Texas Instruments CC2520RHDT, CC2520 Datasheet

CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
APPLICATIONS
IEEE 802.15.4 systems
ZigBee® systems
Industrial monitoring and control
Home and building automation
Automatic Meter Reading
Low-power wireless sensor networks
Set-top boxes and remote controls
Consumer electronics
KEY FEATURES
State-of-the-art selectivity/co-existence Adjacent channel rejection: 49 dB Alternate channel rejection: 54 dB
Excellent link budget (103dB) 400 m Line-of-sight range
Extended temp range (-40 to +125°C)
Wide supply range: 1.8 V – 3.8 V
Extensive IEEE 802.15.4 MAC hardware support to offload the microcontroller
AES-128 security module
CC2420 interface compatibility mode
Low Power
RX (receiving frame, -50 dBm) 18.5 mA
TX 33.6 mA @ +5 dBm
TX 25.8 mA @ 0 dBm
<1µA in power down
General
Clock output for single crystal systems
RoHS compliant 5 x 5 mm QFN28 (RHD) package
Radio
IEEE 802.15.4 compliant DSSS baseband modem with 250 kbps data rate
Excellent receiver sensitivity (-98 dBm)
Programmable output power up to +5 dBm
RF frequency range 2394-2507 MHz
Suitable for systems targeting compliance with worldwide radio frequency regulations: ETSI EN 300 328 and EN 300 440 class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan)
Microcontroller Support
Digital RSSI/LQI support
Automatic clear channel assessment for CSMA/CA
Automatic CRC
768 bytes RAM for flexible buffering and security processing
Fully supported MAC security
4 wire SPI
6 configurable IO pins
Interrupt generator
Frame filtering and processing engine
Random number generator
Development Tools
Reference design
IEEE 802.15.4 MAC software
ZigBee® stack software
Fully equipped development kit
Packet sniffer support in hardware
DESCRIPTION The CC2520 is TI's second generation ZigBee® /
QFN28 (RHD) PACKAGE
TOP VIEW
IEEE 802.15.4 RF transceiver for the 2.4 GHz unlicensed ISM band. This chip enables industrial grade applications by offering state-of-the-art selectivity/co-existence, excellent link budget, operation up to 125°C and low voltage operation.
In addition, the CC2520 provides extensive hardware support for frame handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and frame timing information. These features reduce the load on the host controller.
In a typical system, the CC2520 will be used together with a microcontroller and a few additional passive components.
SO
CSn
GPIO5
GPIO4
GPIO3
GPIO2
SCLK
28272625242322
1
2
SI
3
4
CC2520
5
6
7
8
DVDD
DCOUPL
VREG_EN
RESETn
9
1011121314
GPIO1
GPIO0
AVDD5
AVDD_GUARD
XOSC32M_Q2
RBIAS
AVDD4
AVDD3
XOSC32M_Q1
21
NC
20
AVDD1
19
RF_N
18
NC
17
RF_P
16
AVDD2
15
NC
AGND exposed die attached pad
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers threto appear at the end of this datasheet. ZigBee® is a registered trademark owned by ZigBee Alliance, Inc.
Copyright © 2007, Texas Instruments Incorporated
WWW.TI.COM
1
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
TABLE OF CONTENTS
1 Abbreviations ...............................................................................................................................5
2 References................................................................................................................................... 7
3 Features.......................................................................................................................................8
4 Absolute Maximum Ratings ....................................................................................................... 10
5 Electrical Characteristics............................................................................................................ 11
5.1
5.2
5.3
5.4
5.5
5.6
5.6.1
5.7
5.8
5.9
5.10
5.10.1 Low-Current RX Mode Parameters ............................................................................ 19
5.11
5.11.1 Using the Temperature Sensor .................................................................................. 21
6 Crystal Specific Parameters....................................................................................................... 22
6.1
6.2
7 Pinout.........................................................................................................................................23
8 Functional Introduction............................................................................................................... 25
8.1
8.2
8.3
9 Application Circuit ......................................................................................................................29
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10 Serial Peripheral Interface (SPI) ................................................................................................ 33
10.1
10.2
10.3
10.4
10.5
11 GPIO .......................................................................................................................................... 35
11.1
11.2
11.3
11.4
11.5
12 Power Modes ............................................................................................................................. 40
12.1
12.2
Recommended Operating Conditions ............................................................................11
DC Characteristics .........................................................................................................11
Wake-Up and Timing ..................................................................................................... 11
Current Consumptions ...................................................................................................11
Receive Parameters....................................................................................................... 12
Frequency Synthesizer Parameters............................................................................... 12
Transmit Parameters..................................................................................................12
RSSI/CCA Parameters................................................................................................... 13
FREQEST Parameters................................................................................................... 13
Typical Performance Curves.......................................................................................... 14
Low-Current Mode RX.................................................................................................... 19
Optional Temperature Compensation of TX................................................................... 20
Crystal Requirements..................................................................................................... 22
On-chip Crystal Frequency Tuning................................................................................. 22
Integrated 2.4 GHz IEEE 802.15.4 Compliant Radio .....................................................25
Comparison to CC2420.................................................................................................. 25
Block Diagram................................................................................................................ 26
Input / Output Matching.................................................................................................. 29
Bias Resistor .................................................................................................................. 30
Crystal ............................................................................................................................ 30
Digital Voltage Regulator................................................................................................ 30
Power Supply Decoupling and Filtering .........................................................................30
Board Layout Guidelines................................................................................................ 30
Antenna Considerations................................................................................................. 31
Choosing the Most Suitable Interconnection with a Microcontroller............................... 31
Interfacing CC2520 and MSP430F2618 ........................................................................31
CSn ................................................................................................................................ 33
SCLK..............................................................................................................................33
SI....................................................................................................................................33
SO .................................................................................................................................. 34
SPI Timing Requirements ..............................................................................................34
Reset Configuration of GPIO Pins.................................................................................. 35
GPIO as Input ................................................................................................................ 35
GPIO as Output.............................................................................................................. 36
Switching Direction on GPIO.......................................................................................... 36
GPIO Configuration........................................................................................................ 36
Switching Between Power Modes.................................................................................. 40
Power Up Sequence Using RESETn (recommended)...................................................41
2
WWW.TI.COM
12.3
Power Up With SRES .................................................................................................... 41
13 Instruction Set ............................................................................................................................ 43
13.1
Definitions ......................................................................................................................43
13.2
Instruction Descriptions.................................................................................................. 43
13.3
Instruction Set Summary................................................................................................ 51
13.4
Status Byte.....................................................................................................................53
13.5
Command Strobes ......................................................................................................... 53
13.6
Command Strobe Buffer ................................................................................................ 53
14 Exceptions .................................................................................................................................55
14.1
Exceptions on GPIO Pins............................................................................................... 56
14.2
Predefined Exception Channels..................................................................................... 56
14.3
Binding Exceptions to Instructions (command strobes) .................................................57
15 Memory Map .............................................................................................................................. 59
15.1
FREG ............................................................................................................................. 60
15.2
SREG ............................................................................................................................. 60
15.3
TX FIFO .........................................................................................................................60
15.4
RX FIFO .........................................................................................................................60
15.5
MEM...............................................................................................................................60
15.6
Frame Filtering and Source Matching Memory Map ...................................................... 60
16 Frequency and Channel Programming ...................................................................................... 62
17 IEEE 802.15.4-2006 Modulation Format.................................................................................... 63
18 IEEE 802.15.4-2006 Frame Format........................................................................................... 65
18.1
PHY Layer......................................................................................................................65
18.2
MAC Layer .....................................................................................................................65
19 Transmit Mode ........................................................................................................................... 67
19.1
TX Control ......................................................................................................................67
19.2
TX State Timing .............................................................................................................67
19.3
TX FIFO Access............................................................................................................. 67
19.3.1 Retransmission........................................................................................................... 68
19.3.2 Error Conditions .........................................................................................................68
19.4
TX Flow Diagram ........................................................................................................... 69
19.5
Frame Processing .......................................................................................................... 70
19.5.1 Synchronization Header ............................................................................................. 70
19.5.2 Frame Length Field .................................................................................................... 70
19.5.3 Frame Check Sequence............................................................................................. 70
19.6
Exceptions......................................................................................................................71
19.7
Clear Channel Assessment............................................................................................ 71
19.8
Output Power Programming........................................................................................... 71
19.9
Tips And Tricks .............................................................................................................. 72
20 Receive Mode ............................................................................................................................ 73
20.1
RX Control......................................................................................................................73
20.2
RX State Timing ............................................................................................................. 73
20.3
Frame Processing .......................................................................................................... 73
20.3.1 Synchronization Header And Frame Length Fields.................................................... 74
20.3.2 Frame Filtering ........................................................................................................... 74
20.3.3 Source Address Matching .......................................................................................... 77
20.3.4 Frame Check Sequence............................................................................................. 80
20.3.5 Acknowledgement Transmission................................................................................ 81
20.4
RX FIFO Access ............................................................................................................ 82
20.4.1 Using the FIFO and FIFOP Signals............................................................................ 82
20.4.2 Error Conditions .........................................................................................................83
20.5
RSSI...............................................................................................................................83
20.6
Link Quality Indication .................................................................................................... 84
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
CC2520 DATASHEET
SWRS068 – DECEMBER 2007
WWW.TI.COM
3
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
21 Radio Control State Machine .....................................................................................................85
22 Crystal Oscillator........................................................................................................................87
23 External Clock Output ................................................................................................................ 88
24 Random Number Generation.....................................................................................................89
25 Memory Management Instructions............................................................................................. 91
25.1
RXBUFMOV................................................................................................................... 92
25.2
TXBUFCP ...................................................................................................................... 92
25.3
MEMCP..........................................................................................................................92
25.4
MEMCPR ....................................................................................................................... 92
25.5
MEMXCP ....................................................................................................................... 92
26 Security Instructions................................................................................................................... 93
26.1
Decoding of the Flags Field in CC2520.......................................................................... 93
26.2
INC ................................................................................................................................. 94
26.3
ECB................................................................................................................................94
26.4
ECBO ............................................................................................................................. 95
26.5
ECBX .............................................................................................................................95
26.6
CTR / UCTR................................................................................................................... 96
26.7
CBC-MAC ...................................................................................................................... 97
26.8
CCM / UCCM .................................................................................................................97
26.8.1 Inputs to the CCM and UCCM Instructions ................................................................ 97
26.9
Examples from IEEE802.15.4-2006 ............................................................................... 98
26.9.1 Authentication Only Using CCM* ...............................................................................99
26.9.2 Encryption Only Using CCM* ..................................................................................... 99
26.9.3 Combination of Encryption and Authentication Using CCM*.................................... 100
27 Packet Sniffing ......................................................................................................................... 101
28 Registers..................................................................................................................................102
28.1
Register Settings Update ............................................................................................. 103
28.2
Register Access Modes................................................................................................ 103
28.3
Register Descriptions ................................................................................................... 105
29 Datasheet Revision History...................................................................................................... 126
30 Packaging Information .............................................................................................................127
30.1
Mechanical Data .......................................................................................................... 128
4
WWW.TI.COM
1 Abbreviations
AAF Anti Aliasing Filter ACK Acknowledge ADC Analog to Digital Converter ADI Analog-Digital Interface AES Advanced Encryption Standard AGC Automatic Gain Control AM Active Mode ARIB Association of Radio Industries and Businesses BER Bit Error Rate BIST Built In Self Test CBC-MAC Cipher Block Chaining Message Authentication Code CCA Clear Channel Assessment CCM Counter mode + CBC-MAC CDM Charged Device Model CFR Code of Federal Regulations CHP Charge Pump CMOS Complementary Metal Oxide Semiconductor CRC Cyclic Redundancy Check CSMA-CA Carrier Sense Multiple Access with Collision Avoidance CTR Counter mode (encryption) CW Continuous Wave DAC Digital to Analog Converter DC Direct Current DPU Data Processing Unit DSSS Direct Sequence Spread Spectrum ECB Electronic Code Book (mode of AES operation) ESD Electro Static Discharge ESR Equivalent Series Resistance ETSI European Telecommunications Standards Institute EU European Union EVM Error Vector Magnitude FCC Federal Communications Commission FCF Frame Control Field FCS Frame Check Sequence FFCTRL FIFO and Frame Control FIFO First In First Out FS Frequency Synthesizer FSM Finite State Machine GPIO General Purpose Input/Output HBM Human Body Model HSSD High Speed Serial Debug I/O Input / Output I/Q In-phase / Quadrature-phase IEEE Institute of Electrical and Electronics Engineers IF Intermediate Frequency ISM Industrial, Scientific and Medical ITU-T International Telecommunication Union –
kbps kilo bits per second LB Loop Back LF Loop Filter LNA Low-Noise Amplifier LO Local Oscillator LPF Low Pass Filter LPM Low-Power Mode
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
Telecommunication Standardization Sector
WWW.TI.COM
5
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
LQI Link Quality Indication LSB Least Significant Bit / Byte LUT Look-Up Table MAC Medium Access Control MCU Micro Controller Unit MFR MAC Footer MHR MAC Header MIC Message Integrity Code MISO Master In Slave Out MM Machine Model MOSI Master Out Slave In MPDU MAC Protocol Data Unit MSB Most significant Bit / Byte MSDU MAC Service Data Unit NA Not Available NC Not Connected O-QPSK Offset - Quadrature Phase Shift Keying PA Power Amplifier PAN Personal Area Network PCB Printed Circuit Board PD Power Down, Phase Detector PER Packet Error Rate PHR PHY Header PHY Physical Layer PLL Phase Locked Loop PQFP Plastic Quad FlatPack PSDU PHY Service Data Unit PUE Pull-Up Enable QLP Quad Leadless Package RAM Random Access Memory RBW Resolution BandWidth RF Radio Frequency RHD Not actually an acronym. This is the package name used in TI. RISC Reduced Instruction Set Computer RoHS Restriction of Hazardous Substances Directive ROM Read Only Memory RSSI Received Signal Strength Indicator RX Receive SFD Start of Frame Delimiter SHR Synchronization Header SI Serial In SO Serial Out SPI Serial Peripheral Interface S-PQFP Plastic Quad Flat Pack T/R Transmit / Receive TBD To Be Decided / To Be Defined TX Transmit UI User Interface VCO Voltage Controlled Oscillator VGA Variable Gain Amplifier XOSC Crystal Oscillator LR Low Rate NaN Not any Number
6
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
2 References
[1] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Low Rate Wireless Personal Area Networks (LR-WPANs)
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
[2] IEEE std. 802.15.4 - 2006: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Low Rate Wireless Personal Area Networks (LR-WPANs)
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
[3] CC2420 datasheet
http://www.ti.com/lit/pdf/swrs041
[4] NIST FIPS Pub 197: Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, US Department of Commerce/N.I.S.T., November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[5] CC2520 reference designs
http://focus.ti.com/docs/prod/folders/print/cc2520.html#applicationnotes
[6] CC2520 Errata note
http://www.ti.com/lit/pdf/swrz024
[7] CC2520 Product folder
http://focus.ti.com/docs/prod/folders/print/cc2520.html
[8] NIST software package for randomness testing:
http://csrc.nist.gov/rng/
[9] The diehard software package for randomness testing:
http://stat.fsu.edu/~geo/diehard.html
[10] MSP430F2618 Product folder
http://focus.ti.com/docs/prod/folders/print/msp430f2618.html
[11] 2.4 GHz Inverted F Antenna
http://www.ti.com/lit/pdf/swru120
[12] Antenna selection guide
http://www.ti.com/lit/pdf/swra161
WWW.TI.COM
7
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
3 Features
2394-2507MHz transceiver
DSSS transceiver
250kbps data rate, 2 MChip/s chip rate
O-QPSK with half sine pulse shaping modulation
Very low current consumption
RX (receiving frame, -50 dBm): 18.5 mA RX (waiting for frame): 22.3 mA TX (+5 dBm output power): 33.6 mA TX (0 dBm output power): 25.8 mA
Three flexible power modes for reduced power consumption
Low power fully static CMOS design
Very good sensitivity (-98dBm)
High adjacent channel rejection (49 dB)
High alternate channel rejection (54 dB)
On chip VCO, LNA, PA and filters.
Low supply voltage (1.8 - 3.8 V)
Programmable output power up to +5 dBm
I/Q direct conversion transceiver
Small Size
QFN 28 (RHD) package, 5 x 5 mm
Very few external components
o minimized number of passives o Only reference crystal needed
Clock output for other ICs to limit the number of crystals needed in a system
No external filters needed.
Easy and Flexible User Interface
4-wire SPI
Serial clock up to 8 MHz
6 GPIO pins with full flexibility
Interrupt generator
Full control of automatic responses to different events
Embedded packet sniffer mode
CC2420 compatibility mode
Data Processing Unit For Advanced Data Handling
Spacious (768 byte) on-chip RAM allows powerful on-chip frame processing
128 byte transmit data FIFO
128 byte receive data FIFO
Full read and write access to RAM
128 bit AES
IEEE 802.15.4 MAC Hardware Support
Automatic preamble generator
Synchronization word insertion and detection
CRC-16 computation and verification over the MAC payload
Frame filtering
Automatic ACK and setting of the pending-bit
Clear Channel Assessment (CCA)
Energy detection / RSSI
Link Quality Indication (LQI)
Fully automatic MAC security (CTR, CBC-MAC, CCM)
8
WWW.TI.COM
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
Development Tools
See product folder [7]
Suited For Use in Systems That Target Compliance to the Following Standards
IEEE 802.15.4 PHY
ETSI EN 300 328
ETSI EN 300 440 class 2
FCC CFR47 part 15
ARIB STD-T66
CC2520 DATASHEET
SWRS068 – DECEMBER 2007
WWW.TI.COM
9
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
4 Absolute Maximum Ratings
over operating free-air temperature range unless otherwise noted
PARAMETER LIMITS UNIT
Supply voltage
(2)
-0.3 to 3.9 V Voltage on any digital pin -0.3 to VDD + 0.3 (Max 3.9) V Voltage on 1.8 V pins -0.3 to 2.0 V Input RF level +10 dBm Storage temperature range -50 to 150 °C Reflow soldering temperature 260 °C ESD HBM 800 V ESD CDM 500 V ESD MM 100 V
1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2) All voltage values are with respect to network ground terminal.
This device has limited built-in gate protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
(1)
10
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
5 Electrical Characteristics
Note that these characteristics are only valid when using the recommended register settings presented in section 28.1.
5.1 Recommended Operating Conditions PARAMETER MIN NOM MAX UNIT
Operating supply voltage 1.8 3.8 V Ambient temperature
5.2 DC Characteristics
T
=25°C, VDD=3.0 V, fc=2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
Logic "1" input voltage Valid for all pads (both GPIOs and fixed-input pads) 80% of VDD
Logic "0" input voltage Valid for all pads (both GPIOs and fixed-input pads) 30% of VDD
Input pad hysteresis Only for fixed-input pads like RESET_N, CSn etc 0.5 V
Logic "0" input current Input equals 0V -25 25 nA
Logic "1" input current Input equals VDD -25 25 nA
-40 125
°C

5.3 Wake-Up and Timing

T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER COMMENTS MIN TYP MAX UNIT
LPM2 Æ AM time Internal regulator startup time + XOSC startup time 0.3 ms
LPM1 Æ AM time XOSC startup time 0.2 ms
AM Æ RX time 192
AM Æ TX time 192
RX/TX turnaround time 192
TX/RX turnaround time 192
Radio bit rate 250 kbps
Radio chip rate 2.0 MChip/s
µs
µs
µs
µs
5.4 Current Consumptions
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
Wait for sync 22.3 24.8 mA
Receive current
Transmit current
Active Mode current
Wait for sync, Low-current RX setting 18.8 mA
Receving frame, -50 dBm input level 18.5 mA
0 dBm setting 25.8 28.8 mA
+5 dBm setting 33.6 37.2 mA
XOSC on, digital regulator on. 1.6 1.9 mA
TA=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz 26.3 mA
T
=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz 37.5 mA
A
T
=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz 2.6 mA
A
WWW.TI.COM
11
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
PARAMETER CONDITIONS MIN TYP MAX UNIT
LPM1 current
LPM2 current
XOSC off, digital regulator on. State retention. 175 250
T
=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz 1000
A
XOSC off, digital regulator off. No state retention. 30 120 nA
T
=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz 4.5
A
µA
µA
µA
5.5 Receive Parameters
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
Receiver sensitivity
Saturation [2] requires -20 dBm 6 dBm
[2] requires -85 dBm -99 -98 -95 dBm
=-40 to 125°C, VDD=1.8 to 3.8V, fc =2394 to 2507 MHz -88 dBm
T
A
Wanted signal 3 dB above the sensitivity level, 802.15.4 modulated interferer at 802.15.4 channels:
±5 MHz from wanted signal. [2] requires 0 dB 49 dB
Interferer Rejection
±10 MHz from wanted signal. [2] requires 30 dB 54 dB
±20MHz or above. Wanted signal at -82dBm. 55 dB
Maximum Spurious Emission
Conducted measurement in a 50 single ended load. Complies with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66
Frequency error tolerance
30 – 1000 MHz < -80 dBm
1 – 12.75 GHz -56 dBm
Input level is 3 dB above sensitivity level. +/-400 kHz
IIP3 -24 dBm

5.6 Frequency Synthesizer Parameters

T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
Phase noise. Unmodulated carrier
RF Frequency range
At ±1 MHz offset from carrier -111 dBc/Hz
At ±2 MHz offset from carrier -118 dBc/Hz
At ±5 MHz offset from carrier -128 dBc/Hz
Programmable in 1 MHz steps. Use 5 MHz steps for compliance
2394 2507 MHz
with [2].
5.6.1 Transmit Parameters
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
Output power
Note: to reduce the output power variation over temperature, it is suggested that different settings are used at different temperatures. The on-chip temperature sensor can be used for this purpose. Please see section 5.11 for more information.
12
0 dBm setting -3 1 5 dBm
+5 dBm setting 2 5 7 dBm
TA=-40 to 85°C, VDD=2.0 to 3.8 V, fc =2394 to 2507 MHz -3 8 dBm
TA=-40 to 85°C , VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz -4 8 dBm
TA=-40 to 125°C, VDD=2.0 to 3.8 V, fc =2394 to 2507 MHz -6 8 dBm
TA=-40 to 125°C, VDD=1.8 to 3.8 V, fc =2394 to 2507 MHz -9 8 dBm
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
PARAMETER CONDITIONS MIN TYP MAX UNIT
Largest spurious emission at maximum output power.
Texas Instruments CC2520 EM reference design complies with EN 300 328, EN 300 440, FCC CFR47 Part 15 and ARIB STDT-66.
Transmit on 2480 MHz under FCC at +5 dBm is supported by duty-cycling, or by reducing output power.
The peak conducted spurious emission might violate ETSI and FCC restricted band limits at frequencies below 1GHz. All radiated spurious emissions are within the limits of ETSI/FCC/ARIB. Applications that must pass conducted requirements are suggested to use a simple 50 high pass filter between matching network and RF connector.
25 MHz – 1 GHz (outside restricted bands) -40 dBm
25 MHz – 1 GHz (within FCC restricted bands) -53 dBm
47-74, 87.5-118, 174-230, 470-862 MHz (ETSI restricted bands) -42 dBm
1800 MHz-1900 MHz (ETSI restricted band) -56 dBm
5150 MHz-5300 MHz (ETSI restricted band) -54 dBm
At 2483.5 MHz and above (FCC restricted band)
fc=2480 MHz, +5 dBm -37 dBm
fc=2480 MHz, 0 dBm -41 dBm
At 2·RF and 3·RF (FCC restricted band) -54 dBm
Error Vector Magnitude (EVM)
+5 dBm setting. fc =IEEE 802.15.4 channels 6 %
0 dBm setting. f
=IEEE 802.15.4 channels 2 %
c
5.7 RSSI/CCA Parameters
[2] requires max. 35%. Measured as defined by [2].
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER COMMENTS MIN TYP MAX UNIT
RSSI range 100 dB
RSSI/CCA accuracy
RSSI/CCA offset Real RSSI = Register value - offset
LSB value
+/-4 dB
76 dB
1 dB
5.8 FREQEST Parameters
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER COMMENTS MIN TYP MAX UNIT
FREQEST range +/-300 kHz
FREQEST accuracy +/-10 kHz
FREQEST offset Real frequency offset = FREQEST value - offset 64 kHz
LSB value 7.8 kHz
WWW.TI.COM
13
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
5.9 Typical Performance Curves
T
=25°C, VDD=3.0 V, fc =2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
-92
SENSITIVITY VS TEMPERATURE
-90.0
SENSITIVITY VS EVM
-94
-96
SENSITIVITY (dBm)
-98
-100
-40 10 60 110
TEMPERATURE (ºC)
SENSITIVITY VS SUPPLY VOLTAGE
-90
-92
-94
-96
SENSITIVITY (dBm)
-98
-100
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
-92.0
-94.0
-96.0
SENSITIVITY (dBm)
-98.0
-100.0 0 % 10 % 20 % 30 % 40 % 50 % 60 %
ERROR VECTOR MAGNITUDE (% RMS)
SENSITIVITY VS CARRIER FREQUENCY OFFSET
0.0
-40.0
-80.0
SENSITIVITY (dBm)
-120.0
-1000 -500 0 500 1000
FREQUENCY OFFSET (kHz)
-94
-96
-98
SENSITIVITY (dBm)
-100
SENSITIVITY VS CARRIER FREQUENCY
2394 2414 2434 2454 2474 2494
FREQUENCY (MHz)
OUTPUT POWER VS TEMPERATURE
8
4
0
-4
OUTPUT POWER (dBm)
-8
-40 10 60 110
5dBm (0xF7)
0dBm (0x32)
TEMPERATURE (ºC)
14
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
OUTPUT POWER VS SUPPLY VOLTAGE
6
5dBm (0xF7)
4
2
0dBm (0x32)
0
OUTPUT POWER (dBm)
-2
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
TX (5dBm setting, 0xF7) CURRENT VS TEMPERATURE
35
34
33
CURRENT (mA)
AM CURRENT VS TEMPERATURE
1.9
1.8
1.7
CURRENT (mA)
1.6
1.5
-40 10 60 110
TEMPERATURE (ºC)
LPM1 CURRENT VS TEMPERATURE
400
300
200
CURRENT (uA)
100
32
-40 10 60 110
TEMPERATURE (ºC)
RX CURRENT VS TEMPERATURE
25
24
23
CURRENT (mA)
22
21
-40 10 60 110
TEMPERATURE (ºC)
0
-40 10 60 110
TEMPERATURE (ºC)
LPM2 CURRENT VS TEMPERATURE
2
1.6
1.2
0.8
CURRENT (uA)
0.4
0
-40 10 60 110
TEMPERATURE (ºC)
WWW.TI.COM
15
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
TX (+5dBm SETTING, 0xF7) CURRENT VS SUPPLY VOLTAGE
33.5
33
32.5
CURRENT (mA)
32
31.5
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
RX CURRENT VS SUPPLY VOLTAGE
22.8
22.4
22
CURRENT (mA)
21.6
LPM1 CURRENT VS SUPPLY VOLTAGE
300
200
100
CURRENT (uA)
0
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
LPM2 CURRENT VS SUPPLY VOLTAGE
100
70
40
CURRENT (nA)
21.2
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
AM CURRENT VS SUPPLY VOLTAGE
1.8
1.7
1.6
CURRENT (uA)
1.5
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
10
1.8 2.3 2.8 3.3 3.8
VOLTAGE (V)
RX CURRENT VS INPUT LEVEL
24
21
18
CURRENT (mA)
15
-100 -80 -60 -40 -20 0
INPUT LEVEL (dBm)
16
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
INTERFERER REJECTION (802.15.4 INTERFERER) VS
INTERFERER FREQUENCY. CARRIER AT -82dBm/2440MHz.
75
50
25
0
INTERFERER REJECTION (dB)
-25 2400 2420 2440 2460 2480
INTERFERER FREQUENCY (MHz)
ADJACENT CHANNEL REJECTION (802.15.4 INTERFERER)
55
50
45
ACR (dB)
40
35
30
-95 -90 -85 -80 -75 -70 -65 -60
VS CARRIER LEVEL
CARRIER LEVEL (dBm)
INTERFERER REJECTION VS 802.11g
CARRIER AT -82dBm/2440MHz
80
60
40
20
INTERFERER REJECTION (dB)
0 2412 2422 2432 2442 2452 2462 2472 2482
INTERFERER FREQUENCY (MHz)
INTERFERER REJECTION VS 802.11g
CARRIER AT -82dBm/2480MHz
80
60
40
20
INTERFERER REJECTION (dB)
0
2412 2422 2432 2442 2452 2462 2472 2482
INTERFERER FREQUENCY (MHz)
INTERFERER REJECTION VS 802.11g
CARRIER AT -82dBm/2405MHz
80
60
40
20
INTERFERER REJECTION (dB)
0
2412 2422 2432 2442 2452 2462 2472 2482
INTERFERER FREQUENCY (MHz)
FALSE PACKET RATE AND SENSITIVITY
vs CORRELATION THRESHOLD
1000
.
100
10
1
FALSE PACKETS PER MIN
0.1 Sensitivity
0.01 0x0B 0x0F 0x13 0x17
False packets/min
CORRELATION THRESHOLD (MDMCTRL1)
-91
-92
-93
-94
-95
-96
-97
-98
SENSITIVITY (dBm)
WWW.TI.COM
17
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
500
400
300
200
100
FREQEST (kHz)
-100
-200
-300
FREQEST VS ACTUAL OFFSET FREQUENCY
0
-500 -300 -100 100 300 500
ACTUAL FREQUENCY OFFSET (kHz)
OFFSET CORRECTED RSSI VS INPUT LEVEL
0
-20
-40
-60
-80
-100
OFFSET CORRECTED RSSI (dBm)
-120
-100 -80 -60 -40 -20 0
INPUT LEVEL (dBm)
TEMPERATURE SENSOR OUTPUT VS SUPPLY VOLTAGE
0.820
0.810
0.800
0.790
TEMPERATURE SENSOR (V)
0.780
1.8 2.3 2.8 3.3 3.8
112
108
104
100
96
CORRELATION VALUE (decimal)
92
0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 %
(TEMPERATURE = 25ºC)
VOLTAGE (V)
CORRELATION VALUE VS ERROR VECTOR
MAGNITUDE OF INPUT SIGNAL
EVM (% RMS)
TEMPERATURE SENSOR OUTPUT VS TEMPERATURE
1.100
1.000
0.900
0.800
0.700
TEMP SENSOR VOLTAGE (V)
0.600
-40 10 60 110
(SUPPLY VOLTAGE = 3V)
TEMPERATURE (ºC)
18
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
5.10 Low-Current Mode RX
Applications that spend more time waiting for an input signal than actually receiving it, might benefit from using
INTERFERER REJECTION (802.15.4 INTERFERER) VS
CARRIER LEVEL WHEN USING RX_LOCUR
60
the special low-current RX mode. This mode draws less current at the expense of sensitivity.
40
Note that when using this mode, neither RSSI nor CCA is valid. This means that these settings can not be used in conjunction with STXONCCA, for instance. Also note
20
that the interferer rejection will drop at stronger input signal levels compared to when using the regular recommended settings.
INTERFERER REJECTION (dB)
0
-87 -78 -69 -60 -51
CARRIER LEVEL (dBm)
Important: The low-current RX mode is only valid from -40 to 85ºC !
5.10.1 Low-Current RX Mode Parameters
T
=25°C, VDD=3.0 V, fc=2440 MHz if nothing else stated. All parameters measured on Texas Instruments’ CC2520 EM 2.1 reference design with 50 load.
A
PARAMETER CONDITIONS MIN TYP MAX UNIT
RX current Wait for sync 18.8 mA
Sensitivity [2] requires -85 dBm -90 dBm
Interferer Rejection
Wanted signal 3 dB above the sensitivity level, 802.15.4 modulated interferer at 802.15.4 channels:
±5 MHz from wanted signal. [2] requires 0 dB 52 dB
±10 MHz from wanted signal. [2] requires 30 dB 54 dB
±20MHz or above. 55 dB
Table 1: Low-current RX mode. Use in addition to regular recommended settings.
Register Setting (hex) Comment
RXCTRL 33 Reduces sensitivity and current consumption
FSCTRL 12 Reduces current consumption and valid temperature range
AGCCTRL2 EB Reduces sensitivity and current consumption
WWW.TI.COM
19
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
5.11 Optional Temperature Compensation of TX
Using the on-chip temperature sensor (or any other sensor), it is possible to adapt the settings to the actual temperature. This will reduce the variation in output power over temperature, which in the range -40ºC to 125ºC can be significant.
For this purpose, a TX setting only suited for high-temperature operation has been found (F7125deg). This setting should only be used above 70 degrees, but will significantly reduce the drop in output power at high temperatures.
Table 2: F7125deg setting, only suited for high temperature operation (only changes from
recommended settings shown)
Register Setting (hex) Comment
TXCTRL 94 Increased output power at high temperatures.
FSCTRL 7B Increased output power at high temperatures.
Table 3: Suggested TXPOWER register settings for different temperatures
Temperature -40 -30 -20 -10 10 30 50 70 90 110 125 ºC
Recommended Setting
Typical Output Power
13 13 AB AB F2 F7 F7 F7125deg F7125deg F7125deg F7125deg -
3.6 3.3 4.3 4.1 4.2 4.3 3.5 3.6 2.7 1.9 1.1 dBm
TYPICAL OUTPUT POWER WITH AND WITHOUT
8.0
4.0
With compensation
0.0
OUTPUT POWER (dBm)
-4.0
-40 10 60 110
TEMPERATURE COMPENSATION
Without compensation (+5dBm setting)
TEMPERATURE (ºC)
OUTPUT POWER (dBm)
MINIMUM OUTPUT POWER WITH AND WITHOUT
8.0
4.0
0.0
-4.0
-8.0
-12.0
-40 10 60 110
TEMPERATURE COMPENSATION
With compensation
TEMPERATURE (ºC)
Without compensation (+5dBm setting)
20
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
5.11.1 Using the Temperature Sensor
The on-chip temperature sensor can be accessed via the GPIO0 and GPIO1 pins by following this procedure:
Configure GPIO0 and GPIO1 as inputs by writing 0x80 to the GPIOCTRL0 and GPIOCTRL1 registers.
Enable analog output functionality for these two pins by setting GPIOCTRL.GPIO_ACTRL=’1’.
Select temperature sensor output by writing 0x01 to the ATEST register. This will make GPIO1 output
GND and GPIO0 will output a voltage proportional to the temperature.
Use an ADC in the microcontroller to measure the output voltage on GPIO0 and then calculate the temperature.
The output from the temperature sensor is shown in graph form in section 5.9, but as a basis for calculating the temperature, the following numbers can be used:
Tc=-40 – 125°C, VDD=1.8 – 3.8 V
Parameter Min Typ Max Unit
Temp sensor voltage at 25°C 0.8 V
Temp. sens. output vs temperature 25 mV/10°C
Temp. sens. output vs supply voltage 6 mV/V
Temp. sens accuracy no calibration (at fixed voltage) +/-12 °C
Temp, sens. accuracy with 1-point calibration (at fixed voltage) +/-1 °C
WWW.TI.COM
21
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007

6 Crystal Specific Parameters

6.1 Crystal Requirements
PARAMETER CONDITIONS MIN TYP MAX UNIT
Crystal frequency 32 MHz
Crystal frequency accuracy requirement
ESR 60 Ohm
C0 7 pF
CL 16 pF

6.2 On-chip Crystal Frequency Tuning

PARAMETER CONDITIONS MIN TYP MAX UNIT
Crystal tuning range (C
Crystal tuning step size
Crystal tuning drift In % of applied tuning
Start-up time
Crystal tuning step size
Crystal tuning range
Start-up time
Crystal tuning step size
Crystal tuning range
) Only adding capacitance is possible
tune
CRYSTAL TUNING USING CC2520 EM 2.1 REFERENCE DESIGN (NX3225DA, CL = 16 pF) :
CRYSTAL TUNING USING OTHER CRYSTALS, ALL NUMBERS ARE ESTIMATES :
Including initial tolerance, aging and temperature dependency, as specified by [2]. Can be relaxed using on-chip crystal tuning (see below).
- 40
40 ppm
7 pF
0.4 pF
+/-10 %
0.2 ms
NDK crystal NX3225DA, C
=16 pF
L
3 ppm
-45 ppm
0.2 ms
NDK crystal NX4025DA, C
=13 pF
L
8 ppm
-120 ppm
Start-up time
Crystal tuning step size
Crystal tuning range
NDK crystal NX5032SA, C
=10 pF
L
See section 22 for further details on using the crystal oscillator.
0.1 ms
10 ppm
-160 ppm
22
WWW.TI.COM
7 Pinout
SO
SI
CSn
GPIO5
GPIO4
GPIO3
GPIO2
1
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
SCLK
DCOUPL
VREG_EN
RESETn
AVDD_GUARD
RBIAS
AVDD4
28
27
26
25
24
23
22
21
NC
20
14
19
18
17
16
15
AVDD1
RF_N
NC
RF_P
AVDD2
NC
2
3
4
CC2520
5
6
7
8
9
10
11
12
13
AGND
DVDD
GPIO1
GPIO0
AVDD5
XOSC32M_Q2
XOSC32M_Q1
exposed die attached pad
AVDD3
Figure 1: Pinout of CC2520 (top view)
Table 4: CC2520 Pinout
Signal Pin # Type Description
SPI
SCLK 28 I SPI interface: Serial Clock. Maximum 8 MHz
SO 1 O SPI interface: Serial Out
SI 2 I SPI interface: Serial In
CSn 3 I SPI interface: Chip Select, active low
General Purpose digital I/O
GPIO0 10 IO General purpose digital I/O
GPIO1 9 IO General purpose digital I/O
GPIO2 7 IO General purpose digital I/O
GPIO3 6 IO General purpose digital I/O
GPIO4 5 IO General purpose digital I/O
GPIO5 4 IO General purpose digital I/O
Misc
RESETn 25 I External reset pin, active low
VREG_EN 26 I When high, digital voltage regulator is active. NC 15,
18, 21
Not Connected.
WWW.TI.COM
23
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
Signal Pin # Type Description
RBIAS 23 Analog IO
RF_N 19 RF IO Negative RF input signal to LNA in receive mode
RF_P 17 RF IO Positive RF input signal to LNA in receive mode
XOSC32M_Q1 13 Analog IO Crystal oscillator pin 1
XOSC32M_Q2 12 Analog IO Crystal oscillator pin 2
AVDD 11,
AVDD_GUARD 24 Power
DCOUPL 27 Power
DVDD 8 Power
AGND Die
14, 16, 20, 22
pad
Power (Analog)
(Analog)
(Digital)
O
(Digital)
Ground
(Analog)
Analog
External precision bias resistor for reference current. 56 k, ±1%
Negative RF output signal from PA in transmit mode
Positive RF output signal from PA in transmit mode
Power/ground
1.8 V to 3.8 V analog power supply connections
Power supply connection for digital noise isolation and digital voltage regulator.
1.6 V to 2.0 V digital power supply output for decoupling. Note: this pin can not be used to supply any external devices.
1.8 V to 3.8 V digital power supply for digital pads.
24
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
8 Functional Introduction

8.1 Integrated 2.4 GHz IEEE 802.15.4 Compliant Radio

CC2520 features a Direct Conversion Transceiver operating in the 2.4 GHz band with excellent receiver sensitivity and robustness to interferers. The CC2520 radio complies with the IEEE 802.15.4 PHY specification. The radio has 250 kbps data rate, 2 Mchip/s chip rate, and is suitable for systems targeting compliance with worldwide radio frequency regulations covered by ETSI EN 300 328 and EN 300 440 class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan).

8.2 Comparison to CC2420

CC2520 represents significant improvement over the CC2420 features and performance. A comparison is given in the table below.
Table 5: Comparison of CC2420 and CC2520
Feature CC2420 CC2520
Standard IEEE 802.15.4-2003 IEEE 802.15.4-2006
Maximum output power 0 dB +5 dB
Typical sensitivity -95 dBm -98 dBm
General clock output No Yes, configurable frequency 1-16MHz
User interface Command strobes and configuration
registers. All user control goes through the SPI.
Register access Possible without crystal oscillator running. Only possible when crystal oscillator is
Digital inputs No Schmitt triggers Schmitt triggers on all digital inputs.
Digital outputs Fixed configuration Highly flexible and configurable
Start up Manual start of XOSC XOSC starts automatically after reset (by
Crystal frequency 16 MHz 32 MHz
Packet sniffing No hardware support Hardware support for non-intrusive sniffing
Maximum SPI clock speed 10 MHz 8 MHz
RAM size 364 byte 768 byte
Operating voltage 2.1 – 3.6 V 1.8 – 3.8 V
Maximum operating temperature 85°C 125°C
Security Limited flexibility Highly flexible security instructions. More
Package QLP-48, 7x7 mm QFN 28 (RHD), 5x5 mm
RF frequency range 2400-2483.5 MHz 2394-2507 MHz
Instruction set (which includes the command strobes as a subset) and configuration registers. Command strobes may be triggered by GPIO pins, which gives excellent timing control. Improved status information.
running.
reset_n pin). Manual start of XOSC after SRES instruction.
of both transmitted and received frames.
RAM available allows more flexible processing.
WWW.TI.COM
25
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
8.3 Block Diagram
SO
SI
CSn
GPIO5
GPIO4
GPIO3
GPIO2
SCLK
SPI
Instruction
decoder
Exception
controller
IO
Bus controller
DCOUPL
Vreg
Frame
filtering and
source
matching
AES
DPU
RAM
VREG_EN
RX MIX
AGC
ADC
AAF
RESETn
Clock/
reset
Demod
ADI
ADC
ADI
PS
FS
SynthesizerFSM
Modulator
DAC
TX MIX
RBIAS
BIAS
RF_core
DAC
LPF
GPIO1
GPIO0
XOSC
XOSC32M_Q2
Atest
LNA
REF
DIV
XOSC32M_Q1
PA
RF_N
RF_P
Figure 2: CC2520 block diagram
CC2520 is typically controlled by a microcontroller connected to the SPI and some GPIOs. The microcontroller will send instructions to CC2520 and it is the responsibility of the instruction decoder to
execute the instructions or pass them on to other modules.
The execution of an instruction or external events (e.g. reception of a frame) may result in one or more exceptions. The exceptions provide a very flexible mechanism for automating tasks. They can for instance be used to trigger execution of other instructions or they can be routed out to GPIO pins and used as
interrupt signals to the microcontroller. The exception controller is responsible for handling of the
exceptions.
26
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
The microcontroller will typically be connected to one or more of the GPIO pins. The function of each pin is
independently controlled by the IO module based on register settings. It is possible to observe a large
number of internal signals on the GPIO pins. The GPIO pins can also be configured as inputs and used to trigger the execution of certain instructions. This would typically be used when the microcontroller needs to precisely control the timing of an instruction.
The RAM module contains memory which is used for receive and transmit FIFOs (in fixed address ranges)
and temporary storage for other data. There are separate instructions for general memory access and FIFO access.
The data processing unit (DPU) is responsible for execution of the more advanced instructions. The DPU
includes an AES core, which is used while executing the security instructions. Memory management (copying, incrementing etc.) is also performed by the DPU.
The Clock/Reset module generates the internal clocks and reset signals. The RF core contains several submodules that support and control the analog radio modules. The FSM submodule controls the RF transceiver state, the transmitter and receiver FIFOs and most of the
dynamically controlled analog signals such as power up / down of analog modules. The FSM is used to provide the correct sequencing of events (such as performing an FS calibration before enabling the receiver). Also, it provides step by step processing of incoming frames from the demodulator: reading the frame length, counting the number of bytes received, checks the FCS, and finally, optionally handles automatic transmission of ACK frames after successful frame reception. It performs similar tasks in TX including performing an optional CCA before transmission and automatically going to RX after the end of transmission to receive an ACK frame. Finally, the FSM controls the transfer of data between modulator/demodulator and the TXFIFO/RXFIFO in RAM.
The modulator transforms raw data into I/Q signals to the transmitter DAC. This is done in compliance with
the IEEE 802.15.4 standard.
The demodulator is responsible for retrieving the sent data from the received signal. The amplitude information from the demodulator is used by the automatic gain control (AGC). The AGC
adjusts the gain of the analog LNA so that the signal level within the receiver is approximately constant..
The frame filtering and source matching supports the FSM in RF_core by performing all operations
needed in order to do frame filtering and source address matching, as defined by IEEE 802.15.4.
The xosc module interfaces the crystal which is connected to the XOSC32M_Q1 and XOSC32M_Q2 pins.
The xosc module generates a clock for the digital part and RF system, and implements the programmable crystal frequency tuning.
The BIAS module generates voltage and current references. It relies on a high precision (1%) 56k external
resistor which is shown in the application circuit in Figure 3.
The TX DACs convert the digital baseband signal to analog signals. After LPF the signal is fed to the TXMIX module, which is an up-converting complex mixer. The PA amplifies the RF signal up to a maximum of ~5dBm during TX. The LNA amplifies the received RF signal. The gain is controlled by the digital AGC module so that optimum
sensitivity and interferer rejection is achieved.
The RXMIX module is a complex down-mixer that converts the RF signal to a baseband signal. A passive anti-aliasing filter (AAF) low pass filters the signal after down mixing. The low pass filtered I and Q signals and digitized by the ADC.
WWW.TI.COM
27
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
The frequency synthesizer (FS) generates the carrier wave for the RF signal. The voltage regulator (Vreg) provides a 1.8V supply voltage to the digital core. It contains a current limiter,
which is enabled for currents above ~32mA.
28
WWW.TI.COM
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
9 Application Circuit
Very few external components are required for the operation of CC2520. A typical application circuit is shown in Figure 4. Note that it does not show how the board layout should be done. The board layout will greatly influence the RF performance of CC2520.
This section is meant as an introduction only. For further details, see the reference design, which includes complete board layouts and bill of materials with manufacturer and part numbers. The reference design can be downloaded from the CC2520 product folder [7].
Note that decoupling capacitors are not shown in the figure below. See the reference design for complete bill of materials.
28
27
26
25
24
23
22
SCLK
DCOUPL
VREG_EN
RESETn
RBIAS
AVDD_GUARD
AVDD4
Digital interface
DVDD
GPIO1
GPIO0
AVDD5
XOSC32M_Q2
XOSC32M_Q1
8
9
10
11
12
AVDD3
13
14
Figure 3: Typical application circuit with transmission line balun for single-ended operation
See the antenna selection guide [12] for further details on other compact and low-cost alternatives.

9.1 Input / Output Matching

The RF input/output is high impedance and differential.
When using an unbalanced antenna such as a monopole, a balun should be used in order to optimize performance. The balun can be implemented using low-cost discrete inductors and capacitors only or in combination with transmission lines replacing the discrete inductors.
Figure 4 shows the balun implemented in a two-layer reference design. It consists of three transmission lines (L1, L2 and L3) and the discrete components C191, C171, C192, C173 and C174. The circuit will present the optimum RF termination to CC2520
with a 50 load on the antenna connection.
WWW.TI.COM
29
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
C191C171
CC2520
C172
C192
Figure 4: Actual board layout of the RF section of the reference design (rev 2.1).
SMA
connector
R201
PCB
antenna
C173 C174
9.2 Bias Resistor
The bias resistor R231 is used to set an accurate bias current. A high precision (±1%) 56k resistor should be used.
9.3 Crystal
An external 32MHz crystal with two loading capacitors (C121 and C131) is used for the crystal oscillator.
It is possible to feed a single-ended signal to the XOSC32M_Q1 pin and thus not use a crystal.

9.4 Digital Voltage Regulator

The on chip voltage regulator supplies 1.8 V to the digital part of CC2520. C271 is a decoupling capacitor for the voltage regulator. Note that this should not be used to provide power to other IC’s.

9.5 Power Supply Decoupling and Filtering

Proper power supply decoupling must be used for optimum performance. This is shown as a lumped capacitor C1 in Figure 4. The placement and size of the decoupling capacitors and the power supply filtering are very important to achieve the best performance in an application. TI provides a compact reference design that should be followed very closely.

9.6 Board Layout Guidelines

It is highly recommended to copy the board layout from the reference design [5].
It is recommended to use star topology for the power supplies to CC2520.
The power supply decoupling capacitor C1 is a lumped component. On the actual board layout
there should be separate decoupling capacitors as close to each of the power pins as possible.
The balun is highly layout sensitive. The inductors in Figure 4 are actually transmission lines embedded in the PCB and their values must be adapted according to the board layout. The values of the capacitors C192, C172, C173 and C174 must also be adapted to the actual board layout.
The GPIO pins can be configured to use internal pull-up resistors. They are not enabled after a reset or in LPM2. Remember to take the default GPIO configuration into consideration when connecting these signals, because there will be some time before the MCU is able to change the configuration. In LPM2 GPIO5 (which is configured as an input) should be connected to either
30
WWW.TI.COM
Loading...
+ 104 hidden pages