx = 0h, VCC=2.2V/3V0
OSCCAPx = 1h, V
OSCCAPx = 2h, V
OSCCAPx = 3h, VCC=2.2V/3V18
). This is independent of XTS_FLL.
-- Keep as short of a trace as possible between the ’xG461x and the crystal.
-- Design a good ground plane around the oscillator pins.
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator.
4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h.
=2.2V/3V10
CC
=2.2V/3V14
CC
=2.2V/3V10
CC
=2.2V/3V14
CC
V
(see Note 3)
SS
0.8×V
CC
0.2×V
V
pF
pF
CC
CC
crystal oscillator, XT2 oscillator (see Note 1)
PARAMETERTEST CONDITIONSMINNOMMAXUNIT
C
XT2IN
C
XT2OUT
V
IL
V
IH
NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.
Integrated input capacitanceVCC=2.2V/3V2pF
Integrated output capacitanceVCC=2.2V/3V2pF
V
Input levels at XT2INVCC=2.2
2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.
(see Note 2)
SS
0.8 × V
CC
0.2 × V
V
CC
CC
V
V
44
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
UARTreceivedeglitchtime
UCLKedgetoSIMOvalid
;
UCLKedgetoSOMIvalid
;
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (UART Mode)
PARAMETERTEST CONDITIONSVCCMINTYPMAX UNIT
Internal: SMCLK, ACLK
f
USCI
f
BITCLK
t
τ
USCI input clock frequency
BITCLK clock frequency
(equals Baudrate in MBaud)
UART receive deglitch time
(see Note 1)
NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode, see Figure 18 and Figure 19)
PARAMETERTEST CONDITIONSVCCMINTYPMAX UNIT
f
USCI
t
SU,MI
t
HD,MI
t
VAL ID, M O
USCI input clock frequency
SOMI input data setup time
SOMI input data hold time
SIMO output data valid time
External: UCLK
Duty Cycle = 50% ± 10%
SMCLK, ACLK
Duty Cycle = 50% ± 10%
UCLK edgetoSIMOvalid;
CL=20pF
f
SYSTEM
MHz
2.2V /3 V1MHz
2.2 V50150600
3V50100600
f
SYSTEM
2.2 V11 0
3V75
2.2 V0
3V0
2.2 V30
3V20
ns
MHz
ns
ns
ns
USCI (SPI Slave Mode, see Figure 20 and Figure 21)
PARAMETERTEST CONDITIONSVCCMINTYPMAX UNIT
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VAL ID, S O
STE lead time
STE low to clock
STE lag time
Last clock to STE high
STE access time
STE low to SOMI data out
STE disable time
STE high to SOMI high impedance
SIMO input data setup time
SIMO input data hold time
SOMI output data valid time
UCLK edgetoSOMIvalid;
CL=20pF
2.2 V/3 V50ns
2.2 V/3 V10ns
2.2 V/3 V50ns
2.2 V/3 V50ns
2.2 V20
3V15
2.2 V10
3V10
2.2 V75110
3V5075
ns
ns
ns
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
45
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
1/f
UCxCLK
CKPL = 0
UCLK
CKPL = 1
SOMI
SIMO
t
LOW/HIGHtLOW/HIGH
Figure 18. SPI Master Mode, CKPH = 0
t
VAL ID ,M O
t
SU,MI
t
HD,MI
UCLK
SOMI
SIMO
CKPL = 0
CKPL = 1
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
t
SU,MI
t
VAL ID ,M O
Figure 19. SPI Master Mode, CKPH = 1
t
HD,MI
46
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
STE
UCLK
SIMO
SOMI
STE
CKPL = 0
CKPL = 1
t
STE,LEAD
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
t
ACC
t
VAL ID ,S OM I
Figure 20. SPI Slave Mode, CKPH = 0
t
STE, LEAD
t
SU,SIMO
t
HD,SIMO
t
STE,LAG
t
STE,LAG
t
DIS
UCLK
SIMO
SOMI
CKPL=0
CKPL=1
1/f
UCxCLK
t
LOW/HIGHtLOW/HIGH
t
ACC
t
VAL ID ,S O
Figure 21. SPI Slave Mode, CKPH = 1
t
SU,SI
t
HD,SI
t
DIS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
47
MSP430xG461x
p
p
y
Pulsewidthofspikessuppressedb
y
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (continued)
USCI (I2C Mode, see Figure 22)
PARAMETERTEST CONDITIONSVCCMINTYPMAX UNIT
Internal: SMCLK, ACLK
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
USCI input clock frequency
SCL clock frequency2.2 V/3 V0400kHz
Hold time (repeated) START
Set--up timefor a repeated START
Data hold time2.2 V/3 V0ns
Data set--up time2.2 V/3 V250ns
Set--uptimeforSTOP2.2 V/3 V4.0μs
Pulse width ofspikes su
ressed b
input filter
External: UCLK
Duty Cycle = 50% ± 10%
f
≤ 100kHz2.2 V/3 V4.0
SCL
f
> 100kHz2.2 V/3 V0.6
SCL
f
≤ 100kHz2.2 V/3 V4.7
SCL
f
> 100kHz2.2 V/3 V0.6
SCL
2.2 V50150600
3V50100600
f
SYSTEM
MHz
μs
μs
ns
SDA
SCL
t
HD ,STA
t
t
LOW
HIGH
t
HD ,DAT
t
SU , DAT
t
SU , STAtHD ,STA
t
SP
t
SU , STO
Figure 22. I2C Mode Timing
USART1 (see Note 1)
PARAMETERTEST CONDITIONSMINTYP MAXUNIT
t
(τ)
USART1 deglitch time
NOTE 1: The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of t
flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t
set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the
URXD1 line.
VCC= 2.2 V, SYNC = 0, UART mode200430800
VCC= 3 V, SYNC = 0, UART mode150280500
(τ
)
t
BUF
ns
to ensure that the URXS
(τ
)
. The operating conditions to
48
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
A
A
(seeNote4)A
A
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, power supply and input range conditions (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
AVCCand DVCCare connected together,
AV
AV
CC
V
(P6.x/Ax)
Analog supply voltage
Analog input voltage
range (see Note 2)
Operating supply current
I
ADC12
intoAVCCterminal
(see Note 3)
Operating supply current
I
REF+
into AVCCterminal
(see Note 4)
C
I
R
I
Input capacitance
Input MUX ON resistance0V ≤ VAx≤ V
NOTES: 1. The leakage current is defined in the leakage current table with A x parameter.
2. The analog input voltage range must be within the selected reference voltage range V
3. The internal reference supply current is not included in current consumption parameter I
4. The internal reference current is supplied via terminal AV
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
and DVSSare connected together,
SS
V
(AVSS)=V(DVSS)
=0V
All external Ax terminals. Analog inputs
selected in ADC12MCTLx register and P6Sel.x=1,
V
≤ VAx≤ V
(AVSS)
f
ADC12CLK
(AVCC)
=5.0MHz,
VCC=2.2V0.651.3
DC12ON = 1, REFON = 0,
SHT0=0, SHT1=0, ADC12DIV=0
f
ADC12CLK
=5.0MHz,
ADC12ON = 0,
VCC=3V0.81.6
VCC=3V0.50.8mA
REFON = 1, REF2_5V = 1
f
ADC12CLK
=5.0MHz,
VCC=2.2V0.50.8
DC12ON = 0,
REFON = 1, REF2_5V = 0
Only one terminal can be selected
at one time, Ax
AVC C
. Consumption is independent of the ADC12ON control bit, unless a
CC
VCC=3V0.50.8
VCC=2.2V40pF
VCC=3V2000Ω
R+
2.23.6V
0V
to V
for valid conversion results.
R--
.
ADC12
AVC C
V
m
m
12-bit ADC, external reference (see Note 1)
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
V
eREF+
V
REF-- /VeREF--
(V
--
eREF+
V
REF--/VeREF--
I
VeREF+
I
VREF--/VeREF--
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI,isalso
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
Positive external
reference voltage input
Negative external
reference voltage input
Differential external
reference voltage input
)
Input leakage current0V ≤V
Input leakage current0V ≤ V
V
eREF+>VREF--/VeREF--
V
eREF+>VREF--/VeREF--
V
eREF+>VREF--/VeREF--
≤ V
eREF+
eREF--
≤ V
AVC C
AVC C
,(seeNote2)1.4V
AVC C
,(seeNote3)01.2V
,(seeNote4)1.4V
AVC C
VCC=2.2V/3V±1μA
VCC=2.2V/3V±1μA
V
V
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
accuracy requirements.
accuracy requirements.
reduced accuracy requirements.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
49
MSP430xG461x
Positivebuiltinreferenc
e
V
)
A
VCCminimumvoltag
e
A
V
CC(min)
Positivebuiltinreferenc
e
V
LoadcurrentoutofV
REF
A
A
Loadcurrentregulation
Loadcurrentregulation
x
V
V
V
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, built-in reference
PARAMETERTEST CONDITIONSMIN NOMMAXUNIT
REF2_5V = 1 for 2.5 V,
V
REF+
AV
I
VREF+
CC(min
Positive built-in reference
voltage output
Positive built-in reference
active
Load current out ofV
terminal
max ≤ I
VREF+
REF2_5V = 0 for 1.5 V,
I
max ≤ I
VREF+
REF2_5V = 0, I
,
REF2_5V = 1, I
REF2_5V = 1, I
+
I
= 500 μA +/-- 100 μA,
VREF+
VREF+
VREF+
VREF+
VREF+
VREF+
≤ I
VREF+
≤ I
VREF+
max ≤ I
min ≥ I
min ≥ I
min
min
VREF+
VREF+
VREF+
I
nalog input voltage ~0.75V;
I
L(VREF)+
Load-current regulation
V
terminal
REF+
REF2_5V = 0
I
= 500 μA ± 100 μA,
VREF+
Analog input voltage ~1.25 V,
REF2_5V = 1
I
=100 μA → 900 μA,
I
DL(VREF) +
C
VREF+
T
REF+
t
REFON
Load current regulation
V
terminal
REF+
Capacitance at pin V
(see Note 1)
Temperature coefficient of
built-in reference
Settle time of internal
reference voltage (see
Figure 23 and Note 2)
VREF+
=5 μF, ax~0.5
C
VREF+
Error of conversion result ≤ 1LSB
REFON =1,
REF+
0mA≤ I
I
VREF+
0mA≤ I
I
VREF+
V
REF+
≤ I
VREF+
is a constant in the range of
≤ 1mA
VREF+
=0.5mA,C
=1.5V,V
AVC C
VREF+
VREF+
REF+
max
=10μF,
=2.2V
NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses
two capacitors between pins V
2. The condition is that the error in a conversion started after t
and AVSSand V
REF+
REF--/VeREF--
REFON
and AVSS:10μF tantalum and 100 nF ceramic.
is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
C
VREF+
100 μF
VCC=3V2.42.52.6
VCC=
2.2 V/3 V
≤ I
min2.2
VREF+
1.441.51.56
≥ --0.5mA2.8
≥ -- 1 m A2.9
VCC=2.2V0.01-- 0 . 5
VCC=3V0.01-- 1
VCC=2.2V±2
VCC=3V±2
VCC=3V±2LSB
,
=3
CC
VCC=
2.2 V/3 V
510μF
VCC=
2.2 V/3 V
V
m
LSB
20ns
±100 ppm/°C
17ms
10 μF
REFON
≈ .66xC
VREF+
[ms] with C
VREF+
in μF
t
1 μF
0
1ms
Figure 23. Typical Settling Time of Internal Reference t
50
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
10 ms
100 mst
REFON
REFON
vs External Capacitor on V
REF
+
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
From
Power
Supply
+
--
10 μ F 100 nF
+
--
10 μ F 100 nF
Apply External Reference [V
or Use Internal Reference [V
eREF+
REF+
]
]
+
--
Apply
External
Reference
10 μ F 100 nF
+
--
10 μ F 100 nF
Figure 24. Supply Voltage and Reference Voltage Design V
From
Power
Supply
+
--
10 μ F 100 nF
DV
DV
AV
AV
V
V
DV
DV
CC1/2
SS1/2
CC
MSP430FG461x
SS
or V
REF+
-- / V
REF
eREF--
CC1/2
SS1/2
eREF+
REF--/VeREF--
External Supply
+
--
10 μ F 100 nF
Apply External Reference [V
or Use Internal Reference [V
eREF+
REF+
]
]
+
--
10 μ F 100 nF
Reference Is Internally
Switched to AV
SS
Figure 25. Supply Voltage and Reference Voltage Design V
AV
CC
MSP430FG461x
AV
SS
or V
V
REF+
V
REF--/VeREF--
REF--/VeREF--
eREF+
=AVSS, Internally Connected
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
51
MSP430xG461x
]
x
V
V
C
C
=
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, timing parameters
PARAMETERTEST CONDITIONSMINNOMMAXUNIT
f
ADC12CLK
f
ADC12OSC
t
CONVERT
t
ADC12ON
t
Sample
Internal ADC12
oscillator
Conversion time
Turn on settling time
of the ADC
Sampling time
NOTES: 1. The condition is that the error in a conversion started after t
settled.
2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
t
Sample
=ln(2
n+1
)x(RS+RI)xCI+ 800 ns where n = ADC resolution = 12, RS= external source resistance.
12-bit ADC, linearity parameters
PARAMETERTEST CONDITIONSMIN NOMMAXUNIT
EIIntegral linearity error
Differential linearity
E
D
error
E
Offset error
O
E
Gain error
G
Total unadjusted
E
T
error
1.4 V ≤ (V
1.6 V < (V
(V
C
(V
Internal impedance of source R
C
(V
C
(V
C
For specified performance of
ADC12 linearity parameters
ADC12DIV=0,
f
ADC12CLK=fADC12OSC
C
≥ 5 μF, Internal oscillator,
VREF+
f
ADC12OSC
External f
= 3.7 MHz to 6.3 MHz
ADC12CLK
from ACLK, MCLK, or SMCLK,
ADC12SSEL ≠ 0
VCC=2.2V/3V0.4556.3MHz
VCC=2.2V/3V3.756.3MHz
VCC=2.2V/3V2.063.51μs
13×ADC12DIV×
1/f
ADC12CLK
(see Note 1)100ns
RS= 400 Ω,RI= 1000 Ω,
CI=30pF,τ =[RS+R
I
(see Note 2)
-- V
eREF+
eREF+
-- V
eREF+
=10μF (tantalum) and 100 nF (ceramic)
VREF+
-- V
eREF+
=10μF (tantalum) and 100 nF (ceramic)
VREF+
-- V
eREF+
=10μF (tantalum) and 100 nF (ceramic)
VREF+
-- V
eREF+
=10μF (tantalum) and 100 nF (ceramic)
VREF+
REF--/VeREF--
-- V
REF--/VeREF--
REF--/VeREF--)min
REF--/VeREF--)min
REF--/VeREF--)min
REF--/VeREF--)min
)min≤ 1.6 V
)min≤ [V
≤ (V
eREF+
≤ (V
eREF+
< 100 Ω,
S
≤ (V
eREF+
≤ (V
eREF+
CI,
VCC=3V1220
VCC=2.2V1400
ADC12ON
-- V
-- V
-- V
-- V
is less than ±0.5 LSB. The reference and input signal are already
]
AVC C
REF--/VeREF--
REF--/VeREF--
REF--/VeREF--
REF--/VeREF--
),
),
),
),
=
2.2 V/3 V
VCC=
2.2 V/3 V
VCC=
2.2 V/3 V
VCC=
2.2 V/3 V
VCC=
2.2 V/3 V
±2±4LSB
±1.1±2LSB
±2±5LSB
±2
±1.7
±1LSB
μs
ns
LSB
52
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
p
ply
Operatingsupplycurrentint
o
REFON=0,INCH=0A
h
A
A
V
/
ADC12ON=1,INCH=0A
h
2.2V/
V
V
/
A
2.2V/
V
/
A
ADC12ON=1,INCH=0A
h
Currentintodividera
t
A
A
A
A
ADC12ON=1,INCH=0B
h
V
A
ADC12ON=1,INCH=0B
h
V
/3V
A
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit ADC, temperature sensor and built-in V
PARAMETER
I
SENSOR
V
SENSOR
TC
SENSOR
Operatingsu
AVCCterminal (see Note 1)
(see Note 2)
Sample time required if
t
SENSOR(sample)
I
VMID
V
MID
channel 10 is selected
(see Note 3)
Current into divider at
channel 11 (see Note 4)
VCCdivider at channel 11
Sample time required if
t
VMID(sample)
channel 11 is selected
(see Note 5)
NOTES: 1. The sensor current I
is high). W hen REFON = 1, I
2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset
error of the built-in temperature sensor.
3. The typical equivalent impedance of the sensor is 51 k Ω. The sample time required includes the sensor-on time t
4. No additional current is needed. The V
5. The on-time t
VMID(on)
current intoREFON = 0, INCH = 0Ah,
ADC12ON=NA, T
DC12ON = 1, INCH = 0Ah,2.2
T
=0°C
A
DC12ON = 1, INCH = 0Ah
DC12ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1LSB
DC12ON = 1, INCH = 0Bh
DC12ON = 1, INCH = 0Bh,
V
MID
DC12ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1LSB
is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal
SENSOR
is already included in I
SENSOR
MID
is used during sampling.
is included in the sampling time t
MID
TEST CONDITIONSV
,
=25_C
A
,
,
,
is ~0.5 x V
AVC C
,
.
REF+
VMID(sample)
; no additional on time is needed.
MINNOMMAXUNIT
CC
2.2 V40120
3V60160
3V
2.2
3V
986m
3.55±3%m
2.2 V30
3V30
2.2 VNA
3VNA
2.2 V1.11.1±0.04
3V1.5 1.50±0.04
2.2 V1400
3V1220
SENSOR(on)
μ
°C
μs
μ
ns
12-bit DAC, supply specifications
AV
PARAMETERTEST CONDITIONSV
Analog supply voltage
CC
AV
CC =DVCC
AV
SS
,
=DVSS=0 V
CC
DAC12AMPx=2, DAC12IR=0,
DAC12_xDAT=0800h
DAC12AMPx=2, DAC12IR=1,
DAC12_xDAT=0800h
,VeREF+=VREF+
DAC12AMPx=5, DAC12IR=1,
DAC12_xDAT=0800h, V
eREF+=VREF+
=AV
=AV
CC
CC
2.2
I
DD
Supply current:
Single DAC Channel
(see Notes 1 and 2)
DAC12AMPx=7, DAC12IR=1,
PSRR
Power-supply
rejection ratio
(see Notes 3 and 4)
DAC12_xDAT=0800h, V
DAC12_xDAT = 800h, V
∆AV
= 100mV
CC
DAC12_xDAT = 800h, V
∆AV
= 100mV
CC
eREF+=VREF+
=1.5V,
REF
= 1.5 V or 2.5 V,
REF
=AV
CC
2.2 V
3V
NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input
specifications.
3. PSRR = 20*log{∆AV
4. V
is applied externally. The internal reference is not used.
REF
CC
/∆V
DAC12_xOUT
}.
MINTYPMAXUNIT
2.203.60V
50110
50110
200440
7001500
70dB
μ
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
53
MSP430xG461x
Integralnonlinearit
y
Differentialnonlinearit
y
V
f
f
t
Offset_Ca
l
2.2V/3V6m
s
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, linearity specifications (see Figure 26)
PARAMETERTEST CONDITIONSV
CC
Resolution(12-bit Monotonic)12bits
V
=1.5V,
INL
DNL
E
O
d
E(O)/dT
Integral nonlinearity
(see Note 1)
Differential nonlinearity
(see Note 1)
Offset voltage without
calibration
(see Notes 1, 2)
Offset voltage with
calibration
(see Notes 1, 2)
Offset error
temperature coefficient
ref
DAC12AMPx = 7, DAC12IR = 1
V
=2.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=1.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=2.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=1.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=2.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=1.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
V
=2.5V,
ref
DAC12AMPx = 7, DAC12IR = 1
2.2 V
3V
2.2 V
3V
2.2 V
3V
2.2 V
3V
2.2 V/3 V±30μV/°C
(see Note 1)
V
=1.5V2.2 V
E
G
d
E(G)/dT
t
Offset Cal
Gainerror(seeNote1)
Gain temperature
coefficient (see Note 1)
Timefor o
set calibration
(see Note 3)
REF
V
=2.5V3V
REF
2.2 V/3 V10
DAC12AMPx = 2100
DAC12AMPx = 3,5
2.2 V/3 V
DAC12AMPx = 4,6,7
NOTES: 1. Parameters calculated from the best -fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and
“b” of the first order equation: y = a + b*x. V
DAC12_xOUT=EO
+(1+EG)*(V
/4095) * DAC12_xDAT, DAC12IR = 1.
eREF+
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with
DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during
calibration may effect accuracy and is not recommended.
MINTYPMAXUNIT
±2.0±8.0LSB
±0.4±1.0LSB
±21
m
±2.5
±3.50 % FSR
ppm of
FSR/°C
32
ms
DAC V
OUT
DAC Output
R
Load
=
AV
CC
V
R+
Ideal transfer
function
2
C
Load
= 100pF
Offset Error
Positive
Negative
Gain Error
DAC Code
Figure 26. Linearity Test Load Conditions and Gain/Offset Definition
54
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, linearity specifications (continued)
TYPICAL INL ERROR
vs
DIGITAL INPUT DATA
4
VCC=2.2V,V
DAC12AMPx = 7
3
DAC12IR = 1
2
1
0
-- 1
REF
=1.5V
-- 2
INL -- Integral Nonlinearity Error -- LSB
-- 3
-- 4
0512102415362048256030723584
DAC12_xDAT -- Digital Code
TYPICAL DNL ERROR
vs
DIGITAL INPUT DATA
2.0
1.5
1.0
0.5
0.0
-- 0 . 5
-- 1 . 0
VCC=2.2V,V
DAC12AMPx = 7
DAC12IR = 1
REF
=1.5V
4095
-- 1 . 5
DNL -- Differential Nonlinearity Error -- LSB
-- 2 . 0
0512102415362048256030723584
DAC12_xDAT -- Digital Code
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
4095
55
MSP430xG461x
g
range
V
/3V
V
MaxDAC1
2
A
(g)
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted) (continued)
12-bit DAC, output specifications
PARAMETERTEST CONDITIONSV
No Load, Ve
REF+
=AVCC,
DAC12_xDAT = 0h, DAC12IR = 1,
DAC12AMPx = 7
No Load, Ve
Output voltage
ran
V
O
e
(see Note 1,
Figure 29)
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
=3kΩ,Ve
R
Load
DAC12_xDAT = 0h, DAC12IR = 1,
REF+
=AVCC,
REF+
=AVCC,
DAC12AMPx = 7
R
=3kΩ,Ve
Load
REF+
=AVCC,
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
Max DAC12
C
L(DAC12)
load
capacitance
I
L(DAC12)
Max DAC12
load current
R
Load
=3kΩ,V
O/P(DAC12)
< 0.3 V,
DAC12AMPx = 2, DAC12_xDAT = 0h
R
=3kΩ,
Load
V
O/P(DAC12)
> AVCC-- 0 . 3 V
DAC12_xDAT = 0FFFh
R
=3kΩ,
Load
0.3V ≤ V
O/P(DAC12)
≤ AVCC-- 0.3V
R
O/P(DAC12)
Output
resistance
(see Figure 29)
NOTE 1: Data is valid after the offset calibration of the output amplifier.
R
C
Load
Load
= 100pF
AV
CC
2
DAC12
I
Load
O/P(DAC12_x)
Figure 29. DAC12_x Output Resistance Tests
CC
2.2
2.2V/3V100pF
2.2V-- 0 . 5+0.5
3V-- 1 . 0+1.0
2.2 V/3 V
R
O/P(DAC12_x)
Max
Min
MINTYPMAXUNIT
00.005
AVCC--0.05AV
00.1
AVCC--0.13AV
150250
150250
14
0.3
AVCC--0.3V
CC
CC
AV
CC
m
V
Ω
OUT
56
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
Referenceinpu
t
V
/3V
V
(VREF+)
,
p
2.2V/3V
DAC12_xDAT=800h
V
t
O
N
Error
V(O
)
<±0.5LS
B
2.2V/3V
μ
s
)
t
S(FS)
f
2.2V/3V
μ
s
)
DAC12_xDAT=
t
S(C-C
)
3F8h408h3F8
h
2.2V/3V
μ
s
DAC12_xDAT=
SRSlewrate80hF7Fh80
h
2.2V/3V
V
/μs
Glitchenergy,fullscal
e
2.2V/3V30nVs
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
12-bit DAC, reference input specifications
Ve
PARAMETERTEST CONDITIONSV
REF+
Reference input
voltage range
DAC12IR=0 (see Notes 1 and 2)
DAC12IR=1 (see Notes 3 and 4)
CC
2.2
DAC12_0 IR=DAC12_1 IR =020MΩ
DAC12_0 IR=1, DAC12_1 IR = 0
Ri
Ri
,Reference input
(VREF+)
(VeREF+)
resistance
DAC12_0 IR=0, DAC12_1 IR = 1
DAC12_0 IR=DAC12_1 IR =1,
DAC12_0 SREFx = DAC12_1 SREFx
(see Note 5)
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
2. The maximum voltage applied at reference input voltage terminal Ve
REF+
=[AVCC-- V
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV
4. The maximum voltage applied at reference input voltage terminal Ve
REF+
=[AVCC-- V
5. When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
MINTYPMAXUNIT
AVCC/3 AVCC+0.2
AVc cAVcc+0.2
404856
202428
]/[3*(1+EG)].
E(O)
]/(1+EG).
E(O)
CC
).
kΩ
12-bit DAC, dynamic specifications; V
ref=VCC
, DAC12IR = 1 (see Figure 30 and Figure 31)
PARAMETERTEST CONDITIONSV
t
ON
t
S(FS
t
S(C-C
DAC12
on-time
Settling time,
ull-scale80h→ F7Fh→ 80h
Settling time,
code to code
SRSlew rate
Glitch energy, full-scale
NOTES: 1. R
Load
DAC12_xDAT = 800h,
Error
(see Note 1,Figure 30)
DAC12_xDAT=
DAC12_xDAT=
3F8h→ 408h→ 3F8h
BF8h→ C08h→ BF8h
DAC12_xDAT=
80h→ F7Fh→ 80h
(see Note 2)
DAC12_xDAT=
80h→ F7Fh→ 80h
and C
connected to AVSS(not AVCC/2) in Figure 30.
Load
< ±0.5 LSB
(O)
DAC12AMPx = 0 → {2,3,4}60120
,
DAC12AMPx = 0 → {5, 6}
DAC12AMPx = 0 → 7
DAC12AMPx = 2100200
DAC12AMPx = 3,5
DAC12AMPx = 4,6,7
DAC12AMPx = 25
DAC12AMPx = 3,5
DAC12AMPx = 4,6,7
DAC12AMPx = 20.050.12
DAC12AMPx = 3,5
DAC12AMPx = 4,6,7
DAC12AMPx = 2600
DAC12AMPx = 3,5
DAC12AMPx = 4,6,7
2. Slew rate applies to output voltage steps >= 200mV.
Conversion 1Conversion 2
CC
V
OUT
Glitch
Energy
DAC Output
I
Load
R
Load
=3kΩ
AV
2
C
= 100pF
R
O/P(DAC12.x)
Load
CC
2.2 V/3 V
2.2 V/3 V
2.2 V/3 V
2.2 V/3 V
2.2 V/3 V
+/-- 1/2 LSB
MINTYPMAXUNIT
1530
μs
612
4080
μs
1530
2
μs
1
0.350.7
V/μs
1.52.7
150
nV-s
Conversion 3
+/-- 1/2 LSB
t
settleLH
t
settleHL
Figure 30. Settling Time and Glitch Energy Testing
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
57
MSP430xG461x
V
/3V
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
V
Conversion 1Conversion 2
OUT
Conversion 3
90%
10%
t
Figure 31. Slew Rate Testing
12-bit DAC, dynamic specifications continued (T
PARAMETERTEST CONDITIONSV
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,
3-dB bandwidth,
BW
--3dB
Channel-to-channel crosstalk
(see Note 1 and Figure 33)
NOTE 1: R
V
=1.5V, VAC=0.1V
DC
(see Figure 32)
=3kΩ,C
LOAD
LOAD
= 100 pF
DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = {5, 6}, DAC12SREFx = 2,
PP
DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = 7, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
DAC12_0DAT = 800h, No Load,
DAC12_1DAT = 80h<-->F7Fh, R
f
DAC12_1OUT
DAC12_0DAT = 80h<-->F7Fh, R
DAC12_1DAT = 800h, No Load,
f
DAC12_0OUT
Ve
REF+
AC
DC
= 10kHz @ 50/50 duty cycle
= 10kHz @ 50/50 duty cycle
DAC12_x
90%
10%
Load
Load
I
Load
DACx
t
SRHL
=3kΩ
=3kΩ,
R
C
Load
Load
2.2 V/3 V
2.2
=3kΩ
= 100pF
SRLH
=25°C unless otherwise noted)
A
CC
AV
MINTYPMAXUNIT
40
180
550
-- 8 0
-- 8 0
CC
2
kHz
dB
Figure 32. Test Conditions for 3-dB Bandwidth Specification
R
C
C
Load
Load
Load
= 100pF
R
Load
= 100pF
AV
AV
2
2
CC
CC
DAC12_xDAT 080h
V
OUT
V
DAC12_yOUT
V
DAC12_xOUT
7F7h
080h7F7h080h
f
Toggle
V
REF+
DAC12_0
DAC12_1
I
Load
DAC0
I
Load
DAC1
Figure 33. Crosstalk Test Conditions
58
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
FastMod
e
MediumMod
e
p
ply
Supplycurrent
V
/3VμA(seeNote1)FastMode
MediumMod
e
SlowMod
e
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
electrical characteristics over recommended operating free-air temperature (unless otherwise
noted)
2. The pin direction is controlled by the USART1 module.
3. When in USCI mode, P4.6 is set to output, P4.7 is set to input.
P4.2 (I/O)I: 0; O: 100
USART1.STE1X10
S39(seeNote1)XX1
P4.3 (I/O)I: 0; O: 100
USART1.SIMO1 (see Notes 1, 2)X10
S38(seeNote1)XX1
P4.4 (I/O)I: 0; O: 100
USART1.SOMI1 (see Notes 1, 2)X10
S37(seeNote1)XX1
P4.5 (I/O)I: 0; O: 100
USART1.UCLK1 (see Notes 1, 2)X10
S36(seeNote1)XX1
P4.6 (I/O)I: 0; O: 100
USCI_A0.UCA0TXD (see Notes 1, 3)X10
S35(seeNote1)XX1
P4.7 (I/O)I: 0; O: 100
USCI_A0.UCA0RXD (see Notes 1, 3)X10
S34(seeNote1)XX1
FUNCTION
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
CONTROL BITS / SIGNALS
P4DIR.xP4SEL.xLCDS36
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
73
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
port P5, P5.0, input/output with Schmitt-trigger
INCH=13
A13
LCDS0
Segment Sy
P5DIR.x
P5OUT .x
DV
SS
P5SEL.x
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
0
1
Bus
P5.0/S 1 /A13/OA1I1
Keeper
EN
P5IN.x
Note:x = 0
y=1
+
OA1
--
74
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Port P5 (P5.0) pin functions
///
PIN NAME (P5.X)
P5.0/S1/A13/OA1I10
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
XFUNCTION
P5.0 (I/O) (see Note 1)I: 0; O: 10XX0
OAI11(seeNote1)0XX10
A13 (see Notes 1, 3)X113XX
S1 enabled (see Note 1)X0XX1
S1 disabled (see Note 1)X1XX1
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
CONTROL BITS / SIGNALS
P5DIR.xP5SEL.xINCHx
MSP430xG461x
OAPx(OA1)
OANx(OA1)
LCDS0
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
75
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
port P5, P5.1, input/output with Schmitt-trigger
INCH=12
A12
LCDS0
Segment Sy
DAC12.1OPS
P5DIR.x
P5OUT.x
DV
P5SEL.x
SS
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
0
1
Bus
P5.1/S0/A12/DAC1
Keeper
EN
P5IN.x
Note:x = 1
y=0
0
DAC1
DV
SS
1
2
0 if DAC12.1AMPx = 0 and DAC12.1OPS= 1
1 if DAC12.1AMPx = 1 and DAC12.1OPS= 1
2 if DAC12.1AMPx > 1 and DAC12.1OPS= 1
76
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Port P5 (P5.1) pin functions
X
///
PIN NAME (P5.X)
P5.1/S0/A12/DAC11
NOTES: 1. X: Don’t care.
2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
P5.1 (I/O) (see Note 1)I: 0; O: 10X0X0
DAC1 high impedance
(see Note 1)
DVSS (see Note 1)XXX11X
DAC1 output
(see Note 1)
A12 (see Notes 1, 2)X1120X0
S0 enabled (see Note 1)X0X0X1
S0 disabled
(see Note 1)
FUNCTION
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
CONTROL BITS / SIGNALS
P5DIR.xP5SEL.xINCHxDAC12.1OPSDAC12.1AMPxLCDS0
XXX10X
XXX1>1X
X1X0X1
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
77
MSP430xG461x
X
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
port P5, P5.2 to P5.4, input/output with Schmitt-trigger
LCD Signal
DV
SS
Pad Logic
P5DIR.x
0
1
P5OUT .x
DV
SS
0
1
P5SEL.x
P5IN.x
Note: x = 2,3,4
Port P5 (P5.2 to P5.4) pin functions
PIN NAME (P5.X)
P5.2/COM12
P5.3/COM23
P5.4/COM34
NOTE 1: X: Don’t care.
P5.2 (I/O)I: 0; O: 10
COM1 (see Note 1)X1
P5.3 (I/O)I: 0; O: 10
COM2 (see Note 1)X1
P5.4 (I/O)I: 0; O: 10
COM3 (see Note 1)X1
Direction
0: Input
1: Output
FUNCTION
Bus
Keeper
EN
P5.2/COM1
P5.3/COM2
P5.4/COM3
CONTROL BITS / SIGNALS
P5DIR.xP5SEL.x
78
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
input/output schematic (continued)
X
/
/
/
/
port P5, P5.5 to P5.7, input/output with Schmitt-trigger
LCD Signal
DV
SS
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Pad Logic
P5DIR.x
0
1
Direction
0: Input
1: Output
P5OUT .x
DV
SS
0
1
P5SEL.x
P5IN.x
Note: x = 5,6,7
Port P5 (P5.5 to P5.7) pin functions
PIN NAME (P5.X)
P5.5/R035
P5.6/LCDREF/R136
P5.7/R037
NOTES: 1. X: Don’t care.
2. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected.
P5.5 (I/O)I: 0; O: 10
R03(seeNote1)X1
P5.6 (I/O)I: 0; O: 10
R13 or LCDREF (see Notes 1, 2)X1
P5.7 (I/O)I: 0; O: 10
R03(seeNote1)X1
FUNCTION
Bus
Keeper
EN
P5.5/R03
P5.6/LCDREF/R13
P5.7/R03
CONTROL BITS / SIGNALS
P5DIR.xP5SEL.x
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
79
MSP430xG461x
/
/
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
port P6, P6.0, P6.2, and P6.4, input/output with Schmitt-trigger
Ay
#
#
0
INCH=0/2/4
P6DIR.x
1
P6OUT.x
DV
SS
0
1
P6SEL.x
P6IN.x
Note:x=0,2,4
y=0,1
# = Signal from or to ADC12
Direction
0: Input
1: Output
Pad Logic
P6.0/A0/OA0I0
P6.2/A2/OA0I1
P6.4/A4/OA1I0
Bus
Keeper
EN
Port P6 (P6.0, P6.2, and P6.4) pin functions
PIN NAME (P6.X)
P6.0/A0/OA0I00
P6.2/A2/OA0I12
P6.4/A4/OA1I04
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
XFUNCTION
P6.0 (I/O) (see Note 1)I: 0; O: 10XXX
OA0I0(seeNote1)0X0XX
A0 (see Notes 1, 3)X1XX0
P6.2 (I/O) (see Note 1)I: 0; O: 10XXX
OA0I1(seeNote1)0X1XX
A2 (see Notes 1, 3)X1XX2
P6.4 (I/O) (see Note 1)I: 0; O: 10XXX
OA1I0(seeNote1)0XX0X
A4 (see Notes 1, 3)X1XX4
+
OA0/1
--
CONTROL BITS / SIGNALS
P6DIR.xP6SEL.x
OAPx (OA0)
OANx (OA0)
OAPx (OA1)
OANx(OA1)
INCHx
80
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
input/output schematic (continued)
port P6, P6.1, P6.3, and P6.5 input/output with Schmitt-trigger
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
INCH=1/3/5
Ay
P6DIR.x
P6OUT.x
DV
P6SEL.x
P6IN.x
#
#
SS
Pad Logic
0
1
Direction
0: Input
1: Output
P6.1/A1/OA0O
P6.3/A3/OA1O
P6.5/A5/OA2O
0
1
Bus
Keeper
EN
OAPMx> 0
OAADC1
Note:x=1,3,5
y = 0, 1, 2
# = Signal from or to ADC12
+
OAy
--
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
81
MSP430xG461x
X
/
/
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Port P6 (P6.1, P6.3, and P6.5) pin functions
PIN NAME (P6.X)
P6.1/A1/OA0O1
P6.3/A3/OA1O3
P6.5/A5/OA2O5
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
4. Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally
connected to the corresponding ADC12 input.
FUNCTION
P6.1 (I/O) (see Note 1)I: 0; O: 10X0X
OA0O (see Notes 1, 4)XX1>0X
A1 (see Notes 1, 3)X1X01
P6.3 (I/O) (see Note 1)I: 0; O: 10X0X
OA1O (see Notes 1, 4)XX1>0X
A3 (see Notes 1, 3)X1X03
P6.5 (I/O) (see Note 1)I: 0; O: 10X0X
OA2O (see Notes 1, 4)XX1>0X
A5 (see Notes 1, 3)X1X05
CONTROL BITS / SIGNALS
P6DIR.xP6SEL.xOAADC1OAPMxINCHx
82
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
input/output schematic (continued)
port P6, P6.6, input/output with Schmitt-trigger
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
INCH=6
A6
P6DIR.x
P6OUT.x
DV
SS
P6SEL.x
DAC12.0AMP> 0
DAC12.0OPS
P6IN.x
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
P6.6 /A6/DAC0/OA2I0
0
1
Bus
Keeper
EN
Note:x = 6
# = Signal from or to ADC12
+
OA2
--
0
DVSS
DAC0
1
2
0 if DAC12.0AMPx= 0 and DAC12.0OPS = 0
1 if DAC12.0AMPx= 1 and DAC12.0OPS = 0
2 if DAC12.0AMPx> 1 and DAC12.0OPS = 0
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
83
MSP430xG461x
///
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Port P6 (P6.6) pin functions
PIN NAME (P6.X)
P6.6/A6/DAC0/OA2I0 6
NOTES: 1. X: Don’t care.
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
XFUNCTION
P6.6 (I/O) (see Note 1)I: 0; O: 10X1XX
DAC0 high impedance
(see Note 1)
DVSS (see Note 1)XXX01X
DAC0 output
(see Note 1)
A6 (see Notes 1, 2)X16XXX
OA2I0(seeNote1)0X0XX0
CONTROL BITS / SIGNALS
P6DIR.xP6SEL.xINCHxDAC12.0OPS DAC12.0AMPx
XXX00X
XXX0>1X
OAPx (OA2)
OANx (OA2)
84
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
input/output schematic (continued)
port P6, P6.7, input/output with Schmitt-trigger
To SVS Mux
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
INCH=7
A7
P6DIR.x
P6OUT.x
DV
SS
P6SEL.x
VLD =15
DAC12.1AMP> 0
DAC12.1OPS
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
0
1
Bus
P6.7/A7/DAC1/SVSIN
Keeper
EN
P6IN.x
Note:x = 7
# = Signal from or to ADC12
0
DVSS
DAC1
1
2
0 if DAC12.1AMPx = 0 and DAC12.1OPS= 0
1 if DAC12.1AMPx = 1 and DAC12.1OPS= 0
2 if DAC12.1AMPx > 1 and DAC12.1OPS= 0
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
85
MSP430xG461x
X
///
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
Port P6 (P6.7) pin functions
PIN NAME (P6.X)
P6.7/A7/DAC1/SVSIN7
NOTES: 1. X: Don’t care.
2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care.
FUNCTION
P6.7 (I/O) (see Note 1)I: 0; O: 10X1X
DAC1 high impedance
(see Note 1)
DVSS (see Note 1)XXX01
DAC1 output
(see Note 1)
A7 (see Notes 1, 2)X17XX
SVSIN (see Notes 1,3)0101X
CONTROL BITS / SIGNALS
P6DIR.xP6SEL.xINCHxDAC12.1OPS DAC12.1AMPx
XXX00
XXX0>1
86
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
input/output schematic (continued)
port P7, P7.0 to P7.3, input/output with Schmitt-trigger
port P10, P10.6, input/output with Schmitt-trigger
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
INCH=15
A15
LCDS0
Segment Sy
P10DIR.x
P10OUT.x
DV
SS
P10SEL.x
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
0
1
P10.6/S3/A15
Bus
Keeper
EN
P10IN.x
Note: x = 6
=3
y
Port P10 (P10.6) pin functions
PIN NAME (P10.X)
P10.6/S3/A156
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
P5.0 (I/O) (see Note 1)I: 0; O: 10X0
A15 (see Notes 1, 3)X1150
S3 enabled (see Note 1)X0X1
S3 disabled (see Note 1)X1X1
FUNCTION
CONTROL BITS / SIGNALS
P10DIR.xP10SEL.xINCHxLCDS0
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
95
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
port P10, P10.7, input/output with Schmitt-trigger
INCH=14
A14
LCDS0
Segment Sy
P10DIR.x
P10OUT.x
DV
SS
P10SEL.x
#
Pad Logic
#
0
1
Direction
0: Input
1: Output
0
1
Bus
P10.7/S2/A14/OA2I1
Keeper
EN
P10IN.x
Note: x = 7
y= 2
+
OA2
--
96
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Port P10 (P10.7) pin functions
///
PIN NAME (P10.X)
P10.7/S2/A14/OA2I17
NOTES: 1. X: Don’t care.
2. N/A: Not available or not applicable.
3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when
applying analog signals.
XFUNCTION
P10.7(I/O)(seeNote1)I: 0; O: 10XX0
A14 (see Notes 1, 3)X114X0
OA2I1 (see Notes 1, 3)0XX10
S2 enabled (see Note 1)X0XX1
S2 disabled (see Note 1)X1XX1
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
CONTROL BITS / SIGNALS
P10DIR.xP10SEL.xINCHx
MSP430xG461x
OAPx (OA1)
OANx (OA1)
LCDS0
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
97
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
Ve
#
/DAC0
REF+
DAC12.0OPS
DAC0_2_OA
Reference Voltage to DAC1
Reference Voltage to ADC12
Reference Voltage to DAC0
’0’, if DAC12CALON = 0
DAC12AMPx>1 AND DAC12OPS=1
+
’1’, if DAC12AMPx>1
’1’, if DAC12AMPx=1
DAC12OPS
If the reference of DAC0 is taken from pin Ve
In this situation, the DAC0 output is fed back to its own reference input.
1
0
--
REF+
0
1
#
/DAC0, unpredictable voltage levels will be on pin.
P6.6/A6/DAC0/OA2I0
Ve
/DAC0
REF+
98
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
input/output schematic (continued)
JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output
TDO
Controlled by JTAG
Controlled by JTAG
JTAG
Controlled
by JTAG
TDI
DV
CC
Burn and Test
TDO/TDI
Fuse
Test
and
Emulation
Module
TMS
TCK
TCK
Tau ~ 50 ns
Brownout
TDI/TCLK
DV
CC
TMS
DV
CC
TCK
RST/NMI
D
G
G
U
S
D
U
S
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
99
MSP430xG461x
MIXED SIGNAL MICROCONTROLLER
SLAS508G -- APRIL 2006 -- REVISED OCTOBER 2007
JTAG fuse check mode
MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current (I
taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.
The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see
Figure 37). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition). The JTAG pins are terminated internally and therefore do not require external termination.
) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be
(TF)
Time TMS Goes Low After POR
TMS
I
(TF)
I
TDI/TCLK
Figure 37. Fuse Check Mode Current
100
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.