Texas Instruments MSP430F533x, MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333 User Manual

...
Product Folder
Sample & Buy
Technical Documents
Tools & Software
Support & Community
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
MSP430F533x Mixed-Signal Microcontrollers
1 Device Overview
1.1 Features
1
• Low Supply Voltage Range: 1.8 V to 3.6 V • Four 16-Bit Timers With 3, 5, or 7
• Ultra-Low Power Consumption – Active Mode (AM):
All System Clocks Active: 270 µA/MHz at 8 MHz, 3.0 V, Flash Program – USCI_A0 and USCI_A1 Each Support: Execution (Typical)
– Standby Mode (LPM3):
Watchdog With Crystal and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup:
1.8 µA at 2.2 V, 2.1 µA at 3.0 V (Typical)
– Shutdown Real-Time Clock (RTC) Mode
(LPM3.5): Shutdown Mode, Active RTC With Crystal:
1.1 µA at 3.0 V (Typical)
– Shutdown Mode (LPM4.5):
0.3 µA at 3.0 V (Typical)
• Wake up From Standby Mode in 3 µs (Typical)
• 16-Bit RISC Architecture, Extended Memory, up to 20-MHz System Clock
• Flexible Power-Management System – Fully Integrated LDO With Programmable
Regulated Core Supply Voltage
– Supply Voltage Supervision, Monitoring, and
Brownout
• Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock
Source (VLO)
– Low-Frequency Trimmed Internal Reference
Source (REFO) – 32-kHz Crystals (XT1) – High-Frequency Crystals up to 32 MHz (XT2)
Capture/Compare Registers
• Two Universal Serial Communication Interfaces (USCIs)
Enhanced UART Supports Automatic Baud­Rate Detection
IrDA Encoder and Decoder
Synchronous SPI
– USCI_B0 and USCI_B1 Each Support:
I2C
Synchronous SPI
• Integrated 3.3-V Power System
• 12-Bit Analog-to-Digital Converter (ADC) With Internal Shared Reference, Sample-and-Hold, and Autoscan Feature
• Dual 12-Bit Digital-to-Analog Converters (DACs) With Synchronization
• Voltage Comparator
• Hardware Multiplier Supports 32-Bit Operations
• Serial Onboard Programming, No External Programming Voltage Needed
• Six-Channel Internal DMA
• RTC Module With Supply Voltage Backup Switch
Table 3-1 Summarizes the Available Family Members
• For Complete Module Descriptions, See the
MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208)
1.2 Applications
Analog and Digital Sensor Systems Thermostats
Digital Motor Control Digital Timers
Remote Controls Hand-Held Meters
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
1.3 Description
The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low­power modes to active mode in 3 µs (typical).
The MSP430F533x devices are microcontrollers with an integrated 3.3-V LDO, a high-performance 12-bit ADC, a comparator, two USCIs, a hardware multiplier, DMA, four 16-bit timers, an RTC module with alarm capabilities, and up to 74 I/O pins.
www.ti.com
Device Information
PART NUMBER PACKAGE BODY SIZE
MSP430F5338IPZ LQFP (100) 14 mm × 14 mm MSP430F5338IZQW BGA (113) 7 mm × 7 mm
(1) For the most current device, package, and ordering information, see the Package Option Addendum in
Section 8, or see the TI website at www.ti.com.
(2) The sizes shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
(1)
(2)
2 Device Overview Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
Unified
Clock
System
256KB 128KB
Flash
18KB/
10KB
RAM
+8B Backup
RAM
MCLK
ACLK
SMCLK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
Capability
PA
1×16 I/Os
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
XIN
XOUT
JTAG/
SBW
Interface/
Port PJ
PA PB PC PD
DMA
6 Channel
XT2IN
XT2OUT
Power
Management
LDO SVM/SVS Brownout
SYS
Watchdog
P2 Port
Mapping
Controller
I/O Ports
P3/P4
2×8 I/Os
Interrupt
Capability
PB
1×16 I/Os
I/O Ports
P5/P6
2×8 I/Os
PC
1×16 I/Os
I/O Ports
P7/P8
1×6 I/Os
PD
1×14 I/Os
1×8 I/Os
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
MPY32
TA0
Timer_A
5 CC
Registers
TA1 and
TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
CRC16
USCI0,1
Ax: UART,
IrDA, SPI
Bx: SPI, I2C
ADC12_A
200 KSPS
16 Channels (12 ext/4 int)
Autoscan
12 Bit
DVCCDVSSAVCCAV
SS
P1.x P2.x
P3.x
P4.x
P5.x P6.x
P7.x
P8.x P9.x
RST/NMI
REF
Reference
1.5V, 2.0V,
2.5V
Comp_B
PJ.x
RTC_B
Battery Backup System
PU Port
LDO
PU.0 PU.1
LDOO
LDOI
Unified
Clock
System
256KB 128KB
Flash
MCLK
ACLK
SMCLK
I/O Ports
P1/P2
2×8 I/Os
Interrupt
Capability
PA
1×16 I/Os
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
XIN
XOUT
JTAG/
SBW
Interface/
Port PJ
PA PB PC PD
DMA
6 Channel
XT2IN
XT2OUT
Power
Management
LDO SVM/SVS Brownout
SYS
Watchdog
P2 Port
Mapping
Controller
I/O Ports
P3/P4
2×8 I/Os
Interrupt
Capability
PB
1×16 I/Os
I/O Ports
P5/P6
2×8 I/Os
PC
1×16 I/Os
I/O Ports
P7/P8
1×6 I/Os
PD
1×14 I/Os
1×8 I/Os
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
MPY32
TA0
Timer_A
5 CC
Registers
TA1 and
TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
RTC_B
Battery Backup System
CRC16
USCI0,1
Ax: UART,
IrDA, SPI
Bx: SPI, I2C
ADC12_A
200 KSPS
16 Channels (12 ext/4 int)
Autoscan
12 Bit
DVCCDVSSAVCCAV
SS
P1.x P2.x
P3.x
P4.x
P5.x P6.x
P7.x
P8.x P9.x
RST/NMI
REF
Reference
1.5V, 2.0V,
2.5V
DAC12_A
12 bit 2 channels voltage out
Comp_B
PJ.x
18KB
RAM
+8B Backup
RAM
PU Port
LDO
PU.0 PU.1
LDOO
LDOI
www.ti.com
1.4 Functional Block Diagrams
Figure 1-1 shows the functional block diagram for the MSP430F5338 and MSP430F5336 devices.
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Figure 1-1. Functional Block Diagram – MSP430F5338, MSP430F5336
Figure 1-2 shows the functional block diagram for the MSP430F5335 and MSP430F5333 devices.
Figure 1-2. Functional Block Diagram – MSP430F5335, MSP430F5333
Copyright © 2010–2015, Texas Instruments Incorporated Device Overview 3
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
www.ti.com
Table of Contents
1 Device Overview ......................................... 1 5.30 USCI (UART Mode) ................................. 31
1.1 Features .............................................. 1 5.31 USCI (SPI Master Mode)............................ 31
1.2 Applications........................................... 1 5.32 USCI (SPI Slave Mode)............................. 33
1.3 Description............................................ 2 5.33 USCI (I2C Mode) .................................... 35
1.4 Functional Block Diagrams........................... 3
2 Revision History ......................................... 5
3 Device Comparison ..................................... 6
4 Terminal Configuration and Functions.............. 7
4.1 Pin Designation – MSP430F5338IPZ,
MSP430F5336IPZ.................................... 7
4.2 Pin Designation – MSP430F5335IPZ,
MSP430F5333IPZ.................................... 8
4.3 Pin Designation – MSP430F5338IZQW, MSP430F5336IZQW, MSP430F5335IZQW,
MSP430F5333IZQW ................................. 9 5.40 REF, External Reference ........................... 39
4.4 Signal Descriptions.................................. 10 5.41 REF, Built-In Reference............................. 40
5 Specifications........................................... 15 5.42 12-Bit DAC, Supply Specifications.................. 41
5.1 Absolute Maximum Ratings......................... 15 5.43 12-Bit DAC, Linearity Specifications ................ 41
5.2 ESD Ratings ........................................ 15 5.44 12-Bit DAC, Output Specifications .................. 43
5.3 Recommended Operating Conditions............... 15 5.45 12-Bit DAC, Reference Input Specifications ........ 44
5.4 Active Mode Supply Current Into VCCExcluding
External Current..................................... 17
5.5 Low-Power Mode Supply Currents (Into VCC)
Excluding External Current.......................... 17
5.6 Thermal Resistance Characteristics ................ 18
5.7 Schmitt-Trigger Inputs – General-Purpose I/O...... 19
5.8 Inputs – Ports P1, P2, P3, and P4.................. 19
5.9 Leakage Current – General-Purpose I/O ........... 19
5.10 Outputs – General-Purpose I/O (Full Drive
Strength) ............................................ 19
5.11 Outputs – General-Purpose I/O (Reduced Drive
Strength) ............................................ 20
5.12 Output Frequency – Ports P1, P2, and P3.......... 20
5.13 Typical Characteristics – Outputs, Reduced Drive
Strength (PxDS.y = 0)............................... 21
5.14 Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1)............................... 22
5.15 Crystal Oscillator, XT1, Low-Frequency Mode ..... 23
5.16 Crystal Oscillator, XT2 .............................. 24
5.17 Internal Very-Low-Power Low-Frequency Oscillator
(VLO)................................................ 25
5.18 Internal Reference, Low-Frequency Oscillator 6.12 Peripherals .......................................... 57
(REFO) .............................................. 25
5.19 DCO Frequency..................................... 26
5.20 PMM, Brownout Reset (BOR)....................... 27
5.21 PMM, Core Voltage ................................. 27
5.22 PMM, SVS High Side ............................... 28
5.23 PMM, SVM High Side............................... 28
5.24 PMM, SVS Low Side................................ 29
5.25 PMM, SVM Low Side ............................... 29
5.26 Wake-up Times From Low-Power Modes and
Reset ................................................ 29
5.27 Timer_A, Timers TA0, TA1, and TA2............... 30
5.28 Timer_B, Timer TB0 ................................ 30
5.29 Battery Backup ...................................... 30
5.34 12-Bit ADC, Power Supply and Input Range
Conditions ........................................... 36
5.35 12-Bit ADC, Timing Parameters .................... 36
5.36 12-Bit ADC, Linearity Parameters Using an External
Reference Voltage .................................. 37
5.37 12-Bit ADC, Linearity Parameters Using AVCC as
Reference Voltage .................................. 37
5.38 12-Bit ADC, Linearity Parameters Using the Internal
Reference Voltage .................................. 37
5.39 12-Bit ADC, Temperature Sensor and Built-In V
5.46 12-Bit DAC, Dynamic Specifications................ 44
5.47 12-Bit DAC, Dynamic Specifications (Continued)... 45
5.48 Comparator_B....................................... 46
5.49 Ports PU.0 and PU.1................................ 47
5.50 LDO-PWR (LDO Power System) ................... 48
5.51 Flash Memory ....................................... 49
5.52 JTAG and Spy-Bi-Wire Interface.................... 49
MID
38
6 Detailed Description ................................... 50
6.1 Overview ............................................ 50
6.2 CPU ................................................. 50
6.3 Instruction Set....................................... 51
6.4 Operating Modes.................................... 52
6.5 Interrupt Vector Addresses.......................... 53
6.6 Memory.............................................. 54
6.7 Bootloader (BSL).................................... 55
6.8 JTAG Operation ..................................... 55
6.9 Flash Memory (Link to User's Guide)............... 56
6.10 RAM (Link to User's Guide)......................... 57
6.11 Backup RAM ........................................ 57
6.13 Input/Output Schematics ............................ 79
6.14 Device Descriptors................................. 100
7 Device and Documentation Support.............. 101
7.1 Device Support..................................... 101
7.2 Documentation Support............................ 104
7.3 Related Links ...................................... 104
7.4 Community Resources............................. 105
7.5 Trademarks ........................................ 105
7.6 Electrostatic Discharge Caution ................... 105
7.7 Export Control Notice .............................. 105
7.8 Glossary............................................ 105
8 Mechanical, Packaging, and Orderable
4 Table of Contents Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
Information............................................. 105
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from August 5, 2013 to December 8, 2015 Page
Document format and organization changes throughout, including addition of section numbering........................ 1
Moved all functional block diagrams to Section 1.4, Functional Block Diagrams ............................................ 3
Added USB column to Table 3-1, Family Members ............................................................................. 6
Added Section 3, Device Comparison, and moved Table 3-1, Family Members to it ....................................... 6
Added "Port U is supplied by the LDOO rail" to the PU.0 and PU.1 descriptions in Table 4-1, Signal Descriptions .. 13
Moved all electrical specifications to Section 5 ................................................................................. 15
Added Section 5.2, ESD Ratings.................................................................................................. 15
Added note to C
Added Section 5.6, Thermal Characteristics .................................................................................... 18
Added note to R
Changed TYP value of C
In V
parameter description, changed from "V
BAT3
Changed from f
crosstalk" parameter ................................................................................................................ 45
Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from f
Figure 5-22, Crosstalk Test Conditions .......................................................................................... 45
Corrected the spelling of the MRG bits in the f
Removed RTC_B from LPM4.5 wake-up options............................................................................... 52
Throughout document, changed all instances of "bootstrap loader" to "bootloader"....................................... 55
Added the paragraph that starts "The application report Using the MSP430 RTC_B..." .................................. 59
Corrected names of interrupt events PMMSWBOR (BOR) and PMMSWPOR (POR) in Table 6-10, System
Module Interrupt Vector Registers ................................................................................................ 60
Corrected spelling of NMIIFG (added missing "I") in Table 6-10, System Module Interrupt Vector Registers.......... 60
Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 6-10, Port P7 (P7.3) Schematic ........ 92
Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows.................................................................. 92
Changed Table 6-60, Port PU.0, PU.1 Functions............................................................................... 97
Added Section 7 and moved Development Tools Support, Device and Development Tool Nomenclature,
Trademarks, and Electrostatic Discharge Caution sections to it ............................................................ 101
Added Section 8, Mechanical, Packaging, and Orderable Information..................................................... 105
............................................................................................................... 15
VCORE
.................................................................................................................. 19
Pull
DAC12_0OUT
with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF ......................... 23
L,eff
to f
DAC12_1OUT
in the first row of the Test Conditions for the "Channel-to-channel
BAT3
MCLK,MRG
V
/3" to "V
BAT
BAT3
= V
/3" ........................................ 30
BAT
to 1/f
Toggle
Toggle
in
parameter........................................................... 49
Copyright © 2010–2015, Texas Instruments Incorporated Revision History 5
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
3 Device Comparison
Table 3-1 summarizes the available family members.
www.ti.com
Table 3-1. Family Members
USCI
DEVICE Timer_A
MSP430F5338 256 18 5, 3, 3 7 2 2 2 12 No 74
MSP430F5336 128 18 5, 3, 3 7 2 2 2 12 No 74
MSP430F5335 256 18 5, 3, 3 7 2 2 - 12 No 74
MSP430F5333 128 10 5, 3, 3 7 2 2 - 12 No 74
FLASH SRAM ADC12_A DAC12_A Comp_B
(KB) (KB) (Ch) (Ch) (Ch)
(3)
Timer_B
CHANNEL CHANNEL
(4)
A: B:
UART,
IrDA, SPI
SPI, I2C
(1)(2)
USB I/O PACKAGE
12 ext, 100 PZ,
4 int 113 ZQW
12 ext, 100 PZ,
4 int 113 ZQW
12 ext, 100 PZ,
4 int 113 ZQW
12 ext, 100 PZ,
4 int 113 ZQW
(1) For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI website at
www.ti.com.
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/packaging.
(3) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
(4) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
6 Device Comparison Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
P6.4/CB4/A4
P6.5/CB5/A5 P6.6/CB6/A6/DAC0 P6.7/CB7/A7/DAC1
P7.4/CB8/A12 P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF−
AVCC1 AVSS1
XIN
XOUT
DVCC1
DVSS1
VCORE
P5.2
DVSS
DNC
P5.3
P9.7
P9.6 P9.5 P9.4 P9.3 P9.2 P9.1 P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2
P2.0/P2MAP0
MSP430F5338 MSP430F5336
PZ PACKAGE
(TOP VIEW)
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
P7.3/XT2OUT
P7.2/XT2IN
LDOI
LDOO
PU.1
NC
PU.0
VSSU
NC
AVSS3
P1.3/TA0.2
P1.4/TA0.3
AVSS2
P5.6/ADC12CLK/DMAE0
P5.4
P5.5
P1.0/TA0CLK/ACLK
P3.0/TA1CLK/CBOUT
P3.1/TA1.0
P3.2/TA1.1
P1.6/TA0.1
P1.7/TA0.2
P1.1/TA0.0
P1.2/TA0.1
P1.5/TA0.4
P3.3/TA1.2
P3.4/TA2CLK/SMCLK
P3.5/TA2.0
P3.6/TA2.1
P3.7/TA2.2
P4.0/TB0.0
P4.2/TB0.2 P4.1/TB0.1
P4.4/TB0.4 P4.3/TB0.3
P4.6/TB0.6 P4.5/TB0.5
P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT
P8.4/UCB1CLK/UCA1STE
VBAK
P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7
DVCC3
DVSS3
VBAT
P5.7/RTCCLK
P8.1/UCB1STE/UCA1CLK
P8.2/UCA1TXD/UCA1SIMO
P8.3/UCA1RXD/UCA1SOMI
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
4 Terminal Configuration and Functions
4.1 Pin Designation – MSP430F5338IPZ, MSP430F5336IPZ
Figure 4-1 shows the pinout for the MSP430F5338 and MSP430F5336 devices in the PZ package.
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
NOTE: DNC = Do not connect
Figure 4-1. 100-Pin PZ Package (Top View) – MSP430F5338, MSP430F5336
Copyright © 2010–2015, Texas Instruments Incorporated Terminal Configuration and Functions 7
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6
P6.7/CB7/A7
P7.4/CB8/A12 P7.5/CB9/A13
P7.6/CB10/A14
P7.7/CB11/A15 P5.0/VREF+/VeREF+ P5.1/VREF−/VeREF−
AVCC1 AVSS1
XIN
XOUT
DVCC1
DVSS1
VCORE
P5.2
DVSS
DNC
P5.3
P9.7
P9.6 P9.5 P9.4 P9.3 P9.2 P9.1 P9.0 P8.7 P8.6/UCB1SOMI/UCB1SCL P8.5/UCB1SIMO/UCB1SDA DVCC2 DVSS2
P2.0/P2MAP0
MSP430F5335 MSP430F5333
PZ PACKAGE
(TOP VIEW)
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
P7.3/XT2OUT
P7.2/XT2IN
LDOI
LDOO
PU.1
NC
PU.0
VSSU
NC
AVSS3
P1.3/TA0.2
P1.4/TA0.3
AVSS2
P5.6/ADC12CLK/DMAE0
P5.4
P5.5
P1.0/TA0CLK/ACLK
P3.0/TA1CLK/CBOUT
P3.1/TA1.0
P3.2/TA1.1
P1.6/TA0.1
P1.7/TA0.2
P1.1/TA0.0
P1.2/TA0.1
P1.5/TA0.4
P3.3/TA1.2
P3.4/TA2CLK/SMCLK
P3.5/TA2.0
P3.6/TA2.1
P3.7/TA2.2
P4.0/TB0.0
P4.2/TB0.2 P4.1/TB0.1
P4.4/TB0.4 P4.3/TB0.3
P4.6/TB0.6 P4.5/TB0.5
P8.0/TB0CLK P4.7/TB0OUTH/SVMOUT
P8.4/UCB1CLK/UCA1STE
VBAK
P2.1/P2MAP1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4 P2.5/P2MAP5 P2.6/P2MAP6 P2.7/P2MAP7
DVCC3
DVSS3
VBAT
P5.7/RTCCLK
P8.1/UCB1STE/UCA1CLK
P8.2/UCA1TXD/UCA1SIMO
P8.3/UCA1RXD/UCA1SOMI
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
4.2 Pin Designation – MSP430F5335IPZ, MSP430F5333IPZ
Figure 4-2 shows the pinout for the MSP430F5335 and MSP430F5333 devices in the PZ package.
www.ti.com
NOTE: DNC = Do not connect
Figure 4-2. 100-Pin PZ Package (Top View) – MSP430F5335, MSP430F5333
8 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
A1 A2
A3
A4
A5 A6
A7
A8 A9 A10
A11 A12
B1 B2
B3
B4
B5 B6
B7
B8 B9 B10
B11 B12
C1 C2 C3 C11 C12
D1 D2 D4
D5 D6
D7
D8 D9
D11 D12
E1 E2 E4
E5 E6
E7
E8 E9
E11 E12
F1 F2 F4
F5 F8 F9
F11 F12
G1 G2 G4
G5 G8 G9
G11 G12
J1 J2 J4
J5 J6
J7
J8 J9
J11 J12
H1 H2 H4
H5 H6
H7
H8 H9
H11 H12
K1 K2 K11 K12
L1 L2
L3
L4
L5 L6
L7
L8 L9 L10
L11 L12
M1 M2
M3 M5 M6
M7
M8 M9 M10
M11 M12
M4
ZQW PACKAGE
(TOP VIEW)
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
4.3 Pin Designation – MSP430F5338IZQW, MSP430F5336IZQW, MSP430F5335IZQW, MSP430F5333IZQW
Figure 4-3 shows the pin diagram for all devices in the ZQW package. See Section 4.4 for pin
assignments and descriptions.
NOTE: For terminal assignments, see Table 4-1
Figure 4-3. 113-Pin ZQW Package (Top View) – MSP430F5338, MSP430F5336, MSP430F5335,
MSP430F5333
Copyright © 2010–2015, Texas Instruments Incorporated Terminal Configuration and Functions 9
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
4.4 Signal Descriptions
Table 4-1 describes the signals for all device variants and packages.
Table 4-1. Signal Descriptions
TERMINAL
NAME
P6.4/CB4/A4 1 A1 I/O Comparator_B input CB4
P6.5/CB5/A5 2 B2 I/O Comparator_B input CB5
P6.6/CB6/A6/DAC0 3 B1 I/O
P6.7/CB7/A7/DAC1 4 C2 I/O
P7.4/CB8/A12 5 C1 I/O Comparator_B input CB8
P7.5/CB9/A13 6 C3 I/O Comparator_B input CB9
P7.6/CB10/A14/DAC0 7 D2 I/O
P7.7/CB11/A15/DAC1 8 D1 I/O
P5.0/VREF+/VeREF+ 9 D4 I/O Output of reference voltage to the ADC
P5.1/VREF-/VeREF- 10 E4 I/O
AVCC1 11 Analog power supply AVSS1 12 F2 Analog ground supply
XIN 13 F1 I Input terminal for crystal oscillator XT1 XOUT 14 G1 O Output terminal of crystal oscillator XT1
NO. I/O
PZ ZQW
E1,
E2
(1)
General-purpose digital I/O
Analog input A4 – ADC General-purpose digital I/O
Analog input A5 – ADC General-purpose digital I/O
Comparator_B input CB6 Analog input A6 – ADC DAC12.0 output (not available on F5335 and F5333 devices)
General-purpose digital I/O Comparator_B input CB7 Analog input A7 – ADC DAC12.1 output (not available on F5335 and F5333 devices)
General-purpose digital I/O
Analog input A12 –ADC General-purpose digital I/O
Analog input A13 – ADC General-purpose digital I/O
Comparator_B input CB10 Analog input A14 – ADC DAC12.0 output (not available on F5335 and F5333 devices)
General-purpose digital I/O Comparator_B input CB11 Analog input A15 – ADC DAC12.1 output (not available on F5335 and F5333 devices)
General-purpose digital I/O
Input for an external reference voltage to the ADC General-purpose digital I/O
Negative terminal for the reference voltage of the ADC for both sources, the internal reference voltage, or an external applied reference voltage
DESCRIPTION
www.ti.com
(1) I = input, O = output, N/A = not available on this package offering 10 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
NO. I/O
PZ ZQW
AVSS2 15 G2 Analog ground supply
P5.6/ADC12CLK/DMAE0 16 H1 I/O Conversion clock output ADC
P2.0/P2MAP0 17 G4 I/O
P2.1/P2MAP1 18 H2 I/O
P2.2/P2MAP2 19 J1 I/O
P2.3/P2MAP3 20 H4 I/O
P2.4/P2MAP4 21 J2 I/O
P2.5/P2MAP5 22 K1 I/O
P2.6/P2MAP6 23 K2 I/O
P2.7/P2MAP7 24 L2 I/O
DVCC1 25 L1 Digital power supply DVSS1 26 M1 Digital ground supply
(2)
VCORE
27 M2 Regulated core power supply (internal use only, no external current loading) P5.2 28 L3 I/O General-purpose digital I/O DVSS 29 M3 Digital ground supply DNC 30 J4 Do not connect. It is strongly recommended to leave this terminal open. P5.3 31 L4 I/O General-purpose digital I/O P5.4 32 M4 I/O General-purpose digital I/O P5.5 33 J5 I/O General-purpose digital I/O
P1.0/TA0CLK/ACLK 34 L5 I/O Timer TA0 clock signal TACLK input
P1.1/TA0.0 35 M5 I/O Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output
P1.2/TA0.1 36 J6 I/O Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output
P1.3/TA0.2 37 H6 I/O
(1)
DESCRIPTION
General-purpose digital I/O
DMA external trigger input General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/master out General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/master in General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: no secondary function General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: no secondary function
General-purpose digital I/O with port interrupt
ACLK output (divided by 1, 2, 4, 8, 16, or 32) General-purpose digital I/O with port interrupt
BSL transmit output General-purpose digital I/O with port interrupt
BSL receive input General-purpose digital I/O with port interrupt
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output
(2) VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, C
Copyright © 2010–2015, Texas Instruments Incorporated Terminal Configuration and Functions 11
VCORE
.
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
P1.4/TA0.3 38 M6 I/O
P1.5/TA0.4 39 L6 I/O
P1.6/TA0.1 40 J7 I/O
P1.7/TA0.2 41 M7 I/O
P3.0/TA1CLK/CBOUT 42 L7 I/O Timer TA1 clock input
P3.1/TA1.0 43 H7 I/O
P3.2/TA1.1 44 M8 I/O
P3.3/TA1.2 45 L8 I/O
P3.4/TA2CLK/SMCLK 46 J8 I/O Timer TA2 clock input
P3.5/TA2.0 47 M9 I/O
P3.6/TA2.1 48 L9 I/O
P3.7/TA2.2 49 M10 I/O
P4.0/TB0.0 50 J9 I/O
P4.1/TB0.1 51 M11 I/O
P4.2/TB0.2 52 L10 I/O
P4.3/TB0.3 53 M12 I/O
P4.4/TB0.4 54 L12 I/O
P4.5/TB0.5 55 L11 I/O
P4.6/TB0.6 56 K11 I/O
NO. I/O
PZ ZQW
(1)
General-purpose digital I/O with port interrupt Timer TA0 CCR3 capture: CCI3A input compare: Out3 output
General-purpose digital I/O with port interrupt Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output
General-purpose digital I/O with port interrupt Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output
General-purpose digital I/O with port interrupt Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output
General-purpose digital I/O with port interrupt
Comparator_B output General-purpose digital I/O with port interrupt
Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt
Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt
Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt
SMCLK output General-purpose digital I/O with port interrupt
Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt
Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt
Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output General-purpose digital I/O with port interrupt
Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output
www.ti.com
DESCRIPTION
12 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
NO. I/O
PZ ZQW
P4.7/TB0OUTH/SVMOUT 57 K12 I/O Timer TB0: Switch all PWM outputs high impedance
P8.0/TB0CLK 58 J11 I/O
P8.1/UCB1STE/UCA1CLK 59 J12 I/O
P8.2/UCA1TXD/UCA1SIMO 60 H11 I/O
(1)
DESCRIPTION
General-purpose digital I/O with port interrupt
SVM output General-purpose digital I/O
Timer TB0 clock input General-purpose digital I/O
USCI_B1 SPI slave transmit enable; USCI_A1 clock input/output General-purpose digital I/O
USCI_A1 UART transmit data; USCI_A1 SPI slave in/master out
P8.3/UCA1RXD/UCA1SOMI 61 H12 I/O
General-purpose digital I/O USCI_A1 UART receive data; USCI_A1 SPI slave out/master in
P8.4/UCB1CLK/UCA1STE 62 G11 I/O
General-purpose digital I/O
USCI_B1 clock input/output; USCI_A1 SPI slave transmit enable DVSS2 63 G12 Digital ground supply DVCC2 64 F12 Digital power supply
P8.5/UCB1SIMO/UCB1SDA 65 F11 I/O
P8.6/UCB1SOMI/UCB1SCL 66 G9 I/O
General-purpose digital I/O
USCI_B1 SPI slave in/master out; USCI_B1 I2C data
General-purpose digital I/O
USCI_B1 SPI slave out/master in; USCI_B1 I2C clock P8.7 67 E12 I/O General-purpose digital I/O P9.0 68 E11 I/O General-purpose digital I/O P9.1 69 F9 I/O General-purpose digital I/O P9.2 70 D12 I/O General-purpose digital I/O
P9.3 71 D11 I/O
General-purpose digital I/O P9.4 72 E9 I/O General-purpose digital I/O P9.5 73 C12 I/O General-purpose digital I/O P9.6 74 C11 I/O General-purpose digital I/O P9.7 75 D9 I/O General-purpose digital I/O
VSSU 76 PU ground supply
PU.0 77 A12 I/O
B11,
B12
General-purpose digital I/O, controlled by PU control register. Port U is supplied by
the LDOO rail. NC 78 B10 No connect
PU.1 79 A11 I/O
General-purpose digital I/O, controlled by PU control register. Port U is supplied by
the LDOO rail. LDOI 80 A10 LDO input LDOO 81 A9 LDO output NC 82 B9 No connect AVSS3 83 A8 Analog ground supply
P7.2/XT2IN 84 B8 I/O
P7.3/XT2OUT 85 B7 I/O
General-purpose digital I/O
Input terminal for crystal oscillator XT2
General-purpose digital I/O
Output terminal of crystal oscillator XT2
Copyright © 2010–2015, Texas Instruments Incorporated Terminal Configuration and Functions 13
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
NO. I/O
PZ ZQW
VBAK 86 A7
VBAT 87 D8
P5.7/RTCCLK 88 D7 I/O
DVCC3 89 A6 Digital power supply DVSS3 90 A5 Digital ground supply
TEST/SBWTCK 91 B6 I
PJ.0/TDO 92 B5 I/O
PJ.1/TDI/TCLK 93 A4 I/O
PJ.2/TMS 94 E7 I/O
PJ.3/TCK 95 D6 I/O
RST/NMI/SBWTDIO 96 A3 I/O Nonmaskable interrupt input
P6.0/CB0/A0 97 B4 I/O Comparator_B input CB0
P6.1/CB1/A1 98 B3 I/O Comparator_B input CB1
P6.2/CB2/A2 99 A2 I/O Comparator_B input CB2
P6.3/CB3/A3 100 D5 I/O Comparator_B input CB3
E5, E6, E8, F4, F5,
Reserved N/A F8, Reserved. TI recommends connecting to ground (DVSS, AVSS).
G5, G8, H5, H8,
H9
(3) When this pin is configured as reset, the internal pullup resistor is enabled by default.
(1)
DESCRIPTION
Capacitor for backup subsystem. Do not load this pin externally. For capacitor
values, see C
in Recommended Operating Conditions.
BAK
Backup or secondary supply voltage. If backup voltage is not supplied, connect to
DVCC externally.
General-purpose digital I/O
RTCCLK output
Test mode pin; selects digital I/O on JTAG pins
Spy-Bi-Wire input clock
General-purpose digital I/O
Test data output port
General-purpose digital I/O
Test data input or test clock input
General-purpose digital I/O
Test mode select
General-purpose digital I/O
Test clock
Reset input (active low)
(3)
Spy-Bi-Wire data input/output
General-purpose digital I/O
Analog input A0 – ADC
General-purpose digital I/O
Analog input A1 – ADC
General-purpose digital I/O
Analog input A2 – ADC
General-purpose digital I/O
Analog input A3 – ADC
www.ti.com
14 Terminal Configuration and Functions Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
www.ti.com
5 Specifications
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.1 Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage applied at VCCto V
SS
Voltage applied to any pin (excluding VCORE, VBUS, V18)
(2)
–0.3 4.1 V
–0.3 VCC+ 0.3 V Diode current at any device pin ±2 mA Maximum junction temperature, T Storage temperature, T
(3)
stg
J
–55 150 °C
95 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. (3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
5.2 ESD Ratings
VALUE UNIT
V
Electrostatic discharge V
(ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 Charged-device model (CDM), per JEDEC specification JESD22-C101
(1)
(2)
±1000
±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance. (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
5.3 Recommended Operating Conditions
MIN NOM MAX UNIT
PMMCOREVx = 0 1.8 3.6
V
CC
V
SS
V
BAT,RTC
V
BAT,MEM
T
A
T
J
C
BAK
C
VCORE
C
DVCC
C
VCORE
Supply voltage during program execution and flash programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = V DVCC= VCC)
(1)(2)
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS)
Backup-supply voltage with RTC operational V
Backup-supply voltage with backup memory retained TA= –40°C to +85°C 1.20 3.6 V Operating free-air temperature I version –40 85 °C Operating junction temperature I version –40 85 °C Capacitance at pin VBAK 1 4.7 10 nF Capacitor at VCORE
/
Capacitor ratio of DVCC to VCORE 10
(3)
PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6
0 V
TA= 0°C to 85°C 1.55 3.6 TA= –40°C to +85°C 1.70 3.6
470 nF
(1) TI recommends powering AVCCand DVCCfrom the same source. A maximum difference of 0.3 V between AVCCand DVCCcan be
tolerated during power up and operation. (2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.22
for the exact values and further details. (3) A capacitor tolerance of ±20% or better is required.
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 15
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
2.01.8
8
0
12
20
25
SystemFrequency-MHz
SupplyVoltage-V
ThenumberswithinthefieldsdenotethesupportedPMMCOREVxsettings.
2.2 2.4 3.6
0,1,2,30,1,20,10
1,2,3
1,2
1
2,3
3
2
16
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
www.ti.com
Recommended Operating Conditions (continued)
MIN NOM MAX UNIT
PMMCOREVx = 0,
1.8 V VCC≤ 3.6 V 0 8.0 (default condition)
f
SYSTEM
(4) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the
specified maximum frequency. (5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
Processor frequency (maximum MCLK frequency) (see Figure 5-1)
(4)(5)
PMMCOREVx = 1, 2 V VCC≤ 3.6 V
PMMCOREVx = 2,
2.2 V VCC≤ 3.6 V PMMCOREVx = 3,
2.4 V VCC≤ 3.6 V
0 12.0
0 16.0
0 20.0
MHz
16 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Figure 5-1. Frequency vs Supply Voltage
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.4 Active Mode Supply Current Into VCCExcluding External Current
over recommended operating free-air temperature (unless otherwise noted)
PARAMETER V
I
AM, Flash
I
AM, RAM
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. (2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF. (3) Characterized with program executing typical data processing. LDO disabled (LDOEN = 0).
f
ACLK
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.
EXECUTION
MEMORY
= 32786 Hz, f
PMMCOREVx 1 MHz 8 MHz 12 MHz 20 MHz UNIT
CC
TYP MAX TYP MAX TYP MAX TYP MAX
0 0.32 0.36 2.1 2.4
Flash 3 V mA
1 0.36 2.4 3.6 4.0 2 0.37 2.5 3.8 3 0.39 2.7 4.0 6.6 0 0.18 0.21 1.0 1.2
RAM 3 V mA
1 0.20 1.2 1.7 1.9 2 0.22 1.3 2.0 3 0.23 1.4 2.1 3.6
= f
DCO
MCLK
= f
at specified frequency.
SMCLK
(1)(2)(3)
FREQUENCY (f
DCO
= f
MCLK
= f
SMCLK
)
5.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
–40°C 25°C 60°C 85°C
TYP MAX TYP MAX TYP MAX TYP MAX
I
LPM0,1MHz
I
LPM2
I
LPM3,XT1LF
PARAMETER V
2.2 V 0 71 75 87 81 85 99
Low-power mode 0
Low-power mode 2
(3)(4)
2.2 V 0 6.3 6.7 9.9 9.0 11 16
(5)(4)
2.2 V 1 1.6 1.9 4.8 6.6
Low-power mode 3, crystal mode
(6)(4)
PMMCOREVx UNIT
CC
3 V 3 78 83 98 89 94 108
3 V 3 6.6 7.0 11 10 12 18
0 1.6 1.8 2.4 4.7 6.5 10.5
2 1.7 2.0 4.9 6.7 0 1.9 2.1 2.7 5.0 6.8 10.8 µA
3 V
1 1.9 2.1 5.1 7.0 2 2.0 2.2 5.2 7.1 3 2.0 2.2 2.9 5.4 7.3 12.6
(1)(2)
µA
µA
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. (2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), f
LDO disabled (LDOEN = 0). (4) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled
(SVSH, SVMH). RAM retention enabled. (5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation
(XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), f
setting = 1 MHz operation, DCO bias generator enabled.
LDO disabled (LDOEN = 0). (6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation
(XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f
LDO disabled (LDOEN = 0).
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 17
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
= 32768 Hz, f
ACLK
= 32768 Hz, f
ACLK
= 32768 Hz, f
ACLK
Submit Documentation Feedback
MCLK
MCLK
MCLK
= 0 MHz, f
= 0 MHz, f
= f
SMCLK
SMCLK
SMCLK
= f
DCO
= f
DCO
= f
DCO
= 0 MHz
= 1 MHz
= 0 MHz; DCO
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
Low-Power Mode Supply Currents (Into VCC) Excluding External Current (continued)
= f
(1)(2)
SMCLK
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER V
PMMCOREVx UNIT
CC
0 0.9 1.2 1.9 4.0 5.9 10.3
I
LPM3,
VLO,WDT
Low-power mode 3, VLO mode, Watchdog 3 V µA
(7)(4)
enabled
1 0.9 1.2 4.1 6.0 2 1.0 1.3 4.2 6.1 3 1.0 1.3 2.2 4.3 6.3 11.3 0 0.9 1.1 1.8 3.9 5.8 10
I
LPM4
Low-power mode 4
(8)(4)
3 V µA
1 0.9 1.1 4.0 5.9 2 1.0 1.2 4.1 6.1 3 1.0 1.2 2.1 4.2 6.2 11
Low-power mode 3.5
I
LPM3.5,
RTC,VCC
(LPM3.5) current with active RTC into primary supply pin DV
CC
(9)
3 V 0.5 0.8 1.4 µA
Low-power mode 3.5
I
LPM3.5,
RTC,VBAT
I
LPM3.5,
RTC,TOT
I
LPM4.5
(LPM3.5) current with active RTC into backup supply pin VBAT
(10)
3 V 0.6 0.8 1.4 µA
Total low-power mode
3.5 (LPM3.5) current 3 V 1.0 1.1 1.3 1.6 2.8 µA with active RTC
Low-power mode 4.5 (LPM4.5)
(12)
(11)
3 V 0.2 0.3 0.6 0.7 0.9 1.4 µA
(7) Current for watchdog timer clocked by VLO included.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), f
LDO disabled (LDOEN = 0). (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), f
LDO disabled (LDOEN = 0). (9) V (10) V
(11) f (12) Internal regulator disabled. No data retention.
= VCC- 0.2 V, f
VBAT
= VCC- 0.2 V, f
VBAT
current drawn on VBAK
DCO
= f
MCLK
= f
SMCLK
= f
DCO
= f
DCO
= 0 MHz, f
MCLK
MCLK
= f = f
ACLK
= 0 MHz, f
SMCLK
= 0 MHz, f
SMCLK
= 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), f
–40°C 25°C 60°C 85°C
TYP MAX TYP MAX TYP MAX TYP MAX
= f
ACLK
= f
DCO
= 32768 Hz, PMMREGOFF = 1, RTC in backup domain active
ACLK
= 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no
ACLK
MCLK
ACLK
= f
= f
MCLK
SMCLK
= f
DCO
= f
DCO
SMCLK
= f
= 0 MHz
= 0 MHz
ACLK
= f
MCLK
www.ti.com
= 0 MHz
5.6 Thermal Resistance Characteristics
PARAMETER VALUE UNIT
θ
JA
θ
JC(TOP)
θ
JB
Junction-to-ambient thermal resistance, still air
Junction-to-case (top) thermal resistance
Junction-to-board thermal resistance
(3)
(1)
(2)
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as
specified in JESD51-7, in an environment described in JESD51-2a. (2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. (3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
18 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
QFP (PZ) 122 BGA (ZQW) 108 QFP (PZ) 83 BGA (ZQW) 72 QFP (PZ) 98 BGA (ZQW) 76
°C/W
°C/W
°C/W
www.ti.com
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.7 Schmitt-Trigger Inputs – General-Purpose I/O
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
Positive-going input threshold voltage V
IT+
V
Negative-going input threshold voltage V
IT–
V
Input voltage hysteresis (V
hys
R
Pullup or pulldown resistor
Pull
C
Input capacitance VIN= VSSor V
I
IT+
(2)
– V
) V
IT–
For pullup: VIN= V For pulldown: VIN= V
SS
CC
CC
CC
1.8 V 0.80 1.40 3 V 1.50 2.10
1.8 V 0.45 1.00 3 V 0.75 1.65
1.8 V 0.3 0.8 3 V 0.4 1.0
(1) Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). (2) Also applies to RST pin when pullup or pulldown resistor is enabled.
5.8 Inputs – Ports P1, P2, P3, and P4
(1)
MIN TYP MAX UNIT
20 35 50 k
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
t
External interrupt timing
(int)
(2)
Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag
(1) Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. (2) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t
shorter than t
(int)
.
is met. It may be set by trigger signals
(int)
CC
2.2 V, 3 V 20 ns
5 pF
MIN MAX UNIT
5.9 Leakage Current – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
I
lkg(Px.x)
PARAMETER TEST CONDITIONS V
High-impedance leakage current
(1)(2)
CC
1.8 V, 3 V ±50 nA
(1) The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted. (2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
MIN MAX UNIT
5.10 Outputs – General-Purpose I/O (Full Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
V
V
High-level output voltage V
OH
Low-level output voltage V
OL
(1) The maximum total current, I
specified.
(2) The maximum total current, I
drop specified.
(OHmax)
(OHmax)
and I and I
I
= –3 mA
(OHmax)
I
= –10 mA
(OHmax)
I
= –5 mA
(OHmax)
I
= –15 mA
(OHmax)
I
= 3 mA
(OLmax)
I
= 10 mA
(OLmax)
I
= 5 mA
(OLmax)
I
= 15 mA
(OLmax)
, for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
(OLmax)
, for all outputs combined should not exceed ±100 mA to hold the maximum voltage
(OLmax)
(1)
(2)
(1)
(2)
(1)
(2)
(1)
(2)
CC
1.8 V
3 V
1.8 V
3 V
MIN MAX UNIT
VCC– 0.25 V VCC– 0.60 V VCC– 0.25 V VCC– 0.60 V
VSSVSS+ 0.25 VSSVSS+ 0.60 VSSVSS+ 0.25 VSSVSS+ 0.60
CC CC CC CC
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 19
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
www.ti.com
5.11 Outputs – General-Purpose I/O (Reduced Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
I
(OHmax)
I
V
V
High-level output voltage V
OH
Low-level output voltage V
OL
(OHmax)
I
(OHmax)
I
(OHmax)
I
(OLmax)
I
(OLmax)
I
(OLmax)
I
(OLmax)
(1) Selecting reduced drive strength may reduce EMI. (2) The maximum total current, I
specified.
(3) The maximum total current, I
drop specified.
(OHmax)
(OHmax)
and I and I
, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
(OLmax)
, for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
(OLmax)
= –1 mA = –3 mA = –2 mA
= –6 mA = 1 mA = 3 mA = 2 mA = 6 mA
(2) (3) (2)
(3) (2) (3) (2) (3)
CC
1.8 V
3 V
1.8 V
3 V
VCC– 0.25 V VCC– 0.60 V VCC– 0.25 V VCC– 0.60 V
(1)
MIN MAX UNIT
CC CC CC CC
VSSVSS+ 0.25 VSSVSS+ 0.60 VSSVSS+ 0.25 VSSVSS+ 0.60
5.12 Output Frequency – Ports P1, P2, and P3
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
VCC= 1.8 V,
f
Px.y
Port output frequency P3.4/TA2CLK/SMCLK/S27, (with load) CL= 20 pF, RL= 1 k
(1)
or 3.2 k
(2)(3)
PMMCOREVx = 0 VCC= 3 V,
PMMCOREVx = 3 VCC= 1.8 V,
PMMCOREVx = 0 VCC= 3 V,
PMMCOREVx = 3
f
Port_CLK
P1.0/TA0CLK/ACLK/S39,
Clock output frequency MHz
P3.4/TA2CLK/SMCLK/S27, P2.0/P2MAP0 (P2MAP0 = PM_MCLK ), CL= 20 pF
(3)
(1) Full drive strength of port: A resistive divider with 2 × 0.5 kbetween VCCand VSSis used as load. The output is connected to the
center tap of the divider.
(2) Reduced drive strength of port: A resistive divider with 2 × 1.6 kbetween VCCand VSSis used as load. The output is connected to the
center tap of the divider.
(3) The output voltage reaches at least 10% and 90% VCCat the specified toggle frequency.
8
MHz
20
8
20
20 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
−25.0
−20.0
−15.0
−10.0
−5.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T = 25°C
A
T = 85°C
A
V = 3.0 V P3.2
CC
V – High-Level Output Voltage – V
OH
I – Typical High-Level Output Current – mA
OH
−8.0
−7.0
−6.0
−5.0
−4.0
−3.0
−2.0
−1.0
0.0
0.0 0.5 1.0 1.5 2.0
T = 25°C
A
T = 85°C
A
V = 1.8 V P3.2
CC
V – High-Level Output Voltage – V
OH
I – Typical High-Level Output Current – mA
OH
0.0
5.0
10.0
15.0
20.0
25.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T = 25°C
A
T = 85°C
A
V = 3.0 V P3.2
CC
V – Low-Level Output Voltage – V
OL
I – Typical Low-Level Output Current – mA
OL
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
0.0 0.5 1.0 1.5 2.0
T = 25°C
A
T = 85°C
A
V = 1.8 V P3.2
CC
V – Low-Level Output Voltage – V
OL
I – Typical Low-Level Output Current – mA
OL
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
Figure 5-2. Typical Low-Level Output Current vs Low-Level
Figure 5-4. Typical High-Level Output Current vs High-Level
Output Voltage
Output Voltage
Figure 5-3. Typical Low-Level Output Current vs Low-Level
Figure 5-5. Typical High-Level Output Current vs High-Level
Output Voltage
Output Voltage
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 21
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
−20
−16
−12
−8
−4
0
0.0 0.5 1.0 1.5 2.0
T = 25°C
A
T = 85°C
A
V = 1.8 V P3.2
CC
V – High-Level Output Voltage – V
OH
I – Typical High-Level Output Current – mA
OH
−60.0
−55.0
−50.0
−45.0
−40.0
−35.0
−30.0
−25.0
−20.0
−15.0
−10.0
−5.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T = 25°C
A
T = 85°C
A
V = 3.0 V P3.2
CC
V – High-Level Output Voltage – V
OH
I – Typical High-Level Output Current – mA
OH
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T = 25°C
A
T = 85°C
A
V = 3.0 V P3.2
CC
V – Low-Level Output Voltage – V
OL
I – Typical Low-Level Output Current – mA
OL
0
4
8
12
16
20
24
0.0 0.5 1.0 1.5 2.0
T = 25°C
A
T = 85°C
A
V = 1.8 V P3.2
CC
V – Low-Level Output Voltage – V
OL
I – Typical Low-Level Output Current – mA
OL
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
www.ti.com
Figure 5-6. Typical Low-Level Output Current vs Low-Level
Figure 5-8. Typical High-Level Output Current vs High-Level
22 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Output Voltage
Output Voltage
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Figure 5-7. Typical Low-Level Output Current vs Low-Level
Figure 5-9. Typical High-Level Output Current vs High-Level
Submit Documentation Feedback
Output Voltage
Output Voltage
www.ti.com
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.15 Crystal Oscillator, XT1, Low-Frequency Mode
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
= 32768 Hz, XTS = 0,
OSC
XT1BYPASS = 0, XT1DRIVEx = 1, 0.075
CC
TA= 25°C
ΔI
DVCC,LF
Differential XT1 oscillator crystal f current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2, 3 V 0.170 µA drive setting, LF mode TA= 25°C
= 32768 Hz, XTS = 0,
OSC
f
= 32768 Hz, XTS = 0,
OSC
XT1BYPASS = 0, XT1DRIVEx = 3, 0.290 TA= 25°C
f
XT1,LF0
f
XT1,LF,SW
XT1 oscillator crystal frequency, LF mode
XT1 oscillator logic-level square­wave input frequency, LF mode
XTS = 0, XT1BYPASS = 0 32768 Hz
XTS = 0, XT1BYPASS = 1
(2) (3)
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, 210
OA
= 32768 Hz, C
LF
Oscillation allowance for LF crystals
(4)
XT1,LF
XTS = 0,
L,eff
= 6 pF
f
XT1BYPASS = 0, XT1DRIVEx = 1, 300 f
= 32768 Hz, C
XT1,LF
XTS = 0, XCAPx = 0
C
L,eff
Integrated effective load capacitance, LF mode
(5)
XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5
= 12 pF
L,eff
(6)
XTS = 0, XCAPx = 3 12.0 XTS = 0, Measured at ACLK,
f
= 32768 Hz
XT1,LF
XTS = 0 f
XT1BYPASS = 0, XT1DRIVEx = 0,
(8)
= 32768 Hz, XTS = 0,
OSC
f
Fault,LF
Duty cycle, LF mode 30% 70% Oscillator fault frequency,
LF mode
(7)
TA= 25°C, C
= 6 pF
t
START,LF
Start-up time, LF mode 3 V ms
L,eff
f
= 32768 Hz, XTS = 0,
OSC
XT1BYPASS = 0, XT1DRIVEx = 3, TA= 25°C, C
= 12 pF
L,eff
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(2) When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this datasheet. (3) Maximum frequency of operation of the entire device cannot be exceeded. (4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
• For XT1DRIVEx = 0, C
• For XT1DRIVEx = 1, 6 pF C
• For XT1DRIVEx = 2, 6 pF C
• For XT1DRIVEx = 3, C
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
L,eff
L,eff
6 pF.
L,eff L,eff
6 pF.
9 pF.10 pF.
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal. (6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. (7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag. (8) Measured with logic-level input frequency but also applies to operation with crystals.
MIN TYP MAX UNIT
10 32.768 50 kHz
k
1
pF
10 10000 Hz
1000
500
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 23
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.16 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
= 4 MHz, XT2OFF = 0,
OSC
XT2BYPASS = 0, XT2DRIVEx = 0, 200 TA= 25°C
f
= 12 MHz, XT2OFF = 0,
OSC
XT2BYPASS = 0, XT2DRIVEx = 1, 260
I
DVCC,XT2
XT2 oscillator crystal current consumption
TA= 25°C f
= 20 MHz, XT2OFF = 0,
OSC
XT2BYPASS = 0, XT2DRIVEx = 2, 325 TA= 25°C
f
= 32 MHz, XT2OFF = 0,
OSC
XT2BYPASS = 0, XT2DRIVEx = 3, 450 TA= 25°C
f
XT2,HF0
f
XT2,HF1
f
XT2,HF2
f
XT2,HF3
f
XT2,HF,SW
XT2 oscillator crystal frequency, mode 0
XT2 oscillator crystal frequency, mode 1
XT2 oscillator crystal frequency, mode 2
XT2 oscillator crystal frequency, mode 3
XT2 oscillator logic-level square­wave input frequency
XT2DRIVEx = 0, XT2BYPASS = 0
XT2DRIVEx = 1, XT2BYPASS = 0
XT2DRIVEx = 2, XT2BYPASS = 0
XT2DRIVEx = 3, XT2BYPASS = 0
XT2BYPASS = 1
(4) (3)
(3)
(3)
(3)
(3)
XT2DRIVEx = 0, XT2BYPASS = 0, f
XT2,HF0
= 6 MHz, C
L,eff
= 15 pF
XT2DRIVEx = 1, XT2BYPASS = 0,
OA
HF
Oscillation allowance for HF crystals
(5)
f XT2DRIVEx = 2, XT2BYPASS = 0,
f
XT2,HF1
XT2,HF2
= 12 MHz, C
= 20 MHz, C
L,eff
L,eff
= 15 pF
= 15 pF
XT2DRIVEx = 3, XT2BYPASS = 0,
t
START,HF
C
L,eff
f
Fault,HF
f f
XT2BYPASS = 0, XT2DRIVEx = 0, 0.5
Start-up time 3 V ms
TA= 25°C, C f
XT2BYPASS = 0, XT2DRIVEx = 3, 0.3 TA= 25°C, C
Integrated effective load capacitance, HF mode
(6) (1)
Duty cycle Measured at ACLK, f Oscillator fault frequency
(7)
XT2BYPASS = 1
XT2,HF3
= 6 MHz
OSC
= 20 MHz
OSC
= 32 MHz, C
= 15 pF
L,eff
= 15 pF
L,eff
(8)
= 15 pF
L,eff
= 20 MHz 40% 50% 60%
XT2,HF2
(1) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. (2) To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (3) Maximum frequency of operation of the entire device cannot be exceeded. (4) When XT2BYPASS is set, the XT2 circuit is automatically powered down. (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
(8) Measured with logic-level input frequency but also applies to operation with crystals.
CC
3 V µA
(1) (2)
MIN TYP MAX UNIT
4 8 MHz
8 16 MHz
16 24 MHz
24 32 MHz
0.7 32 MHz
450
320
200
200
1 pF
30 300 kHz
www.ti.com
24 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS V
f
VLO
df
VLO/dT
df
VLO
VLO frequency Measured at ACLK 1.8 V to 3.6 V 6 9.4 14 kHz VLO frequency temperature drift Measured at ACLK
/dVCCVLO frequency supply voltage drift Measured at ACLK
(1) (2)
CC
1.8 V to 3.6 V 0.5 %/°C
1.8 V to 3.6 V 4 %/V
Duty cycle Measured at ACLK 1.8 V to 3.6 V 40% 50% 60%
(1) Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C)) (2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
MIN TYP MAX UNIT
5.18 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
I
REFO
PARAMETER TEST CONDITIONS V
REFO oscillator current consumption
TA= 25°C 1.8 V to 3.6 V 3 µA
CC
REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Hz
f
REFO
df
REFO/dT
df
REFO
/dV
REFO absolute tolerance calibrated
REFO frequency temperature drift Measured at ACLK REFO frequency supply voltage
CC
drift
Full temperature range 1.8 V to 3.6 V ±3.5% TA= 25°C 3 V ±1.5%
Measured at ACLK
(1)
(2)
1.8 V to 3.6 V 0.01 %/°C
1.8 V to 3.6 V 1.0 %/V
Duty cycle Measured at ACLK 1.8 V to 3.6 V 40% 50% 60%
t
START
REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V 25 µs
(1) Calculated using the box method: (MAX(–40°C to +85°C) – MIN(–40°C to +85°C)) / MIN(–40°C to +85°C) / (85°C – (–40°C)) (2) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
MIN TYP MAX UNIT
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 25
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
0
1 2
3
4
5
6
7
Typical DCO Frequency,V = 3.0 V,T = 25°C
CC A
DCORSEL
100
10
1
0.1
f – MHz
DCO
DCOx = 31
DCOx = 0
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.19 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
DCO(0,0)
f
DCO(0,31)
f
DCO(1,0)
f
DCO(1,31)
f
DCO(2,0)
f
DCO(2,31)
f
DCO(3,0)
f
DCO(3,31)
f
DCO(4,0)
f
DCO(4,31)
f
DCO(5,0)
f
DCO(5,31)
f
DCO(6,0)
f
DCO(6,31)
f
DCO(7,0)
f
DCO(7,31)
S
DCORSEL
S
DCO
df
/dT DCO frequency temperature drift f
DCO
df
/dV
DCO
CC
DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz DCO frequency (1, 0) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz DCO frequency (1, 31) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz DCO frequency (3, 0) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz DCO frequency (4, 31) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz DCO frequency (6, 0) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz DCO frequency (6, 31) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz Frequency step between range
DCORSEL and DCORSEL + 1 Frequency step between tap
DCO and DCO + 1
S
S
= f
RSEL
DCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
= f
DCO
DCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.2 2.3 ratio
1.02 1.12 ratio
Duty cycle Measured at SMCLK 40% 50% 60%
= 1 MHz 0.1 %/°C
DCO
DCO frequency voltage drift f
= 1 MHz 1.9 %/V
DCO
www.ti.com
26 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Figure 5-10. Typical DCO frequency
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.20 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(DVCC_BOR_IT–) | dDVCC/dt| < 3 V/s 1.45 V
V(DVCC_BOR_IT+) | dDVCC/dt| < 3 V/s 0.80 1.30 1.50 V V(DVCC_BOR_hys) BORHhysteresis 60 250 mV
t
RESET
BORHon voltage, DVCCfalling level
BORHoff voltage, DVCCrising level
Pulse length required at RST/NMI pin to accept a 2 µs reset
5.21 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V
(AM) 2.4 V DVCC≤ 3.6 V, 0 mA ≤ I(V
CORE3
V
(AM) 2.2 V DVCC≤ 3.6 V, 0 mA ≤ I(V
CORE2
V
(AM) 2 V DVCC≤ 3.6 V, 0 mA ≤ I(V
CORE1
V
(AM) 1.8 V DVCC≤ 3.6 V, 0 mA ≤ I(V
CORE0
V
(LPM) 2.4 V DVCC≤ 3.6 V, 0 µA ≤ I(V
CORE3
V
(LPM) 2.2 V DVCC≤ 3.6 V, 0 µA ≤ I(V
CORE2
V
(LPM) 2 V DVCC≤ 3.6 V, 0 µA ≤ I(V
CORE1
V
(LPM) 1.8 V DVCC≤ 3.6 V, 0 µA ≤ I(V
CORE0
Core voltage, active mode, PMMCOREV = 3
Core voltage, active mode, PMMCOREV = 2
Core voltage, active mode, PMMCOREV = 1
Core voltage, active mode, PMMCOREV = 0
Core voltage, low-current mode, PMMCOREV = 3
Core voltage, low-current mode, PMMCOREV = 2
Core voltage, low-current mode, PMMCOREV = 1
Core voltage, low-current mode, PMMCOREV = 0
) 21 mA 1.90 V
CORE
) 21 mA 1.80 V
CORE
) 17 mA 1.60 V
CORE
) 13 mA 1.40 V
CORE
) 30 µA 1.94 V
CORE
) 30 µA 1.84 V
CORE
) 30 µA 1.64 V
CORE
) 30 µA 1.44 V
CORE
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 27
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
www.ti.com
5.22 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVSHE = 0, DVCC= 3.6 V 0
I
(SVSH)
SVS current consumption SVSHE = 1, DVCC= 3.6 V, SVSHFP = 0 200
SVSHE = 1, DVCC= 3.6 V, SVSHFP = 1 2.0 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69
V
(SVSH_IT–)
SVSHon voltage level
(1)
SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21
V
(SVSH_IT+)
SVSHoff voltage level
(1)
SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVSHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15
t
pd(SVSH)
t
(SVSH)
dV
DVCC
SVSHpropagation delay µs
SVSHon or off delay time µs
/dt DVCCrise time 0 1000 V/s
SVSHE = 1, dV SVSHE = 1, dV SVSHE = 01, SVSHFP = 1 12.5 SVSHE = 01, SVSHFP = 0 100
/dt = 10 mV/µs, SVSHFP = 1 2.5
DVCC
/dt = 1 mV/µs, SVSHFP = 0 20
DVCC
(1) The SVSHsettings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.
nA
V
V
5.23 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVMHE = 0, DVCC = 3.6 V 0
I
(SVMH)
SVMHcurrent consumption SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 2.0 µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35
V
(SVMH)
SVMHon or off voltage level
(1)
SVMHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 V SVMHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVMHE = 1, SVMHOVPE = 1 3.75
t
pd(SVMH)
t
(SVMH)
SVMHpropagation delay µs
SVMHon or off delay time µs
SVMHE = 1, dV SVMHE = 1, dV SVMHE = 01, SVSMFP = 1 12.5 SVMHE = 01, SVMHFP = 0 100
/dt = 10 mV/µs, SVMHFP = 1 2.5
DVCC
/dt = 1 mV/µs, SVMHFP = 0 20
DVCC
(1) The SVMHsettings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and usage.
nA
28 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
www.ti.com
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.24 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVSLE = 0, PMMCOREV = 2 0
I
(SVSL)
t
pd(SVSL)
t
(SVSL)
SVSLcurrent consumption SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 µA
SVSLpropagation delay µs
SVSLon/off delay time µs
SVSLE = 1, dV SVSLE = 1, dV SVSLE = 01, SVSLFP = 1 12.5 SVSLE = 01, SVSLFP = 0 100
/dt = 10 mV/µs, SVSLFP = 1 2.5
CORE
/dt = 1 mV/µs, SVSLFP = 0 20
CORE
5.25 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVMLE = 0, PMMCOREV = 2 0
I
(SVML)
t
pd(SVML)
t
(SVML)
SVMLcurrent consumption SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 2.0 µA
SVMLpropagation delay µs
SVMLon or off delay time µs
SVMLE = 1, dV SVMLE = 1, dV SVMLE = 01, SVMLFP = 1 12.5 SVMLE = 01, SVMLFP = 0 100
/dt = 10 mV/µs, SVMLFP = 1 2.5
CORE
/dt = 1 mV/µs, SVMLFP = 0 20
CORE
nA
nA
5.26 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
4 MHz 3 6.5
t
WAKE-UP-FAST
LPM3, or LPM4 to active (where n = 0, 1, 2, or 3), µs
(1)
mode
SVSLFP = 1
Wake-up time from LPM2, PMMCOREV = SVSMLRRL = n
Wake-up time from LPM2, PMMCOREV = SVSMLRRL = n
t
WAKE-UP-SLOW
t
WAKE-UP-LPM5
t
WAKE-UP-RESET
LPM3 or LPM4 to active (where n = 0, 1, 2, or 3), 150 165 µs
(2)
mode Wake-up time from LPM3.5 or
LPM4.5 to active mode
(3)
Wake-up time from RST or BOR event to active mode
SVSLFP = 0
(3)
(1) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). Fastest wake-up times are possible with SVSLand SVMLin full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVMLwhile operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).
(2) This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). In this case, the SVSLand SVMLare in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVMLwhile operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208).
(3) This value represents the time from the wake-up event to the reset vector execution.
MCLK
1 MHz < f 4 MHz
MCLK
<
4 8.0
2 3 ms
2 3 ms
Copyright © 2010–2015, Texas Instruments Incorporated Specifications 29
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
MSP430F5338, MSP430F5336, MSP430F5335, MSP430F5333
SLAS721D –AUGUST 2010–REVISED DECEMBER 2015
5.27 Timer_A, Timers TA0, TA1, and TA2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
TA
t
TA,cap
PARAMETER TEST CONDITIONS V
Internal: SMCLK, ACLK
Timer_A input clock frequency External: TACLK 1.8 V, 3 V 20 MHz
Duty cycle = 50% ±10% All capture inputs,
Timer_A capture timing Minimum pulse duration required for 1.8 V, 3 V 20 ns
capture
CC
5.28 Timer_B, Timer TB0
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
f
TB
t
TB,cap
PARAMETER TEST CONDITIONS V
Internal: SMCLK, ACLK
Timer_B input clock frequency External: TBCLK 1.8 V, 3 V 20 MHz
Duty cycle = 50% ±10% All capture inputs,
Timer_B capture timing Minimum pulse duration required for 1.8 V, 3 V 20 ns
capture
CC
5.29 Battery Backup
over operating free-air temperature range (unless otherwise noted)
I
VBAT
V
SWITCH
R
ON_VBAT
V
BAT3
t
Sample,
VBAT3
V
CHVx
R
CHARGE
PARAMETER TEST CONDITIONS V
CC
TA= –40°C 0.43
VBAT = 1.7 V, DVCC not connected, RTC running
TA= 25°C 0.52 TA= 60°C 0.58 TA= 85°C 0.64 TA= –40°C 0.50
Current into VBAT terminal if no primary battery is connected
VBAT = 2.2 V, DVCC not connected, µA RTC running
TA= 25°C 0.59 TA= 60°C 0.64 TA= 85°C 0.71 TA= –40°C 0.68
VBAT = 3 V, DVCC not connected, RTC running
TA= 25°C 0.75 TA= 60°C 0.79 TA= 85°C 0.86 General V SVSHRL = 0 1.59 1.69
Switch-over level (VCCto VBAT) C
= 4.7 µF SVSHRL = 1 1.79 1.91 V
VCC
SVSHRL = 2 1.98 2.11 SVSHRL = 3 2.10 2.23
ON-resistance of switch between VBAT and VBAK
V
= 1.8 V 0 V 0.35 1 k
BAT
1.8 V 0.6 ±5% VBAT to ADC input channel 12: V
BAT
divided, V
BAT3
= V
BAT
/3
3 V 1.0 ±5% V
3.6 V 1.2 ±5% VBAT to ADC: Sampling time ADC12ON = 1,
required if VBAT3 selected Error of conversion result 1 LSB Charger end voltage CHVx = 2 2.65 2.7 2.9 V
CHCx = 1 5
Charge limiting resistor CHCx = 2 10 k
CHCx = 3 20
MIN TYP MAX UNIT
1000 ns
www.ti.com
MIN MAX UNIT
MIN MAX UNIT
SVSH_IT-
30 Specifications Copyright © 2010–2015, Texas Instruments Incorporated
Product Folder Links: MSP430F5338 MSP430F5336 MSP430F5335 MSP430F5333
Submit Documentation Feedback
Loading...
+ 82 hidden pages