Texas Instruments CD74HCT243M, CD74HCT243E, CD74HC243M96, CD54HCT243F3A, CD54HC243F3A Datasheet

...
CD74HCT242 was not acquired from Harris Semiconductor.
/ j
Data sheet acquired from Harris Semiconductor SCHS168
November 1997
Quad-Bus Transceiver with Three-State Outputs
CD74HCT242, CD74HC243,
CD74HCT243
High Speed CMOS Logic
[ /Title (CD74 HCT24 2, CD74 HC243 , CD74 HCT24
3) Sub­ect
(High Speed CMOS Logic Quad-
Features
• Typical Propagation Delay (A to B, B to A) of 7ns at V
= 5V, CL = 15pF, TA = 25oC
CC
• Three-State Outputs
• Buffered Inputs
• Fanout (Over Temperature Range)
- Standard Outputs. . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
o
• Wide Operating Temperature Range . . . -55
• Balanced Propagation Delay and Transition Times
• Significant Power Reduction Compared to LSTTL Logic ICs
• HC Types
- 2V to 6V Operation
- High Noise Immunity: N
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
V
= 0.8V (Max), VIH = 2V (Min)
IL
- CMOS Input Compatibility, I
= 30%, NIH = 30% of V
IL
1µA at VOL, V
l
C to 125oC
OH
Pinout
CD74HCT242, CD74HC243, CD74HCT243
(PDIP, SOIC)
TOP VIEW
OEB
NC
A0 A1 A2 A3
GND
1 2 3 4 5 6 7
V
14
CC
OEA
13
NC
12
B0
11
B1
10
B2
9
B3
8
Description
The Harris CD74HCT242, CD74HC243 and CD74HCT243 silicon-gate CMOS three-state bidirectional inverting and non-inverting buffers are intended for two-wayasynchronous communication between data buses. They have high drive current outputs which enable high-speed operation when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuits, and have speeds comparable to low power Schottky TTL circuits. They can drive 15 LSTTL loads.
The CD74HCT242 is an inverting buffer; the CD74HC243 and CD74HCT243 are non-inverting buffers.
The states of the output enables ( both the direction of flow (A to B, B to A), and the three-state mode.
CC
OEB, OEA) determine
Ordering Information
TEMP. RANGE
PART NUMBER
CD74HC243E -55 to 125 14 Ld PDIP E14.3 CD74HC243M -55 to 125 14 Ld SOIC M14.15 CD74HCT243M -55 to 125 14 Ld SOIC M14.15
NOTES:
1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
2. Wafer or diefor this partnumber is availablewhich meets allelec­trical specifications. Please contact your local sales
(oC) PACKAGE
PKG.
NO.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright
© Harris Corporation 1997
1
File Number 1488.1
Functional Diagrams
CD74HCT242 CD74HC243, CD74HC243
CD74HCT242, CD74HC243, CD74HCT243
3
A0
4
A1
5
A2
6
A3
1
OEB
13
OEA
CONTROL INPUTS
DIRECTION
SELECT LOGIC
11
B0
10
B1
9
B2
8
B3
A0
A1
A2
A3
OEB OEA
3
4
5
6
1
13
DIRECTION
SELECT LOGIC
TRUTH TABLE
HCT242 SERIES HC, HCT243 SERIES
DATA PORT STATUS DATA PORT STATUS
11
B0
10
B1
9
B2
8
B3
OEB OEA An Bn An Bn
HHOIOI
LHZZZZ
HLZZZZ
LLIOIO
NOTE: H = High Voltage Level L = Low Voltage Level I = Input O = Output (Same Level as Input) O = Output (Inversion of Input Level) Z = High Impedance To prev ent e xcess currents in the High Z modes all I/O terminals should be terminated with 10k to 1M resistors.
2
CD74HCT242, CD74HC243, CD74HCT243
Absolute Maximum Ratings Thermal Information
DC Supply Voltage, VCC. . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, I
IK
For VI < -0.5V or VI > VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, I
OK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, I
O
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±35mA
DC Output Source or Sink Current per Output Pin, I
O
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±70mA
Operating Conditions
Temperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, V
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to V
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
3. θJA is measured with the component mounted on an evaluation PC board in free air.
CC
Thermal Resistance (Typical, Note 3) θJA (oC/W)
PDIP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Maximum Junction Temperature. . . . . . . . . . . . . . . . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . .300oC
(SOIC - Lead Tips Only)
CC
DC Electrical Specifications
PARAMETER SYMBOL
HC TYPES
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage CMOS Loads
High Level Output Voltage TTL Loads
Low Level Output Voltage CMOS Loads
V
IH
V
IL
V
OH
V
OL
TEST
CONDITIONS
25oC -40oC TO 85oC -55oC TO 125oC
VCC (V)
- - 2 1.5 - - 1.5 - 1.5 - V
4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V
- - 2 - - 0.5 - 0.5 - 0.5 V
4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V
VIH or
V
-0.02 2 1.9 - - 1.9 - 1.9 - V
IL
-0.02 4.5 4.4 - - 4.4 - 4.4 - V
-0.02 6 5.9 - - 5.9 - 5.9 - V
-6 4.5 3.98 - - 3.84 - 3.7 - V
-7.8 6 5.48 - - 5.34 - 5.2 - V
VIH or
V
0.02 2 - - 0.1 - 0.1 - 0.1 V
IL
0.02 4.5 - - 0.1 - 0.1 - 0.1 V
0.02 6 - - 0.1 - 0.1 - 0.1 V
UNITSVI(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
Low Level Output Voltage TTL Loads
6 4.5 - - 0.26 - 0.33 - 0.4 V
7.8 6 - - 0.26 - 0.33 - 0.4 V
3
CD74HCT242, CD74HC243, CD74HCT243
DC Electrical Specifications (Continued)
TEST
CONDITIONS
25oC -40oC TO 85oC -55oC TO 125oC
PARAMETER SYMBOL
Input Leakage Current
Quiescent Device Current
Three-State Leakage Current
HCT TYPES
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage CMOS Loads
High Level Output Voltage TTL Loads
Low Level Output Voltage CMOS Loads
V
(V)
CC
I
VCC or
I
-6--±0.1 - ±1-±1µA
UNITSVI(V) IO(mA) MIN TYP MAX MIN MAX MIN MAX
GND
I
CC
VCC or
0 6 - - 8 - 80 - 160 µA
GND
I
OZ
V
VIL or
V
IH
IH
- - 4.5 to
-6--±0.5 - ±0.5 - ±10 µA
2-- 2 - 2 - V
5.5
V
IL
- - 4.5 to
- - 0.8 - 0.8 - 0.8 V
5.5
V
OH
VIH or
V
IL
-0.02 4.5 4.4 - - 4.4 - 4.4 - V
-6 4.5 3.98 - - 3.84 - 3.7 - V
V
OL
VIH or
V
IL
0.02 4.5 - - 0.1 - 0.1 - 0.1 V
Low Level Output
6 4.5 - - 0.26 - 0.33 - 0.4 V Voltage TTL Loads
Input Leakage Current
Quiescent Device Current
Additional Quiescent Device Current Per
I
VCC to
I
0 5.5 - - ±0.1 - ±1-±1µA
GND
I
CC
VCC or
0 5.5 - - 8 - 80 - 160 µA
GND
I
CC
V
-2.1
CC
- 4.5 to
5.5
- 100 360 - 450 - 490 µA
Input Pin: 1 Unit Load (Note 4)
Three-State Leakage Current
I
OZ
VIL or
V
IH
- 5.5 - - ±0.5 - ±5.0 - ±10 µA
NOTE:
4. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT UNIT LOADS
An, Bn 1.1
OEA, OEB 0.6
NOTE: Unit Load is ICClimit specified in DC Electrical Specifications table, e.g., 360µA max at 25oC.
4
CD74HCT242, CD74HC243, CD74HCT243
Switching Specifications Input t
, tf = 6ns
r
TEST
PARAMETER SYMBOL
CONDITIONS V
CC
(V)
HC TYPES
Propagation Delay Data to Outputs (HC243)
t
PLH
, t
PHLCL
= 50pF 2 - 90 115 135 ns
4.5 - 18 23 27 ns CL= 15pF 5 7 - - - ns CL = 50pF 6 - 15 20 23 ns
Output High-Z, to High Level to Low Level
t
PZL,tPZHCL
= 50pF 2 - 150 190 225 ns CL = 50pF 4.5 - 30 38 45 ns CL = 15pF 5 12 - - - ns CL = 50pF 6 - 26 33 38 ns
Output High Level, Output Low Level to High-Z
t
PHZ,tPLZCL
= 50pF 2 - 150 190 225 ns CL = 50pF 4.5 - 30 38 45 ns CL = 15pF 5 12 - - - ns CL = 50pF 6 - 26 33 38 ns
Output Transition Times t
TLH
, t
THLCL
= 50pF 2 - 60 75 90 ns
4.5 - 12 15 18 ns 6 - 10 13 15 ns
Input Capacitance C Three-State Output
I
C
O
---1010 10pF
---2020 20pF
Capacitance Power Dissipation
C
PD
- 5 80 - - - pF Capacitance (HC243) (Notes 5, 6)
HCT TYPES
Propagation Delay Data to Outputs (HCT242)
Propagation Delay Data to Outputs (HCT243)
Output High-Z to High Level to Low Level
Output High Level, Output Low Level to High-Z
Output Transition Times t Input Capacitance C Three-State Output
t
t
t
t
PLH
PLH
PZH
PHZ
TLH
, t
PHLCL
, t
PHLCL
, t
PZLCL
, t
PLZCL
, t
THLCL
I
C
O
= 50pF 4.5 - 20 25 30 ns
CL= 15pF 5 8 - - - ns
= 50pF 4.5 - 22 28 33 ns
CL= 15pF 5 9 - - - ns
= 50pF 4.5 - 34 43 51 ns
CL= 15pF 5 14 - - - ns
= 50pF 4.5 - 35 44 53 ns
CL= 15pF 5 14 - - - ns
= 50pF 4.5 - 12 15 18 ns
---1010 10pF
---2020 20pF Capacitance
Power Dissipation Capacitance (Notes 5, 6)
C
PD
HCT242 5 90 - - - pF HCT243 5 91 - - - pF
NOTES:
5. CPD is used to determine the dynamic power consumption, per channel.
6. PD = V
2
fi(CPD + CL) where fi = Input Frequency, fO = Output Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
CC
25oC -40oC TO 85oC -55oCTO125oC
UNITSTYP MAX MAX MAX
5
CD74HCT242, CD74HC243, CD74HCT243
Test Circuits and Waveforms
tr = 6ns tf = 6ns
INPUT
90% 50% 10%
V
CC
GND
tr = 6ns
INPUT
2.7V
1.3V
0.3V
= 6ns
t
f
3V
GND
INVERTING
OUTPUT
t
THL
t
PHL
t
PLH
50%
10%
90%
t
TLH
FIGURE 1. HC AND HCT TRANSITION TIMES AND PROPAGA-
TION DELAY TIMES, COMBINATION LOGIC
6ns 6ns
OUTPUT
DISABLE
OUTPUT LOW
TO OFF
OUTPUT HIGH
TO OFF
50%
t
t
OUTPUTS ENABLED
PLZ
PHZ
10%
90%
90%
10%
t
PZL
t
PZH
OUTPUTS
DISABLED
50%
50%
OUTPUTS ENABLED
FIGURE 3. HCTHREE-STATE PROPAGATION DELAY
WAVEFORM
V
CC
GND
t
INVERTING
OUTPUT
THL
t
PHL
t
PLH
1.3V
10%
90%
t
TLH
FIGURE 2. HCTTRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
0.3
t
t
6ns
PZL
1.3V
PZH
1.3V OUTPUTS
ENABLED
t
r
OUTPUT
DISABLE
OUTPUT LOW
TO OFF
OUTPUT HIGH
TO OFF
t
t
OUTPUTS ENABLED
6ns t
PLZ
PHZ
10%
90%
f
2.7
1.3
OUTPUTS
DISABLED
FIGURE 4. HCTTHREE-STATE PROPAGATION DELAY
WAVEFORM
3V
GND
NOTE: Open drain waveforms t VCC, CL = 50pF.
FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
TIED HIGH
and t
PLZ
OTHER
INPUTS
OR LOW
OUTPUT
DISABLE
PZL
IC WITH
THREE-
STATE
OUTPUT
OUTPUT
= 1k
R
L
C
L
50pF
VCC FOR t GND FOR t
PLZ
PHZ
AND t
AND t
PZL
PZH
are the same as those for three-state shown on the left. The test circuit is Output RL=1kΩto
6
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1998, Texas Instruments Incorporated
Loading...