Texas Instruments MSP430F4152IPM, MSP430F4132IRGZ, MSP430F4152IRGZ, MSP430F4132IPM User Manual

MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow Power Consumption
Active Mode: 220 Aat1MHz,2.2V Standby Mode: 0.9 A Off Mode (RAM Retention): 0.1 A
D Five Power-Saving Modes D Wake-Up From Standby Mode in Less
Than 6 s
-- Internal Very Low Power, Low-Frequency Oscillator
D 16-Bit RISC Architecture,
125-ns Instruction Cycle Time
D 16-Bit Timer_A With Three
Capture/Compare Registers
D 16-Bit Timer_A With Five Capture/Compare
Registers
D Two Universal Serial Communication
Interfaces (USCIs) USCI_A0
-- Enhanced UART Supporting Auto-Baudrate Detection
-- IrDA Encoder and Decoder
-- Synchronous SPI
USCI_B0
-- I 2 C
-- Synchronous SPI
D Supply Voltage Supervisor/Monitor With
Programmable Level Detection
D Integrated LCD Driver With Contrast
Control for Up to 144 Segments
D Basic Timer With Real Time Clock Feature D Brownout detector D On-Chip Comparator for Analog Signal
Compare Function or Slope A/D
D 10-Bit 200-ksps Analog-to-Digital (A/D)
Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller
D Serial Onboard Programming,
No External Programming Voltage Needed Programmable Code Protection by Security Fuse
D Bootstrap Loader D On-Chip Emulation Module D Family Members Include:
MSP430F4152: 16KB+256B Flash Memory
512B RAM
MSP430F4132: 8KB+256B Flash Memory
512B RAM
D Available in 64-Pin QFP Package and
48-Pin QFN Package (See Available Options)
D For Complete Module Descriptions, See
The MSP430x4xx Family User’s Guide, Literature Number SLAU056
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 s.
The MSP430F41x2 is a microcontroller configuration with two 16-bit timers, a basic timer with a real--time clock, a 10-bit A/D converter, a versatile analog comparator, two universal serial communication interfaces, up to 48 I/O pins, and a liquid crystal display driver.
Typical applications for this device include analog and digital sensor systems, remote controls, thermostats, digital timers, hand-held meters, etc.
This integrated circuit can be damaged by ESD. Texas Instrum ents recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright 2011, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
AVAILABLE OPTIONS
T
A
-- 4 0 Cto85C
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
PLASTIC 64-PIN QFP (PM) PLASTIC 48-PIN QFN (RGZ)
MSP430F4152IPM MSP430F4132IPM
PACKAGED DEVICES
DEVELOPMENT TOOL SUPPORT
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following:
D Debugging and Programming Interface
-- MSP-FET430UIF (USB)
-- MSP-FET430PIF (Parallel Port)
D Debugging and Programming Interface with Target Board
MSP430F4152IRGZ MSP430F4132IRGZ
-- MSP-FET430U64A (PM package)
D Production Programmer
-- MSP-GANG430
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430F41x2IPM (QFP)
P6.1/UCB0SOMI/UCB0SCL
P6.2/UCB0SIMO/UCB0SDA
P6.3/UCB0STE/UCA0CLK/A3/CA5/Ve
P6.4/UCB0CLK/UCA0STE/A4/CA6/Ve
P6.5/UCA0RXD/UCA0SOMI/A5
P6.6/UCA0TXD/UCA0SIMO/A6
P6.7/A7/CA7/SVSIN P4.7/ADC10CLK/S0
REF-/VREF-
REF+/VREF+
DV
XIN
XOUT
DV
P4.6/S1 P4.5/S2 P4.4/S3 P4.3/S4
1 2 3 4 5 6 7
CC
8 9 10
SS
11 12 13 14 15 16
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
SS
CC
P6.0/TA1.2/A2/CA4
P7.5/TA1.3/A1/CA3
AV
AV
64 63
62 61 60 59 58 57 56 55 54 53 52 51 50 49
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
RST/NMI/SBWTDIO
P7.4/TA1.4/A0/CA2
TEST/SBWTCLK
P7.3/TCK/S35
64-pin
PM PACKAGE
(TOP VIEW)
P7.2/TMS/S34
P7.1/TDI/TCLK/S33
P7.0/TDO/TDI/S32
P1.0/TA0.0/S31
P1.1/TA0.0/MCLK/S30
P1.2/TA0.1/S29
P1.3/TA1.0/SVSOUT/S28
P1.4/TA1.0/S27
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
MSP430F41x2
P1.5/TA0CLK/CAOUT/S26 P1.6/ACLK/CA0 P1.7/TA0CLK/CAOUT/CA1 P7.6/TA0.2/S25 P5.0/TA1.1/S24 R33/LCDCAP P5.1/R23 P5.2/R13/LCDREF P5.3/R03 P5.4/COM3 P5.5/COM2 P5.6/COM1 P5.7/COM0 P3.0/TA1.2/S23 P3.1/TA1.3/S22 P3.2/TA1.4/S21
P4.2/S5
P4.1/S6
P4.0/S7
P2.7/S8
P2.6/S9
P2.5/S10
P2.4/S11
P2.3/TA1.4/S12
P2.2/TA1.3/S13
P2.1/TA1.2/S14
P2.0/TA1.1/S15
P3.7/S16
P3.6/S17
P3.5/S18
P3.4/CAOUT/S19
P3.3/TA0.0/TA1CLK/S20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
pin designation, MSP430F41x2IRGZ (QFN)
SS
CC
AV
AV
P6.0/TA1.2/A2/CA4
48 47 46 45 44 43 42 41 40 39 38 37
XIN
1
2
3
CC
4
5
6
SS
7
8
9
10
11
12
13 14 15 16 17 18 19 20 21 22 23 24
RGZ PACKAGE
P6.1
P6.2
DV
XOUT
DV
P6.7/A7/CA7/SVSIN
P4.7/ADC10CLK/S0
P4.6/S1
P4.5/S2
P4.4/S3
P4.3/S4
TEST/SBWTCLK
P7.5/TA1.3/A1/CA3
P7.4/TA1.4/A0/CA2
48-pin
(TOP VIEW)
RST/NMI/SBWTDIO
P7.3/TCK/S35
P7.2/TMS/S34
P7.1/TDI/TCLK/S33
P7.0/TDO/TDI/S32
P1.0/TA0.0/S31
36
P1.1/TA0.0/MCLK/S30
35
P1.5/TA0CLK/CAOUT/S26
34
P1.6/ACLK/CA0
33
P1.7/TA0CLK/CAOUT/CA1
32
R33/LCDCAP
31
P5.1/R23
30
P5.2/R13/LCDREF
29
P5.3/R03
28
P5.4/COM3
27
P5.5/COM2
26
P5.6/COM1
25
P5.7/COM0
P4.2/S5
P4.1/S6
P4.0/S7
P2.7/S8
P2.6/S9
P2.5/S10
P2.4/S11
P2.3/TA1.4/S12
P2.2/TA1.3/S13
“Not available” pins in the 48-pin package should be initialized to output direction.
P2.1/TA1.2/S14
P2.0/TA1.1/S15
P3.4/CAOUT/S19
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
functional block diagram
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
XIN XOUT
Oscillators
FLL+
VLO
MCLK
CPU 64kB
incl. 16
Registers
EEM
JTAG
Interface
S p y --B i --
Wire
ACLK
SMCLK
DVCC DVSS
Flash
16kB
8kB
MAB
MDB
Brownout
Protection
SVS, SVM
RST/NMI
RAM
512B 512B
LCD_A
144
Segments
1,2,3,4
Mux
AVC C AVSS P1.x/P2.x
ADC10
10--bit
8 Channels
Autoscan
DTC
Comparator
_A+
USCI A0
UART/
LIN,
IrDA, SPI
USCI B 0 SPI, I2C
Watchdog
WDT+
15--Bit
capability
Timer _A3
Registers
Ports
P1/P2
2x8 I/O
Interrupt
3CC
NOTE: The USCI A0 and USCI B0 cannot be used in the 48-pin package options (RGZ).
2x8
P3.x/P4.x
2x8
Ports
P3/P4
2x8 I/O
Timer _A5
5CC
Registers
P5.x/P6.x
2x8
Ports
P5/P6
2x8 I/O
Basic
Timer &
Real--
Time
Clock
P7.x
1x7
Port
P7
1x7 I/O
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
MSP430F41x2
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
TERMINAL
NO.
NAME
P1.0/TA0.0/S31 53 37 I/O
P1.1/TA0.0/ MCLK/S30
P1.2/TA0.1/S29 51 -- I/O
P1.3/TA1.0/ SVSOUT/S28
P1.4/TA1.0/S27 49 -- I/O
P1.5/TA0CLK/ CAOUT/S26
P1.6/ACLK/CA0 47 34 I/O
P1.7/TA0CLK CAOUT/CA1
P2.0/TA1.1/S15 27 23 I/O
P2.1/TA1.2/S14 26 22 I/O
P2.2/TA1.3/S13 25 21 I/O
P2.3/TA1.4/S12 24 20 I/O
P2.4/S11 23 19 I/O
P2.5/S10 22 18 I/O
P2.6/S9 21 17 I/O
P2.7/S8 20 16 I/O
64
PIN48PIN
52 36 I/O
50 -- I/O
48 35 I/O
46 33 I/O
General-purpose digital I/O pin Timer0_A3, capture: CCI0A input, compare: Out0 output LCD segment output
General-purpose digital I/O pin Timer0_A3, capture: CCI0B input MCLK signal output LCD segment output
General-purpose digital I/O pin Timer0_A3, capture: CCI1A input, compare: Out1 output LCD segment output
General-purpose digital I/O pin Timer1_A5, capture: CCI0B input SVS comparator output LCD segment output
General-purpose digital I/O pin/ Timer1_A5, capture: CCI0A input, compare: Out0 output LCD segment output
General-purpose digital I/O pin Timer0_A3, clock signal TACLK input Comparator_A output LCD segment output
General-purpose digital I/O pin Comparator_A input 0 ACLK signal output
General-purpose digital I/O pin Timer0_A3, clock signal TACLK input Comparator_A output Comparator_A input 1
General-purpose digital I/O pin Timer1_A5, compare: Out1 Output LCD segment output
General-purpose digital I/O pin Timer1_A5, compare: Out2 Output LCD segment output
General-purpose digital I/O pin Timer1_A5, compare: Out3 Output LCD segment output
General-purpose digital I/O pin Timer1_A5, compare: Out4 output LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
Terminal Functions
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TERMINAL
I/ODESCRIPTIO
N
NO.
NAME
P3.0/TA1.2/S23 35 -- I/O
P3.1/TA1.3/S22 34 -- I/O
P3.2/TA1.4/S21 33 -- I/O
P3.3/TA0.0/ TA1CLK/S20
P3.4/CAOUT/S19 31 24 I/O
P3.5/S18 30 -- I/O
P3.6/S17 29 -- I/O
P3.7/S16 28 -- I/O
P4.0/S7 19 15 I/O
P4.1/S6 18 14 I/O
P4.2/S5 17 13 I/O
P4.3/S4 16 12 I/O
P4.4/S3 15 11 I/O
P4.5/S2 14 10 I/O
P4.6/S1 13 9 I/O
P4.7/ADC10CLK/ S0
P5.0/TA1.1/S24 44 -- I/O
LCDCAP/R33 43 32 I/O
P5.1/R23 42 31 I/O
P5.2/LCDREF/ R13
64
PIN48PIN
32 -- I/O
12 8 I/O
41 30 I/O
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Terminal Functions (continued)
General-purpose digital I/O pin Timer1_A5, capture: CCI2A input, compare: Out2 output LCD segment output
General-purpose digital I/O pin Timer1_A5, capture: CCI3A input, compare: Out3 output LCD segment output
General-purpose digital I/O pin Timer1_A5, capture: CCI4A input, compare: Out4 output LCD segment output
General-purpose digital I/O pin Timer0_A3, compare: Out0 output Timer1_A5, clock signal TACLK input LCD segment output
General-purpose digital I/O pin Comparator_A output LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin LCD segment output
General-purpose digital I/O pin ADC10, conversion clock LCD segment output
General-purpose digital I/O pin Timer1_A5, capture: CCI1A input, compare: Out1 output LCD segment output
Capacitor connection for LCD charge pump input port of the most positive analog LCD level (V4)
General-purpose digital I/O pin input port of the second most positive analog LCD level (V3)
General-purpose digital I/O pin External LCD reference voltage input input port of the third most positive analog LCD level (V3 or V2)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
MSP430F41x2
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Terminal Functions (continued)
TERMINAL
NO.
NAME
P5.3/R03 40 29 I/O
P5.4/COM3 39 28 I/O
P5.5/COM2 38 27 I/O
P5.6/COM1 37 26 I/O
P5.7/COM0 36 25 I/O
P6.0/TA1.2/A2†/ CA4
P6.1/ UCB0SOMI UCB0SCL
P6.2/ UCB0SIMO UCB0SDA
/
/
P6.3/UCB0STE/ UCA0CLK/A3/ CA5/V
eref--/Vref--
P6.4/UCB0CLK/ UCA0STE/A4/ CA6/V
eref+/Vref+
P6.5/UCA0RXD/ UCA0SOMI/A5
P6.6/UCA0TXD/ UCA0SIMO/A6
P6.7/A7/CA7/ SVSIN
P7.0/TDO/TDI/ S32
P7.1/TDI/TCLK/ S33
P7.2/TMS/S34 56 40 I/O General-purpose digital I/O pin
64-pin package devices only
64
PIN48PIN
General-purpose digital I/O pin input port of the fourth most positive analog LCD level (V1)
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin
63 47 I/O
Timer1_A5, compare: Out2 output ADC10 analog input A2
Comparator_A input 4
1 1 I/O
2 2 I/O
General-purpose digital I/O pin USCI B0 slave out/master in in SPI mode, SCL I
General-purpose digital I/O pin USCI B0 slave in/master out in SPI mode, SDA I
General-purpose digital I/O pin
3 -- I/O
USCI B0 slave transmit enable/USCI A0 clock input/output ADC10 analog input A3 / negative reference Comparator_A input 5
General-purpose digital I/O pin
4 -- I/O
USCI B0 clock input/output, USCI A0 slave transmit enable ADC10 analog input A4/ positive reference Comparator_A input 6
General-purpose digital I/O pin
5 -- I/O
USCI A0 receive data input in UART mode, slave data out/master in in SPI mode ADC10 analog input A5
General-purpose digital I/O pin
6 -- I/O
USCI A0 transmit data output in UART mode, slave data i n/master out SPI mode ADC10 analog input A6
General-purpose digital I/O pin
11 7 I/O
ADC10 analog input A7 Comparator_A input 7 SVS input
54 38 I/O General-purpose digital I/O pin
JTAG test data output terminal or test data input in programming an test LCD segment output
55 39 I/O General-purpose digital I/O pin
JTAG test data input or test clock input in programming an test LCD segment output
JTAG test mode select, input terminal for device programming and test LCD segment output
2
C clock in I2C mode
2
CdatainI2C mode
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Terminal Functions (continued)
TERMINAL
NO.
NAME
P7.3/TCK/S35 57 41 I/O General-purpose digital I/O pin
P7.4/TA1.4/ A0/CA2
P7.5/TA1.3/ A1/CA3
P7.6/TA0.2/S25 45 -- I/O
AV
CC
AV
SS
DV
CC
DV
SS
XOUT 9 5 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected.
XIN 8 4 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
RST/NMI/ SBWTDIO
TEST/SBWTCLK 59 43 I Selects test mode for JTAG pins on Port7. The device protection fuse is connected to TEST.
Thermal Pad NA NA NA QFN package pad (RGZ package only). Connection to DVSSis recommended.
64
PIN48PIN
Test clock input for device programming and test LCD segment output
General-purpose digital I/O pin
60 44 I/O
61 45 I/O
64 48 Analog supply voltage, positive terminal
62 46 Analog supply voltage, negative terminal
7 3 Digital supply voltage, positive terminal. Supplies all digital parts.
10 6 Digital supply voltage, negative terminal. Supplies all digital parts.
58 42 I Reset or nonmaskable interrupt input
Timer1_A5, capture: CCI4B input, compare: Out4 output ADC10 analog input A0 Comparator_A input 2
General-purpose digital I/O pin Timer1_A5, capture: CCI3B input, compare: Out3 output ADC10 analog input A1 Comparator_A input 3
General-purpose digital I/O pin Timer0_A3, capture: CCI2A input, compare: Out2 output LCD segment output
Spy-Bi-Wire test data input/output during programming and test
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
short-form description
CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions.
instruction set
The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes.
Program Counter
Stack Pointer
Status Register
Constant Generator
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
Table 1. Instruction Word Formats
Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5
Single operands, destination only e.g., CALL R8 PC ---->(TOS), R8----> PC
Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE S D SYNTAX EXAMPLE OPERATION
Register F
Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) —> M(6+R6)
Symbolic (PC relative) F F MOV EDE,TONI M(EDE) —> M(TONI)
Absolute F F MOV&MEM,&TCDAT M(MEM) —> M(TCDAT)
Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6)
Indirect
autoincrement
Immediate F MOV #X,TONI MOV #45,TONI #45 —> M(TONI)
NOTE: S = source, D = destination
F
F MOV @Rn+,Rm MOV @R10+,R11
MOV Rs,Rd MOV R10,R11 R10 —> R11
M(R10) —> R11
R10+2—>R10
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode (AM)
-- All clocks are active
D Low-power mode 0 (LPM0)
-- CPU is disabled
-- ACLK and SMCLK remain active
-- FLL+ loop control remains active
D Low-power mode 1 (LPM1)
-- CPU is disabled
-- ACLK and SMCLK remain active
-- FLL+ loop control is disabled
D Low-power mode 2 (LPM2)
-- CPU is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator remains enabled
-- ACLK remains active
D Low-power mode 3 (LPM3)
-- CPU is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator is disabled
-- ACLK remains active
D Low-power mode 4 (LPM4)
-- CPU is disabled
-- ACLK is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator is disabled
-- Crystal oscillator is stopped
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU goes into LPM4 immediately after power-up.
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT
Power-Up
External Reset
Watchdog
PC Out--of --Range (see Note 4)
Flash Memory Access Violation
NOTES: 1. Multiple source flags
Flash Memory
NMI
Oscillator Fault
Timer_A5 TA1CCR0 CCIFG0 (see Note 2) Maskable 0xFFFA 13
Timer_A5
Comparator_A+ CAIFG Maskable 0xFFF6 11
Watchdog Timer+ WDTIFG Maskable 0xFFF4 10
USCI_A0/B0 Receive
USCI_A0/B0 Transmit
ADC10 ADC10IFG (see Note 2) Maskable 0xFFEE 7
Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0xFFEC 6
Timer_A3
I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0xFFE8 4
I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0xFFE2 1
Basic Timer1/RTC BTIFG Maskable 0xFFE0 0, lowest
2. Interrupt flags are located in the module.
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt -enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
4. Access and key violations, KEYV and ACCVIFG.
UCB0STAT UCALIFG, UCNACKIFG, UCSTTIFG,
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1, 2, and 4)
TA1CCR1 to TACCR4 CCIFGs, and TAIFG (see Notes 1 and 2)
UCA0RXIFG (see Note 1),
UCB0RXIFG (SPI mode), or
UCA0TXIFG (see Note 1),
UCB0TXIFG (SPI mode), or
UCB0RXIFG and UCB0TXIFG (I2C mode)
TACCR1 CCIFG1 and TACCR2 CCIFG2,
TAIFG (see Notes 1 and 2)
PORIFG RSTIFG WDTIFG
KEYV
(see Note 1)
UCSTPIFG (I2C mode)
(see Note 1)
(see Note 1)
Reset 0xFFFE 15, highest
(Non)maskable (Non)maskable (Non)maskable
Maskable 0xFFF8 12
Maskable 0xFFF2 9
Maskable 0xFFF0 8
Maskable 0xFFEA 5
WORD
ADDRESS
0xFFFC 14
0xFFE6 3
0xFFE4 2
PRIORITY
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
special function registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.
interrupt enable 1 and 2
Address76543210
00h
WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog
timer is configured in interval timer mode.
OFIE Oscillator fault enable
NMIIE (Non)maskable interrupt enable
ACCVIE Flash access violation interrupt enable
Address76543210
01h
BTIE
rw--0 rw--0 rw--0 rw--0 rw --0
ACCVIE NMIIE OFIE WDTIE
rw--0 rw--0 rw--0 rw --0
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE
UCA0RXIE USCI_A0 receive interrupt enable
UCA0TXIE USCI_A0 transmit interrupt enable
UCB0RXIE USCI_B0 receive interrupt enable
UCB0TXIE USCI_B0 transmit interrupt enable
BTIE Basic timer interrupt enable
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
interrupt flag register 1 and 2
Address76543210
02h
WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation.
Reset on V
power-up or a reset condition at RST/NMI pin in reset mode.
CC
OFIFG Flag set on oscillator fault
RSTIFG External reset interrupt flag. Set on a reset condition at RST
on V
power-up.
CC
PORIFG Power-on interrupt flag. Set on V
NMIIFG Set via RST
Address76543210
03h
BTIFG
rw--0 rw--1 rw--0 rw--1 rw --0
/NMI-pin
NMIIFG RSTIFG PORIFG OFIFG WDTIFG
rw--0 rw-- (0) rw--(1) rw--1 rw--(0)
/NMI pin in reset mode. Reset
power--up.
CC
UCB0
TXIFG
UCB0
RXIFG
UCA0
TXIFG
UCA0
RXIFG
UCA0RXIFG USCI_A0 receive interrupt flag
UCA0TXIFG USCI_A0 transmit interrupt flag
UCB0RXIFG USCI_B0 receive interrupt flag
UCB0TXIFG USCI_B0 transmit interrupt flag
BTIFG Basic Timer1 interrupt flag
Legend rw:
rw-0,1: rw-(0,1):
Bit can be read and written. Bit can be read and written. It is Reset or set by PUC. Bit can be read and written. It is Reset or set by POR.
SFR bit is not present in device
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
memory organization
MSP430F4152 MSP430F4132
Memory Main: interrupt vector Main: code memory
Information memory Size
Boot memory Size
RAM Size 512B
Peripherals 16-bit
bootstrap loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature number SLAU265.
Size Flash Flash
Flash
ROM
8-bit
8-bit SFR
16KB 0FFFFh -- 0FFE0h 0FFFFh -- 0C000h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
03FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
8KB 0FFFFh -- 0FFE0h 0FFFFh -- 0E000h
256 Byte
010FFh -- 01000h
1KB
0FFFh -- 0C00h
512B
03FFh -- 0200h
01FFh -- 0100h
0FFh -- 010h
0Fh -- 00h
BSL FUNCTION PM PACKAGE PINS RGZ PACKAGE PINS
Data transmit 53 -- P1.0 37 -- P1.0
Data receive 52 -- P1.1 36 -- P1.1
flash memory (Flash)
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0 to n.
Segments A to D are also called information memory.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056.
oscillator and system clock
The clock system in the MSP430F41x2 is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal very low-power low--frequency oscillator, an internal digitally-controlled oscillator (DCO), and an 8-MHz high-frequency crystal oscillator (XT1). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator,stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or a very
low-power LF oscillator
D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules D ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, V have ramped to V reaches V
CC(min)
CC(min)
. If desired, the SVS circuit can be used to determine when VCCreaches V
at that time. The user must insure the default FLL+ settings are not changed until V
CC(min)
digital I/O
There are seven 8-bit I/O ports implemented—ports P1 through P7. Port P7 is a 7-bit I/O port.
D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. D Read/write access to port-control registers is supported by all instructions.
CC
.
may not
CC
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
DEVICEINPUT
MODUL
E
MODUL
E
A
TimerNA
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.
Basic Timer1 and Real-Time Clock (RTC)
The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year correction.
LCD_A driver with regulated charge pump
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2--MUX, 3--MUX, and 4--MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and thus contrast in software.
Timer0_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
TIMER_A3 SIGNAL CONNECTIONS
INPUT PIN NUMBER
PM RGZ
48 -- P1.5
46 -- P1.7
48 -- P1.5 35 -- P1.5 TA0CLK TACLK
53 -- P1.0 37 -- P1.0 TA0.0 CCI0A 53 -- P1.0 37 -- P1.0
52 -- P1.1 36 -- P1.1 TA0.0 CCI0B
51 -- P1.2 -- TA0 . 1 CCI1A 51 -- P1.2
45 -- P7.6 -- TA0 . 2 CCI2A 45 -- P7.6 --
35 -- P1.5
33 -- P1.7
DEVICE INPUT MODULE MODULE
SIGNAL
TA0CLK TA C LK
ACLK ACLK
SMCLK SMCLK
DV
SS
DV
CC
CAOUT (internal) CCI1B
DV
SS
DV
CC
ACLK (internal) CCI2B
DV
SS
DV
CC
INPUT NAME
GND
V
CC
GND
V
CC
GND
V
CC
BLOCK
Timer N
CCR0 TA0
CCR1 TA1
CCR2 TA2
MODULE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
PM RGZ
32 -- P3.3 --
ADC10 (internal) ADC10 (internal)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
MSP430F41x2
DEVICEINPUT
MODUL
E
MODUL
E
A
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Timer1_A5
Timer_A5 is a 16-bit timer/counter with five capture/compare registers. Timer_A5 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A5 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
TIMER_A5 SIGNAL CONNECTIONS
INPUT PIN NUMBER
PM RGZ
32 -- P3.3 -- TA1CLK TA C LK
32 -- P3.3 -- TA1CLK TACLK
49 -- P1.4 -- TA1 . 0 CCI0A 49 -- P1.4 --
50 -- P1.3 -- TA1 . 0 CCI0B
44 -- P5.0 -- TA1 . 1 CCI1A 44 -- P5.0 --
35 -- P3.0 -- TA1 . 2 CCI2A 35 -- P3.0 --
34 -- P3.1 -- TA1 . 3 CCI3A 34 -- P3.1 --
61 -- P7.5 45 -- P7.5 TA1.3 CCI3B
33 -- P3.2 -- TA1 . 4 CCI4A 33 -- P3.2 --
60 -- P7.4 44 -- P7.4 TA1.4 CCI4B
DEVICE INPUT MODULE MODULE
SIGNAL
ACLK ACLK
SMCLK SMCLK
DV
SS
DV
CC
CAOUT (internal) CCI1B
DV
SS
DV
CC
ACLK (internal) CCI2B
DV
SS
DV
CC
DV
SS
DV
CC
DV
SS
DV
CC
INPUT NAME
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
GND
V
CC
BLOCK
Timer N
CCR0 TA0
CCR1 TA1
CCR2 TA2
CCR3 TA3
CCR4 TA4
MODULE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
PM RGZ
ADC10 (internal) ADC10 (internal)
27 -- P2.0 23 -- P2.0
ADC10 (internal) ADC10 (internal)
26 -- P2.1 22 -- P2.1
63 -- P6.0 47 -- P6.0
25 -- P2.2 21 -- P2.2
61 -- P7.5 45 -- P7.5
24 -- P2.3 20 -- P2.3
60 -- P7.4 44 -- P7.4
universal serial communication interface (USCI) (USCI_A0, USCI_B0)
The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.
USCI_B0 provides support for SPI (3 or 4 pin) and I2C.
Comparator_A+
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
Timer0_A3Capture/compareregister2
TA0CCR2
0176h
Capture/compareregister
1
TA0CCR1
0174h
p/p
g
_
g
p
p
p
A
Capture/compareregister
2
TA1CCR2
0196h
Timer_Aregister
TA1
R
0190h
p
p
Capt
l
2
TA1CCTL
2
0186h
p/p
_
A
FlashFlashcontrol
3
FCTL3
012Ch
Flashcontrol2
FCTL2
012Ah
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
ADC10
The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion result handling, allowing ADC samples to be converted and stored without any CPU intervention.
peripheral file map
PERIPHERALS WITH W ORD ACCESS
Watchdog Watchdog timer control WDTCTL 0120h
Timer0_A3 Capture/compare register 2 TA0CCR2 0176h
Capture/compare register 1
Capture/compare register 0
Timer_A register TA0 R 0170h
Capture/compare control 2 TA0CCTL2 0166h
Capture/compare control 1 TA0CCTL1 0164h
Capture/compare control 0 TA0CCTL0 0162h
Timer_A control TA0 C T L 0160h
Timer_A interrupt vector TA0 I V 012Eh
Timer1_A5 Capture/compare register 4
Capture/compare register 3
Ca
ture/compare register 2
Capture/compare register 1
Capture/compare register 0
TA0CCR1
TA0CCR0
TA1CCR4
TA1CCR3
T
1CCR2
TA1CCR1
TA1CCR0
0174h
0172h
019A
0198
0196h
0194h
0192h
Capture/compare control 4
Capture/compare control 3
ure/compare contro
Capture/compare control 1
Capture/compare control 0
Timer
Timer_A interrupt vector
Flash Flash control 3 FCTL3 012Ch
Flash control 2
Flash control 1
ADC10 ADC data transfer start address
ADC memory
ADC control register 1
ADC control register 0
ADC analog enable 0
ADC analog enable 1
ADC data transfer control register 1
ADC data transfer control register 0
control
TA1CCTL4
TA1CCTL3
TA1CCTL1
TA1CCTL0
TA1CTL
TA1 I V
FCTL2
FCTL1
ADC10SA
ADC10MEM
ADC10CTL1
ADC10CTL0
ADC10AE0
ADC10AE1
ADC10DTC1
ADC10DTC0
018A
0188
0184h
0182h
0180h
011Eh
012Ah
0128h
01BCh
01B4h
01B2h
01B0h
004Ah
004Bh
0049h
0048h
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
MSP430F41x2
/
p
_
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
LCD_A LCD Voltage Control 1
LCD Voltage Control 0
LCD Voltage Port Control 1
LCD Voltage Port Control 0
LCD memory 20
:
LCD memory 16
LCD memory 15
:
LCD memory 1
LCD control and mode
USCI A0/B0
Comparator_A+
Brownout, SVS SVS control register (Reset by brownout signal) SVSCTL 056h
FLL+ Clock FLL+ Control 2
USCI A0 auto baud rate control UCA0ABCTL 0x005D
USCI A0 transmit buffer UCA0TXBUF 0x0067
USCI A0 receive buffer UCA0RXBUF 0x0066
USCI A0 status UCA0STAT 0x0065
USCI A0 modulation control UCA0MCTL 0x0064
USCI A0 baud rate control 1 UCA0BR1 0x0063
USCI A0 baud rate control 0 UCA0BR0 0x0062
USCI A0 control 1 UCA0CTL1 0x0061
USCI A0 control 0 UCA0CTL0 0x0060
USCI A0 IrDA receive control UCA0IRRCTL 0x005F
USCI A0 IrDA transmit control UCA0IRTCTL 0x005E
USCI B0 transmit buffer UCB0TXBUF 0x006F
USCI B0 receive buffer UCB0RXBUF 0x006E
USCI B0 status UCB0STAT 0x006D
USCI B0 I2C Interrupt enable UCB0CIE 0x006C
USCI B0 baud rate control 1 UCB0BR1 0x006B
USCI B0 baud rate control 0 UCB0BR0 0x006A
USCI B0 control 1 UCB0CTL1 0x0069
USCI B0 control 0 UCB0CTL0 0x0068
USCI B0 I2C slave address UCB0SA 0x011A
USCI B0 I2C own address UCB0OA 0x0118
Comparator_A port disable CAPD 05Bh
Comparator_A control2 CACTL2 05Ah
Comparator_A control1 CACTL1 059h
FLL+ Control 1
FLL+ Control 0 FLL_CTL0 053h
System clock frequency control SCFQCTL 052h
System clock frequency integrator SCFI1 051h
System clock frequency integrator SCFI0 050h
LCDAVCTL1
LCDAVCTL0
LCDAPCTL1
LCDAPCTL0
LCDM20
:
LCDM16
LCDM15
:
LCDM1
LCDACTL
FLL_CTL2
FLL_CTL1
0AFh
0AEh
0ADh
0ACh
0A4h
:
0A0h
09Fh
:
091h
090h
055h
054h
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
RTC (Basic Timer1)
Port P7
Port P6
Port P5
Port P4
Port P3
Port P2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
PERIPHERALS WITH BYTE ACCESS
Real Time Clock Year High Byte
Real Time Clock Year Low Byte
Real Time Clock Month
Real Time Clock Day of Month
Basic Timer1 Counter
Basic Timer1 Counter
Real Time Counter 4
(Real Time Clock Day of Week)
Real Time Counter 3
(Real Time Clock Hour)
Real Time Counter 2
(Real Time Clock Minute)
Real Time Counter 1
(Real Time Clock Second)
Real Time Clock Control
Basic Timer1 Control
Port P7 selection P7SEL 03Bh
Port P7 direction P7DIR 03Ah
Port P7 output P7OUT 039h
Port P7 input P7IN 038h
Port P6 selection P6SEL 037h
Port P6 direction P6DIR 036h
Port P6 output P6OUT 035h
Port P6 input P6IN 034h
Port P5 selection P5SEL 033h
Port P5 direction P5DIR 032h
Port P5 output P5OUT 031h
Port P5 input P5IN 030h
Port P4 selection P4SEL 01Fh
Port P4 direction P4DIR 01Eh
Port P4 output P4OUT 01Dh
Port P4 input P4IN 01Ch
Port P3 selection P3SEL 01Bh
Port P3 direction P3DIR 01Ah
Port P3 output P3OUT 019h
Port P3 input P3IN 018h
Port P2 selection P2SEL 02Eh
Port P2 interrupt enable P2IE 02Dh
Port P2 interrupt -edge select P2IES 02Ch
Port P2 interrupt flag P2IFG 02Bh
Port P2 direction P2DIR 02Ah
Port P2 output P2OUT 029h
Port P2 input P2IN 028h
RTCYEARH
RTCYEARL
RTCMON
RTCDAY
BTCNT2
BTCNT1
RTCNT4
(RTCDOW)
RTCNT3
(RTCHOUR)
RTCNT2
(RTCMIN)
RTCNT1
(RTCSEC)
RTCCTL
BTCTL
04Fh
04Eh
04Dh
04Ch
047h
046h
045h
044h
043h
042h
041h
040h
MSP430F41x2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
MSP430F41x2
S
l
f
t
i
SFR
int
tflag2IFG2003h
p
g
SFRinterruptenable2IE2001hS
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P1
pecia
unc
Port P1 selection register P1SEL 026h
Port P1 interrupt enable P1IE 025h
Port P1 interrupt -edge select P1IES 024h
Port P1 interrupt flag P1IFG 023h
Port P1 direction P1DIR 022h
Port P1 output P1OUT 021h
Port P1 input P1IN 020h
ons
errup
SFR interrupt flag 1 IFG1 002h
SFR interrupt enable 2 IE2 001h
FR interrupt enable 1 IE1 000h
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
(seeNote1
)
f
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Voltage applied at VCCto V Voltage applied to any pin (see Note 1) --0.3 V to V
SS
--0.3 V to 4.1 V......................................................
+0.3V.......................................
CC
Diode current at any device terminal . 2mA......................................................
Storage temperature, T
: Unprogrammed device --55C to 150C................................
stg
Programmed device --55Cto85C....................................
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages referenced to V
applied to the TEST pin when blowing the JTAG fuse.
The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is
SS.
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage during program execution, VCC(AVCC=DVCC=VCC) 1.8 3.6 V
Supply voltage during flash memory programming, VCC(AVCC=DVCC=VCC) 2.2 3.6 V
Supply voltage, VSS(AVSS=DVSS=VSS) 0 0 V
Operating free-air temperature range, T
LFXT1 crystal frequency, f (see Note 1)
Processorfrequency (signal MCLK),
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
(LFXT1)
A
(System)
LF selected, XTS_FLL = 0
XT1 selected, XTS_FLL = 1
XT1 selected, XTS_FLL = 1
Watch crystal 32.768 kHz
Ceramic resonator 0.45 6 MHz
Crystal 1 6 MHz
VCC=1.8V dc 4.15
VCC=3.0V dc 8
-- 4 0 85 C
MHz
f
System
8 MHz
4.15 MHz
(MHz)
Supply voltage range , MSP430F41x2, during program execution
1.8 Supply Voltage - V
2.2 3.0 3.6
Supply voltage range , MSP430F41x2, during flash memory programming
Figure 1. Frequency vs Supply Voltage
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
MSP430F41x2
f=f
f
(MCLK
)
=
f
(SMCLK)
=1MHz
A
A
f
A
Low-powermode3(LPM3
)
V
f
(MCLK
)f(SMCLK)
0MHz,
A
,
ALCD_Aenabled,LCDCPEN=0
(
,
LCD(ACLK)
/
)
V
Low-powermode3(LPM3
)
f
(MCLK
)f(SMCLK)
0MHz,
2.2
V
A
,
ALCD_Aenabled,LCDCPEN=0
(
,
LCD(ACLK)
/
)
3
V
V
f
f
A
f
0Hz,SCG
0=1(seeNote2)
V
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
supply current into AVCC+DVCCexcluding external current
PARAMETER T
Active mode (see Note 1),
I
(AM)
f
(ACLK)
= 32768 Hz,
=1MHz,
XTS=0, SELM=(0,1)
I
(LPM0)
Low-power mode 0 (LPM0) (see Note 1) --40Cto85C
Low-power mode 2 (LPM2),
I
(LPM2)
(MCLK) =f(SMCLK) = 0 MHz,
f(ACLK) = 32768 Hz, SCG0 = 0 (see Note 2)
-
I
(LPM3)
f
(MCLK)=f(SMCLK)
f
= 32768 Hz, SCG0 = 1,
(ACLK)
Basic Timer1 enabled ,ACLK selected, LCD
enabled,LCDCPEN = 0
(static mode, f
=0MHz,
LCD=f(ACLK)
(see Notes 2 and 3)
-
I
(LPM3)
f
(MCLK)=f(SMCLK)
f
= 32768 Hz, SCG0 = 1,
(ACLK)
Basic Timer1 enabled ,ACLK selected, LCD
enabled,LCDCPEN = 0
(4-mux mode, f
=0MHz,
LCD=f(ACLK)
(see Notes 2 and 3)
Low-power mode 4 (LPM4),
I
(LPM4)
(MCLK)
(ACLK)
=0MHz,
=
=
(SMCLK)
=
NOTES: 1. Timer_Aisclockedbyf
2. All inputs are tied to 0 V or to V
3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9 pF) crystal and OSCCAPx = 01h.
,
,
,
/32)
,
,
/32)
=0MHz,
(DCOCLK)
A
-- 4 0 Cto85C
-- 4 0 Cto85C
-- 4 0 C 0.85 1.4
25C
60C
85C 2.15 3.0
-- 4 0 C 1.0 1.5
25C
60C
85C 2.5 3.5
-- 4 0 C 1.8 3.3
25C
85C
-- 4 0 C 2.1 3.6
25C
85C
-- 4 0 C 0.1 0.5
25C
60C
85C 1.1 2.5
-- 4 0 C 0.1 0.8
25C
60C
85C 1.9 3.5
= 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
. Outputs do not source or sink any current.
CC
V
CC
MIN TYP MAX UNIT
2.2 V 220 295
3V 350 398
2.2 V 33 60
3V 50 92
2.2 V 6 13
3V 7 15
2.2
3
2.2 V
0.90 1.2
1.15 1.4
1.1 1.5
1.4 1.9
2.1 3.2
3.6 5.0
3V
2.3 3.6
4.1 5.5
2.2
3
0.1 0.5
0.35 0.9
0.1 0.8
0.8 1.2
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics -- LPM4 current
ILPM4 -- Low-- power mode current -- uA
ILPM4 -- Low-- power mode current --
3.0
2.5
2.0
1.5
1.0
0.5
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Vcc = 3.6V
Vcc = 3.0V
Vcc = 2.2V
0.0
Figure 2. I
Vcc = 1.8V
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0
TA-- Temperature -- C
TA-- Temperature -- C
-- LPM4 Current vs Temperature
LPM4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
25
MSP430F41x2
V
V
V
PortP1,P2:P1.xtoP2.x,externaltriggersigna
l
_
A
_
A
y
f
Timer_Aclockfrequencyexternally
A
f
_
A
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs -- ports P1, P2, P3, P4, P5, P6, and P7, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)
PARAMETER V
V
IT+
V
IT--
V
hys
Positive-going input threshold voltage
Negative-going input threshold voltage
Input voltage hysteresis (V
IT+
-- V
IT--
)
CC
2.2 V 1.1 1.55
3V
2.2 V 0.4 0.9
3V
2.2 V 0.3 1.1
3V 0.5 1
inputs Px.y, TAx
PARAMETER TEST CONDITIONS V
t
(int)
t
(cap)
(TAext)
(TAint)
External interrupt timing
Timer
Timer
capture timing TA0, TA1, TA2
clockfrequencyexternall
applied to pin
Timer
,clockfrequency SMCLK orACLK signal selected
Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag (see Note 1)
T
CLK, INCLK: t
(H)=t(L)
NOTES: 1. The external signal sets the interrupt flag every time the minimum t
shorter than t
(int)
.
parameters are met. It may be set even with trigger signals
(int)
CC
2.2 V 62
3V 50
2.2 V 62
3V 50
2.2 V 8
3V 10
2.2 V 8
3V 10
leakage current -- ports P1, P2, P3, P4, P5, P6, and P7 (see Note 1)
PARAMETER TEST CONDITIONS V
I
lkg(Px.y)
Leakage current Port Px V
(see Note 2) 2.2 V/3 V 50 nA
(Px.y)
NOTES: 1. The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted.
2. The port pin must be selected as input.
CC
MIN MAX UNIT
1.5 1.98
0.9 1.3
MIN MAX UNIT
ns
ns
MHz
MHz
MIN MAX UNIT
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
V
V
,
P
1.1/TA0.0/MCLK/S3
0
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
outputs -- ports P1, P2, P3, P4, P5, P6, and P7
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
V
High-level output voltage
OH
Low-level output voltage
OL
NOTES: 1. The maximum total current, I
specified voltage drop.
2. The maximum total current, I specified voltage drop.
output frequency
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
(Px.y)
f
(MCLK)
t
(Xdc)
(x=1,2,3,4,5,6,7,0 y  7) CL=20pF,IL= 1.5 mA VCC=2.2V/3V dc f
P1.1/TA0.0/MCLK/S30 CL=20pF f
Duty cycle of output frequency
I
I
I
I
I
I
I
I
and I
OH(max)
OH(max)
P1.1/TA0.0/MCLK/S30 C
L
V
CC
=--1.5mA, VCC=2.2V (see Note 1) VCC--0.25 V
OH(max)
=--6mA, VCC=2.2V (see Note 2) VCC-- 0 . 6 V
OH(max)
=--1.5mA, VCC=3V (see Note 1) VCC--0.25 V
OH(max)
=--6mA, VCC=3V (see Note 2) VCC-- 0 . 6 V
OH(max)
=1.5mA, VCC=2.2V (see Note 1) VSSVSS+0.25
OL(max)
=6mA, VCC=2.2V (see Note 2) V
OL(max)
=1.5mA, VCC=3V (see Note 1) VSSVSS+0.25
OL(max)
=6mA, VCC=3V (see Note 2) V
OL(max)
for all outputs combined, should not exceed 12 mA to satisfy the maximum
OL(max),
and I
=20pF,
=2.2V/3V
for all outputs combined, should not exceed 48 mA to satisfy the maximum
OL(max),
f
,
(MCLK)=f(XT1)
f
(MCLK)=f(DCOCLK)
40% 60%
50%-­15 ns
SS
SS
50%
CC
CC
CC
CC
VSS+0.6
VSS+0.6
System
System
50%+
15 ns
MHz
MHz
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
27
MSP430F41x2
A
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
outputs -- ports Px (continued)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
30
VCC=2.2V P1.0
25
20
15
10
5
-- Typical Low-level Output Current -- mA
OL
I
0
0.0 0.5 1.0 1.5 2.0 2.5
VOL-- Low-Level Output Voltage -- V
TA=--40C
TA=25C
TA=85C
Figure 3
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50
VCC=3V
45
P1.0
40
35
30
25
20
15
10
-- Typical Low-level Output Current -- mA 5
OL
I
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOL-- Low-Level Output Voltage -- V
TA=--40C
TA=25C
TA=85C
Figure 4
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0 VCC=2.2V P1.0
-- 5 . 0
--10.0
--15.0
--20.0
TA=85C
TA=--40C
0.0 0.5 1.0 1.5 2.0 2.5
VOH-- High-Level Output Voltage -- V
-- Typical High-level Output Current -- m
OH
I
--25.0
--30.0
--35.0
Figure 5
TA=25C
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0 VCC=3V P1.0
TA=25CTA=85C
TA=--40C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOH-- High-Level Output Voltage -- V
-- Typical High-level Output Current -- mA
OH
I
-- 5 . 0
--10.0
--15.0
--20.0
--25.0
--30.0
--35.0
--40.0
--45.0
--50.0
--55.0
--60.0
--65.0
Figure 6
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
)
t
d(LPM3)
Delaytime
V
C
C
2.2V/3V
s
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
wake-up LPM3
PARAMETER TEST CONDITIONS MIN MAX UNIT
f=1MHz 6
t
d(LPM3
Delay time
f=2MHz
VCC=2.2V/3V
f=3MHz
POR/brownout reset (BOR) (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
d(BOR)
V
CC(start)
V
(B_IT--)
V
hys(B_IT--)
t
(reset)
Brownout
(see Note 2)
dVCC/dt 3 V/s (see Figure 7) 0.7  V
(B_IT--)
dVCC/dt 3 V/s (see Figure 7) 1.71 V
dVCC/dt 3 V/s (see Figure 7) mV
Pulse length needed at RST/NMI pin to accepted reset internally, V
=2.2V/3V
CC
2 s
NOTES: 1. The current consumption of the brownout module is already included in the ICCcurrent consumption data.
The voltage level V
(B_IT--)+Vhys(B_IT--)
2. During power up, the CPU begins code execution following a period of t settings must not be changed until V
CC
is 1.8V.
V
CC(min)
, where V
after VCC=V
d(BOR)
is the minimum supply voltage for the desired operating frequency.
CC(min)
(B_IT--)+Vhys(B_IT--)
See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout.
typical characteristics
6
s
6
2000 s
V
. The default FLL+
V
CC(start)
V
CC
V
(B_IT--)
1
0
V
hys(B_IT--)
t
d(BOR)
Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
typical characteristics (continued)
V
2
1.5
-- V
1
=3V
V
CC
Typical Conditions
CC
3V
t
pw
CC(min)
V
0.5
0
0.001 1 1000
tpw-- Pulse Width -- s
Figure 8. V
2
V
Typical Conditions
1.5
-- V
1
CC(min)
V
0.5
0
0.001 1 1000
Figure 9. V
CC
(CC)min
=3V
t
CC(min)
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
-- Pulse Width -- s
pw
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
V
V
CC(min)
CC(min)
V
CC
3V
1ns 1ns
tpw-- Pulse Width -- s
t
pw
tf=t
r
t
f
tpw-- Pulse Width -- s
t
r
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
)
V
hys(SVS_I
T--)
/
V
V
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
SVS (supply voltage supervisor/monitor)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
(SVSR)
t
d(SVSon)
t
settle
V
(SVSstart)
V
hys(SVSIT--
(SVS_IT--)
I
CC(SVS)
(see Note 1)
The recommended operating voltage range is limited to 3.6 V.
t
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere
settle
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTE 1: The current consumption of the SVS module is not included in the I
dVCC/dt > 30 V/ms (see Figure 10) 5 150 s
dVCC/dt 30 V/ms 2000 s
SVSON, switch from VLD = 0 to VLD 0, VCC=3V 150 300 s
VLD  0
12 s
VLD 0, VCC/dt 3 V/s (see Figure 10) 1.55 1.7 V
VLD = 1 70 120 210 mV
VCC/dt 3 V/s (see Figure 10)
VCC/dt 3 V/s (see Figure 10), External voltage applied on A7
VLD=2to14
VLD = 15 4.4 20 mV
V
(SVS_IT--)
0.001
V
(SVS_IT--)
0.016
VLD = 1 1.8 1.9 2.05
VLD = 2 1.94 2.1 2.25
VLD = 3 2.05 2.2 2.37
VLD = 4 2.14 2.3 2.48
VLD = 5 2.24 2.4 2.6
VLD = 6 2.33 2.5 2.71
V
dt 3V/s (see Figure 10 and Figure 11)
CC
VLD = 7 2.46 2.65 2.86
VLD = 8 2.58 2.8 3
VLD = 9 2.69 2.9 3.13
VLD = 10 2.83 3.05 3.29
VLD = 11 2.94 3.2 3.42
3.99
VCC/dt  3 V/s (see Figure 10 and Figure 11), External voltage applied on A7
VLD = 12 3.11 3.35 3.61
VLD = 13 3.24 3.5 3.76
VLD = 14 3.43 3.7
VLD = 15 1.1 1.2 1.3
VLD 0, VCC=2.2V/3V 10 15 A
current consumption data.
CC
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
31
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
typical characteristics
AV
V
(SVS_IT--)
V
(SVSstart)
V
(B_IT--)
V
CC(start)
Brownout
SVS out
CC
1
0
1
V
hys(SVS_IT--)
V
hys(B_IT--)
Brownout
Region
t
d(BOR)
Software sets VLD > 0:
SVS is active
SVS Circuit is Active From VLD > to VCC<V(
B_IT--)
Brown-
out
Region
t
d(BOR)
Set POR
1.5
-- V
CC(min)
V
0.5
0
1
undefined
0
t
d(SVSon)
Figure 10. SVS Reset (SVSR) vs Supply Voltage
2
Rectangular Drop
Triangular Drop
1
0
1 10 1000
-- Pulse Width -- s
t
pw
100
V
CC(min)
V
CC(min)
V
3V
V
3V
CC
CC
t
d(SVSR)
t
pw
1ns 1ns
t
pw
Figure 11. V
32
CC(min)
: Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
tf=t
r
t
f
t -- Pulse Width -- s
t
r
MSP430F41x2
f
f
f
f
f
f
f
f
f
f
StepsizebetweenadjacentDCOtaps:
Temperaturedrif
t,N
(DCO)
=01E0
h,FN_8=FN_4=FN_3=FN_2=0
A
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
DCO
PARAMETER TEST CONDITIONS V
N
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,
f
(DCOCLK)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
S
n
D
t
D
V
(DCO)
DCOPLUS = 0
FN_8=FN_4=FN_3=FN_2 = 0, DCOPLUS = 1
FN_8=FN_4=FN_3=FN_2 = 0, DCOPLUS = 1 (see Note 1)
FN_8=FN_4=FN_3=0,FN_2 = 1, DCOPLUS = 1
FN_8=FN_4=FN_3=0,FN_2 = 1, DCOPLUS = 1 (see Note 1)
FN_8=FN_4=0,FN_3=1,FN_2=x, DCOPLUS = 1
FN_8=FN_4=0,FN_3=1,FN_2=x, DCOPLUS = 1 (see Note 1)
FN_8=0,FN_4=1,FN_3=FN_2=x, DCOPLUS = 1
FN_8=0,FN_4=1,FN_3=FN_2=x, DCOPLUS = 1 (see Note 1)
FN_8=1,FN_4=FN_3=FN_2=x, DCOPLUS = 1
FN_8=1,FN_4=FN_3=FN_2=x, DCOPLUS = 1 (see Note 1)
Stepsize between adjacent DCO taps: Sn=f
DCO(Tap n+1)/fDCO(Tap n)
Temperature drift, N
, (see Figure 13 for taps 21 to 27)
= 01E0h, FN_8=FN_4=FN_3=FN_2=0,
D = 2, DCOPLUS = 0
Drift with VCCvariation, N
(DCO)
= 01E0h,
FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0
1<TAP20 1.06 1.11
,
NOTES: 1. Do not exceed the maximum system frequency.
CC
2.2 V/3 V 1 MHz
2.2 V 0.3 0.65 1.25
3V 0.3 0.7 1.3
2.2 V 2.5 5.6 10.5
3V 2.7 6.1 11 . 3
2.2 V 0.7 1.3 2.3
3V 0.8 1.5 2.5
2.2 V 5.7 10.8 18
3V 6.5 12.1 20
2.2 V 1.2 2 3
3V 1.3 2.2 3.5
2.2 V 9 15.5 25
3V 10.3 17.9 28.5
2.2 V 1.8 2.8 4.2
3V 2.1 3.4 5.2
2.2 V 13.5 21.5 33
3V 16 26.6 41
2.2 V 2.8 4.2 6.2
3V 4.2 6.3 9.2
2.2 V 21 32 46
3V 30 46 70
TAP = 27 1.07 1.17
2.2 V –0.2 –0.4 -- 0 . 6
3V –0.2 –0.4 -- 0 . 6
MIN TYP MAX UNIT
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%_C
0 5 15 %/V
f
(DCO)
f
(DCO3V)
1.0
1.8 3.02.4 3.6
Figure 12. DCO Frequency vs Supply Voltage VCCand vs Ambient Temperature
f
(DCO)
f
(DCO20C)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1.0
20 6040 85
0-- 2 0-- 4 00
T
-- CVCC-- V
33
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
1.17
(DCO)
f
- Stepsize Ratio between DCO Taps S
1.11
1.07
n
1.06 Min
12720
DCO Tap
Max
Figure 13. DCO Tap Step Size
Legend
Tolerance at Tap 27
DCO Frequency Adjusted by Bits
9
2
to 25in SCFI1 {N
Tol e r a nce at Tap 2
{DCO}
}
FN_2=0 FN_3=0 FN_4=0 FN_8=0
FN_2=1 FN_3=0 FN_4=0 FN_8=0
Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits
34
FN_2=x FN_3=1 FN_4=0 FN_8=0
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FN_2=x FN_3=x FN_4=1 FN_8=0
Overlapping DCO Ranges: Uninterrupted Frequency Range
FN_2=x FN_3=x FN_4=x
FN_8=1
MSP430F41x2
ALFOscillationallowancefor
(seeNote1
)
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
crystal oscillator, LFXT1, low-frequency modes (see Note 4)
PARAMETER TEST CONDITIONS V
f
LFXT1,LF
O
C
L,eff
Duty cycle LF mode
f
Fault,LF
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
LFXT1 oscillator crystal frequency, LF mode 0, 1
Oscillation allowancefor LF crystals
Integrated effective load capacitance, LF mode
Oscillator fault frequency, LF mode (see Note 3)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V 32768 Hz
XTS = 0, LFXT1Sx = 0, f
LFXT1,LF
C
XTS = 0, LFXT1Sx = 0, f
LFXT1,LF
C
XTS = 0, XCAPx = 0 1
XTS = 0, XCAPx = 1 5.5
XTS = 0, XCAPx = 2 8.5
XTS = 0, XCAPx = 3 11
XTS = 0, Measured at P1.6/ACLK, f
LFXT1,LF
XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2)
L,eff
L,eff
= 32768 kHz,
=6pF
= 32768 kHz,
=12pF
2.2 V/3 V 30 50 70 %
= 32768Hz
2.2 V/3 V 10 10000 Hz
-- Keep the trace between the device and the crystal as short as possible.
-- Design a good ground plane around the oscillator pins.
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
CC
MIN TYP MAX UNIT
500
kΩ
200
pF
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
35
MSP430F41x2
f
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
crystal oscillator, LFXT1, high frequency modes
PARAMETER TEST CONDITIONS V
LFXT1
C
L,eff
Duty cycle Measured at P1.6/ACLK 2.2 V/3 V 40 50 60 %
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
LFXT1 oscillator crystalfrequency
Integrated effective load capacitance, HF mode (see Note 1)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Ceramic resonator 1.8 V to 3.6 V 0.45 6
Crystal resonator
SeeNote2 1 pF
CC
1.8 V to 3.6 V 1 6
internal very low power, low-frequency oscillator (VLO)
PARAMETER TEST CONDITIONS V
f
VLO
df
/dT VLO frequency temperature drift See Note 2.2 V/3 V 0.5 %/C
VLO
df
/dV
VLO
NOTES: 1. Calculated using the box method:
VLO frequency TA=--40Cto85C 2.2 V/3 V 4 12 20 kHz
VLO frequency supply voltage drift SeeNote2 1.8V to 3.6V 4 %/V
CC
I Version: (MAX(--40_Cto85_C) -- MIN(--40_Cto85_C))/MIN(--40_Cto85_C)/(85_C--(--40_C))
2. Calculated using the box method: (MAX(1.8 V to 3.6 V ) -- MIN(1.8 V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V -- 1.8 V)
CC
MIN TYP MAX UNIT
MHz
MIN TYP MAX UNIT
RAM
PARAMETER TEST CONDITIONS MIN MAX UNIT
VRAMh SeeNote1 CPU halted 1.6 V
NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution
should take place during this supply voltage condition.
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
LCD_A
V
CC(LCD)
C
LCD
I
CC(LCD)
f
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
V
LCD
R
LCD
PARAMETER TEST CONDITIONS V
Supply voltage range
Capacitor on LCDCAP (see Note 1)
Average supply current (see Note 2)
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
V VLCDx= 1000, all segments on f no LCD connected (see Note 3) T
=3V, LCDCPEN = 1,
LCD(typ)
LCD=fACLK
=25C
A
/32
LCD frequency 1.1 kHz
LCD voltage VLCDx = 0000 V
LCD voltage VLCDx = 0001 2.60 V
LCD voltage VLCDx = 0010 2.66 V
LCD voltage VLCDx = 0011 2.72 V
LCD voltage VLCDx = 0100 2.78 V
LCD voltage VLCDx = 0101 2.84 V
LCD voltage VLCDx = 0110 2.90 V
LCD voltage VLCDx = 0111 2.96 V
LCD voltage VLCDx = 1000 3.02 V
LCD voltage VLCDx = 1001 3.08 V
LCD voltage VLCDx = 1010 3.14 V
LCD voltage VLCDx = 1011 3.20 V
LCD voltage VLCDx = 1100 3.26 V
LCD voltage VLCDx = 1101 3.32 V
LCD voltage VLCDx = 1110 3.38 V
LCD voltage VLCDx = 1111 3.44 3.60 V
V
=3V,LCDCPEN=1,
LCD driver output impedance
LCD
VLCDx = 1000, I
LOAD
= 10 A
CC
2.2 V 3.8 A
2.2 V 10 k
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.
2. Refer to the supply current specifications I
for additional current specifications with the LCD_A module active.
(LPM3)
3. Connecting an actual display will increase the current consumption depending on the size of the LCD.
MIN TYP MAX UNIT
2.2 3.6 V
4.7 F
CC
V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
37
MSP430F41x2
A
CAON=
1,CARSEL=
0,CAREF=1/2/3
A
SeeFigure15an
d
/CA
V
TA=25
C
TA=25
C
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Comparator_A+ (see Note 1)
PARAMETER TEST CONDITIONS V
I
(CC)
I
(Refladder/RefDiode)
V
(Ref025)
V
(Ref050)
V
(RefVT)
V
IC
Vp-- V
V
hys
Voltage @ 0.25 VCCnode
Voltage @ 0.5 VCCnode
See Figure 15 and Figure 16
Common-mode input voltage range
Offset voltage SeeNote2 2.2 V / 3 V -- 3 0 30 mV
S
Input hysteresis CAON = 1 2.2 V / 3 V 0 0.7 1.4 mV
V
CC
V
CC
CAON = 1, CARSEL = 0, CAREF = 0
CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6 T
=85C
A
0 and P1.7/CA1,
CAON = 1 2.2 V / 3 V 0 VCC-- 1 V
T
=25C,
,
Overdrive 10 mV, without filter: CAF = 0
t
(response LH and HL)
(see Note 3)
T
=25C
Overdrive 10 mV, with filter: CAF = 1
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.
3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON=1). If CAON is set at the same time, a settling time of up to 300ns is added to the response time.
,
lkg(Px.x)
CC
2.2 V 25 40
3V 45 60
2.2 V 30 50
3V 45 80
2.2 V / 3 V 0.23 0.24 0.25
2.2V / 3 V 0.47 0.48 0.5
2.2 V 390 480 540
3V 400 490 550
2.2 V 80 165 300
3V 70 120 240
2.2 V 1.4 1.9 2.8
3V 0.9 1.5 2.2
specification.
MIN TYP MAX UNIT
m
ns
s
38
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
(
)
(
)
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
typical characteristics
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
VCC=3V
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5 -- 2 5 -- 5 1 5 3 5 5 5 7 5 9 5
TA-- Free-Air Temperature -- C
Figure 15. V
V+
V--
vs Temperature
RefVT
V
0V
CC
0
+ _
1
CAON
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
VCC=2.2V
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5 -- 2 5 -- 5 1 5 3 5 5 5 7 5 9 5
TA-- Free-Air Temperature -- C
Figure 16. V
CAF
Low-Pass Filter
0
1
0
1
vs Temperature
RefVT
To I n t ernal Modules
CAOUT
Figure 17. Block Diagram of Comparator_A Module
Overdrive
V--
400 mV
V+
t
(response)
Figure 18. Overdrive Definition
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
2 s
V
CAOUT
Set CAIFG Flag
39
MSP430F41x2
A
p
ply
ADC10supplycurren
t
A
A
f
f
currentwith
_5V
,
currentwith
REFON=1
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, power supply and input range conditions (see Note )
PARAMETER TEST CONDITIONS V
V
CC
V
Ax
I
ADC10
I
REF+
Analog supply voltage range
Analog input voltage range (see Note 2)
DC10 su
current
(see Note 3)
Reference supply current, reference bu disabled (see Note 4)
VSS=0V 2.2 3.6 V
All Ax terminals, Analog inputs selected in ADC10AE register
f
ADC10CLK =
5MHz,
DC10ON = 1, REFON = 0
ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0
f
ADC10CLK =
5MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0
er
f
ADC10CLK =
5MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0
I
REFB,0
I
REFB,1
Reference buffer supply current with ADC10SR = 0 (see Note 4)
Reference buffer supply current with ADC10SR = 1 (see Note 4)
f
ADC10CLK =
ADC10ON = 0, REFON = 1, REF2 REFOUT = 1, ADC10SR = 0
f
ADC10CLK =
ADC10ON = 0, REFON = 1 REF2_5V = 0, REFOUT = 1,
5MHz,
=0,
5MHz,
,
ADC10SR = 1
C
I
R
I
Input capacitance Only one terminal Ax selected at a time 27 pF
Input MUX ON resistance
0V  VAx V
CC
NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.
2. The analog input voltage range must be within the selected reference voltage range V
3. The internal reference supply current is not included in current consumption parameter I
4. The internal reference current is supplied via terminal V
. Consumption is independent of the ADC10ON control bit, unless a
CC
conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.
CC
2.2 V 0.52 1.05
3V 0.6 1.2
2.2 V/3 V
3V
2.2 V/3 V 1.1 1.4 mA
2.2 V/3 V 1.8 mA
2.2 V/3 V 0.5 0.7 mA
2.2 V/3 V 0.8 mA
2.2 V/3 V 2000
R+
MIN TYP MAX UNIT
0 V
0.25 0.4
to V
for valid conversion results.
R--
.
ADC10
CC
V
m
mA
mA
40
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
V
C
C,REF
+
l
t
V
V
REF
Positivebuiltinreferencevoltage
A
V
REF
loadregulationrespons
e
V
x
V
f
V
f
f
REF2_5V=0
Settlingtimeofreferencebuffer
V
REF2_5V=1
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, built-in voltage reference
PARAMETER TEST CONDITIONS V
I
1 mA, REF2_5V = 0 2.2
VREF+
I
0.5 mA, REF2_5V = 1 2.8
VREF+
I
1 mA, REF2_5V = 1 2.9
VREF+
I
I
VREF+
I
I
VREF+
I
VREF+ =
Analog input voltage V
max, REF2_5V = 0
VREF+
max, REF2_5V = 1 3V 2.35 2.5 2.65 V
VREF+
500 A  100 A,
0.75 V,
Ax
REF2_5V = 0
I Analog input voltage V
VREF+ =
500 A  100 A,
Ax
1.25 V,
2.2 V/ 3V
2.2 V 0.5
3V 1
2.2 V/ 3V
3V 2 LSB
V
CC,REF+
V
+
I
LD,VREF+
Positive built-in reference analog supplyvo
age range
Positive built-in reference voltage
Maximum V
V
load regulation
REF+
REF+
load current
REF2_5V = 1
I
C
VREF+
TC
REF+
t
REFON
t
REFBURST
V
load regulation response
+
time
Max. capacitance at pin V
REF+
(see Note 1)
Temperature coefficient
Settling time of internal reference voltage (see Note 2)
Settlingtime ofreference bu
er
(see Note 2)
= 100 A900 A,
VREF+
Ax
0.5
REF+,
Error o
conversion result 1LSB
I
1mA,
VREF+
REFON = 1, REFOUT = 1
I
const. with 0 mA  I
VREF+ =
(see Note 3)
I
0.5 mA, REF2_5V = 0,
VREF+ =
REFON = 0  1
I REF2 5
VREF+ =
0.5 mA, =0,
, REFON = 1, REFBURST = 1
VREF+ =
0.5 mA, =1,
,
I REF2 5 REFON = 1, REFBURST = 1
ADC10SR = 0 3V 400
ADC10SR = 1 3V 2000
2.2 V/ 3V
VREF+
1mA
2.2 V/ 3V
3.6 V 30 s
ADC10SR = 0 2.2 V 1
ADC10SR = 1 2.2 V 2.5
ADC10SR = 0 3V 2
ADC10SR = 1 3V 4.5
NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal
P6.4/UCB0CLK/UCA0STE/A4/CA6/V
eref+/Vref+
(REFOUT = 1), must be limited; the reference buffer m ay become unstable,
otherwise.
2. The condition is that the error in a conversion started after t
3. Calculated using the box method: ((MAX(V
(T)) -- MIN(V
REF
REFON
(T))) / MIN(V
REF
or t
is less than 0.5 LSB.
RefBuf
REF
(T)) / (T
MAX
MIN TYP MAX UNIT
CC
1.41 1.5 1.59 V
-- T
)
MIN
V
m
2 LSB
ns
100 pF
100 ppm/C
s
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
41
MSP430F41x2
Positiveexternalreferenceinpu
t
V
A
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, external reference (see Note 1)
V
eREF+
PARAMETER TEST CONDITIONS V
Positive external reference input voltage range (see Note 2)
V
eREF+>VeREF--
SREF1 = 1, SREF0 = 0
V
V
eREF--
,
(VCC-- 0.15 V)
eREF+
CC
SREF1=1,SREF0=1(seeNote3)
V
eREF--
Negative external reference input voltage range (see Note 4)
V
eREF+>VeREF--
Differential external reference input
V
eREF
I
VeREF+
I
VeREF --
voltage range V
eREF=VeREF+
-- V
eREF--
Static input current into V
Static input current into V
eREF+
eREF--
V
eREF+>VeREF--
0V  V
eREF+
(see Note 5) 1.4 V
VCC,
SREF1 = 1, SREF0 = 0
0V  V
(VCC-- 0.15 V) 3V,
eREF+
SREF1=1,SREF0=1(seeNote3)
0V  V
eREF--
V
CC
2.2 V/3 V 1
2.2 V/3 V 0
2.2 V/3 V 1 A
NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI,isalso
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current I
. The current consumption can be limited to the sample and conversion period with REBURST = 1.
REFB
4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
MIN TYP MAX UNIT
1.4 V
CC
1.4 3.0
0 1.2 V
V
CC
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
perf
f
f
A
performanceof
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, timing parameters
PARAMETER TEST CONDITIONS V
For specified
ADC10CLK
DC10 input clockfrequency
ormance o ADC10 linearity parameters
f
ADC10OSC
ADC10 built-in oscillator frequency
ADC10DIVx = 0, ADC10SSELx = 0 f
ADC10CLK =fADC10OSC
ADC10 built-in oscillator, ADC10SSELx = 0 f
t
CONVERT
Conversion time
ADC10CLK =fADC10OSC
f
ADC10CLK
SMCLK: ADC10SSELx  0
t
ADC10ON
Turn on settling time of the ADC SeeNote1 100 ns
NOTE 1: The condition is that the error in a conversion started after t
settled.
ADC10SR = 0 2.2 V/3 V 0.45 6.3
ADC10SR = 1 2.2 V/3 V 0.45 1.5
from ACLK, MCLK or
ADC10ON
is less than 0.5 LSB. The reference and input signals are already
CC
2.2 V/3 V 3.7 6.3 MHz
2.2 V/3 V 2.06 3.51 s
MIN TYP MAX UNIT
MHz
13 ADC10DIV 1/f
ADC10CLK
s
10-bit ADC, linearity parameters
PARAMETER TEST CONDITIONS V
CC
EIIntegral linearity error 2.2 V/3 V 1 LSB
EDDifferential linearity error 2.2 V/3 V 1 LSB
E
Offset error
O
Gain error
E
G
Total unadjusted error
E
T
Source impedance RS< 100 2.2 V/3 V 1 LSB
SREFx = 010, Unbuffered external reference, V
SREFx = 010, Unbuffered external reference, V
SREFx = 011, Buffered external reference (see Note 2), V
eREF+ =
1.5 V
SREFx = 011, Buffered external reference (see Note 2), V
eREF+ =
2.5 V
SREFx = 010, Unbuffered external reference, V
SREFx = 010, Unbuffered external reference, V
SREFx = 011, Buffered external reference (see Note 2), V
eREF+ =
1.5 V
SREFx = 011, Buffered external reference (see Note 2), V
eREF+ =
2.5 V
1.5 V 2.2 V 1.1 2 LSB
eREF+ =
2.5 V 3V 1.1 2 LSB
eREF+ =
2.2 V 1.1 4 LSB
3V 1.1 3 LSB
1.5 V 2.2 V 2 5 LSB
eREF+ =
2.5 V 3V 2 5 LSB
eREF+ =
2.2 V 2 7 LSB
3V 2 6 LSB
NOTE 1: The reference buffer’s offset adds to the gain and total unadjusted error.
MIN TYP MAX UNIT
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
43
MSP430F41x2
p
ply
Temperaturesensorsupply
REFON=0,INCHx=0Ah
A
(
)
V
Currentintodividera
t
A
A
A
ADC10ON=1,INCHx=0Bh
V
A
ADC10ON=1,INCHx=0Bh
f
_
A
x
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
10-bit ADC, temperature sensor and built-in V
PARAMETER
I
SENSOR
TC
SENSOR
V
Offset,Sensor
V
Sensor
Temperature sensor su current (see Note )
Sensor offset voltage
Sensor output voltage (see Note 3)
Sample time required if
t
Sensor(sample)
I
VMID
V
MID
channel 10 is selected (see Note 4)
Current into divider at channel11 (see Note 5)
VCCdivider at channel 11
Sample time required if
t
VMID(sample)
channel 11 is selected (see Note 6)
NOTES: 1. The sensor current I
is high). When REFON = 1, I sensor input (INCH = 0Ah).
2. The following formula can be used to calculate the temperature sensor output voltage: V
Sensor,typ
V
Sensor,typ
=TC =TC
Sensor
Sensor
3. Results based on characterization and/or production test, not TC
4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time t
5. No additional current is needed. The V
6. The on-time t
VMID(on)
is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal
SENSOR
SENSOR
( 273 + T [C] ) + V T[C] + V
is included in the sampling time t
REFON = 0, INCHx=0Ah, ADC10ON = 1, T
ADC10ON = 1, INCHx = 0Ah (see Note 2)
ADC10ON = 1, INCHx = 0Ah (see Note 2)
Temperature sensor voltage at T
=85C
A
Temperature sensor voltage at T
=25C
A
Temperature sensor voltage at T
=0C
A
ADC10ON = 1, INCHx = 0Ah, Error of conversion result 1LSB
DC10ON = 1, INCHx=0Bh
DC10ON = 1, INCHx=0Bh,
V
is 0.5 x V
MID
DC10ON = 1, INCHx=0Bh,
Error of conversion result 1LSB
is included in I
Offset,sensor
Sensor(TA
=0C) [mV]
is used during sampling.
MID
MID
TEST CONDITIONS V
,
=25_C
A
2.2 V/3 V 3.55 mV/C
2.2 V/3 V 1195 1295 1395 mV
2.2 V/3 V 985 1085 1185
2.2 V/3 V 895 995 1095
2.2 V/3 V 30 s
,
CC
,
. When REFON = 0, I
REF+
SENSOR
[mV] or
or V
VMID(sample)
Sensor
; no additional on time is needed.
Offset,sensor
CC
MIN TYP MAX UNIT
2.2 V 40 120
3V 60 160
--100 100 mV
2.2 V NA
3V NA
2.2 V 1.06 1.1 1.14
3V 1.46 1.5 1.54
2.2 V 1400
3V 1220
applies during conversion of the temperature
.
SENSOR(on)
m
ns
.
Timer0_A3, Timer1_A5
PARAMETER TEST CONDITIONS V
TA
t
TA, cap
Timer
Timer_A, capture timing TA0 , TA1, TA 2 2.2 V/3 V 20 ns
44
clockfrequency
Internal: SMCLK, ACLK, E
ternal: TACLK, INCLK,
Duty cycle = 50% 10%
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
CC
MIN MAX UNIT
2.2 V 8
3V 10
MHz
MSP430F41x2
UARTreceivedeglitchtime
UCLKedgetoSIMOvalid
UCLKedgetoSOMIvalid
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (UART mode)
PARAMETER TEST CONDITIONS V
Internal: SMCLK, ACLK
f
USCI
USCI input clock frequency
External: UCLK Duty cycle = 50% 10%
Maximum BITCLK clock frequency
fmax,
BITCLK
(equals baudrate i n MBaud) (see Note 1)
t
UART receive deglitch time (see Note 2)
NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz.
2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.
USCI (SPI master mode) (see Figure 19 and Figure 20)
PARAMETER TEST CONDITIONS V
f
USCI
t
SU,MI
t
HD,MI
t
VAL ID, M O
NOTE: f
USCI input clock frequency
SOMI input data setup time
SOMI input data hold time
SIMO output data valid time
=
UCxCLK
For the slave’s parameters t
2t
1
LOHI
with t
max(t
LOHI
SU,SI(Slave)
and t
SMCLK, ACLK Duty cycle = 50% 10%
UCLK edgetoSIMOvalid, C
=20pF
L
VALID,MO(USCI)
VALID,SO(Slave)
+ t
refer to the SPI parameters of the attached slave.
,
SU,SI(Slave),tSU,MI(USCI)
+ t
CC
2.2V /3 V 2 MHz
2.2 V 50 150
3V 50 100
VALID,SO(Slave)
MIN TYP MAX UNIT
f
SYSTEM
CC
MIN MAX UNIT
f
SYSTEM
2.2 V 110
3V 75
2.2 V 0
3V 0
2.2 V 30
3V 20
).
MHz
ns
MHz
ns
ns
ns
USCI (SPI slave mode) (see Figure 21 a nd Figure 22)
PARAMETER TEST CONDITIONS V
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VAL ID, S O
NOTE: f
For the master’s parameters t
STE lead time STE low to clock
STE lag time Last clock to STE high
STE access time STE low to SOMI data out
STE disable time STE high to SOMI high impedance
SIMO input data setup time
SIMO input data hold time
SOMI output data valid time
1
UCxCLK
=
2t
LOHI
with t
LOHI
max(t
SU,MI(Master)
UCLK edgetoSOMIvalid, C
=20pF
L
VALID,MO(Master)
and t
VALID,MO(Master)
+ t
CC
MIN TYP MAX UNIT
2.2 V/3 V 50 ns
2.2 V/3 V 10 ns
2.2 V/3 V 50 ns
2.2 V/3 V 50 ns
2.2 V 20
3V 15
2.2 V 10
3V 10
,
2.2 V 75 11 0
3V 50 75
SU,SI(USCI),tSU,MI(Master)
+ t
VALID,SO(USCI)
).
refer to the SPI parameters of the attached master.
ns
ns
ns
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
45
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
1/f
UCxCLK
CKPL=0
UCLK
CKPL=1
SOMI
SIMO
UCLK
SOMI
CKPL=0
CKPL=1
t
LO/HItLO/HI
t
t
VAL I D, MO
SU,MI
t
HD,MI
Figure 19. SPI Master Mode, CKPH = 0
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,MI
t
VAL I D,MO
t
HD,MI
46
SIMO
Figure 20. SPI Master Mode, CKPH = 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
STE
UCLK
SIMO
SOMI
STE
CKPL=0
CKPL=1
t
STE,ACC
t
STE,LEAD
1/f
UCxCLK
t
LO/HItLO/HI
t
VAL I D,SO
Figure 21. SPI Slave Mode, CKPH = 0
t
STE,LEAD
t
SU,SI
t
HD,SI
t
STE,LAG
t
STE,LAG
t
STE,DIS
UCLK
SIMO
SOMI
CKPL=0
CKPL=1
t
STE,ACC
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,SI
t
VAL I D, SO
Figure 22. SPI Slave Mode, CKPH = 1
t
HD,SI
t
STE,DIS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
47
MSP430F41x2
p
p
y
Pulsewidthofspikessuppressedb
y
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (I2C mode) (see Figure 23)
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK
USCI input clock frequency
External: UCLK Duty cycle = 50% 10%
SCL clock frequency 2.2 V/3 V 0 400 kHz
f
100kHz 2.2 V/3 V 4.0 us
Hold time (repeated) START
Setup timefor a repeated START
SCL
f
> 100kHz 2.2 V/3 V 0.6 us
SCL
f
100kHz 2.2 V/3 V 4.7 us
SCL
f
> 100kHz 2.2 V/3 V 0.6 us
SCL
Data hold time 2.2 V/3 V 0 ns
Data set--up time 2.2 V/3 V 250 ns
SetuptimeforSTOP 2.2 V/3 V 4.0 us
Pulse width ofspikes su input filter
ressed b
2.2 V 50 150 600 ns
3V 50 100 600 ns
MIN TYP MAX UNIT
f
SYSTEM
MHz
SDA
SCL
t
HD,STA
1/f
SCL
t
HD,DAT
t
SU,STAtHD,STA
t
SU,DAT
Figure 23. I2C Mode Timing
t
SP
t
SU,STO
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430F41x2
f
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
flash memory
TEST
CONDITIONS
V
CC
MIN NOM MAX UNIT
V
CC(PGM/
ERASE)
PARAMETER
Program and Erase supply voltage 2.2 3.6 V
f
FTG
I
PGM
I
ERASE
t
CPT
t
CMErase
t
Retention
t
Word
t
Block, 0
t
Block, 1-63
t
Block, End
t
Mass Erase
t
Seg Erase
Flash Timing Generator frequency 257 476 kHz
Supply current from DVCCduring program 2.5V/3.6V 3 5 mA
Supply current from DVCCduring erase 2.5V/3.6V 3 7 mA
Cumulative program time seeNote1 2.5V/3.6V 10 ms
Cumulative mass erase time seeNote2 2.5V/3.6V 200 ms
4
Program/Erase endurance 10
10
5
cycles
Data retention duration TJ=25C 100 years
Word or byte program time 35
Block program time for 1stbyte or word 30
Block program time for each additional byte or word
Block program end-sequence wait time
seeNote3
21
t
6
FTG
Mass erase time 5297
Segment erase time 4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64--byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1 / f
, max = 5297 x 1 / 476 kHz).
FTG
To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles is required.)
3. These values are hardwired into the Flash Controller’s state machine (t
FTG
=1/f
FTG
).
JTAG and Spy-Bi-Wire interface
PARAMETER
f
SBW
t
SBW,Low
Spy-Bi-Wire input frequency 2.2 V/3 V 0 8 MHz
Spy-Bi-Wire l ow clock pulse length 2.2 V/3 V 0.025 15 us
Spy-Bi-Wire enable time,
t
SBW,En
TEST high to acceptance of first clock edge (see Note 1)
t
SBW,Ret
TCK
R
Internal
Spy-Bi-Wire return to normal operation time 2.2 V /3 V 15 100 us
TCK inputfrequency (see Note 2)
Internal pulldown resistance on TEST 2.2 V/3 V 25 60 90 k
NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t
before applying the first SBWCLK clock edge.
2. f
may be restricted to meet the timing requirements of the module selected.
TCK
TEST
CONDITIONS
V
CC
MIN TYP MAX UNIT
2.2 V/3 V 1 us
2.2 V 0 5 MHz
3V 0 10 MHz
time after pulling the TEST/SBWCLK pin high
SBW,En
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
49
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
JTAG fuse (see Note 1)
PARAMETER
V
CC(FB)
V
FB
I
FB
t
FB
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched
Supply voltage during fuse-blow condition TA=25C 2.5 V
Voltage level on TDI/TCLK for fuse-blow 6 7 V
Supply current into TDI/TCLK during fuse blow 100 mA
Time to blow fuse 1 ms
to bypass mode.
TEST
CONDITIONS
V
CC
MIN MAX UNIT
50
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
APPLICATION INFORMATION
Port P1 pin schematic: P1.0 to P1.4, input/output with Schmitt trigger
MSP430F41x2
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
LCDS24/28
Segment Sy
P1DIR.x
P1OUT.x
Module X OUT
P1SEL.x
P1IN.x
Module X IN
P1IRQ.x
P1IFG.x
P1SEL.x
P1IES.x
EN
D
P1IE.x
0
1
0
1
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Bus
Keeper
EN
Pad Logic
P1.0/TA0.0/S31 P1.1/TA0.0/MCLK/S30 P1.2/TA0.1/S29 P1.3/TA1.0/SVSOUT/S28 P1.4/TA1.0/S27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
51
MSP430F41x2
/
/
///
/
/
///
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Port P1 (P1.0 to P1.4) pin functions
PIN NAME (P1.X)
P1.0/TA0.0/S31 0
P1.1/TA0.0/MCLK/S30 1
P1.2/TA0.1/S29 2
P1.3/TA1.0/SVSOUT/S28 3
P1.4/TA1.0/S27 4
NOTES: 1. x: Don’t care
X FUNCTION
P1.x (I/O) I: 0, O: 1 0 0
Timer0_A3.CCI0A 0 1 0
Timer0_A3.TA0 1 1 0
S31 x x 1 (LCDS28)
P1.x (I/O) I: 0, O: 1 0 0
Timer0_A3.CCI0B 0 1 0
MCLK 1 1 0
S30 x x 1 (LCDS28)
P1.x (I/O) I: 0, O: 1 0 0
Timer0_A3.CCI1A 0 1 0
Timer0_A3.TA1 1 1 0
S29 x x 1 (LCDS28)
P1.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI0B 0 1 0
SVSOUT 1 1 0
S28 x x 1 (LCDS28)
P1.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI0A 0 1 0
Timer1_A5.TA0 1 1 0
S27 x x 1 (LCDS24)
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x
LCDS24 LCDS28
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
///
Port P1 pin schematic: P1.5, input/output with Schmitt trigger
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
LCDS24
Segment Sy
P1DIR.x
P1OUT.x
Module X OUT
P1SEL.x
P1IN.x
from TA0CLK of P1.7
TA0CLK
P1IRQ.x
P1IFG.x
P1SEL.x
P1IES.x
EN
P1IE.x
0
1
0
1
D
Q
Interrupt
Edge Select
EN
Set
Direction 0: Input 1: Output
Bus
Keeper
EN
Pad Logic
P1.5/TA0CLK/ CAOUT/S26
Port P1 (P1.5) pin functions
PIN NAME (P1.X)
P1.5/TA0CLK/CAOUT/S26 5
NOTES: 1. x: Don’t care
2. The input TA0CLK of P1.5 and P1.7 are logically ORed. Therefore only one of them should be enabled at a time to feed in TA0CLK.
X FUNCTION
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x
LCDS24 LCDS28
P1.x (I/O) I: 0, O: 1 0 0
Timer0_A3.TACLK 0 1 0
CAOUT 1 1 0
S26 x x 1 (LCDS24)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
53
MSP430F41x2
X
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P1 pin schematic: P1.6, input/output with Schmitt trigger
To Comparator_A
From Comparator_A
CAPD.y
P1DIR.x
P1OUT.x
Module Out
P1SEL.x
P1IN.x
Module X IN
P1IRQ.x
Pad Logic
0
1
0
1
EN
D
P1IE.x
P1IFG.x
Direction 0: Input 1: Output
P1.6/ACLK/CA0
Bus
Keeper
EN
EN
Q
Set
P1SEL.x
P1IES.x
Port P1 (P1.6) pin functions
PIN NAME (P1.X)
P1.6/ACLK/CA0 6
NOTES: 1. x: Don’t care
P1.x (I/O) 0 I: 0, O: 1 0
ACLK 0 1 1
CA0 1 (CAPD.0) x x
Interrupt
Edge Select
FUNCTION
CONTROL BITS / SIGNALS
CAPD P1DIR.x P1SEL.x
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
///
Port P1 pin schematic: P1.7, input/output with Schmitt trigger
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
To Comparator_A
From Comparator_A
CAPD.y
P1DIR.x
P1OUT.x
Module Out
P1SEL.x
P1IN.x
TA0CLK
to P1.5
P1IRQ.x
Pad Logic
0
1
0
1
EN
D
P1IE.x
P1IFG.x
Direction 0: Input 1: Output
Q
EN
Set
Bus
Keeper
EN
P1.7/TA0CLK/ CAOUT/CA1
P1SEL.x
P1IES.x
Port P1 (P1.7) pin functions
PIN NAME (P1.X)
P1.7/TA0CLK/CAOUT/CA1 7
NOTES: 1. x: Don’t care
2. The input TA0CLK of P1.5 and P1.7 are c ombined by a logical OR. Therefore, only one of them should be enabled at a time to feed in TA0CLK.
Interrupt
Edge Select
FUNCTION
CONTROL BITS / SIGNALS
CAPD P1DIR.x P1SEL.x
P1.x (I/O) 0 I: 0, O: 1 0
Timer0_A3.TACLK 0 0 1
CAOUT 0 1 1
CA1 1 (CAPD.1) x x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
55
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P2 pin schematic: P2.0 to P2.7 input/output with Schmitt trigger
LCDS8/12
Segment Sy
P2DIR.x
P2OUT.x
Module X OUT
P2SEL.x
P2IN.x
Module X IN
P2IRQ.x
P2SEL.x
P2IES.x
EN
D
P2IE.x
P2IFG.x
0
1
0
1
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Bus
Keeper
EN
Pad Logic
P2.0/TA1.1/S15 P2.1/TA1.2/S14 P2.2/TA1.3/S13 P2.3/TA1.4/S12 P2.4/S11 P2.5/S10 P2.6/S9 P2.7/S8
56
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P2 (P2.0 to P2.7) pin functions
/
/
/
/
/
/
/
/
/
/
/
/
PIN NAME (P2.X)
P2.0/TA1.1/S15 0
P2.1/TA1.2/S14 1
P2.2/TA1.3/S13 2
P2.3/TA1.4/S12 3
P2.4/S11 4
P2.5/S10 5
P2.6/S9 6
P2.7/S8 7
NOTES: 1. x: Don’t care
X FUNCTION
P2.x (I/O) I: 0, O: 1 0 0
Timer1_A5.TA1 1 1 0
S15 x x 1 (LCDS12)
P2.x (I/O) I: 0, O: 1 0 0
Timer1_A5.TA2 1 1 0
S14 x x 1 (LCDS12)
P2.x (I/O) I: 0, O: 1 0 0
Timer1_A5.TA3 1 1 0
S13 x x 1 (LCDS12)
P2.x (I/O) I: 0, O: 1 0 0
Timer1_A5.TA4 1 1 0
S12 x x 1 (LCDS12)
P2.x (I/O) I: 0, O: 1 0 0
S11 x x 1 (LCDS8)
P2.x (I/O) I: 0, O: 1 0 0
S10 x x 1 (LCDS8)
P2.x (I/O) I: 0, O: 1 0 0
S9 x x 1 (LCDS8)
P2.x (I/O) I: 0, O: 1 0 0
S8 x x 1 (LCDS8)
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x
LCDS8
LCDS12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
57
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P3 pin schematic: P3.0 to P3.7 input/output with Schmitt trigger
LCDS16/20
Segment Sy
P3DIR.x
P3OUT.x
Module X OUT
P3SEL.x
P3IN.x
Module X IN
EN
Pad Logic
0
1
0
1
D
Direction 0: Input 1: Output
Bus
Keeper
EN
P3.0/TA1.2/S23 P3.1/TA1.3/S22 P3.2/TA1.4/S21 P3.3/TA0.0/TA1CLK/S20 P3.4/CAOUT/S19 P3.5/S18 P3.6/S17 P3.7/S16
58
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Port P3 (P3.0 to P3.7) pin functions
/
/
/
/
/
/
///
/
/
/
/
/
PIN NAME (P3.X)
P3.0/TA1.2/S23 0
P3.1/TA1.3/S22 1
P3.2/TA1.4/S21 2
P3.3/TA0.0/TA1CLK/S20 3
P3.4/CAOUT/S19 4
P3.5/S18 5
P3.6/S17 6
P3.7/S16 7
NOTES: 1. x: Don’t care
X FUNCTION
P3.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI2A 0 1 0
Timer1_A5.TA2 1 1 0
S23 x x 1 (LCDS20)
P3.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI3A 0 1 0
Timer1_A5.TA3 1 1 0
S22 x x 1 (LCDS20)
P3.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI4A 0 1 0
Timer1_A5.TA4 1 1 0
S21 x x 1 (LCDS20)
P3.x (I/O) I: 0, O: 1 0 0
Timer1_A5.TACLK 0 1 0
Timer0_A3.TA0 1 1 0
S20 x x 1 (LCDS20)
P3.x (I/O) I: 0, O: 1 0 0
CAOUT 1 1 0
S19 x x 1 (LCDS16)
P3.x (I/O) I: 0, O: 1 0 0
S18 x x 1 (LCDS16)
P3.x (I/O) I: 0, O: 1 0 0
S17 x x 1 (LCDS16)
P3.x (I/O) I: 0, O: 1 0 0
S16 x x 1 (LCDS16)
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x
LCDS16 LCDS20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
59
MSP430F41x2
/
/
/
/
/
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P4 pin schematic: P4.0 to P4.7 input/output with Schmitt trigger
LCDS0/4
Segment Sy
P4DIR.x
P4OUT.x
Module X Out
P4SEL.x
P4IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P4 (P4.0 to P4.7) pin functions
PIN NAME (P4.X)
P4.0/S7 0
P4.1/S6 1
P4.2/S5 2
P4.3/S4 3
P4.4/S3 4
P4.5/S2 5
P4.6/S1 6
P4.7/ADC10CLK/S0 7
NOTES: 1. x: Don’t care
X FUNCTION
P4.x (I/O) I: 0, O: 1 0 0
S7 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0
S6 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0
S5 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0
S4 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0
S3 x x 1 (LCDS0)
P4.x (I/O) I: 0, O: 1 0 0
S2 x x 1 (LCDS0)
P4.x (I/O) I: 0, O: 1 0 0
S1 x x 1 (LCDS0)
P4.x (I/O) I: 0, O: 1 0 0
ADC10CLK 1 1 0
S0 x x 1 (LCDS0)
Bus
Keeper
EN
Pad Logic
P4.0/S7 P4.1/S6 P4.2/S5 P4.3/S4 P4.4/S3 P4.5/S2 P4.6/S1 P4.7/ADC10CLK/S0
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x
LCDS4 LCDS0
60
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
/
/
Port P5 pin schematic: P5.0, input/output with Schmitt trigger
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
LCDS24
Segment Sy
P5DIR.x
P5OUT.x
Module X OUT
P5SEL.x
P5IN.x
EN
Module X IN
D
Port P5 (P5.0) pin functions
PIN NAME (P5.X)
P5.0/TA1.1/S24 0
NOTES: 1. x: Don’t care
P5.x (I/O) I: 0, O: 1 0 0
Timer1_A5.CCI1A 0 1 0
Timer1_A5.TA1 1 1 0
S24 x x 1
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
FUNCTION
P5.0/TA1.1/S24
Bus
Keeper
EN
CONTROL BITS / SIGNALS
P5DIR.x P5SEL.x LCDS24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
61
MSP430F41x2
X
/
/
/
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P5 pin schematic: P5.1 to P5.7, input/output with Schmitt trigger
LCD Signal
P5DIR.x
P5OUT.x
0/1
P5SEL.x
P5IN.x
0
Direction 0: Input
1
1: Output
0
1
Bus
Keeper
EN
Pad Logic
P5.1/R23 P5.2/R13LCDREF P5.3/R03 P5.4/COM3 P5.5/COM2 P5.6/COM1 P5.7/COM0
Port P5 (P5.1 to P5.7) pin functions
PIN NAME (P5.X)
FUNCTION
P5.1/R23 1 P5.x (I/O) I: 0, O: 1 0
R23 x 1
P5.2/LCDREF/R13 2
P5.x (I/O) I: 0, O: 1 0
R13 or LCDREF x 1
P5.3/R03 3
P5.x (I/O) I: 0, O: 1 0
R03 x 1
P5.4/COM3 4
P5.x (I/O) I: 0, O: 1 0
COM3 x 1
P5.5/COM2 5
P5.x (I/O) I: 0, O: 1 0
COM2 x 1
P5.6/COM1 6
P5.x (I/O) I: 0, O: 1 0
COM1 x 1
P5.7/COM0 7
P5.x (I/O) I: 0, O: 1 0
COM0 x 1
NOTES: 1. x: Don’t care
CONTROL BITS / SIGNALS
P5DIR.x P5SEL.x
62
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
///
Port P6 pin schematic: P6.0, input/output with Schmitt trigger
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
To Comparator_A
From Comparator_A
CAPD.4
ADC10AE0.2
INCH=2
To ADC10
P6DIR.x
P6OUT.x
Module Out
P6SEL.x
P6IN.x
Module X IN
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
P6.0/TA1.2/A2/CA4
Bus
Keeper
EN
EN
D
Port P6 (P6.0) pin functions
PIN NAME (P6.X)
P6.0/TA1.2/A2/CA4 0
NOTES: 1. x: Don’t care
P6.x (I/O) 0 0 I: 0, O: 1 0
Timer1_A5.TA2 0 0 1 1
A2 x 1(y=2) x x
CA4 1 (CAPD.4) x x x
FUNCTION
CONTROL BITS / SIGNALS
CAPD ADC10AE0.y P6DIR.x P6SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
63
MSP430F41x2
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P6 pin schematic: P6.1 and P6.2, inpututput with Schmitt trigger
P6DIR.x
Module
direction
P6OUT.x
Module X OUT
P6SEL.x
P6IN.x
Module X IN
0
1
0
1
Direction 0: Input 1: Output
EN
D
Port P6 (P6.1 and P6.2) pin functions
PIN NAME (P6.X)
P6.1/UCB0SOMI/UCB0SCL 1
P6.2/UCB0SIMO/UCB0SDA 2
NOTES: 1. x: Don’t care
2. The pin direction is controlled by the USCI module.
P6.x (I/O) I: 0, O: 1 0
UCB0SOMI/UCB0SCL (see Note 2) x 1
P6.x (I/O) I: 0, O: 1 0
UCB0SIMO/UCB0SDA (see Note 2) x 1
FUNCTION
Pad Logic
P6.1/UCB0SOMI/UCB0SCL P6.2/UCB0SIMO/UCB0SDA
CONTROL BITS / SIGNALS
P6DIR.x P6SEL.x
64
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
/
/
/
/
APPLICATION INFORMATION
Port P6 pin schematic: P6.3 and P6.4, input/output with Schmitt trigger
MSP430F41x2
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
To Comparator_A
From Comparator_A
CAPD.5/6
ADC10AE0.3/4
INCH=3/4
To ADC10
P6DIR.x
from Module
P6OUT.x
Module Out
P6SEL.x
P6IN.x
Module X IN
Pad Logic
0
1
0
1
EN
D
Direction 0: Input 1: Output
Bus
Keeper
EN
P6.3/UCB0STE/ UCA0CLK/A3/CA5/ V
eref-/Vref-
P6.4/UCB0CLK/ UCA0STE/A4/CA6/ V
eref+/Vref+
Port P6 (P6.3 and P6.4) pin functions
PIN NAME (P6.X)
P6.3/UCB0STE/ 3 UCA0CLK/A3/CA5/
V
V
eref--
ref--
P6.4/UCB0CLK/ 4 UCA0STE/A4/CA6/
V
V
eref+
ref+
NOTES: 1. x: Don’t care
2. The pin direction is controlled by the USCI module.
P6.x (I/O) 0 0 I: 0, O: 1 0
UCB0STE/UCA0CLK (see Note 2) 0 0 x 1
A3/V
eref--/Vref--
CA5 1 (CAPD.5) x x x
P6.x (I/O) 0 0 I: 0, O: 1 0
UCB0CLK/UCA0STE (see Note 2) 0 0 x 1
A4/V
eref+/Vref+
CA6 1 (CAPD.6) x x x
FUNCTION
CONTROL BITS / SIGNALS
CAPD ADC10AE0.y P6DIR.x P6SEL.x
x 1(y=3) x x
x 1(y=4) x x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
65
MSP430F41x2
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger
INCHx = 5/6
To ADC10
ADC10AE0.5/6
P6DIR.x
Module
direction
P6OUT.x
Module X OUT
P6SEL.x
P6IN.x
Module X IN
0
1
0
1
Direction 0: Input 1: Output
EN
D
Port P6 (P6.5 and P6.6) pin functions
PIN NAME (P6.X)
P6.5/UCA0RXD/ 5 UCA0SOMI/A5
P6.6/UCA0TXD/ 6 UCA0SIMO/A6
NOTES: 1. x: Don’t care
2. The pin direction is controlled by the USCI module.
P6.x (I/O) 0 I: 0, O: 1 0
UCA0RXD/UCA0SOMI (see Note 2) 0 x 1
A5 1(y=5) x x
P6.x (I/O) 0 I: 0, O: 1 0
UCA0TXD/UCA0SIMO (see Note 2) 0 x 1
A6 1(y=6) x x
FUNCTION
Bus
Keeper
EN
Pad Logic
P6.5/UCA0RXD/ UCA0SOMI/A5 P6.6/UCA0TXD/ UCA0SIMO/A6
CONTROL BITS / SIGNALS
ADC10AE0.y P6DIR.x P6SEL.x
66
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
///
Port P6 pin schematic: P6.7, input/output with Schmitt trigger
MSP430F41x2
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
to SVS Mux
VLD = 15
To Comparator_A
From Comparator_A
CAPD.7
ADC10AE0.7
INCH=7
To ADC10
P6DIR.x
P6OUT.x
0/1
P6SEL.x
P6IN.x
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
P6.7/A7/CA7/SVSIN
Bus
Keeper
EN
Port P6 (P6.7) pin functions
PIN NAME (P6.X)
P6.7/A7/CA7/SVSIN 7
NOTES: 1. x: Don’t care
P7.x (I/O) 0 0 0 I: 0, O: 1 0
A7 0 x 1(y=7) x x
CA7 0 1 (CAPD.7) x x x
SVSIN 1 0 0 x x
FUNCTION
CONTROL BITS / SIGNALS
VLDx = 15 CAPD ADC10AE0 P6DIR.x P6SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
67
MSP430F41x2
X
///
///
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
/APPLICATION INFORMATION
Port P7 pin schematic: P7.0 to P7.3, input/output with Schmitt trigger
Sy
LCDS32
Pad Logic
P7DIR.x
P7OUT.x
0/1
P7SEL.x
P7IN.x
To JTAG
From JTAG
0
1
0
1
Direction 0: Input 1: Output
Bus
Keeper
EN
Port P7 (P7.0 to P7.3) pin functions
PIN NAME (P7.X)
P7.0/TDO/TDI/S32 0
P7.x (I/O) 0 I: 0, O: 1 0 0
TDO/TDI (see Note 1) 1 x x x
S32 0 x x 1
P7.1/TDI/TCLK/S33 1
P7.x (I/O) 0 I: 0, O: 1 0 0
TDI/TCLK(seeNote1) 1 x x x
S33 0 x x 1
P7.2/TMS/S34 2
P7.x (I/O) 0 I: 0, O: 1 0 0
TMS(seeNote1) 1 x x x
S34 0 x x 1
P7.3/TCK/S35 3
P7.3 (I/O) 0 I: 0, O: 1 0 0
TCK(seeNote1) 1 x x x
S35 0 x x 1
NOTES: 1. In JTAG Mode the internal pullup/pulldown resistors are disabled.
2. X: Don’t care.
FUNCTION
JTAG Mode P7DIR.x P7SEL.x LCDS32
P7.0/TDO/TDI/S32 P7.1/TDI/TCLK/S33 P7.2/TMS/S34 P7.3/TCK/S35
CONTROL BITS / SIGNALS
68
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
///
///
APPLICATION INFORMATION
Port P7 pin schematic: P7.4 and P7.5, input/output with Schmitt trigger
MSP430F41x2
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
To Comparator_A
From Comparator_A
CAPD.2/3
ADC10AE0.0/1
INCH=0/1
To ADC10
P7DIR.x
P7OUT.x
Module Out
P7SEL.x
P7IN.x
Module X IN
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
EN
D
Bus
Keeper
EN
P7.4/TA1.4/A0/CA2 P7.5/TA1.3/A1/CA3
Port P7 (P7.4 and P7.5) pin functions
PIN NAME (P7.X)
P7.4/TA1.4/A0/CA2 4
P7.5/TA1.3/A1/CA3 5
NOTES: 1. x: Don’t care
P7.x (I/O) 0 0 I: 0, O: 1 0
Timer1_A5.TA4 0 0 1 1
Timer1_A5.CCI4B 0 0 0 1
A0 x 1(y=0) x x
CA2 1 (CAPD.2) x x x
P7.x (I/O) 0 0 I: 0, O: 1 0
Timer1_A5.TA3 0 0 1 1
Timer1_A5.CCI3B 0 0 0 1
A1 x 1(y=1) x x
CA3 1 (CAPD.3) x x x
FUNCTION
CONTROL BITS / SIGNALS
CAPD ADC10AE0.y P7DIR.x P7SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
69
MSP430F41x2
X
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P7 pin schematic: P7.6, input/output with Schmitt trigger
LCDS24
Segment Sy
P7DIR.x
P7OUT.x
Module X OUT
P7SEL.x
P7IN.x
EN
Module X IN
D
Port P7 (P7.6) pin functions
PIN NAME (P7.X)
P7.6/TA0.2/S25 6
NOTES: 1. x: Don’t care
P7.x (I/O) I: 0, O: 1 0 0
Timer0_A3.CCI2A 0 1 0
Timer0_A3.TA2 1 1 0
S25 x x 1
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
FUNCTION
P7.6/TA0.2/S25
Bus
Keeper
EN
CONTROL BITS / SIGNALS
P7DIR.x P7SEL.x LCDS24
70
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
APPLICATION INFORMATION
JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger
TDO
Controlled by JTAG
Controlled by JTAG
MSP430F41x2
JTAG
Test
and
Emulation
Module
Controlled by JTAG
TDI
TMS
TCK
DV
CC
DV
CC
Fuse
Burn & Test
Fuse
DV
DV
CC
CC
TDO/TDI
TDI/TCLK
TMS
During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry
TCK
JTAG fuse check mode
For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265) chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
71
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER
SLAS648E -- APRIL 2009 -- REVISED MARCH 2011
Data Sheet Revision History
LITERATURE
NUMBER
SLAS648 Production Data release
Changed TDI/TCLK to TEST in Note 1 of “absolute maximum ratings” table (page 23)
SLAS648A
SLAS648B
SLAS648C Added note to functional block diagram (page 5)
SLAS648D
SLAS648E Changed limits on t
Changed lower limit of Storage temperature, Programmed device from --40Cto--55C i n “absolute maximum ratings”
table (page 23) Corrected Timer_A3 Signal Connections and Timer_A5 Signal Connections tables (pages 17, 18) Removed bullet indicating that Segment A contains calibration data (page 15)
In “absolute maximum ratings” table, changed LFXT1 crystal frequency, f ceramic resonator) and from 1000 to 1 MHz (with crystal) (page 23) In “crystal oscillator, LFXT1, high frequency modes” table, changed f crystal resonator (page 36)t
d(SVSon)
d(SVSon)
parameter (page 31)
SUMMARY
MIN from 450 to 0.45 MHz (with
(LFXT1)
MAX from 8 to 6 MHz for both ceramic and
LFXT1
72
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2018
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430F4132IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4132
MSP430F4132IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4132
MSP430F4132IRGZR ACTIVE VQFN RGZ 48 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F4132
MSP430F4132IRGZT ACTIVE VQFN RGZ 48 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F4132
MSP430F4152IPM ACTIVE LQFP PM 64 160 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4152
MSP430F4152IPMR ACTIVE LQFP PM 64 1000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4152
MSP430F4152IRGZR ACTIVE VQFN RGZ 48 2500 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430
F4152
MSP430F4152IRGZT ACTIVE VQFN RGZ 48 250 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR M430
F4152
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2018
Addendum-Page 2
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE MATERIALS INFORMATION
www.ti.com 1-Nov-2018
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
MSP430F4132IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F4132IRGZR VQFN RGZ 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
MSP430F4132IRGZT VQFN RGZ 48 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
MSP430F4152IPMR LQFP PM 64 1000 330.0 24.4 13.0 13.0 2.1 16.0 24.0 Q2
MSP430F4152IRGZT VQFN RGZ 48 250 180.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
Type
Package
Drawing
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)B0(mm)K0(mm)P1(mm)W(mm)
Pin1
Quadrant
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com 1-Nov-2018
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430F4132IPMR LQFP PM 64 1000 367.0 367.0 45.0 MSP430F4132IRGZR VQFN RGZ 48 2500 367.0 367.0 38.0 MSP430F4132IRGZT VQFN RGZ 48 250 210.0 185.0 35.0
MSP430F4152IPMR LQFP PM 64 1000 350.0 350.0 43.0 MSP430F4152IRGZT VQFN RGZ 48 250 210.0 185.0 35.0
Pack Materials-Page 2
GENERIC PACKAGE VIEW
VQFN - 1 mm max heightRGZ 48
7 x 7, 0.5 mm pitch
PLASTIC QUADFLAT PACK- NO LEAD
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.
4224671/A
www.ti.com
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.
PACKAGE OUTLINE
4219044/A 05/2018
www.ti.com
VQFN - 1 mm max height
PLASTIC QUADFLAT PACK- NO LEAD
RGZ0048A
A
0.08
C
0.1 C A B
0.05 C
B
SYMM
SYMM
PIN 1 INDEX AREA
7.1
6.9
7.1
6.9
1 MAX
0.05
0.00
SEATING PLANE
C
5.15±0.1
2X 5.5
2X
5.5
44X 0.5
48X
0.5
0.3
48X
0.30
0.18
PIN1 ID
(OPTIONAL)
(0.2) TYP
1
12
13
24
25
36
37
48
NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature
number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
on this view. It is recommended that vias under paste be filled, plugged or tented.
EXAMPLE BOARD LAYOUT
4219044/A 05/2018
www.ti.com
VQFN - 1 mm max height
RGZ0048A
PLASTIC QUADFLAT PACK- NO LEAD
SYMM
SYMM
LAND PATTERN EXAMPLE
SCALE: 15X
( 5.15)
2X (6.8)
2X
(6.8)
48X (0.6)
48X (0.24)
44X (0.5)
2X (5.5)
2X
(5.5)
21X (Ø0.2) VIA
TYP
(R0.05)
TYP
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
METAL
SOLDER MASK
OPENING
EXPOSED METAL
SOLDER MASK DETAILS
SOLDER MASK OPENING
METAL UNDER SOLDER MASK
EXPOSED METAL
0.07 MAX
ALL AROUND
0.07 MIN
ALL AROUND
2X
(1.26)
2X (1.26)
2X (1.065)
2X
(1.065)
1
12
13
22
23
34
35
48
NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
EXAMPLE STENCIL DESIGN
4219044/A 05/2018
www.ti.com
VQFN - 1 mm max height
RGZ0048A
PLASTIC QUADFLAT PACK- NO LEAD
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
EXPOSED PAD
67% PRINTED COVERAGE BY AREA
SCALE: 15X
SYMM
SYMM
( 1.06)
2X (6.8)
2X
(6.8)
48X (0.6)
48X (0.24)
44X (0.5)
2X (5.5)
2X
(5.5)
(R0.05)
TYP
2X
(0.63)
2X (0.63)
2X
(1.26)
2X
(1.26)
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64) PLASTIC QUAD FLATPACK
49
64
0,50
48
0,27 0,17
33
1
7,50 TYP
10,20
SQ
9,80
12,20
SQ
11,80
16
0,08
32
17
M
0,05 MIN
0,13 NOM
Gage Plane
0,25
0°–7°
1,45 1,35
1,60 MAX
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 D. May also be thermally enhanced plastic with leads connected to the die pads.
0,75 0,45
Seating Plane
0,08
4040152/C 11/96
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated
Loading...