Texas Instruments CD74HCT365M96, CD74HCT365M, CD74HCT365E, CD74HC366M, CD74HC366E Datasheet

...
Data sheet acquired from Harris Semiconductor
/ j
SCHS180
November 1997
CD74HC365, CD74HCT365,
CD74HC366, CD74HCT366
High Speed CMOS Logic Hex Buffer/Line Driver,
Three-State Non-Inverting and Inverting
[ /Title (CD74 HC365 , CD74 HCT36 5, CD74 HC366 , CD74 HCT36
6) Sub­ect
(High Speed
Features
• Buffered Inputs
• High Current Bus Driver Outputs
• TypicalPropagation Delay t C
= 15pF, TA = 25oC
L
• Fanout (Over Temperature Range)
- Standard Outputs. . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
• Wide Operating Temperature Range . . . -55
• Balanced Propagation Delay and Transition Times
• Significant Power Reduction Compared to LSTTL Logic ICs
• HC Types
- 2V to 6V Operation
- High Noise Immunity: N
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
V
= 0.8V (Max), VIH = 2V (Min)
IL
- CMOS Input Compatibility, I
PLH,tPHL
= 30%, NIH = 30% of V
IL
= 8ns at VCC=5V,
1µA at VOL, V
l
o
C to 125oC
OH
Description
The Harris CD74HC365, CD74HCT365, CD74HC366, and CD74HCT366 silicon gate CMOS three-state buffers are general purpose high-speed non-inverting and inverting buffers. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.
The CD74HC365 and CD74HCT365 are non-inverting buffers, whereas the CD74HC366 and CD74HCT366 are inverting buffers.These devices have two three-state control inputs ( and
OE2) which are NORed together to control all six gates.
The CD74HCT365 and CD74HCT366 logic families are speed, function and pin compatible with the standard 74LS logic family .
Ordering Information
CC
PART NUMBER
CD74HC365E -55 to 125 16 Ld PDIP E16.3 CD74HCT365E -55 to 125 16 Ld PDIP E16.3 CD74HC366E -55 to 125 16 Ld PDIP E16.3 CD74HC365M -55 to 125 16 Ld SOIC M16.15 CD74HCT365M -55 to 125 16 Ld SOIC M16.15
NOTES:
1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
2. Wafer or die for this part number is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.
TEMP. RANGE
(oC) PACKAGE
OE1
PKG.
NO.
Pinout
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
(PDIP, SOIC)
TOP VIEW
V
1
OE1
2
1A
(1
(2
(3Y) 3Y
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright
© Harris Corporation 1997
Y) 1Y
2A
Y) 2Y
3A
GND
3 4 5 6 7 8
1
16 15 14 13 12 11 10
9
CC
OE2 6A 6Y (6Y) 5A 5Y (5 4A 4Y (4
Y)
Y)
File Number 1539.1
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
Functional Diagrams
CD74HC365, CD75HCT365 CD74HC366, CD75HCT366
OE1
1A
1Y
2A
2Y
3A
3Y
GND
1
2
3
4
5
6
7
8
16
V
CC
15
OE2
14
6A
13
6Y
12
5A
11
5Y
10
4A
9
4Y
TRUTH TABLE
OUTPUTS
INPUTS
(Y)
OE1 OE2 A HC/HCT365 HC/HCT366
LLL L H LLH H L XHX Z Z HXX Z Ζ
NOTE: H = High Voltage Level L = Low Voltage Level X = Don’t Care Z = High Impedance (OFF) State
OE1
1A
1
2A
2
3A
3
GND
1
2
3
Y
4
5
Y
6
7
Y
8
16
V
CC
15
OE2
14
6A
13
Y
6
12
5A
11
5Y
10
4A
9
4
Y
2
Logic Diagram
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
V
CC
16
ONE OF SIX IDENTICAL CIRCUITS
2
1A
3
1Y
8
OE1
OE2
(NOTE)
GND
1
4
15
2A
3A
4A
5A
6A
6
10
12
14
5
2Y
7
3Y
9
4Y
11
5Y
13
6Y
NOTE: Inverter not included in HC/HCT365.
FIGURE 1. LOGIC DIAGRAM FOR THE HC/HCT365 AND HC/HCT366 (OUTPUTS FOR HC/HCT365 ARE COMPLEMENTS OF
THOSE SHOWN, i.e., 1Y, 2Y, ETC.)
3
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
Absolute Maximum Ratings Thermal Information
DC Supply Voltage, VCC. . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, I
IK
For VI < -0.5V or VI > VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, I
OK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, I
O
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±35mA
DC Output Source or Sink Current per Output Pin, I
O
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, V
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to V
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
3. θJA is measured with the component mounted on an evaluation PC board in free air.
CC
Thermal Resistance (Typical, Note 3) θJA (oC/W)
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Maximum Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
CC
DC Electrical Specifications
PARAMETER SYMBOL
HC TYPES
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage CMOS Loads
High Level Output Voltage TTL Loads
Low Level Output Voltage CMOS Loads
Low Level Output Voltage TTL Loads
Input Leakage Current
Quiescent Device Current
V
IH
V
IL
V
OH
V
OL
I
I
I
CC
TEST
CONDITIONS
(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
I
VCC (V)
o
C -40oC TO 85oC -55oC TO 125oC
25
- - 2 1.5 - - 1.5 - 1.5 - V
4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V
- - 2 - - 0.5 - 0.5 - 0.5 V
4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V
VIH or
V
-0.02 2 1.9 - - 1.9 - 1.9 - V
IL
-0.02 4.5 4.4 - - 4.4 - 4.4 - V
-0.02 6 5.9 - - 5.9 - 5.9 - V
-6 4.5 3.98 - - 3.84 - 3.7 - V
-7.8 6 5.48 - - 5.34 - 5.2 - V
VIH or
V
0.02 2 - - 0.1 - 0.1 - 0.1 V
IL
0.02 4.5 - - 0.1 - 0.1 - 0.1 V
0.02 6 - - 0.1 - 0.1 - 0.1 V 6 4.5 - - 0.26 - 0.33 - 0.4 V
7.8 6 - - 0.26 - 0.33 - 0.4 V
VCC or
-6--±0.1 - ±1-±1µA
GND
VCC or
0 6 - - 8 - 80 - 160 µA
GND
UNITSV
4
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
DC Electrical Specifications (Continued)
TEST
CONDITIONS
PARAMETER SYMBOL
Three-State Leakage
I
OZ
Current
HCT TYPES
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage
V
IH
V
IL
V
OH
CMOS Loads High Level Output
Voltage TTL Loads
Low Level Output Voltage
V
OL
CMOS Loads Low Level Output
Voltage TTL Loads
Input Leakage Current
Quiescent Device Current
Additional Quiescent Device Current Per
I
I
I
CC
I
CC
Input Pin: 1 Unit Load (Note 4)
Three-State Leakage Current
I
OZ
NOTE:
4. For dual-supply systems theoretical worst case (V
HCT Input Loading Table
INPUT UNIT LOADS
OE1 0.6
All Others 0.55
NOTE: Unit Load is I Specifications table, e.g., 360µA max at 25oC.
limit specified in DC Electrical
CC
(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
I
VIL or
V
VO =
VCC or
IH
GND
- - 4.5 to
- - 4.5 to
VIH or
V
-0.02 4.5 4.4 - - 4.4 - 4.4 - V
IL
-4 4.5 3.98 - - 3.84 - 3.7 - V
VIH or
V
0.02 4.5 - - 0.1 - 0.1 - 0.1 V
IL
4 4.5 - - 0.26 - 0.33 - 0.4 V
VCC to
0 5.5 - - ±0.1 - ±1-±1µA
GND
VCC or
0 5.5 - - 8 - 80 - 160 µA
GND V
CC
- 4.5 to
-2.1
VIL or
V
VO =
VCC or
IH
GND
o
C -40oC TO 85oC -55oC TO 125oC
25
(V)
V
CC
6--±0.5 - ±5.0 - ±10 µA
2-- 2 - 2 - V
5.5
- - 0.8 - 0.8 - 0.8 V
5.5
- 100 360 - 450 - 490 µA
5.5
5.5 - - ±0.5 - ±5.0 - ±10 µA
= 2.4V, VCC = 5.5V) specification is 1.8mA.
I
UNITSV
Switching Specifications - HC/HCT365 Input t
TEST
PARAMETER SYMBOL
HC TYPES
Propagation Delay, Data to Outputs HC/HCT365
t
PLH
, t
CONDITIONS VCC (V)
PHLCL
= 50pF 2 - 105 130 160 ns
= 15pF 5 8 - - - ns
C
L
, tf = 6ns
r
o
25
C -40oC TO 85oC
-55oC TO 125oC
4.5 - 21 26 32 ns 6 - 18 22 27 ns
5
UNITSTYP MAX MAX MAX
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
Switching Specifications - HC/HCT365 Input t
TEST
PARAMETER SYMBOL
Propagation Delay,
t
PLH
Data to Outputs HC/HCT366
Propagation Delay,
t
PLH
Output Enable and Disable to Outputs
Output Transition Time t
TLH
Input Capacitance C Three-State Output
Capacitance Power Dissipation
Capacitance (Notes 5, 6)
HCT TYPES
Propagation Delay,
t
PLH
Data to Outputs HC/HCT365
Propagation Delay,
t
PLH
Data to Outputs HC/HCT366
Propagation Delay,
t
PLH
Output Enable and Disable to Outputs
Output Transition Time t
TLH
Input Capacitance C Three-State Capacitance C Power Dissipation
Capacitance (Notes 5, 6)
NOTES:
is used to determine the dynamic power consumption, per buffer.
5. C
PD
6. PD= V
2
fi (CPD + CL) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
CC
, t
, t
, t
C
O
C
PD
, t
, t
, t
, t
IN
O
C
PD
CONDITIONS V
PHLCL
C
PHLCL
C
THLCL
I
PHLCL
C
PHLCL
C
PHLCL
C
THLCL
= 50pF 2 - 110 140 165 ns
= 15pF 5 9 - - - ns
L
= 50pF 2 - 150 190 225 ns
= 15pF 5 12 - - - ns
L
= 50pF 2 - 60 75 90 ns
---1010 10pF
---2020 20pF
- 5 40 - - - pF
= 50pF 4.5 - 25 31 38 ns = 15pF 5 9 - - - ns
L
= 50pF 4.5 - 27 34 41 ns = 15pF 5 11 - - - ns
L
= 50pF 4.5 - 35 44 53 ns = 15pF 5 14 - - - ns
L
= 50pF 4.5 - 12 15 18 ns
---1010 10pF
---2020 20pF
- 5 42 - - - pF
, tf = 6ns (Continued)
r
-55oC TO 125oC
CC
(V)
o
C -40oC TO 85oC
25
4.5 - 22 28 33 ns 6 - 19 24 28 ns
4.5 - 30 38 45 ns 6 - 26 33 38 ns
4.5 - 12 15 18 ns 6 - 10 13 15 ns
UNITSTYP MAX MAX MAX
6
CD74HC365, CD74HCT365, CD74HC366, CD74HCT366
Test Circuits and Waveforms
tr = 6ns tf = 6ns
INPUT
90% 50% 10%
V
CC
GND
tr = 6ns
INPUT
2.7V
1.3V
0.3V
= 6ns
t
f
3V
GND
t
INVERTING
OUTPUT
THL
t
PHL
t
PLH
90%
50%
10%
t
TLH
FIGURE 2. HCTRANSITIONTIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
6ns 6ns
OUTPUT
DISABLE
OUTPUT LOW
TO OFF
OUTPUT HIGH
TO OFF
50%
t
t
OUTPUTS
ENABLED
PLZ
PHZ
10%
90%
90%
10%
t
PZL
t
PZH
OUTPUTS
DISABLED
50%
50%
FIGURE 4. HCTHREE-STATE PROPAGATION DELAY
WAVEFORM
V
CC
GND
OUTPUTS ENABLED
t
INVERTING
OUTPUT
THL
t
PHL
t
PLH
1.3V
10%
90%
t
TLH
FIGURE 3. HCTTRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
0.3
t
t
6ns
PZL
1.3V
PZH
1.3V OUTPUTS
ENABLED
t
r
OUTPUT
DISABLE
OUTPUT LOW
TO OFF
OUTPUT HIGH
TO OFF
t
t
OUTPUTS ENABLED
6ns t
PLZ
PHZ
10%
90%
f
2.7
1.3
OUTPUTS
DISABLED
FIGURE 5. HCTTHREE-STATE PROPAGATIONDELAY
WAVEFORM
3V
GND
NOTE: Open drain waveforms t VCC, CL = 50pF.
FIGURE 6. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
TIED HIGH
and t
PLZ
OTHER
INPUTS
OR LOW
OUTPUT
DISABLE
PZL
IC WITH
THREE-
STATE
OUTPUT
OUTPUT
= 1k
R
L
C
L
50pF
VCC FOR t GND FOR t
PLZ
PHZ
AND t
AND t
PZL
PZH
are the same as those for three-state shown on the left. The test circuit is Output RL=1kΩto
7
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...