Texas instruments AM1705 ADVANCE INFORMATION

ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
AM1705 ARM Microprocessor
Check for Samples: AM1705

1 AM1705 ARM Microprocessor

123
• Highlights – 375/456-MHz ARM926EJ-S™ RISC Core – ARM9 Memory Architecture – Programmable Real-Time Unit Subsystem – Enhanced Direct-Memory-Access Controller
3 (EDMA3) • Two External Memory Interfaces: – Two External Memory Interfaces – EMIFA – Three Configurable 16550 type UART NOR (8-Bit-Wide Data)
Modules – Two Serial Peripheral Interfaces (SPI) – Multimedia Card (MMC)/Secure Digital (SD) Space
Card Interface with Secure Data I/O (SDIO) – Two Master/Slave Inter-Integrated Circuit – USB 2.0 OTG Port With Integrated PHY – Two Multichannel Audio Serial Ports – 10/100 Mb/s Ethernet MAC (EMAC) – One 64-Bit General-Purpose Timer UART0 only – One 64-bit General-Purpose/Watchdog Timer • Two Serial Peripheral Interfaces (SPI) Each – Three Enhanced Pulse Width Modulators – Three 32-Bit Enhanced Capture Modules
• Applications – Industrial Automation – Home Automation – Test and Measurement – Portable Data Terminals – Educational Consoles – Power Protection Systems
• 375/456-MHz ARM926EJ-S™ RISC Core – 32-Bit and 16-Bit (Thumb®) Instructions – Single Cycle MAC – ARM®Jazelle®Technology – EmbeddedICE-RT™ for Real-Time Debug
• ARM9 Memory Architecture – 16K-Byte Instruction Cache – 16K-Byte Data Cache – 8K-Byte RAM (Vector Table) – 64K-Byte ROM
• Enhanced Direct-Memory-Access Controller 3 (EDMA3):
– 2 Transfer Controllers
– 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size
• 128K-Byte RAM Memory
• 3.3V LVCMOS IOs (except for USB interface)
– EMIFB
16-Bit SDRAM With 256MB Address
• Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – 16-byte FIFO – 16x or 13x Oversampling Option – Autoflow control signals (CTS, RTS) on
With One Chip-Select
• Programmable Real-Time Unit Subsystem (PRUSS)
– Two Independent Programmable Realtime
Unit (PRU) Cores
32-Bit Load/Store RISC architecture
4K Byte instruction RAM per core
512 Bytes data RAM per core
PRU Subsystem (PRUSS) can be disabled via software to save power
– Standard power management mechanism
Clock gating
Entire subsystem under a single PSC clock gating domain
– Dedicated interrupt controller – Dedicated switched central resource
• Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO)
• Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
• USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 Full-Speed Client – USB 2.0 Full-/Low-Speed Host
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited. 3ARM, Jazelle are registered trademarks of ARM Limited.
ADVANCE INFORMATION concerns new products in the sampling or preproduction phaseof development. Characteristic dataand other specifications are subjectto change without notice.
Copyright © 2010, Texas Instruments Incorporated
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
– End Point 0 (Control) – 6 Single Edge, 6 Dual Edge Symmetric or 3 – End Points 1,2,3,4 (Control, Bulk, Interrupt or
Dual Edge Asymmetric Outputs
ISOC) Rx and Tx – Dead-Band Generation
• Two Multichannel Audio Serial Ports: – PWM Chopping by High-Frequency Carrier – Six Clock Zones and 28 Serial Data Pins – Trip Zone Input – Supports TDM, I2S, and Similar Formats • Three 32-Bit Enhanced Capture Modules – FIFO buffers for Transmit and Receive
• 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module
• One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
• One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
• Three Enhanced Pulse Width Modulators (eHRPWM):
– Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control
(eCAP): – Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM) outputs
– Single Shot Capture of up to Four Event
Time-Stamps
• Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP)
• 176-pin PowerPAD™ Plastic Quad Flat Pack [PTP suffix], 0.5-mm Pin Pitch
• Commercial, Industrial, or Extended Temperature
• Community Resources – TI E2E CommunityTI Embedded Processors Wiki
2 AM1705 ARM Microprocessor Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

1.2 Trademarks

All trademarks are the property of their respective owners.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated AM1705 ARM Microprocessor 3
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

1.3 Description

The device is a low-power ARM microprocessor based on an ARM926EJ-S™. The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 3 multichannel audio serial port (McASP) with serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.
www.ti.com
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration.
TheI2C, SPI, and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The device has a complete set of development tools for the ARM. These include C compilers and a Windows™ debugger interface for visibility into source code execution.
4 AM1705 ARM Microprocessor Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
Switched Central Resource (SCR)
16 KB
I-Cache
16 KB
D-Cache
4 KB ETB
ARM926EJ-S CPU
With MMU
ARM Subsystem
JTAG Interface
System Control
Input
Clock(s)
64 KB ROM
8 KB RAM
(Vector Table)
Power/Sleep
Controller
Pin
Multiplexing
PLL/Clock Generator
w/OSC
General­Purpose
Timer
General­Purpose
Timer
(Watchdog)
Serial Interfaces
I C
(2)
2
SPI
(2)
UART
(3)
Audio Ports
McASP w/FIFO
(2)
DMA
Peripherals
External Memory Interfaces
Connectivity
EDMA3
Control Timers
eHRPWM
(3)
eCAP
(3)
eQEP
(2)
(10/100)
EMAC
(RMII)
MDIO
USB2.0
OTG Ctlr
PHY
MMC/SD
(8b)
EMIFB
SDRAM Only
(16b/32b)
GPIO 128 KB
RAM
Shared Memory
EMIFA
NAND/ Flash
(8b)
PRU
Subsystem
Customizable Interface
AM1705
www.ti.com

1.4 Functional Block Diagram

SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated AM1705 ARM Microprocessor 5
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
1 AM1705 ARM Microprocessor ........................ 1 6.9 General-Purpose Input/Output (GPIO) ............. 53
1.1 Features .............................................. 1 6.10 EDMA ............................................... 56
1.2 Trademarks .......................................... 3
1.3 Description ........................................... 4
1.4 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Overview ........................................ 8
3.1 Device Characteristics ............................... 8
3.2 Device Compatibility ................................. 9
3.3 ARM Subsystem ..................................... 9
3.4 Memory Map Summary ............................. 12
3.5 Pin Assignments .................................... 14
3.6 Terminal Functions ................................. 15
4 Device Configuration ................................. 30
4.1 Boot Modes ......................................... 30
4.2 SYSCFG Module ................................... 31
4.3 Pullup/Pulldown Resistors .......................... 33
5 Device Operating Conditions ....................... 34
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) ................................. 34
5.2 Recommended Operating Conditions .............. 35
5.3 Notes on Recommended Power-On Hours (POH)
...................................................... 36
5.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 37
6 Peripheral Information and Electrical
Specifications .......................................... 38
6.1 Parameter Information .............................. 38
6.2 Recommended Clock and Control Signal Transition
Behavior ............................................ 39
6.3 Power Supplies ..................................... 39
6.4 Unused USB0 (USB2.0) Pin Configurations ....... 39
6.5 Reset ............................................... 40
6.6 Crystal Oscillator or External Clock Input .......... 43 PowerPAD™ Package ............................ 157
6.7 Clock PLLs ......................................... 45 8.5 Mechanical Drawings ............................. 158
6.8 Interrupts ............................................ 49
6.11 External Memory Interface A (EMIFA) ............. 61
6.12 External Memory Interface B (EMIFB) ............. 67
6.13 Memory Protection Units ........................... 72
6.14 MMC / SD / SDIO (MMCSD) ....................... 75
6.15 Ethernet Media Access Controller (EMAC) ......... 78
6.16 Management Data Input/Output (MDIO) ........... 83
6.17 Multichannel Audio Serial Ports (McASP0,
McASP1) ............................................ 85
6.18 Serial Peripheral Interface Ports (SPI0, SPI1) ..... 96
6.19 Enhanced Capture (eCAP) Peripheral ............ 114
6.20 Enhanced Quadrature Encoder (eQEP) Peripheral
..................................................... 117
6.21 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ........................................ 119
6.22 Timers ............................................. 123
6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
..................................................... 125
6.24 Universal Asynchronous Receiver/Transmitter
(UART) ............................................ 130
6.25 USB0 OTG (USB2.0 OTG) ........................ 132
6.26 Power and Sleep Controller (PSC) ................ 140
6.27 Programmable Real-Time Unit Subsystem (PRUSS)
..................................................... 143
6.28 Emulation Logic ................................... 146
6.29 IEEE 1149.1 JTAG ................................ 152
7 Device and Documentation Support ............. 154
7.1 Device Support .................................... 154
7.2 Documentation Support ........................... 154
8 Mechanical Packaging and Orderable
Information ............................................ 155
8.1 Device and Development-Support Tool
Nomenclature ..................................... 155
8.2 Packaging Materials Information .................. 155
8.3 Thermal Data for PTP ............................. 157
8.4 Supplementary Information About the 176-pin PTP
6 Contents Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

2 Revision History

This data manual revision history highlights the changes made to the SPRS657A device-specific data manual to make it an SPRS657B revision.
Table 2-1. Revision History
ADDITIONS/MODIFICATIONS/DELETIONS
Global - Changed SPI td(SCSL_SPC)S min from P to 2P Global - Replaced all "CLKIN" references with "OSCIN" Global - Updated SPI Electrical parameters Global - Document updated to indicate that the AM1705 does not support high-speed operation on USB0.
Figure 3-1 - Updated muxing on pins 116 and 118.
Added Section 5.3, Notes on Recommended Power-On Hours (POH).
Section 6.5- Updated "All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence" to " All
pins are tri-stated with the exception of RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low."
Updated the PLL diagram - Figure 6-9
Copyright © 2010, Texas Instruments Incorporated Revision History 7
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3 Device Overview

3.1 Device Characteristics

Table 3-1 provides an overview of the device . The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 3-1. Characteristics of the Device
HARDWARE FEATURES AM1705
EMIFB 16-bit , upto 512Mb SDRAM EMIFA Asynchronous (8/16-bit bus width) RAM, Flash, NOR, NAND Flash Card Interface MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers
Timers UART 3 (one with RTS and CTS flow control)
SPI 2 (Each with one hardware chip select) I2C 2 (both Master/Slave) Multichannel Audio
Serial Port [McASP] 10/100 Ethernet MAC
Peripherals I/O Not all peripherals pins
are available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
JTAG BSDL_ID DEVIDR0 register CPU Frequency MHz ARM926 375 MHz (1.2V) or 456 MHz (1.3V)
Voltage
Package 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP)
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice.
(1)
with Management Data 1 (RMII Interface)
eHRPWM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel USB 2.0 (USB0) Full-Speed/Low-Speed OTG Controller with on-chip OTG PHY General-Purpose
Input/Output Port PRU Subsystem
(PRUSS) Size (Bytes) 168KB RAM, 64KB ROM
Organization
Core (V) I/O (V) 3.3 V
Product Preview (PP), Advance Information (AI), or Production Data (PD)
2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as
Watch Dog)
2(each with transmit/receive, FIFO buffer, 16/12/4 serializers)
8 banks of 16-bit
2 Programmable PRU Cores
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL MEMORY
128KB RAM
0x8B7D F02F (Silicon Revision 1.1) 0x9B7D F02F (Silicon Revision 2.0)
1.2 V nominal for 375 MHz version
1.3 V nominal for 456 MHz version
375 MHz Versions -PD
456 MHz Version - AI
8 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

3.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.

3.3 ARM Subsystem

The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian
System Control Co-Processor 15 (CP15)
MMU
16KB Instruction cache
16KB Data cache
Write Buffer
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt controller

3.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
Separate instruction and data caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com

3.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.
Copyright © 2010, Texas Instruments Incorporated Device Overview 9
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.3.3 MMU

A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10

3.3.4 Caches and Write Buffer

The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.
www.ti.com
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.

3.3.5 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.

3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:
10 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'.

3.3.7 ARM Memory Mapping

By default the ARM has access to most on and off chip memory areas, EMIFA, EMIFB, and the additional 128K byte on chip SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default.
See Table 3-2 for a detailed top level device memory map that includes the ARM memory space.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Device Overview 11
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.4 Memory Map Summary

Table 3-2. AM1705 Top Level Memory Map
Start Address End Address Size ARM Mem Map EDMA Mem PRUSS Mem Master Peripheral
0x0000 0000 0x0000 0FFF 4K - PRUSS Local
0x0000 1000 0x01BB FFFF ­0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory ­0x01BC 1000 0x01BC 17FF 2K ARM ETB reg ­0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher ­0x01BC 1900 0x01BF FFFF ­0x01C0 0000 0x01C0 7FFF 32K EDMA3 Channel Controller 0x01C0 8000 0x01C0 83FF 1024 EDMA3 Transfer Controller 0 0x01C0 8400 0x01C0 87FF 1024 EDMA3 Transfer Controller 1 0x01C0 8800 0x01C0 FFFF ­0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0x01C1 2000 0x01C1 3FFF ­0x01C1 4000 0x01C1 4FFF 4K SYSCFG 0x01C1 5000 0x01C1 FFFF ­0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 3FFF 0x01C2 4000 0x01C3 FFFF 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF ­0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Control 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data 0x01D0 3000 0x01D0 3FFF ­0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Control 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data 0x01D0 7000 0x01D0 BFFF ­0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01DF FFFF
0x01E0 0000 0x01E0 FFFF 64K USB0
0x01E1 0000 0x01E1 1FFF -
0x01E1 2000 0x01E1 2FFF 4K SPI 1
0x01E1 3000 0x01E1 3FFF -
0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1)
0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2)
0x01E1 6000 0x01E1 FFFF -
0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM
0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers
Map Map Mem Map
Address
Space
12 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 3-2. AM1705 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem Map EDMA Mem PRUSS Mem Master Peripheral
0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers
0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port
0x01E2 5000 0x01E2 5FFF -
0x01E2 6000 0x01E2 6FFF 4K GPIO
0x01E2 7000 0x01E2 7FFF 4K PSC 1
0x01E2 8000 0x01E2 8FFF 4K I2C 1
0x01E2 9000 0x01EF FFFF -
0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0
0x01F0 1000 0x01F0 1FFF 4K HRPWM 0
0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1
0x01F0 3000 0x01F0 3FFF 4K HRPWM 1
0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2
0x01F0 5000 0x01F0 5FFF 4K HRPWM 2
0x01F0 6000 0x01F0 6FFF 4K ECAP 0
0x01F0 7000 0x01F0 7FFF 4K ECAP 1
0x01F0 8000 0x01F0 8FFF 4K ECAP 2
0x01F0 9000 0x01F0 9FFF 4K EQEP 0 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x5FFF FFFF -
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2)
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3)
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4)
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5)
0x6800 0000 0x6800 7FFF 32K EMIFA Control Registers
0x6800 8000 0x7FFF FFFF -
0x8000 0000 0x8001 FFFF 128K On-chip RAM
0x8002 0000 0xAFFF FFFF -
0xB000 0000 0xB000 7FFF 32K EMIFB Control Registers
0xB000 8000 0xBFFF FFFF ­0xC000 0000 0xCFFF FFFF 256M EMIFB SDRAM Data 0xD000 0000 0xFFFC FFFF 0xFFFD 0000 0xFFFD FFFF 64K ARM local ROM ­0xFFFE 0000 0xFFFE DFFF -
0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller -
0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM - ARM local -
0xFFFF 2000 0xFFFF FFFF -
Map Map Mem Map
RAM (PRU 0
Only)
Copyright © 2010, Texas Instruments Incorporated Device Overview 13
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
133
RSV2
134
USB0_VDDA12
135
USB0_VDDA18
136
NC
137
USB0_DP
138
USB0_DM
139
NC
140
USB0_VDDA33
141
PLL0_VDDA
142 143
OSCIN
144 145
OSCOUT
146
RESET
147 148
RSV4
149
RSV3
150
RTCK/GP7[14]
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
PLL0_VSSA
OSCVSS
CV
DD
TRST
TMS
TDI
TCK TDO
RV
DD
AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10]
DV
DD
AFSR1/GP4[13]
AXR1[8]/EPWM1A/GP4[8] AXR1[7]/EPWM1B/GP4[7] AXR1[6]/EPWM2A/GP4[6] AXR1[5]/EPWM2B/GP4[5]
1
AXR1[0]/GP4[0]
2
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
3
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
4
AXR1[10]/GP5[10]
5
DV
DD
6
AXR1[11]/GP5[11]
7
SPI1_ENA/UART2_RXD/GP5[12]
8
SPI1_SCS[0]/UART2_TXD/GP5[13]
9
SPI0_SCS[0] UART0_RTS/ /EQEP0B/GP5[4]/BOOT[4]
10
11
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
12
13
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
14
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
15
16
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
17
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
18
19
EMA_WAIT[0]/GP2[10]
2021222324
25
EMA_BA[0]/GP1[14]
262728293031323334353637383940
41
CV
DD
SPI0_ENA UART0_CTS/ /EQEP0A/GP5[3]/BOOT[3]
DV
DD
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
CV
DD
EMA_CS[3]/GP2[6]
EMA_OE/AXR0[13]/GP2[7]
EMA_CS[2]/GP2[5]/BOOT[15]
DV
DD
EMA_BA[1]/GP1[13]
EMA_A[10]/GP1[10]
CV
DD
EMA_A[0]/GP1[0]
EMA_A[1]/MMCSD_CLK/GP1[1]
EMA_A[2]/MMCSD_CMD/GP1[2]
EMA_A[3]/GP1[3]
DV
DD
EMA_A[4]/GP1[4]
EMA_A[5]/GP1[5]
EMA_A[6]/GP1[6]
EMA_A[7]/GP1[7]
CV
DD
EMA_A[8]/GP1[8]
EMA_A[9]/GP1[9]
EMA_A[11]/GP1[11]
EMA_A[12]/GP1[12]
DV
DD
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12]
151
DV
DD
CV
DD
DV
DD
AHCLKX1/EPWM0B/GP3[14]
CV
DD
ACLKX1/EPWM0A/GP3[15]
ACLKR1/ECAP2/APWM2/GP4[12]
CV
DD
DV
DD
AXR1[4]/EQEP1B/GP4[4] AXR1[3]/EQEP1A/GP4[3]
AXR1[2]/GP4[2] AXR1[1]/GP4[1]
42
43
44
88
EMB_SDCKE
87
DV
DD
86
EMB_CLK
85
EMB_WE_DQM[1]/GP5[14]
84
EMB_D[8]/GP6[8]
83
EMB_D[9]/GP6[9]
82
EMB_D[10]/GP6[10]
81
DV
DD
80
EMB_D[11]/GP6[11]
79
EMB_D[12]/GP6[12]
78
EMB_D[13]/GP6[13]
77
CV
DD
76
EMB_D[14]/GP6[14] 75 74
EMB_D[15]/GP6[15] 73
EMB_D[0]/GP6[0] 72
EMB_D[1]/GP6[1] 71
DV
DD
70
EMB_D[2]/GP6[2] 69
CV
DD
68
EMB_D[3]/GP6[3] 67
RV
DD
66
EMB_D[4]/GP6[4] 65
DV
DD
64
EMB_D[5]/GP6[5] 63
EMB_D[6]/GP6[6] 62
EMB_D[7]/GP6[7] 61
CV
DD
60
EMB_WE_DQM[0]/GP5[15] 59
EMB_WE 58
DV
DD
57
EMB_CAS 56
CV
DD
55
EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 54
EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 53
DV
DD
52
EMA_D[6]/MMCSD_DAT[6]/GP0[6] 51
EMA_D[5]/MMCSD_DAT[5]/GP0[5] 50
CV
DD
49
EMA_D[4]/MMCSD_DAT[4]/GP0[4] 48
EMA_D[3]/MMCSD_DAT[3]/GP0[3] 47
DV
DD
46
EMA_D[2]/MMCSD_DAT[2]/GP0[2] 45
EMA_D[1]/MMCSD_DAT[1]/GP0[1]
DV
DD
132
AMUTE1/EPWMTZ/GP4[14]
131
AFSR0/GP3[12]
130
ACLKR0/ECAP1/APWM1/GP2[15]
129
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
128
DV
DD
127
AFSX0/GP2[13]/BOOT[10]
126
ACLKX0/ECAP0/APWM0/GP2[12]
125
AHCLKX0/USB_REFCLKIN/GP2[11]
124
AXR0[11]/GP3[11]
123
UART1_TXD/AXR0[10]/GP3[10]
122
UART1_RXD/AXR0[9]/GP3[9]
121
AXR0[8]/MDIO_D/GP3[8]
120
AXR0[7]/MDIO_CLK/GP3[7]
119
118
AXR0[6]/RMII_RXER/GP3[6]
117
AXR0[5]/RMII_RXD[1]/GP3[5]
116
AXR0[4]/RMII_RXD[0]/GP3[4]
115
AXR0[3]/RMII_CRS_DV/GP3[3]
114
113
AXR0[2]/RMII_TXEN/GP3[2]
112
AXR0[1]/RMII_TXD[1]/GP3[1]
111
AXR0[0]/RMII_TXD[0]/GP3[0]
110
EMB_RAS
109
DV
DD
108
EMB_CS[0]
107
EMB_BA[0]/GP7[1]
106
EMB_BA[1]/GP7[0]
105
EMB_A[10]/GP7[12]
104
103
EMB_A[0]/GP7[2]
102
EMB_A[1]/GP7[3]
101
EMB_A[2]/GP7[4]
100
EMB_A[3]/GP7[5]
99
98
EMB_A[4]/GP7[6]
97
EMB_A[5]/GP7[7]
96
EMB_A[6]/GP7[8]
95
EMB_A[7]/GP7[9]
94
EMB_A[8]/GP7[10]
93
92
EMB_A[9]/GP7[11]91EMB_A[11]/GP7[13]
90
89
EMB_A[12]/GP3[13]
DV
DD
DV
DD
CV
DD
DV
DD
CV
DD
CV
DD
V
(177)
SS
Thermal Pad
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.5 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.

3.5.1 Pin Map (Bottom View)

www.ti.com
14 Device Overview Copyright © 2010, Texas Instruments Incorporated
Figure 3-1. Pin Map (PTP)
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6 Terminal Functions

Table 3-3 to Table 3-20 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.

3.6.1 Device Reset and JTAG

Table 3-3. Reset and JTAG Terminal Functions
SIGNAL NAME TYPE
RESET 146 I Device reset input
TMS 152 I IPU JTAG test mode select TDI 153 I IPU JTAG test data input TDO 156 O IPD JTAG test data output TCK 155 I IPU JTAG test clock TRST 150 I IPD JTAG test reset RTCK / GP7[14] 157 I/O IPD JTAG Test Clock Return Clock Output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
RESET
JTAG
(2)
DESCRIPTION

3.6.2 High-Frequency Oscillator and PLL

Table 3-4. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL NAME TYPE
OSCIN 143 I Oscillator input OSCOUT 145 O Oscillator output OSCVSS 144 GND Oscillator ground
PLL0_VDDA 141 PWR PLL analog VDD(1.2-V filtered supply) PLL0_VSSA 142 GND PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
1.2-V OSCILLATOR
1.2-V PLL
(2)
DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated Device Overview 15
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.3 External Memory Interface A (ASYNC)

Table 3-5. External Memory Interface A (EMIFA) Terminal Functions
PIN
SIGNAL NAME TYPE
EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I/O IPU EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 I/O IPU
EMA_D[5]/MMCSD_DAT[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 I/O IPU
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I/O IPU EMA_A[12]/GP1[12] 42 O IPU
EMA_A[11]/ GP1[11] 41 O IPU EMA_A[10]/GP1[10] 27 O IPU EMA_A[9]/GP1[9] 40 O IPU EMA_A[8]/GP1[8] 39 O IPU EMA_A[7]/GP1[7] 37 O IPD EMA_A[6]/GP1[6] 36 O IPD EMA_A[5]/GP1[5] 35 O IPD EMA_A[4]/GP1[4] 34 O IPD EMA_A[3]/GP1[3] 32 O IPD EMA_A[2]/MMCSD_CMD/GP1[2] 31 O IPU EMA_A[1]/MMCSD_CLK/GP1[1] 30 O IPU EMIFA address bus EMA_A[0]/GP1[0] 29 O IPD EMA_BA[1]/GP1[13] 26 O IPU EMA_BA[0]/GP1[14] 25 O IPU GPIO EMA_CS[3] /GP2[6] 21 O IPU GPIO EMA_CS[2]/GP2[5]/BOOT[15] 23 O IPU GPIO, BOOT EMA_OE /AXR0[13]/GP2[7] 22 O IPU McASP0, GPIO EMIFA output enable
EMA_WAIT[0]/ GP2[10] 19 I IPU GPIO
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
MMC/SD, GPIO, BOOT
MMC/SD, GPIO EMIFA data bus
MMC/SD, GPIO, BOOT
GPIO EMIFA address bus
MMCSD, GPIO
GPIO
EMIFA bank address
EMIFA Async Chip Select
EMIFA wait input/interrupt
16 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.4 External Memory Interface B (only SDRAM )

Table 3-6. External Memory Interface B (EMIFB) Terminal Functions
SIGNAL NAME TYPE
EMB_D[15]/GP6[15] 74 I/O IPD EMB_D[14]/GP6[14] 76 I/O IPD EMB_D[13]/GP6[13] 78 I/O IPD EMB_D[12]/GP6[12] 79 I/O IPD EMB_D[11]/GP6[11] 80 I/O IPD EMB_D[10]/GP6[10] 82 I/O IPD EMB_D[9]/GP6[9] 83 I/O IPD EMB_D[8]/GP6[8] 84 I/O IPD EMB_D[7]/GP6[7] 62 I/O IPD EMB_D[6]/GP6[6] 63 I/O IPD EMB_D[5]/GP6[5] 64 I/O IPD EMB_D[4]/GP6[4] 66 I/O IPD EMB_D[3]/GP6[3] 68 I/O IPD EMB_D[2]/GP6[2] 70 I/O IPD EMB_D[1]/GP6[1] 72 I/O IPD EMB_D[0]/GP6[0] 73 I/O IPD EMB_A[12]/GP3[13] 89 O IPD EMB_A[11]/GP7[13] 91 O IPD EMB_A[10]/GP7[12] 105 O IPD EMB_A[9]/GP7[11] 92 O IPD EMB_A[8]/GP7[10] 94 O IPD EMB_A[7]/GP7[9] 95 O IPD EMB_A[6]/GP7[8] 96 O IPD EMB_A[5]/GP7[7] 97 O IPD EMB_A[4]/GP7[6] 98 O IPD EMB_A[3]/GP7[5] 100 O IPD EMB_A[2]/GP7[4] 101 O IPD EMB_A[1]/GP7[3] 102 O IPD GPIO EMB_A[0]/GP7[2] 103 O IPD EMB_BA[1]/GP7[0] 106 O IPU EMB_BA[0]/GP7[1] 107 O IPU EMB_CLK 86 O IPU EMIF SDRAM clock EMB_SDCKE 88 I/O IPU EMIFB SDRAM clock enable EMB_WE 59 O IPU EMIFB write enable
EMB_RAS 110 O IPU EMB_CAS 57 O IPU EMIFB column address strobe
EMB_CS[0] 108 O IPU EMIFB SDRAM chip select 0 EMB_WE_DQM[1] /GP5[14] 85 O IPU EMB_WE_DQM[0] /GP5[15] 60 O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
GPIO EMIFB SDRAM data bus
GPIO
GPIO
EMIFB SDRAM row/column address bus
EMIFB SDRAM row/column address
EMIFB SDRAM bank address
EMIFB SDRAM row address strobe
EMIFB write enable/data mask for EMB_D
Copyright © 2010, Texas Instruments Incorporated Device Overview 17
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.5 Serial Peripheral Interface Modules (SPI0, SPI1)

Table 3-7. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL NAME TYPE
SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I/O IPU SPI0 chip select
SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I/O IPU SPI0 enable SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I/O IPD eQEP1, GPIO, BOOT SPI0 clock SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I/O IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I/O IPD
SPI1_SCS[0] /UART2_TXD/GP5[13] 8 I/O IPU SPI1 chip select SPI1_ENA /UART2_RXD/GP5[12] 7 I/O IPU SPI1 enable SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I/O IPD eQEP1, GPIO, BOOT SPI1 clock
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
SPI0
SPI1
(1)
PULL
(2)
MUXED DESCRIPTION
UART0, EQEP0B, GPIO, BOOT
UART0, EQEP0A, GPIO, BOOT
eQEP0, GPIO, BOOT
UART2, GPIO
I2C1, GPIO, BOOT
SPI0 data slave-in-master-out
SPI0 data slave-out-master-in
SPI1 data slave-in-master-out
SPI1 data slave-out-master-in
18 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.6 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)

The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed.
Table 3-8. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL NAME TYPE
ACLKX0/ECAP0/APWM0/GP2[12] 126 I/O IPD McASP0, GPIO input or auxiliary
ACLKR0/ECAP1/APWM1/GP2[15] 130 I/O IPD McASP0, GPIO input or auxiliary
ACLKR1/ECAP2/APWM2/GP4[12] 165 I/O IPD McASP1, GPIO input or auxiliary
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eCAP0
eCAP1
eCAP2
(1)
PULL
(2)
MUXED DESCRIPTION
enhanced capture 0 PWM 0 output
enhanced capture 1 PWM 1 output
enhanced capture 2 PWM 2 output
Copyright © 2010, Texas Instruments Incorporated Device Overview 19
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.7 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)

Table 3-9. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL NAME TYPE
ACLKX1/EPWM0A/GP3[15] 162 I/O IPD (with
AHCLKX1/EPWM0B/GP3[14] 160 I/O IPD eHRPWM0 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM1, GPIO,
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD
AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD eHRPWM1 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM0, GPIO,
AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD eHRPWM2 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM0, GPIO,
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eHRPWM0
eHRPWM1
eHRPWM2
(1)
PULL
(2)
MUXED DESCRIPTION
eHRPWM0 A output
McASP1, GPIO
McASP1, eHRPWM2
McASP1, eHRPWM0 module eHRPWM0, GPIO or sync output to
McASP1, GPIO
McASP1, eHRPWM2
McASP1, GPIO
McASP1, eHRPWM2
high-resolution)
eHRPWM0 trip zone input
Sync input to
external PWM
eHRPWM1 A (with high-resolution)
eHRPWM1 trip zone input
eHRPWM2 A (with high-resolution)
eHRPWM2 trip zone input
20 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.8 Enhanced Quadrature Encoder Pulse Module (eQEP)

Table 3-10. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions
SIGNAL NAME TYPE
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD eQEP0 index
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD eQEP0 strobe
AXR1[3]/EQEP1A/GP4[3] 174 I IPD
AXR1[4]/EQEP1B/GP4[4] 173 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPI0, GPIO, BOOT eQEP1 index
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, GPIO, BOOT eQEP1 strobe
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eQEP0
eQEP1
(1)
PULL
(2)
MUXED DESCRIPTION
SPIO, UART0, GPIO, BOOT
SPI0, GPIO, BOOT
McASP1, GPIO
eQEP0A quadrature input
eQEP0B quadrature input
eQEP1A quadrature input
eQEP1B quadrature input
Copyright © 2010, Texas Instruments Incorporated Device Overview 21
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.9 Boot

PULL
(1)
(3)
MUXED DESCRIPTION
EMIFA, McASP0, GPIO
EMIFA, MMC/SD, GPIO
McASP0, EMAC, GPIO
UART0, I2C0, Timer0, GPIO
UART0, I2C0, Timer0, GPIO
SPI1, I2C1, GPIO
SPI0, UART0, eQEP0, GPIO
SPI0, UART0, eQEP0, GPIO
SPI0, eQEP0, GPIO
Boot Selection Signals
Table 3-11. Boot Terminal Functions
SIGNAL NAME TYPE
EMA_CS[2]/GP2[5]/BOOT[15] 23 I IPU EMIFA, GPIO EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 I IPU EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I IPU
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I IPU AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I IPD AFSX0/GP2[13]/BOOT[10] 127 I IPD McASP0, GPIO UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I IPU
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, eQEP1, GPIO
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPIO, eQEP1, GPIO
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD
(1) Boot decoding will be defined in the ROM datasheet. (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(3) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(2)
www.ti.com
22 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.10 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)

Table 3-12. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU
SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] 9 O IPU ready-to-send
SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] 12 I IPU
UART1_RXD/AXR0[9]/GP3[9]
UART1_TXD/AXR0[10]/GP3[10]
SPI1_ENA/UART2_RXD/GP5[12] 7 I IPU
SPI1_SCS[0]/UART2_TXD/GP5[13] 8 O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (3) As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if
UART1 boot mode is used.
(3)
(3)
PIN NO
PTP
UART0
UART1
122 I IPD
123 O IPD
UART2
(1)
PULL
(2)
MUXED DESCRIPTION
I2C0, BOOT, UART0 receive Timer0, GPIO, data
I2C0, Timer0, UART0 transmit GPIO, BOOT data
UART0
SPIO, eQEP0, GPIO, BOOT
McASP0, GPIO
SPI1, GPIO
output UART0
clear-to-send input
UART1 receive data
UART1 transmit data
UART2 receive data
UART2 transmit data

3.6.11 Inter-Integrated Circuit Modules(I2C0, I2C1)

Table 3-13. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I/O IPU I2C0 serial data
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I/O IPU I2C0 serial clock
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU I2C1 serial data SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU I2C1 serial clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Copyright © 2010, Texas Instruments Incorporated Device Overview 23
Submit Documentation Feedback
Product Folder Link(s): AM1705
PIN NO
PTP
I2C0
I2C1
(1)
PULL
(2)
UART0, Timer0, GPIO, BOOT
UART0, Timer0, GPIO, BOOT
SPI1, GPIO, BOOT
MUXED DESCRIPTION
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.12 Timers

Table 3-14. Timers Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU Timer0 lower input UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU
No external pins. The Timer1 peripheral pins are not pinned out as external pins.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
TIMER0
TIMER1 (Watchdog )
(1)
PULL
(2)
UART0, I2C0, GPIO, BOOT
MUXED DESCRIPTION
Timer0 lower output
24 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.13 Multichannel Audio Serial Ports (McASP0, McASP1)

Table 3-15. Multichannel Audio Serial Ports (McASPs) Terminal Functions
SIGNAL NAME TYPE
EMA_OE/AXR0[13]/GP2[7] 22 I/O IPU EMIFA, GPIO EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 I/O IPU
AXR0[11] / GP3[11] 124 I/O IPD UART1_TXD/AXR0[10]/GP3[10] 123 I/O IPD GPIO
UART1_RXD/AXR0[9]/GP3[9] 122 I/O IPD GPIO
AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 I/O IPD AXR0[6]/RMII_RXER/GP3[6] 118 I/O IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 I/O IPD AXR0[4]/RMII_RXD[0]/GP3[4] 116 I/O IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 I/O IPD EMAC, GPIO AXR0[2]/RMII_TXEN/GP3[2] 113 I/O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 I/O IPD AXR0[0]/RMII_TXD[0]/GP3[0] 111 I/O IPD
AHCLKX0/USB_REFCLKIN/GP2[11] 125 I/O IPD USB, GPIO transmit master
ACLKX0/ECAP0/APWM0/GP2[12] 126 I/O IPD eCAP0, GPIO transmit bit
AFSX0/GP2[13]/BOOT[10] 127 I/O IPD GPIO, BOOT transmit frame
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD
ACLKR0/ECAP1/APWM1/GP2[15] 130 I/O IPD eCAP1, GPIO
AFSR0/GP3[12] 131 I/O IPD GPIO
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
McASP0
(1)
PULL
(2)
MUXED DESCRIPTION
EMIFA, GPIO, BOOT
McASP2, GPIO
MDIO, GPIO
EMAC, GPIO, McASP0 receive BOOT master clock
McASP0 serial data
McASP0 clock
McASP0 clock
McASP0 sync
McASP0 receive bit clock
McASP0 receive frame sync
Copyright © 2010, Texas Instruments Incorporated Device Overview 25
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Table 3-15. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
SIGNAL NAME TYPE
AXR1[11]/GP5[11] 6 I/O IPU AXR1[10]/GP5[10] 4 I/O IPU
AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD
AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD
AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD
AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD AXR1[4]/EQEP1B/GP4[4] 173 I/O IPD
AXR1[3]/EQEP1A/GP4[3] 174 I/O IPD AXR1[2]/GP4[2] 175 I/O IPD AXR1[1]/GP4[1] 176 I/O IPD GPIO AXR1[0]/GP4[0] 1 I/O IPD
AHCLKX1/EPWM0B/GP3[14] 160 I/O IPD transmit master
ACLKX1/EPWM0A/GP3[15] 162 I/O IPD transmit bit
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD transmit frame
ACLKR1/ECAP2/APWM2/GP4[12] 165 I/O IPD eCAP2, GPIO
AFSR1/GP4[13] 166 I/O IPD GPIO
AMUTE1/EPWMTZ/GP4[14] 132 O IPD
PIN NO
PTP
McASP1
(1)
PULL
(2)
MUXED DESCRIPTION
GPIO
eHRPWM1 A, GPIO
eHRPWM1 B, GPIO
eHRPWM2 A, GPIO
eHRPWM2 B, GPIO
eQEP, GPIO
eHRPWM0, GPIO
eHRPWM0, GPIO
eHRPWM0, GPIO
eHRPWM0, eHRPWM1, McASP1 mute eHRPWM2, output GPIO
McASP1 serial data
McASP1 clock
McASP1 clock
McASP1 sync
McASP1 receive bit clock
McASP1 receive frame sync
26 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.14 Universal Serial Bus Modules (USB0)

Table 3-16. Universal Serial Bus (USB) Terminal Functions
SIGNAL NAME TYPE
USB0_DM 138 A USB0 PHY data minus USB0_DP 137 A USB0 PHY data plus USB0_VDDA33 140 PWR USB0 PHY 3.3-V supply USB0_VDDA18 135 PWR USB0 PHY 1.8-V supply input USB0_VDDA12
AHCLKX0/USB_REFCLKIN/GP2[11] 125 I IPD USB_REFCLKIN. Optional clock input.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (3) Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 uF capacitor to VSS.
(3)
PIN NO
PTP
USB0 2.0 OTG (USB0)
134 PWR USB0 PHY 1.2-V LDO output for bypass cap
(1)
PULL
(2)
DESCRIPTION

3.6.15 Ethernet Media Access Controller (EMAC)

Table 3-17. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL NAME TYPE
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD McASP0, GPIO, BOOT clock input or
AXR0[6]/RMII_RXER/GP3[6] 118 I IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 I IPD
AXR0[4]/RMII_RXD[0]/GP3[4] 116 I IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 I IPD McASP0, GPIO
AXR0[2]/RMII_TXEN/GP3[2] 113 O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 O IPD
AXR0[0]/RMII_TXD[0]/GP3[0] 111 O IPD
AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 O IPD
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
RMII
MDIO
(1)
PULL
(2)
McASP0, GPIO MDIO data clock
MUXED DESCRIPTION
EMAC 50-MHz output
EMAC RMII receiver error
EMAC RMII receive data
EMAC RMII carrier sense data valid
EMAC RMII transmit enable
EMAC RMII trasmit data
Copyright © 2010, Texas Instruments Incorporated Device Overview 27
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.16 Multimedia Card/Secure Digital (MMC/SD)

Table 3-18. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
PIN
SIGNAL NAME TYPE
EMA_A[1]/MMCSD_CLK/GP1[1] 30 O IPU MMCSD Clock EMA_A[2]/MMCSD_CMD/GP1[2] 31 I/O IPU MMCSD Command EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I/O IPU EMIFA, GPIO, BOOT EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 I/O IPU EMA_D[5]/MMCSD_DAT[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 I/O IPU EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I/O IPU EMIFA, GPIO, BOOT
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
EMIFA, GPIO
EMIFA, GPIO MMC/SD data

3.6.17 Reserved and No Connect

Table 3-19. Reserved and No Connect Terminal Functions
SIGNAL NAME TYPE
RSV2 133 PWR
RSV3 149 PWR RSV4 148 I Reserved. This pin may be tied high or low.
NC 136 - No Connect (leave unconnected) NC 139 - No Connect (leave unconnected)
(1) PWR = Supply voltage.
PIN NO
PTP
(1)
Reserved. For proper device operation, this pin must be tied directly to CVDD.
Reserved. For proper device operation, this pin must be tied directly to CVDD.
DESCRIPTION
28 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.18 Supply and Ground

Table 3-20. Supply and Ground Terminal Functions
SIGNAL NAME TYPE
CVDD (Core supply) 77, 93, 104, PWR Core supply voltage pins
RVDD (Internal RAM supply) 67, 159 PWR Internal ram supply voltage pins
DVDD (I/O supply) 87, 90, 99, PWR I/O supply voltage pins
VSS (Ground) 177 GND Ground pins
(1) PWR = Supply voltage, GND - Ground.
PIN NO
PTP
10, 20, 28, 38, 50, 56, 61, 69,
114, 147, 154, 161, 167
5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81,
109, 119, 128, 151, 158, 164, 172
(1)
DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated Device Overview 29
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

4 Device Configuration

4.1 Boot Modes

This device supports a variety of boot modes through an internal ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins
The following boot modes are supported:
NAND Flash boot – 8-bit NAND
NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit)
I2C0 / I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode)
SPI0 / SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode)
UART0 / UART1 / UART2 Boot – External Host
www.ti.com
30 Device Configuration Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

4.2 SYSCFG Module

The following system level features of the chip are controlled by the SYSCFG peripheral:
Readable Device, Die, and Chip Revision ID
Control of Pin Multiplexing
Priority of bus accesses different bus masters in the system
Capture at power on reset the chip BOOT[15:0] pin values and make them available to software
Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals – Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA and EMIFB
Selects the source of emulation suspend signal of peripherals supporting this function.
Many registers are accessible only by a host (ARM) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION ACCESS
0x01C1 4000 REVID Revision Identification Register
0x01C14008 DIEIDR0 Device Identification Register 0
0x01C1 400C DIEIDR1 Device Identification Register 1
0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4018 DEVIDR0 Device Identification Register 0 — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode
0x01C1 403C KICK1R Kick 1 Register Privileged mode
0x01C1 4040 HOST0CFG Host 0 Configuration Register
0x01C1 4044 HOST1CFG Host 1 Configuration Register — 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode
0x01C1 40F0 EOI End of Interrupt Register Privileged mode
0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode
0x01C1 40F8 FLTSTAT Fault Status Register
0x01C1 4110 MSTPRI0 Master Priority 0 Register Privileged mode
0x01C1 4114 MSTPRI1 Master Priority 1 Register Privileged mode
0x01C1 4118 MSTPRI2 Master Priority 2 Register Privileged mode
0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode
0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode
0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode
0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode
0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode
0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode
Copyright © 2010, Texas Instruments Incorporated Device Configuration 31
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION ACCESS
0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode
0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode
0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode
0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode
0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode
0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode
0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode
0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode
0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode
0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode
0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode
0x01C1 4174 - Reserved
0x01C1 4178 - Reserved — 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode
0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode
0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode
0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode
www.ti.com
32 Device Configuration Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

4.3 Pullup/Pulldown Resistors

Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors.
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VILlevel of all inputs connected to the net. For a pullup resistor, this should be above the highest VIHlevel of all inputs on the net. A reasonable choice would be to target the VOLor VOHlevels for the logic family of the limiting device; which, by definition, have margin to the VILand VIHlevels.
Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net.
For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin).
Remember to include tolerances when selecting the resistor value.
For pullup resistors, also remember to include tolerances on the IO supply rail.
For most systems, a 1-kresistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
For most systems, a 20-kresistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
For more detailed information on input current (II), and the low-/high-level input voltages (VILand VIH) for the device, see Section 5.2, Recommended Operating Conditions.
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Device Configuration 33
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

5 Device Operating Conditions

5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted)

Supply voltage ranges
Input voltage ranges (Steady State)
Output voltage ranges
Clamp Current rails. Limit clamp current that flows through the I/O's internal diode
Storage temperature range, T
Operating Junction Temperature ranges, T
J
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS (3) Up to a max of 24 hours.
stg
(1)
Core -0.5 V to 1.4 V (CVDD, RVDD, PLL0_VDDA )
I/O, 1.8V -0.5 V to 2 V (USB0_VDDA18)
I/O, 3.3V -0.5 V to 3.8V (DVDD, USB0_VDDA33)
VII/O, 1.2V -0.3 V to CVDD + 0.3V (OSCIN)
VII/O, 3.3V -0.3V to DVDD + 0.3V
VII/O, 3.3V DVDD + 20% (Transient) up to 20% of Signal
VII/O, USB 5V Tolerant Pins: 5.25V (USB0_DM, USB0_DP)
VOI/O, 3.3V -0.5 V to DVDD + 0.3V (Steady State)
VOI/O, 3.3V 20% of DVDD for up to (Transient Overshoot/Undershoot) 20% of the signal period
Input or Output Voltages 0.3V above or below their respective power ±20mA protection cells.
(default) -55°C to 150°C Commercial (default) 0°C to 90°C Industrial (D version) -40°C to 90°C Extended (A version) -40°C to 105°C
(2)
(2)
(2)
Period
(3)
34 Device Operating Conditions Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

5.2 Recommended Operating Conditions

MIN NOM MAX UNIT
CVDD
RVDD Supply Voltage, Internal RAM
DVDD
VSS 0 0 0 V
(2)
V
IH
(2)
V
IL
V
HYS
t
t
F
SYSCLK6
Supply voltage, Core (CVDD, PLL0_VDDA )
Supply voltage, I/O, 1.8V (USB0_VDDA18)
Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33)
Supply ground (VSS, PLL0_VSSA, OSCVSS
High-level input voltage, I/O, 3.3V 2 V High-level input voltage, OSCIN 0.7*CVDD V Low-level input voltage, I/O, 3.3V 0.8 V Low-level input voltage, OSCIN 0.3*CVDD V Input Hysteresis 160 mV Transition time, 10%-90%, All Inputs (unless otherwise specified in
the electrical data sections)
ARM Operating Frequency (SYSCLK6)
(1)
)
(1) When an external crystal is used, oscillator (OSC_VSS) ground must be kept separate from other grounds and connected directly to the
crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit
board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. (2) These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. (3) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
375 MHz version 1.14 1.2 1.32 V 456 MHz version 1.25 1.3 1.35 V 375 MHz version 1.14 1.2 1.32 V 456 MHz version 1.25 1.3 1.35 V
1.71 1.8 1.89 V
3.15 3.3 3.45 V
0.25P or 10
Commercial (default) 0 MHz Industrial (D suffix) 0 456 (1.3V) MHz
Extended (A suffix) 0 375(1.2V) MHz
375 (1.2V) 456 (1.3V)
(3)
ns
Copyright © 2010, Texas Instruments Incorporated Device Operating Conditions 35
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

5.3 Notes on Recommended Power-On Hours (POH)

The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 5-1. Recommended Power-On Hours
Silicon Operating Junction Power-On Hours [POH]
Revision Temperature (Tj) (hours)
A 300 MHz 0 to 90 °C 1.2V 100,000 B 375 MHz 0 to 90 °C 1.2V 100,000 B 375 MHz -40 to 105 °C 1.2V 75,000 B 456 MHz 0 to 90 °C 1.3V 100,000 B 456 MHz -40 to 90 °C 1.3V 100,000
(1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz.
Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products.
Speed Grade Nominal CVDD Voltage (V)
(1)
36 Device Operating Conditions Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
5.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Junction Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
(1)
V
V
I
I I I
C
C
High-level output voltage (3.3V I/O)
OH
(1)
Low-level output voltage (3.3V I/O)
OL
(2) (1)
Input current
I
(1)
High-level output current -4 mA
OH
(1)
Low-level output current 4 mA
OL
(4)
I/O Off-state output current VO = VDD or VSS; Internal pull disabled ±35 mA
OZ
Input capacitance
I
Output capacitance LVCMOS signals 3 pF
O
(1) These I/O specifications apply to regular 3.3V IOs and do not apply to USB0 unless specifically indicated. USB0 I/Os adhere to the USB
2.0 specification.
(2) IIapplies to input-only pins and bi-directional pins. For input-only pins, IIindicates the input leakage current. For bi-directional pins, I
indicates the input leakage current and off-state (Hi-Z) output leakage current. (3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. (4) IOZapplies to output-only pins, indicating off-state (Hi-Z) output leakage current.
DVDD= 3.15V, IOH= -4 mA 2.4 V DVDD= 3.15V, IOH= 100 mA 2.95 V DVDD= 3.15V, IOL= 4mA 0.4 V DVDD= 3.15V, IOL= -100 mA 0.2 V VI= VSS to DVDD without opposing
internal resistor VI= VSS to DVDD with opposing
internal pullup resistor VI= VSS to DVDD with opposing
internal pulldown resistor
LVCMOS signals 3 pF OSCIN 2 pF
(3)
(3)
-30 -200 mA
50 300 mA
±35 mA
I
Copyright © 2010, Texas Instruments Incorporated Device Operating Conditions 37
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
TransmissionLine
4.0pF 1.85pF
Z0=50 (seenote)
Tester PinElectronics
Data SheetTimingReferencePoint
Output Under Test
42 3.5nH
DevicePin (seenote)
V
ref
V
ref
=VILMAX(orVOLMAX)
V
ref
=VIHMIN(orVOHMIN)
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6 Peripheral Information and Electrical Specifications

6.1 Parameter Information

6.1.1 Parameter Information Device-Specific Information

A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 6-1. Test Load Circuit for AC Timing Measurements
www.ti.com
The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1 Signal Transition Levels
All input and output timing parameters are referenced to V V
= 1.65 V. For 1.8 V I/O, V
ref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VILMAX and VIHMIN for input clocks, VOLMAX and VOHMIN for output clocks.
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
= 0.9 V.
ref
for both "0" and "1" logic levels. For 3.3 V I/O,
ref
38 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals must transition between VIHand VIL(or between VILand VIH) in a monotonic manner.

6.3 Power Supplies

6.3.1 Power-on Sequence

The device should be powered-on in the following order:
2a) CVDD core logic supply
2b) Other 1.2V logic supplies (RVDD, PLL0_VDDA). Groups 2a) and 2b) may be powered up together or 2a) first followed by 2b).
3) All 1.8V IO supplies (USB0_VDDA18).
4) All digital IO and analog 3.3V PHY supplies (DVDD, USB0_VDDA33). USB0_VDDA33 is not required if USB0 is not used and may be left unconnected.
Group 3) and group 4) may be powered on in either order [3 then 4, or 4 then 3] but group 4) must be powered-on after the core logic supplies.
There is no specific required voltage ramp rate for any of the supplies. RESET must be maintained active until all power supplies have reached their nominal values.

6.3.2 Power-off Sequence

The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered with the other supplies unpowered.

6.4 Unused USB0 (USB2.0) Pin Configurations

Table 6-1. Unused USB0 Pin Configurations
SIGNAL NAME Configuration
(When USB0 is not used)
USB0_DM No connect
USB0_DP No connect USB0_VDDA33 No connect USB0_VDDA18 No connect USB0_VDDA12 No connect
AHCLKX0/USB_REFCLKIN/ No connect or use as alternate function
GP2[11]
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 39
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.5 Reset

6.5.1 Power-On Reset (POR)

A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations.
www.ti.com
RTCK is maintained active through a POR. A summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
All device pins go to a high-impedance state
CAUTION: A watchdog reset triggers a POR.
40 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

6.5.2 Warm Reset

A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are 3-stated .
During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development.
RTCK is maintained active through a warm reset. A summary of the effects of Warm Reset is given below:
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Internal memory is maintained through a warm reset
All device pins go to a high-impedance state
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 41
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
OSCIN
RESET
Boot Pins
Config
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
1
2
3
TRST
OSCIN
TRST
RESET
Boot Pins
Config
Power Supplies Stable
1
2
3
Driven or Hi-Z
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.5.3 Reset Electrical Data Timings

Table 6-2 assumes testing over the recommended operating conditions.
Table 6-2. Reset Timing Requirements (,
No. PARAMETER MIN MAX UNIT
1 t
w(RSTL)
2 t
su(BPV-RSTH)
3 t
h(RSTH-BPV)
(1) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
Pulse width, RESET/TRST low 100 ns Setup time, boot pins valid before RESET/TRST high 20 ns Hold time, boot pins valid after RESET/TRST high 20 ns
(1)
)
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
42 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
C
2
C
1
X
1
OSCOUT
OSCIN
OSCV
SS
ClockInput toPLL
AM1705
www.ti.com

6.6 Crystal Oscillator or External Clock Input

The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.
Figure 6-7 illustrates the option that uses an external 1.2V clock input.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Figure 6-6. On-Chip 1.2V Oscillator
Table 6-3. Oscillator Timing Requirements
PARAMETER MIN MAX UNIT
f
Oscillator frequency range (OSCIN/OSCOUT) 12 30 MHz
osc
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 43
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
OSCOUT
OSCIN
OSCV
SS
Clock Input toPLL
NC
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Figure 6-7. External 1.2V Clock Source
Table 6-4. OSCIN Timing Requirements
PARAMETER MIN MAX UNIT
f
OSCIN
t
c(OSCIN)
t
w(OSCINH)
t
w(OSCINL)
t
t(OSCIN)
t
j(OSCIN)
(1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
OSCIN frequency range (OSCIN) 12 50 MHz Cycle time, external clock driven on OSCIN 20 ns Pulse width high, external clock on OSCIN 0.4 t Pulse width low, external clock on OSCIN 0.4 t
c(OSCIN) c(OSCIN)
Transition time, OSCIN 0.25P or 10 Period jitter, OSCIN 0.02P ns
noise immunity on input signals.
ns ns
(1)
ns
44 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
0.1 µF
0.01 µF
50R
1.14V-1.32V
50RV
SS
PLL0_VDDA
PLL0_VSSA
FerriteBead:MurataBLM31PG500SN1L orEquivalent
AM1705
www.ti.com

6.7 Clock PLLs

The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device.
The PLL controller provides the following:
Glitch-Free Transitions (on changing clock settings)
Domain Clocks Alignment
Clock Gating
PLL power down The various clock outputs given by the controller are as follows:
Domain Clocks: SYSCLK [1:n]
Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows:
Post-PLL Divider: POSTDIV
SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows:
PLL Multiplier Control: PLLM
Software programmable PLL Bypass: PLLEN
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.7.1 PLL Device-Specific Information

The PLL requires some external filtering components to reduce power supply noise as shown in
Figure 6-8.
Figure 6-8. PLL External Filtering Components
The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 6-9 illustrates the PLL Topology.
The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 6-5 before enabling the processor to run from the PLL by setting PLLEN = 1.
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 45
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
PLLDIV1 (/1)
SYSCLK1
PLLDIV2 (/2)
SYSCLK2
PLLDIV3 (/3)
SYSCLK3
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
DIV4.5
1
0
EMIFA
Internal
Clock
Source
CFGCHIP3[EMA_CLKSRC]
DIV4.5
EMIFB
Internal
Clock
Source
CFGCHIP3[EMB_CLKSRC]
1
0
Pre-Div
PLLM
CLKMODE
PLLEN
AUXCLK
0
1
PLL Post-Div
OBSCLK Pin
1
0
Square
Wave
Crystal
OSCIN
DIV4.5
OSCDIV
14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh
SYSCLK1 SYSCLK2 SYSCLK3
SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7
OCSEL[OCSRC]
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Figure 6-9. PLL Topology
46 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
2000 N
Max PLL Lock Time =
m
where N = Pre-Divider Ratio
M =PLL Multiplier
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-5. Allowed PLL Operating Conditions
No. PARAMETER MIN MAX UNIT
1 N/A 1000 N/A ns
2 N/A N/A
3 PREDIV /1 /1 /32 4 12 30 MHz 5 PLL multiplier values (PLLM)
6 PLL output frequency. ( PLLOUT ) N/A 300 600 MHz 7 POSTDIV /1 /1 /32
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency
PLLRST: Assertion time during
initialization
Lock time: The time that the application has to wait for the PLL to acquire locks OSCIN
before setting PLLEN, after changing cycles
PREDIV, PLLM, or OSCIN
PLL input frequency
( PLLREF)
(1)
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point.
Default
Value
(1)
x20 x4 x32
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 47
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.7.2 Device Clock Generation

PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points.

6.7.3 PLL Controller 0 Registers

Table 6-6. PLL Controller 0 Registers
BYTE
ADDRESS
0x01C1 1000 REVID Revision Identification Register 0x01C1 10E4 RSTYPE Reset Type Status Register 0x01C1 1100 PLLCTL PLL Control Register 0x01C1 1104 - Reserved 0x01C1 1110 PLLM PLL Multiplier Control Register 0x01C1 1114 PREDIV PLL Pre-Divider Control Register 0x01C1 1118 PLLDIV1 PLL Controller Divider 1 Register 0x01C1 111C PLLDIV2 PLL Controller Divider 2 Register 0x01C1 1120 PLLDIV3 PLL Controller Divider 3 Register 0x01C1 1124 - Reserved 0x01C1 1128 POSTDIV PLL Post-Divider Control Register 0x01C1 1138 PLLCMD PLL Controller Command Register 0x01C1 113C PLLSTAT PLL Controller Status Register 0x01C1 1140 ALNCTL PLL Controller Clock Align Control Register 0x01C1 1144 DCHANGE PLLDIV Ratio Change Status Register 0x01C1 1148 CKEN Clock Enable Control Register 0x01C1 114C CKSTAT Clock Status Register 0x01C1 1150 SYSTAT SYSCLK Status Register 0x01C1 1160 PLLDIV4 PLL Controller Divider 4 Register 0x01C1 1164 PLLDIV5 PLL Controller Divider 5 Register 0x01C1 1168 PLLDIV6 PLL Controller Divider 6 Register 0x01C1 116C PLLDIV7 PLL Controller Divider 7 Register
ACRONYM REGISTER DESCRIPTION
www.ti.com
48 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.8 Interrupts

6.8.1 ARM CPU Interrupts

The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation.
6.8.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
The ARM Interrupt controller organizes interrupts into the following hierarchy:
Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals
100 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts
6.8.1.2 AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively).
6.8.1.3 AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
6.8.1.4 AINTC System Interrupt Assignments on the device
System Interrupt assignments for the device are listed in Table 6-7
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 49
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-7. AINTC System Interrupt Assignments
System Interrupt Interrupt Name Source
0 COMMTX ARM 1 COMMRX ARM 2 NINT ARM 3 PRU_EVTOUT0 PRUSS Interrupt 4 PRU_EVTOUT1 PRUSS Interrupt 5 PRU_EVTOUT2 PRUSS Interrupt 6 PRU_EVTOUT3 PRUSS Interrupt 7 PRU_EVTOUT4 PRUSS Interrupt 8 PRU_EVTOUT5 PRUSS Interrupt
9 PRU_EVTOUT6 PRUSS Interrupt 10 PRU_EVTOUT7 PRUSS Interrupt 11 EDMA3_CC0_CCINT EDMA CC Region 0 12 EDMA3_CC0_CCERRINT EDMA Channel Controller 13 EDMA3_TC0_TCERRINT EDMA Transfer Controller 0 14 EMIFA_INT EMIFA 15 IIC0_INT I2C0 16 MMCSD_INT0 MMCSD 17 MMCSD_INT1 MMCSD 18 PSC0_ALLINT PSC0 19 - Reserved 20 SPI0_INT SPI0 21 T64P0_TINT12 Timer64P0 Interrupt 12 22 T64P0_TINT34 Timer64P0 Interrupt 34 23 T64P1_TINT12 Timer64P1 Interrupt 12 24 T64P1_TINT34 Timer64P1 Interrupt 34 25 UART0_INT UART0 26 - Reserved 27 PROTERR SYSCFG Protection Shared Interrupt
28 - 31 - Reserved
32 EDMA3_TC1_TCERRINT EDMA Transfer Controller 1 33 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt 34 EMAC_C0RX EMAC - Core 0 Receive Interrupt 35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 36 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt 37 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt 38 EMAC_C1RX EMAC - Core 1 Receive Interrupt 39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 41 EMIF_MEMERR EMIFB 42 GPIO_B0INT GPIO Bank 0 Interrupt 43 GPIO_B1INT GPIO Bank 1 Interrupt 44 GPIO_B2INT GPIO Bank 2 Interrupt 45 GPIO_B3INT GPIO Bank 3 Interrupt 46 GPIO_B4INT GPIO Bank 4 Interrupt 47 GPIO_B5INT GPIO Bank 5 Interrupt 48 GPIO_B6INT GPIO Bank 6 Interrupt 49 GPIO_B7INT GPIO Bank 7 Interrupt
www.ti.com
50 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Table 6-7. AINTC System Interrupt Assignments (continued)
System Interrupt Interrupt Name Source
50 - Reserved 51 IIC1_INT I2C1 52 - Reserved 53 UART_INT1 UART1 54 MCASP_INT McASP0, 1, 2 Combined RX / TX Interrupts 55 PSC1_ALLINT PSC1 56 SPI1_INT SPI1 57 - Reserved 58 USB0_INT USB0 Interrupt
59 - 60 - Reserved
61 UART2_INT UART2 62 - Reserved 63 EHRPWM0 HiResTimer / PWM0 Interrupt 64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt 65 EHRPWM1 HiResTimer / PWM1 Interrupt 66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt 67 EHRPWM2 HiResTimer / PWM2 Interrupt 68 EHRPWM2TZ HiResTimer / PWM2 Trip Zone Interrupt 69 ECAP0 ECAP0 70 ECAP1 ECAP1 71 ECAP2 ECAP2 72 EQEP0 EQEP0 73 EQEP1 EQEP1 74 T64P0_CMPINT0 Timer64P0 - Compare 0 75 T64P0_CMPINT1 Timer64P0 - Compare 1 76 T64P0_CMPINT2 Timer64P0 - Compare 2 77 T64P0_CMPINT3 Timer64P0 - Compare 3 78 T64P0_CMPINT4 Timer64P0 - Compare 4 79 T64P0_CMPINT5 Timer64P0 - Compare 5 80 T64P0_CMPINT6 Timer64P0 - Compare 6 81 T64P0_CMPINT7 Timer64P0 - Compare 7 82 T64P1_CMPINT0 Timer64P1 - Compare 0 83 T64P1_CMPINT1 Timer64P1 - Compare 1 84 T64P1_CMPINT2 Timer64P1 - Compare 2 85 T64P1_CMPINT3 Timer64P1 - Compare 3 86 T64P1_CMPINT4 Timer64P1 - Compare 4 87 T64P1_CMPINT5 Timer64P1 - Compare 5 88 T64P1_CMPINT6 Timer64P1 - Compare 6 89 T64P1_CMPINT7 Timer64P1 - Compare 7 90 ARMCLKSTOPREQ PSC0
91 - 100 - Reserved
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 51
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
6.8.1.5 AINTC Memory Map Table 6-8. AINTC Memory Map
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0xFFFE E000 REV Revision Register 0xFFFE E004 CR Control Register
0xFFFE E008 - 0xFFFE E00F - Reserved
0xFFFE E010 GER Global Enable Register
0xFFFE E014 - 0xFFFE E01B - Reserved
0xFFFE E01C GNLR Global Nesting Level Register
0xFFFE E020 SISR System Interrupt Status Indexed Set Register 0xFFFE E024 SICR System Interrupt Status Indexed Clear Register 0xFFFE E028 EISR System Interrupt Enable Indexed Set Register
0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register
0xFFFE E030 - Reserved 0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register 0xFFFE E038 HIEICR Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F - Reserved
0xFFFE E050 VBR Vector Base Register 0xFFFE E054 VSR Vector Size Register 0xFFFE E058 VNR Vector Null Register
0xFFFE E05C - 0xFFFE E07F - Reserved
0xFFFE E080 GPIR Global Prioritized Index Register
0xFFFE E084 GPVR Global Prioritized Vector Register 0xFFFE E088 - 0xFFFE E1FF - Reserved 0xFFFE E200 - 0xFFFE E20B SRSR[1] - SRSR[3] System Interrupt Status Raw / Set Registers
0xFFFE E20C- 0xFFFE E27F - Reserved 0xFFFE E280 - 0xFFFE E28B SECR[1] - SECR[3] System Interrupt Status Enabled / Clear Registers 0xFFFE E28C - 0xFFFE E2FF - Reserved 0xFFFE E300 - 0xFFFE E30B ESR[1] - ESR[3] System Interrupt Enable Set Registers 0xFFFE E30C - 0xFFFE E37F - Reserved 0xFFFE E380 - 0xFFFE E38B ECR[1] - ECR[3] System Interrupt Enable Clear Registers 0xFFFE E38C - 0xFFFE E3FF - Reserved 0xFFFE E400 - 0xFFFE E458 CMR[0] - CMR[22] Channel Map Registers (Byte Wide Registers) 0xFFFE E459 - 0xFFFE E7FF - Reserved 0xFFFE E800 - 0xFFFE E81F - Reserved 0xFFFE E820 - 0xFFFE E8FF - Reserved 0xFFFE E900 - 0xFFFE E904 HIPIR[1] - HIPIR[2] Host Interrupt Prioritized Index Registers 0xFFFE E908 - 0xFFFE EEFF - Reserved 0xFFFE EF00 - 0xFFFE EF04 - Reserved 0xFFFE EF08 - 0xFFFE F0FF - Reserved
0xFFFE F100 - 0xFFFE F104 HINLR[1] - HINLR[2] Host Interrupt Nesting Level Registers 0xFFFE F108 - 0xFFFE F4FF - Reserved
0xFFFE F500 HIER[0] Host Interrupt Enable Register
0xFFFE F504 - 0xFFFE F5FF - Reserved
0xFFFE F600 HIPVR[1] - HIPVR[2] Host Interrupt Prioritized Vector Registers
0xFFFE F608 - 0xFFFE FFFF - Reserved
www.ti.com
52 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

6.9 General-Purpose Input/Output (GPIO)

The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The device GPIO peripheral supports the following:
External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
– The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
– The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43,
44, 45, 46, 47, 48, and 49 respectively
– Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28,
and 29 respectively.
Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming).
Separate Input/Output registers
Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s).
Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
The memory map for the GPIO registers is shown in Table 6-9.
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 53
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.9.1 GPIO Register Description(s)

BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 6000 REV Peripheral Revision Register 0x01E2 6004 - Reserved 0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register
0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register
0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register
0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register
0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register
0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register
0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register
0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register
0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register
0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register
0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register
0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register
0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
www.ti.com
Table 6-9. GPIO Registers
GPIO BANKS 0 AND 1
GPIO BANKS 2 AND 3
GPIO BANKS 4 AND 5
GPIO BANKS 6 AND 7
54 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
GP [ ]asinputn m
4
3
2
1
GP [ ]asoutputn m
2
1
GP [ ]asinputn m
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-9. GPIO Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register

6.9.2 GPIO Peripheral Input/Output Electrical Data/Timing

Table 6-10. Timing Requirements for GPIO Inputs
No. PARAMETER MIN MAX UNIT
1 t
w(GPIH)
2 t
w(GPIL)
(1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus.
(2) C=SYSCLK4 period in ns.
Pulse duration, GPn[m] as input high 2C Pulse duration, GPn[m] as input low 2C
Table 6-11. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 6-10)
No. PARAMETER MIN MAX UNIT
3 t
w(GPOH)
4 t
w(GPOL)
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
(2) C=SYSCLK4 period in ns.
Pulse duration, GPn[m] as output high 2C Pulse duration, GPn[m] as output low 2C
(1)
(see Figure 6-10)
(1) (2) (1) (2)
(1) (2) (1) (2)
ns ns
ns ns
Figure 6-10. GPIO Port Timing

6.9.3 GPIO Peripheral External Interrupts Electrical Data/Timing

Table 6-12. Timing Requirements for External Interrupts
No. PARAMETER MIN MAX UNIT
1 t
w(ILOW)
2 t
w(IHIGH)
(1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus.
(2) C=SYSCLK4 period in ns.
Width of the external interrupt pulse low 2C Width of the external interrupt pulse high 2C
Figure 6-11. GPIO External Interrupt Timing
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 55
Submit Documentation Feedback
Product Folder Link(s): AM1705
(1)
(see Figure 6-11)
(1) (2) (1) (2)
ns ns
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.10 EDMA

Table 6-13 is the list of EDMA3 Channel Contoller Registers and Table 6-14 is the list of EDMA3 Transfer
Controller registers.
Table 6-13. EDMA3 Channel Controller (EDMA3CC) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C0 0000 PID Peripheral Identification Register 0x01C0 0004 CCCFG EDMA3CC Configuration Register
GLOBAL REGISTERS
0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register
0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register
0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register
0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register
0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2
0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3
0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register 0x01C0 0300 EMR Event Missed Register 0x01C0 0308 EMCR Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register
0x01C0 031C CCERRCLR EDMA3CC Error Clear Register
0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2
0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA Queue Watermark Threshold A Register 0x01C0 0640 CCSTAT EDMA3CC Status Register
GLOBAL CHANNEL REGISTERS
0x01C0 1000 ER Event Register 0x01C0 1008 ECR Event Clear Register
(1)
www.ti.com
(1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC
memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
56 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-13. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C0 1010 ESR Event Set Register 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR Secondary Event Clear Register 0x01C0 1050 IER Interrupt Enable Register 0x01C0 1058 IECR Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL Interrupt Evaluate Register 0x01C0 1080 QER QDMA Event Register 0x01C0 1084 QEER QDMA Event Enable Register 0x01C0 1088 QEECR QDMA Event Enable Clear Register
0x01C0 108C QEESR QDMA Event Enable Set Register
0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Secondary Event Clear Register
SHADOW REGION 0 CHANNEL REGISTERS
0x01C0 2000 ER Event Register 0x01C0 2008 ECR Event Clear Register 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR Secondary Event Clear Register 0x01C0 2050 IER Interrupt Enable Register 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL Interrupt Evaluate Register 0x01C0 2080 QER QDMA Event Register 0x01C0 2084 QEER QDMA Event Enable Register 0x01C0 2088 QEECR QDMA Event Enable Clear Register
0x01C0 208C QEESR QDMA Event Enable Set Register
0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR QDMA Secondary Event Clear Register
SHADOW REGION 1 CHANNEL REGISTERS
0x01C0 2200 ER Event Register 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register 0x01C0 2220 EER Event Enable Register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 57
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-13. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01C0 2228 EECR Event Enable Clear Register 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR Secondary Event Clear Register 0x01C0 2250 IER Interrupt Enable Register 0x01C0 2258 IECR Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL Interrupt Evaluate Register 0x01C0 2280 QER QDMA Event Register 0x01C0 2284 QEER QDMA Event Enable Register 0x01C0 2288 QEECR QDMA Event Enable Clear Register
0x01C0 228C QEESR QDMA Event Enable Set Register
0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR QDMA Secondary Event Clear Register
0x01C0 4000 - 0x01C0 4FFF Parameter RAM (PaRAM)
Table 6-14. EDMA3 Transfer Controller (EDMA3TC) Registers
TRANSFER TRANSFER
CONTROLLER 0 CONTROLLER 1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 0x01C0 8280 0x01C0 8680 DFCNTRLD Destination FIFO Set Count Reload Register 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8310 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0
www.ti.com
58 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-14. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
TRANSFER TRANSFER
CONTROLLER 0 CONTROLLER 1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01C0 8314 0x01C0 8714 DFMPPRXY0 Destination FIFO Memory Protection Proxy Register 0 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 0x01C0 8354 0x01C0 8754 DFMPPRXY1 Destination FIFO Memory Protection Proxy Register 1 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 0x01C0 8394 0x01C0 8794 DFMPPRXY2 Destination FIFO Memory Protection Proxy Register 2 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 3 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3
0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3
0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3
Table 6-15 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-16 shows the parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-15. EDMA Parameter Set RAM
BYTE ADDRESS DESCRIPTION
0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01C0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words)
... ...
0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words)
Table 6-16. Parameter Set Entries
BYTE OFFSET ADDRESS
WITHIN THE PARAMETER SET
0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT A Count, B Count
0x000C DST Destination Address
0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index
ACRONYM PARAMETER ENTRY
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 59
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-16. Parameter Set Entries (continued)
BYTE OFFSET ADDRESS
WITHIN THE PARAMETER SET
0x001C CCNT C Count
ACRONYM PARAMETER ENTRY
Table 6-17. EDMA Events
Event Event Name / Source Event Event Name / Source
0 McASP0 Receive 16 MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 SPI1 Receive 3 McASP1 Transmit 19 SPI1 Transmit 4 Reserved 20 PRU_EVTOUT6 5 Reserved 21 PRU_EVTOUT7 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive
9 UART0 Transmit 25 I2C0 Transmit 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit
www.ti.com
60 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

6.11 External Memory Interface A (EMIFA)

EMIFA is one of two external memory interfaces supported on the device. It supports asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM.

6.11.1 EMIFA Asynchronous Memory Support

EMIFA supports asynchronous:
SRAM memories
NAND Flash memories
NOR Flash memories The device supports up to 13 address lines and an external wait/interrupt input. Up to 2 asynchronous
chip selects are supported by EMIFA (EMA_CS[3:2]) . Each chip select has the following individually programmable attributes:
Data Bus Width
Read cycle timings: setup, hold, strobe
Write cycle timings: setup, hold, strobe
Bus turn around time
Extended Wait Option With Programmable Timeout
Select Strobe Option
NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 61
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.11.2 External Memory Interface A (EMIFA) Registers

Table 6-18 is a list of the EMIF registers.
Table 6-18. External Memory Interface (EMIFA) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x6800 0000 MIDR Module ID Register 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register 0x6800 0008 - Reserved 0x6800 000C - Reserved 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 - Reserved 0x6800 003C - Reserved 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space) 0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3
0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4
0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2
www.ti.com
62 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.11.3 EMIFA Electrical Data/Timing

The following assume testing over recommended operating conditions.
Table 6-19. EMIFA Asynchronous Memory Timing Requirements
No. PARAMETER MIN NOM MAX UNIT
READS and WRITES
E t 2 t
c(CLK) w(EM_WAIT)
Cycle time, EMIFA module clock 10 ns Pulse duration, EM_WAIT assertion and deassertion 2E ns
READS
12 t
su(EMDV-EMOEH)
13 t
h(EMOEH-EMDIV)
14 t
su (EMOEL-EMWAIT)
Setup time, EM_D[15:0] valid before EM_OE high 3 ns Hold time, EM_D[15:0] valid after EM_OE high 0 ns Setup Time, EM_WAIT asserted before end of Strobe Phase
(2)
WRITES
28 t
su (EMWEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe Phase
(2)
(1) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 6-14 and Figure 6-15 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles.
Table 6-20. EMIFA Asynchronous Memory Switching Characteristics
No. PARAMETER MIN NOM MAX UNIT
READS and WRITES
1 t
3 t
4 t
5 t
6 t
7 t
8 t
9 t
10 t
d(TURNAROUND)
c(EMRCYCLE)
su(EMCEL-EMOEL)
h(EMOEH-EMCEH)
su(EMBAV-EMOEL)
h(EMOEH-EMBAIV)
su(EMBAV-EMOEL)
h(EMOEH-EMAIV)
w(EMOEL)
Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns
READS
EMIF read cycle time (EW = 0) (RS+RST+RH)*E ns
EMIF read cycle time (EW = 1) ns Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 0) Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 1) Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 0) Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 1) Output setup time, EMA_BA[1:0] valid to
EMA_OE low Output hold time, EMA_OE high to
EMA_BA[1:0] invalid Output setup time, EMA_A[13:0] valid to
EMA_OE low Output hold time, EMA_OE high to
EMA_A[13:0] invalid
(RS+RST+RH)*E (RS+RST+RH)*E
- 3 + 3
(RS+RST+RH+(E (RS+RST+RH+(EW (RS+RST+RH+(
WC*16))*E - 3 C*16))*E EWC*16))*E + 3
(RS)*E-3 (RS)*E (RS)*E+3 ns
-3 0 +3 ns
(RH)*E - 3 (RH)*E (RH)*E + 3 ns
-3 0 +3 ns
(RS)*E-3 (RS)*E (RS)*E+3 ns
(RH)*E-3 (RH)*E (RH)*E+3 ns
(RS)*E-3 (RS)*E (RS)*E+3 ns
(RH)*E-3 (RH)*E (RH)*E+3 ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns EMA_OE active low width (EW = 1) (RST+(EWC*16))*E ns
(RST+(EWC*16))* (RST+(EWC*16)
E-3 )*E+3
(1)
4E+3 ns
4E+3 ns
(1) (2) (3)
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256].
(2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
(3) EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 63
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Table 6-20. EMIFA Asynchronous Memory Switching Characteristics (continued)
No. PARAMETER MIN NOM MAX UNIT
t
d(EMWAITH-
11 3E-3 4E 4E+3 ns
EMOEH)
15 t
c(EMWCYCLE)
16 t
su(EMCEL-EMWEL)
17 t
h(EMWEH-EMCEH)
t
su(EMDQMV-
18 (WS)*E-3 (WS)*E (WS)*E+3 ns
EMWEL)
t
h(EMWEH-
19 (WH)*E-3 (WH)*E (WH)*E+3 ns
EMDQMIV)
t
su(EMBAV-
20 (WS)*E-3 (WS)*E (WS)*E+3 ns
EMWEL)
21 t
h(EMWEH-EMBAIV)
22 t
su(EMAV-EMWEL)
23 t
h(EMWEH-EMAIV)
24 t
w(EMWEL)
t
d(EMWAITH-
25 3E-3 4E 4E+3 ns
EMWEH)
26 t
su(EMDV-EMWEL)
27 t
h(EMWEH-EMDIV)
Delay time from EMA_WAIT deasserted to EMA_OE high
WRITES
EMIF write cycle time (EW = 0) (WS+WST+WH)*E ns
EMIF write cycle time (EW = 1) ns Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 0) Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 1) Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 0) Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 1)
(WS+WST+WH)* (WS+WST+WH)*
E-3 E+3
(WS+WST+WH+( (WS+WST+WH+(E (WS+WST+WH+
EWC*16))*E - 3 WC*16))*E (EWC*16))*E + 3
(WS)*E - 3 (WS)*E (WS)*E + 3 ns
-3 0 +3 ns
(WH)*E-3 (WH)*E (WH)*E+3 ns
-3 0 +3 ns
Output setup time, EMA_BA[1:0] valid to EMA_WE low
Output hold time, EMA_WE high to EMA_BA[1:0] invalid
Output setup time, EMA_BA[1:0] valid to EMA_WE low
Output hold time, EMA_WE high to EMA_BA[1:0] invalid
Output setup time, EMA_A[13:0] valid to EMA_WE low
Output hold time, EMA_WE high to EMA_A[13:0] invalid
(WH)*E-3 (WH)*E (WH)*E+3 ns
(WS)*E-3 (WS)*E (WS)*E+3 ns
(WH)*E-3 (WH)*E (WH)*E+3 ns EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns EMA_WE active low width (EW = 1) (WST+(EWC*16))*E ns
(WST+(EWC*16)) (WST+(EWC*16)
*E-3 )*E+3
Delay time from EMA_WAIT deasserted to EMA_WE high
Output setup time, EMA_D[15:0] valid to EMA_WE low
Output hold time, EMA_WE high to EMA_D[15:0] invalid
(WS)*E-3 (WS)*E (WS)*E+3 ns
(WH)*E-3 (WH)*E (WH)*E+3 ns
64 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
EMA_CS[5:2]
EMA_BA[1:0]
13
12
EMA_A[12:0]
EMA_OE
EMA_D[15:0]
EMA_WE
10
5 9
7
4 8
6
3
1
EMA_ _DQM[1:0]WE
30
29
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE
EMA_D[15:0]
EMA_OE
15
1
16
18
20
22
24
17
19
21
23
26
27
EMA_ _DQM[1:0]WE
31
32
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Figure 6-12. Asynchronous Memory Read Timing for EMIFA
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 65
Figure 6-13. Asynchronous Memory Write Timing for EMIFA
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
EMA_CS[5:2]
1
1
Asserted
Deasserted
2
2
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
EMA_OE
EMA_WAIT
SETUP STROBE Extended Due to EMA_WAIT
STROBE HOLD
1
4
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Figure 6-14. EMA_WAIT Read Timing Requirements
www.ti.com
Figure 6-15. EMA_WAIT Write Timing Requirements
66 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
EMB_CS EMB_CAS EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE EMB_BA[1:0]
EMB_A[x:0] EMB_D[x:0]
EMB_WE_DQM[x:0]
SDRAM Interface
Cmd/Write
FIFO
Registers
Read FIFO
Crossbar
EMIFB
Master
Peripherals
EDMA
CPU
AM1705
www.ti.com

6.12 External Memory Interface B (EMIFB)

The following EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters.
Figure 6-16. EMIFB Functional Block Diagram
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
EMIFB supports a 3.3V LVCMOS Interface.
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 67
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
EMB_CS EMB_CAS EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
EMIFB
CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0]
SDRAM
2Mx16x4
Bank
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.12.1 Interfacing to SDRAM

The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:
Pre-charge bit is A[10]
Supports 8, 9, 10 or 11 column address bits
Supports up to 13 row address bits
Supports 1, 2 or 4 internal banks
Table 6-21 shows the supported SDRAM configurations for EMIFB.
Table 6-21. EMIFB Supported SDRAM Configurations
SDRAM
Memory Memory
Data Bus Rows Columns Banks Density
Width (Mbits)
(bits)
16
(1) The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
Number of EMIFB Data Total Memory Total Memory
Memories Bus Size (Mbits) (Mbytes)
2 32 13 8 1 64 8 32 2 32 13 8 2 128 16 64 2 32 13 8 4 256 32 128 2 32 13 9 1 128 16 64 2 32 13 9 2 256 32 128 2 32 13 9 4 512 64 256 2 32 13 10 1 256 32 128 2 32 13 10 2 512 64 256 2 32 13 10 4 1024 128 512 2 32 13 11 1 512 64 256 2 32 13 11 2 1024 128 512 2 32 13 11 4 2048 256 1024
(1)
Figure 6-17 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. Refer to Table 6-22, as an example that shows additional list of commonly-supported SDRAM devices and the
required connections for the address pins. Note that in Table 6-22, page size/column size (not indicated in the table) is varied to get the required addressability range.
68 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Figure 6-17. EMIFB to 2M × 16 × 4 bank SDRAM Interface
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-22. Example of 16-bit EMIFB Address Pin Connections
SDRAM Size Width Banks Address Pins
64M bits ×16 4 SDRAM A[11:0]
EMIFB EMB_A[11:0]
128M bits ×16 4 SDRAM A[11:0]
EMIFB EMB_A[11:0]
256M bits ×16 4 SDRAM A[12:0]
EMIFB EMB_A[12:0]
512M bits ×16 4 SDRAM A[12:0]
EMIFB EMB_A[12:0]

6.12.2 EMIFB SDRAM Loading Limitations

EMIFB supports SDRAM up to 133 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models.

6.12.3 EMIFB Registers

Table 6-23 is a list of the EMIFB registers.
Table 6-23. EMIFB Controller Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0xB000 0000 MIDR Module ID Register 0xB000 0008 SDCFG SDRAM Configuration Register
0xB000 000C SDRFC SDRAM Refresh Control Register
0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2
0xB000 001C SDCFG2 SDRAM Configuration 2 Register
0xB000 0020 BPRIO Peripheral Bus Burst Priority Register 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register 0xB000 0048 PCC Performance Counter Configuration Register
0xB000 004C PCMRS Performance Counter Master Region Select Register
0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register
0xB000 00CC IMCR Interrupt Mask Clear Register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 69
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.12.4 EMIFB Electrical Data/Timing

Table 6-24. EMIFB SDRAM Interface Timing Requirements
No. PARAMETER MIN MAX UNIT
19 t
su(DV-CLKH)
20 t
h(CLKH-DIV)
No. PARAMETER MIN MAX UNIT
1 t
c(CLK)
2 t
w(CLK)
3 t
d(CLKH-CSV)
4 t
oh(CLKH-CSIV)
5 t
d(CLKH-DQMV)
6 t
oh(CLKH-DQMIV)
7 t
d(CLKH-AV)
8 t
oh(CLKH-AIV)
9 t
d(CLKH-DV)
10 t
oh(CLKH-DIV)
11 t
d(CLKH-RASV)
12 t
oh(CLKH-RASIV)
13 t
d(CLKH-CASV)
14 t
oh(CLKH-CASIV)
15 t
d(CLKH-WEV)
16 t
oh(CLKH-WEIV)
17 t
dis(CLKH-DHZ)
18 t
ena(CLKH-DLZ)
Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 0.8 ns Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising 1.5 ns
Table 6-25. EMIFB SDRAM Interface Switching Characteristics
Cycle time, EMIF clock EMB_CLK 7.5 ns Pulse width, EMIF clock EMB_CLK high or low 3 ns Delay time, EMB_CLK rising to EMB_CS[0] valid 5.1 ns Output hold time, EMB_CLK rising to EMB_CS[0] invalid 0.9 ns Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 5.1 ns Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 0.9 ns Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 5.1 ns Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 0.9 ns Delay time, EMB_CLK rising to EMB_D[31:0] valid 5.1 ns Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 0.9 ns Delay time, EMB_CLK rising to EMB_RAS valid 5.1 ns Output hold time, EMB_CLK rising to EMB_RAS invalid 0.9 ns Delay time, EMB_CLK rising to EMB_CAS valid 5.1 ns Output hold time, EMB_CLK rising to EMB_CAS invalid 0.9 ns Delay time, EMB_CLK rising to EMB_WE valid 5.1 ns Output hold time, EMB_CLK rising to EMB_WE invalid 0.9 ns Delay time, EMB_CLK rising to EMB_D[31:0] 3-stated 5.1 ns Output hold time, EMB_CLK rising to EMB_D[31:0] driving 0.9 ns
70 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
EMB_CLK
EMB_BA[1:0]
EMB_A[12:0]
EMB_D[31:0]
1
2 2
4
6
8
8
12
10
16
3
5
7
7
11
13
15
9
BASIC SDRAM WRITE OPERATION
EMB_CS[0]
EMB_WE_DQM[3:0]
EMB_RAS
EMB_CAS
EMB_WE
EMB_CLK
EMB_BA[1:0]
EMB_A[12:0]
EMB_D[31:0]
1
2 2
4
6
8
8
12
14
19
20
3
5
7
7
11
13
17 18
2 EM_CLK Delay
BASIC SDRAM READ OPERATION
EMB_CS[0]
EMB_WE_DQM[3:0]
EMB_RAS
EMB_CAS
EMB_WE
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 71
Figure 6-18. EMIFB Basic SDRAM Write Operation
Figure 6-19. EMIFB Basic SDRAM Read Operation
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.13 Memory Protection Units

The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU:
Provides memory protection for fixed and programmable address ranges
Supports multiple programmable address region
Supports secure and debug access privileges
Supports read, write, and execute access privileges
Supports privid(8) associations with ranges
Generates an interrupt when there is a protection violation, and saves violating transfer parameters
MMR access is also protected
Table 6-26. MPU1 Configuration Registers
MPU1
BYTE ADDRESS
0x01E1 4000 REVID Revision ID 0x01E1 4004 CONFIG Configuration 0x01E1 4010 IRAWSTAT Interrupt raw status/set 0x01E1 4014 IENSTAT Interrupt enable status/clear 0x01E1 4018 IENSET Interrupt enable
0x01E1 401C IENCLR Interrupt enable clear
0x01E1 4020 - 0x01E1 41FF - Reserved
0x01E1 4200 PROG1_MPSAR Programmable range 1, start address 0x01E1 4204 PROG1_MPEAR Programmable range 1, end address 0x01E1 4208 PROG1_MPPA Programmable range 1, memory page protection attributes
0x01E1 420C - 0x01E1 420F - Reserved
0x01E1 4210 PROG2_MPSAR Programmable range 2, start address 0x01E1 4214 PROG2_MPEAR Programmable range 2, end address 0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes
0x01E1 421C - 0x01E1 421F - Reserved
0x01E1 4220 PROG3_MPSAR Programmable range 3, start address 0x01E1 4224 PROG3_MPEAR Programmable range 3, end address 0x01E1 4228 PROG3_MPPA Programmable range 3, memory page protection attributes
0x01E1 422C - 0x01E1 422F - Reserved
0x01E1 4230 PROG4_MPSAR Programmable range 4, start address 0x01E1 4234 PROG4_MPEAR Programmable range 4, end address 0x01E1 4238 PROG4_MPPA Programmable range 4, memory page protection attributes
0x01E1 423C - 0x01E1 423F - Reserved
0x01E1 4240 PROG5_MPSAR Programmable range 5, start address 0x01E1 4244 PROG5_MPEAR Programmable range 5, end address 0x01E1 4248 PROG5_MPPA Programmable range 5, memory page protection attributes
0x01E1 424C - 0x01E1 424F - Reserved
0x01E1 4250 PROG6_MPSAR Programmable range 6, start address 0x01E1 4254 PROG6_MPEAR Programmable range 6, end address 0x01E1 4258 PROG6_MPPA Programmable range 6, memory page protection attributes
0x01E1 425C - 0x01E1 42FF - Reserved
ACRONYM REGISTER DESCRIPTION
www.ti.com
72 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Table 6-26. MPU1 Configuration Registers (continued)
MPU1
BYTE ADDRESS
0x01E14300 FLTADDRR Fault address 0x01E1 4304 FLTSTAT Fault status 0x01E1 4308 FLTCLR Fault clear
0x01E1 430C - 0x01E1 4FFF - Reserved
ACRONYM REGISTER DESCRIPTION
Table 6-27. MPU2 Configuration Registers
MPU2
BYTE ADDRESS
0x01E1 5000 REVID Revision ID 0x01E1 5004 CONFIG Configuration 0x01E1 5010 IRAWSTAT Interrupt raw status/set 0x01E1 5014 IENSTAT Interrupt enable status/clear 0x01E1 5018 IENSET Interrupt enable
0x01E1 501C IENCLR Interrupt enable clear
0x01E1 5020 - 0x01E1 50FF - Reserved
0x01E1 5100 FXD_MPSAR Fixed range start address 0x01E1 5104 FXD_MPEAR Fixed range end start address 0x01E1 5108 FXD_MPPA Fixed range memory page protection attributes
0x01E1 510C - 0x01E1 51FF - Reserved
0x01E1 5200 PROG1_MPSAR Programmable range 1, start address 0x01E1 5204 PROG1_MPEAR Programmable range 1, end address 0x01E1 5208 PROG1_MPPA Programmable range 1, memory page protection attributes
0x01E1 520C - 0x01E1 520F - Reserved
0x01E1 5210 PROG2_MPSAR Programmable range 2, start address 0x01E1 5214 PROG2_MPEAR Programmable range 2, end address 0x01E1 5218 PROG2_MPPA Programmable range 2, memory page protection attributes
0x01E1 521C - 0x01E1 521F - Reserved
0x01E1 5220 PROG3_MPSAR Programmable range 3, start address 0x01E1 5224 PROG3_MPEAR Programmable range 3, end address 0x01E1 5228 PROG3_MPPA Programmable range 3, memory page protection attributes
0x01E1 522C - 0x01E1 522F - Reserved
0x01E1 5230 PROG4_MPSAR Programmable range 4, start address 0x01E1 5234 PROG4_MPEAR Programmable range 4, end address 0x01E1 5238 PROG4_MPPA Programmable range 4, memory page protection attributes
0x01E1 523C - 0x01E1 523F - Reserved
0x01E1 5240 PROG5_MPSAR Programmable range 5, start address 0x01E1 5244 PROG5_MPEAR Programmable range 5, end address 0x01E1 5248 PROG5_MPPA Programmable range 5, memory page protection attributes
0x01E1 524C - 0x01E1 524F - Reserved
0x01E1 5250 PROG6_MPSAR Programmable range 6, start address 0x01E1 5254 PROG6_MPEAR Programmable range 6, end address 0x01E1 5258 PROG6_MPPA Programmable range 6, memory page protection attributes
0x01E1 525C - 0x01E1 525F - Reserved
0x01E1 5260 PROG7_MPSAR Programmable range 7, start address 0x01E1 5264 PROG7_MPEAR Programmable range 7, end address 0x01E1 5268 PROG7_MPPA Programmable range 7, memory page protection attributes
0x01E1 526C - 0x01E1 526F - Reserved
ACRONYM REGISTER DESCRIPTION
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 73
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-27. MPU2 Configuration Registers (continued)
MPU2
BYTE ADDRESS
0x01E1 5270 PROG8_MPSAR Programmable range 8, start address 0x01E1 5274 PROG8_MPEAR Programmable range 8, end address 0x01E1 5278 PROG8_MPPA Programmable range 8, memory page protection attributes
0x01E1 527C - 0x01E1 527F - Reserved
0x01E1 5280 PROG9_MPSAR Programmable range 9, start address 0x01E1 5284 PROG9_MPEAR Programmable range 9, end address 0x01E1 5288 PROG9_MPPA Programmable range 9, memory page protection attributes
0x01E1 528C - 0x01E1 528F - Reserved
0x01E1 5290 PROG10_MPSAR Programmable range 10, start address 0x01E1 5294 PROG10_MPEAR Programmable range 10, end address 0x01E1 5298 PROG10_MPPA Programmable range 10, memory page protection attributes
0x01E1 529C - 0x01E1 529F - Reserved
0x01E1 52A0 PROG11_MPSAR Programmable range 11, start address 0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address 0x01E1 52A8 PROG11_MPPA Programmable range 11, memory page protection attributes
0x01E1 52AC - 0x01E1 52AF - Reserved
0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address 0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address 0x01E1 52B8 PROG12_MPPA Programmable range 12, memory page protection attributes
0x01E1 52BC - 0x01E1 52FF - Reserved
0x01E1 5300 FLTADDRR Fault address 0x01E1 5304 FLTSTAT Fault status 0x01E1 5308 FLTCLR Fault clear
0x01E1 530C - 0x01E1 5FFF - Reserved
ACRONYM REGISTER DESCRIPTION
www.ti.com
74 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.14 MMC / SD / SDIO (MMCSD)

6.14.1 MMCSD Peripheral Description

The device includes an MMCSD controller which is compliant with MMC V4.0, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The MMC/SD Controller has following features:
MultiMediaCard (MMC) support
Secure Digital (SD) Memory Card support
MMC/SD protocol support
SDIO protocol support
Programmable clock frequency
512 bit Read/Write FIFO to lower system overhead
Slave EDMA transfer capability The device MMC/SD Controller does not support SPI mode.

6.14.2 MMCSD Peripheral Register Description(s)

Table 6-28. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
BYTE ACRONYM REGISTER DESCRIPTION
ADDRESS
0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register 0x01C4 0008 MMCST0 MMC Status Register 0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM MMC Interrupt Mask Register 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTLp MMC FIFO Control Register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 75
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.14.3 MMC/SD Electrical Data/Timing

Table 6-29. Timing Requirements for MMC/SD Module
(see Figure 6-21 and Figure 6-23)
No. PARAMETER MIN MAX UNIT
1 t
su(CMDV-CLKH)
2 t
h(CLKH-CMDV)
3 t
su(DATV-CLKH)
4 t
h(CLKH-DATV)
Table 6-30. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module
No. PARAMETER MIN MAX UNIT
7 f
(CLK)
8 f
(CLK_ID)
9 t
W(CLKL)
10 t
W(CLKH)
11 t
r(CLK)
12 t
f(CLK)
13 t
d(CLKL-CMD)
14 t
d(CLKL-DAT)
Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns
(see Figure 6-20 through Figure 6-23)
Operating frequency, MMCSD_CLK 0 52 MHz Identification mode frequency, MMCSD_CLK 0 400 KHz Pulse width, MMCSD_CLK low 6.5 ns Pulse width, MMCSD_CLK high 6.5 ns Rise time, MMCSD_CLK 3 ns Fall time, MMCSD_CLK 3 ns Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 2.5 ns Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2 ns
76 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
START
XMIT Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
13
7
10
9
13
13
13
START XMIT
Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
10
9
7
1
2
START
D0 D1 Dx END
MMCSD_CLK
MMCSD_DATx
7
1414
10
9
14
14
Start
D0 D1 Dx End
7
MMCSD_CLK
MMCSD_DATx
9
10
4
3 3
4
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Figure 6-20. MMC/SD Host Command Timing
Figure 6-21. MMC/SD Card Response Timing
Figure 6-22. MMC/SD Host Write Timing
Figure 6-23. MMC/SD Host Read and Card CRC Status Timing
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 77
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.15 Ethernet Media Access Controller (EMAC)

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts.

6.15.1 EMAC Peripheral Register Description(s)

Table 6-31. Ethernet Media Access Controller (EMAC) Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3000 TXREV Transmit Revision Register 0x01E2 3004 TXCONTROL Transmit Control Register 0x01E2 3008 TXTEARDOWN Transmit Teardown Register 0x01E2 3010 RXREV Receive Revision Register 0x01E2 3014 RXCONTROL Receive Control Register 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register 0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register
0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register
0x01E2 3090 MACINVECTOR MAC Input Vector Register
0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register 0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set Register
0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register
0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register 0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set Register
0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register
0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register
0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register 0x01E2 310C RXMAXLEN Receive Maximum Length Register
0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register
0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register
0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register
0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register
0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register
0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register
0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register
0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register
www.ti.com
78 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-31. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register
0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register
0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register
0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register
0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register
0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register
0x01E2 3160 MACCONTROL MAC Control Register
0x01E2 3164 MACSTATUS MAC Status Register
0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL FIFO Control Register
0x01E2 3170 MACCONFIG MAC Configuration Register
0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1
0x01E2 31DC MACHASH2 MAC Hash Address Register 2
0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register 0x01E2 31E8 RXPAUSE Receive Pause Timer Register
0x01E2 31EC TXPAUSE Transmit Pause Timer Register
0x01E2 3200 - 0x01E2 32FC (see Table 6-32) EMAC Statistics Registers
0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching
0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching
0x01E2 3508 MACINDEX MAC Index Register
0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register
0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register
0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register
0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 79
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-31. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register
0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register
0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register
0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register
0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register
0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register
0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register
0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register
Table 6-32. EMAC Statistics Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES
0x01E2 3208 RXMCASTFRAMES
0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register
0x01E2 3210 RXCRCERRORS
0x01E2 3214 RXALIGNCODEERRORS
0x01E2 3218 RXOVERSIZED
0x01E2 321C RXJABBER
0x01E2 3220 RXUNDERSIZED 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register
0x01E2 3228 RXFILTERED Filtered Receive Frames Register
0x01E2 322C RXQOSFILTERED Received QOS Filtered Frames Register
0x01E2 3230 RXOCTETS
0x01E2 3234 TXGOODFRAMES 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register
0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register
0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register 0x01E2 3248 TXCOLLISION Transmit Collision Frames Register
0x01E2 324C TXSINGLECOLL Transmit Single Collision Frames Register
0x01E2 3250 TXMULTICOLL Transmit Multiple Collision Frames Register 0x01E2 3254 TXEXCESSIVECOLL Transmit Excessive Collision Frames Register 0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register
0x01E2 325C TXUNDERRUN Transmit Underrun Error Register
0x01E2 3260 TXCARRIERSENSE Transmit Carrier Sense Errors Register 0x01E2 3264 TXOCTETS Transmit Octet Frames Register 0x01E2 3268 FRAME64 Transmit and Receive 64 Octet Frames Register
Broadcast Receive Frames Register (Total number of good broadcast frames received)
Multicast Receive Frames Register (Total number of good multicast frames received)
Receive CRC Errors Register (Total number of frames received with CRC errors)
Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors)
Receive Oversized Frames Register (Total number of oversized frames received)
Receive Jabber Frames Register (Total number of jabber frames received)
Receive Undersized Frames Register (Total number of undersized frames received)
Receive Octet Frames Register (Total number of received bytes in good frames)
Good Transmit Frames Register (Total number of good frames transmitted)
www.ti.com
80 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-32. EMAC Statistics Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register
0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register
0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register
0x01E2 3280 NETOCTETS Network Octet Frames Register 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register
0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register
Table 6-33. EMAC Control Module Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 2000 REV EMAC Control Module Revision Register 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register
0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register
0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register 0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register
0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register 0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register
0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register
0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register
0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register
0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register 0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register
0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register
0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register
0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 81
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
RMII_MHz_50_CLK
RMII_TXEN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
RMII_RXER
1
2 3
5 5
4
6
7
8 9
10
11
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Table 6-34. EMAC Control Module RAM
HEX ADDRESS RANGE
0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory
Table 6-35. RMII Timing Requirements
No. PARAMETER MIN TYP MAX UNIT
1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK 2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns 3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns
9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns
(1) Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less.
(1)
20 ns
Table 6-36. RMII Switching Characteristics
No. PARAMETER MIN TYP MAX UNIT
4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid 2.5 13 ns
5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns
82 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Figure 6-24. RMII Timing Diagram
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

6.16 Management Data Input/Output (MDIO)

The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time.

6.16.1 MDIO Registers

For a list of supported MDIO registers see Table 6-37 [MDIO Registers].
Table 6-37. MDIO Register Memory Map
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x01E2 4000 REV Revision Identification Register 0x01E2 4004 CONTROL MDIO Control Register 0x01E2 4008 ALIVE MDIO PHY Alive Status Register
0x01E2 400C LINK MDIO PHY Link Status Register
0x01E2 4010 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register 0x01E2 4014 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register 0x01E2 4018 Reserved 0x01E2 4020 USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register
0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register
0x01E2 4030 - 0x01E2 407C Reserved
0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1
0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF Reserved
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 83
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
MDIO_CLK
MDIO_D
(input)
3
3
4
5
1
MDIO_CLK
MDIO_D (output)
7
1
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.16.2 Management Data Input/Output (MDIO) Electrical Data/Timing

Table 6-38. Timing Requirements for MDIO Input (see Figure 6-25 and Figure 6-26)
No. PARAMETER MIN MAX UNIT
1 t
c(MDIO_CLK)
2 t
w(MDIO_CLK)
3 t
t(MDIO_CLK)
4 t
su(MDIO-MDIO_CLKH)
5 t
h(MDIO_CLKH-MDIO)
Cycle time, MDIO_CLK 400 ns Pulse duration, MDIO_CLK high/low 180 ns Transition time, MDIO_CLK 5 ns Setup time, MDIO_D data input valid before MDIO_CLK high 10 ns Hold time, MDIO_D data input valid after MDIO_CLK high 10 ns
Figure 6-25. MDIO Input Timing
Table 6-39. Switching Characteristics Over Recommended Operating Conditions for MDIO Output
(see Figure 6-26)
No. PARAMETER MIN MAX UNIT
7 t
d(MDIO_CLKL-MDIO)
Delay time, MDIO_CLK low to MDIO_D data output valid 0 100 ns
Figure 6-26. MDIO Output Timing
84 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
Receive Logic
Clock/Frame Generator
State Machine
Clock Check and
Serializer 0
Serializer 1
Serializer y
GIO
Control
DIT RAM
384 C 384 U
Optional
Transmit
Formatter
Receive
Formatter
Transmit Logic
Clock/Frame Generator
State Machine
McASPx (x = 0, 1, 2)
Peripheral
Configuration
Bus
McASP
DMA Bus
(Dedicated)
AHCLKRx ACLKRx AFSRx
AMUTEINx AMUTEx
AFSXx ACLKXx AHCLKXx
AXRx[0]
AXRx[1]
AXRx[y]
Pins
Function Receive Master Clock
Receive Bit Clock Receive Left/Right Clock or Frame Sync
Transmit Master Clock
Transmit Bit Clock
Transmit Left/Right Clock or Frame Sync
Transmit/Receive Serial Data Pin
Transmit/Receive Serial Data Pin
Transmit/Receive Serial Data Pin
Error Detection
The McASPs DO NOT have dedicated AMUTEINx pins.
AM1705
www.ti.com

6.17 Multichannel Audio Serial Ports (McASP0, McASP1)

The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
Flexible clock and frame sync generation logic and on-chip dividers
Up to sixteen transmit or receive data pins and serializers
Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots
DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers
Extensive error checking and mute generation logic
All unused pins GPIO-capable
Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency.
Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP
The McASPs on the device are configured with the following options:
Table 6-40. McASP Configurations
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
(1)
Module Serializers AFIFO DIT Pins
McASP0 16 N AXR0[13:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0
McASP1 12 N AXR1[11:10], AXR1[8:0], ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1
(1) Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.
64 Word RX 64 Word TX
64 Word RX 64 Word TX
Figure 6-27. McASP Block Diagram
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 85
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.17.1 McASP Peripheral Registers Description(s)

Registers for the McASP are summarized in Table 6-41. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 6-42
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-43. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port.
Table 6-41. McASP Registers Accessed Through Peripheral Configuration Port
McASP0 McASP1 ACRONYM REGISTER DESCRIPTION
BYTE BYTE
ADDRESS ADDRESS
0x01D0 0000 0x01D0 4000 REV Revision identification register 0x01D0 0010 0x01D0 4010 PFUNC Pin function register 0x01D0 0014 0x01D0 4014 PDIR Pin direction register
0x01D0 0018 0x01D0 4018 PDOUT Pin data output register 0x01D0 001C 0x01D0 401C PDIN Read returns: Pin data input register 0x01D0 001C 0x01D0 401C PDSET Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020 0x01D0 4020 PDCLR Pin data clear register (alternate write address: PDOUT)
0x01D0 0044 0x01D0 4044 GBLCTL Global control register
0x01D0 0048 0x01D0 4048 AMUTE Audio mute control register 0x01D0 004C 0x01D0 404C DLBCTL Digital loopback control register
0x01D0 0050 0x01D0 4050 DITCTL DIT mode control register
0x01D0 0060 0x01D0 4060 RGBLCTL Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows
0x01D0 0064 0x01D0 4064 RMASK Receive format unit bit mask register
0x01D0 0068 0x01D0 4068 RFMT Receive bit stream format register 0x01D0 006C 0x01D0 406C AFSRCTL Receive frame sync control register
0x01D0 0070 0x01D0 4070 ACLKRCTL Receive clock control register
0x01D0 0074 0x01D0 4074 AHCLKRCTL Receive high-frequency clock control register
0x01D0 0078 0x01D0 4078 RTDM Receive TDM time slot 0-31 register 0x01D0 007C 0x01D0 407C RINTCTL Receiver interrupt control register
0x01D0 0080 0x01D0 4080 RSTAT Receiver status register
0x01D0 0084 0x01D0 4084 RSLOT Current receive TDM time slot register
0x01D0 0088 0x01D0 4088 RCLKCHK Receive clock check control register 0x01D0 008C 0x01D0 408C REVTCTL Receiver DMA event control register 0x01D0 00A0 0x01D0 40A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows
0x01D0 00A4 0x01D0 40A4 XMASK Transmit format unit bit mask register 0x01D0 00A8 0x01D0 40A8 XFMT Transmit bit stream format register
0x01D0 00AC 0x01D0 40AC AFSXCTL Transmit frame sync control register
0x01D0 00B0 0x01D0 40B0 ACLKXCTL Transmit clock control register 0x01D0 00B4 0x01D0 40B4 AHCLKXCTL Transmit high-frequency clock control register 0x01D0 00B8 0x01D0 40B8 XTDM Transmit TDM time slot 0-31 register
0x01D0 00BC 0x01D0 40BC XINTCTL Transmitter interrupt control register
0x01D0 00C0 0x01D0 40C0 XSTAT Transmitter status register 0x01D0 00C4 0x01D0 40C4 XSLOT Current transmit TDM time slot register 0x01D0 00C8 0x01D0 40C8 XCLKCHK Transmit clock check control register
0x01D0 00CC 0x01D0 40CC XEVTCTL Transmitter DMA event control register
0x01D0 0100 0x01D0 4100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0
receiver to be reset independently from transmitter
transmitter to be reset independently from receiver
86 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-41. McASP Registers Accessed Through Peripheral Configuration Port (continued)
McASP0 McASP1 ACRONYM REGISTER DESCRIPTION
BYTE BYTE
ADDRESS ADDRESS
0x01D0 0104 0x01D0 4104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1
0x01D0 0108 0x01D0 4108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 0x01D0 010C 0x01D0 410C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3
0x01D0 0110 0x01D0 4110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114 0x01D0 4114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118 0x01D0 4118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 0x01D0 011C 0x01D0 411C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120 0x01D0 4120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124 0x01D0 4124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128 0x01D0 4128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 0x01D0 012C 0x01D0 412C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130 0x01D0 4130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134 0x01D0 4134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138 0x01D0 4138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 0x01D0 013C 0x01D0 413C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140 0x01D0 4140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144 0x01D0 4144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148 0x01D0 4148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 0x01D0 014C 0x01D0 414C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150 0x01D0 4150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154 0x01D0 4154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158 0x01D0 4158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 0x01D0 015C 0x01D0 415C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180 0x01D0 4180 SRCTL0 Serializer control register 0
0x01D0 0184 0x01D0 4184 SRCTL1 Serializer control register 1
0x01D0 0188 0x01D0 4188 SRCTL2 Serializer control register 2 0x01D0 018C 0x01D0 418C SRCTL3 Serializer control register 3
0x01D0 0190 0x01D0 4190 SRCTL4 Serializer control register 4
0x01D0 0194 0x01D0 4194 SRCTL5 Serializer control register 5
0x01D0 0198 0x01D0 4198 SRCTL6 Serializer control register 6 0x01D0 019C 0x01D0 419C SRCTL7 Serializer control register 7 0x01D0 01A0 0x01D0 41A0 SRCTL8 Serializer control register 8 0x01D0 01A4 0x01D0 41A4 SRCTL9 Serializer control register 9 0x01D0 01A8 0x01D0 41A8 SRCTL10 Serializer control register 10
0x01D0 01AC 0x01D0 41AC SRCTL11 Serializer control register 11
0x01D0 01B0 0x01D0 41B0 SRCTL12 Serializer control register 12 0x01D0 01B4 0x01D0 41B4 SRCTL13 Serializer control register 13 0x01D0 01B8 0x01D0 41B8 SRCTL14 Serializer control register 14
0x01D0 01BC 0x01D0 41BC SRCTL15 Serializer control register 15
0x01D0 0200 0x01D0 4200 XBUF0
0x01D0 0204 0x01D0 4204 XBUF1
0x01D0 0208 0x01D0 4208 XBUF2 0x01D0 020C 0x01D0 420C XBUF3
0x01D0 0210 0x01D0 4210 XBUF4
0x01D0 0214 0x01D0 4214 XBUF5
(1)
Transmit buffer register for serializer 0
(1)
Transmit buffer register for serializer 1
(1)
Transmit buffer register for serializer 2
(1)
Transmit buffer register for serializer 3
(1)
Transmit buffer register for serializer 4
(1)
Transmit buffer register for serializer 5
(1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 87
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-41. McASP Registers Accessed Through Peripheral Configuration Port (continued)
McASP0 McASP1 ACRONYM REGISTER DESCRIPTION
BYTE BYTE
ADDRESS ADDRESS
0x01D0 0218 0x01D0 4218 XBUF6 0x01D0 021C 0x01D0 421C XBUF7 Transmit buffer register for serializer 7
0x01D0 0220 0x01D0 4220 XBUF8
0x01D0 0224 0x01D0 4224 XBUF9 Transmit buffer register for serializer 9
0x01D0 0228 0x01D0 4228 XBUF10 0x01D0 022C 0x01D0 422C XBUF11
0x01D0 0230 0x01D0 4230 XBUF12 Transmit buffer register for serializer 12
0x01D0 0234 0x01D0 4234 XBUF13
0x01D0 0238 0x01D0 4238 XBUF14 0x01D0 023C 0x01D0 423C XBUF15 Transmit buffer register for serializer 15
0x01D0 0280 0x01D0 4280 RBUF0
0x01D0 0284 0x01D0 4284 RBUF1
0x01D0 0288 0x01D0 4288 RBUF2 0x01D0 028C 0x01D0 428C RBUF3
0x01D0 0290 0x01D0 4290 RBUF4
0x01D0 0294 0x01D0 4294 RBUF5
0x01D0 0298 0x01D0 4298 RBUF6 0x01D0 029C 0x01D0 429C RBUF7 0x01D0 02A0 0x01D0 42A0 RBUF8 0x01D0 02A4 0x01D0 42A4 RBUF9 0x01D0 02A8 0x01D0 42A8 RBUF10
0x01D0 02AC 0x01D0 42AC RBUF11
0x01D0 02B0 0x01D0 42B0 RBUF12 0x01D0 02B4 0x01D0 42B4 RBUF13 0x01D0 02B8 0x01D0 42B8 RBUF14
0x01D0 02BC 0x01D0 42BC RBUF15
(2) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. (3) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
(1)
Transmit buffer register for serializer 6
(1)
Transmit buffer register for serializer 8
(1)
Transmit buffer register for serializer 10
(1)
Transmit buffer register for serializer 11
(1)
Transmit buffer register for serializer 13
(1)
Transmit buffer register for serializer 14
(2)
Receive buffer register for serializer 0
(2)
Receive buffer register for serializer 1
(2)
Receive buffer register for serializer 2
(2)
Receive buffer register for serializer 3
(3)
Receive buffer register for serializer 4
(3)
Receive buffer register for serializer 5
(3)
Receive buffer register for serializer 6
(3)
Receive buffer register for serializer 7
(3)
Receive buffer register for serializer 8
(3)
Receive buffer register for serializer 9
(3)
Receive buffer register for serializer 10
(3)
Receive buffer register for serializer 11
(3)
Receive buffer register for serializer 12
(3)
Receive buffer register for serializer 13
(3)
Receive buffer register for serializer 14
(3)
Receive buffer register for serializer 15
www.ti.com
Table 6-42. McASP Registers Accessed Through DMA Port
McASP0 McASP1
BYTE BYTE ACRONYM REGISTER DESCRIPTION
ADDRESS ADDRESS
Receive buffer DMA port address. Cycles through receive serializers,
Read skipping over transmit serializers and inactive serializers. Starts at the
Accesses lowest serializer at the beginning of each time slot. Reads from DMA port
01D0 2000 01D0 6000 RBUF
only if XBUSEL = 0 in XFMT. Transmit buffer DMA port address. Cycles through transmit serializers,
Write skipping over receive and inactive serializers. Starts at the lowest serializer
Accesses at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0
01D0 2000 01D0 6000 XBUF
in RFMT.
Table 6-43. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
McASP0 McASP1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01D0 1000 0x01D0 5000 AFIFOREV AFIFO revision identification register 0x01D0 1010 0x01D0 5010 WFIFOCTL Write FIFO control register 0x01D0 1014 0x01D0 5014 WFIFOSTS Write FIFO status register
88 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-43. McASP AFIFO Registers Accessed Through Peripheral Configuration Port (continued)
McASP0 McASP1 ACRONYM REGISTER DESCRIPTION
BYTE ADDRESS BYTE ADDRESS
0x01D0 1018 0x01D0 5018 RFIFOCTL Read FIFO control register
0x01D0 101C 0x01D0 501C RFIFOSTS Read FIFO status register
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 89
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

6.17.2 McASP Electrical Data/Timing

6.17.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 6-44 and Table 6-45 assume testing over recommended operating conditions (see Figure 6-28 and Figure 6-29).
Table 6-44. McASP0 Timing Requirements
No. PARAMETER MIN MAX UNIT
1 t
c(AHCLKRX)
2 t
w(AHCLKRX)
3 t
c(ACLKRX)
4 t
w(ACLKRX)
5 t
su(AFSRX-ACLKRX)
6 t
h(ACLKRX-AFSRX)
7 t
su(AXR-ACLKRX)
8 t
h(ACLKRX-AXR)
(1) ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) P = SYSCLK2 period (3) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 (4) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Cycle time, AHCLKR0 external, AHCLKR0 input 25 Cycle time, AHCLKX0 external, AHCLKX0 input 25 Pulse duration, AHCLKR0 external, AHCLKR0 input 12.5 Pulse duration, AHCLKX0 external, AHCLKX0 input 12.5 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 25 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 25 Pulse duration, ACLKR0 external, ACLKR0 input 12.5 Pulse duration, ACLKX0 external, ACLKX0 input 12.5 Setup time, AFSR0 input to ACLKR0 internal
(3)
Setup time, AFSX0 input to ACLKX0 internal 9.4 Setup time, AFSR0 input to ACLKR0 external input
(3)
Setup time, AFSX0 input to ACLKX0 external input 2.9 Setup time, AFSR0 input to ACLKR0 external output
(3)
Setup time, AFSX0 input to ACLKX0 external output 2.9 Hold time, AFSR0 input after ACLKR0 internal
(3)
Hold time, AFSX0 input after ACLKX0 internal -1.2 Hold time, AFSR0 input after ACLKR0 external input
(3)
Hold time, AFSX0 input after ACLKX0 external input 0.9 Hold time, AFSR0 input after ACLKR0 external output
(3)
Hold time, AFSX0 input after ACLKX0 external output 0.9 Setup time, AXR0[n] input to ACLKR0 internal Setup time, AXR0[n] input to ACLKX0 internal Setup time, AXR0[n] input to ACLKR0 external input Setup time, AXR0[n] input to ACLKX0 external input Setup time, AXR0[n] input to ACLKR0 external output Setup time, AXR0[n] input to ACLKX0 external output Hold time, AXR0[n] input after ACLKR0 internal Hold time, AXR0[n] input after ACLKX0 internal Hold time, AXR0[n] input after ACLKR0 external input Hold time, AXR0[n] input after ACLKX0 external input Hold time, AXR0[n] input after ACLKR0 external output Hold time, AXR0[n] input after ACLKX0 external output
(3) (4)
(3) (4)
(3)
(4) (3) (4)
(3)
(4)
(3) (4)
(1) (2)
9.4
2.9
2.9
-1.2
0.9
0.9
9.4
9.4
2.9
2.9
2.9
2.9
-1.3
-1.3
0.5
0.5
0.5
0.5
ns
ns
ns
ns
ns
ns
ns
ns
90 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Table 6-45. McASP0 Switching Characteristics
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
(1)
No. PARAMETER MIN MAX UNIT
Cycle time, AHCLKR0 internal, AHCLKR0 output 25
9 t
c(AHCLKRX)
Cycle time, AHCLKR0 external, AHCLKR0 output 25 Cycle time, AHCLKX0 internal, AHCLKX0 output 25 Cycle time, AHCLKX0 external, AHCLKX0 output 25
(2)
(2) (3) (3)
(4) (4) (4)
(4) (5) (5) (6) (6)
0 5.8
10 t
11 t
12 t
w(AHCLKRX)
c(ACLKRX)
w(ACLKRX)
Pulse duration, AHCLKR0 internal, AHCLKR0 output (AHR/2) – 2.5 Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 25 ns Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 25 ns Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 25 ns Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 25 ns Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) – 2.5 Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 Delay time, ACLKR0 internal, AFSR output
(7)
Delay time, ACLKX0 internal, AFSX output 0 5.8
13 t
d(ACLKRX-AFSRX)
Delay time, ACLKR0 external input, AFSR output Delay time, ACLKX0 external input, AFSX output 2.5 11.6 Delay time, ACLKR0 external output, AFSR output
(7)
(7)
2.5 11.6
2.5 11.6 Delay time, ACLKX0 external output, AFSX output 2.5 11.6 Delay time, ACLKX0 internal, AXR0[n] output 0 5.8
14 t
d(ACLKX-AXRV)
Delay time, ACLKX0 external input, AXR0[n] output 2.5 11.6 ns Delay time, ACLKX0 external output, AXR0[n] output 2.5 11.6 Disable time, ACLKX0 internal, AXR0[n] output 0 5.8
15 t
dis(ACLKX-AXRHZ)
Disable time, ACLKX0 external input, AXR0[n] output 3 11.6 ns Disable time, ACLKX0 external output, AXR0[n] output 3 11.6
(1) McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) AHR - Cycle time, AHCLKR0. (3) AHX - Cycle time, AHCLKX0. (4) P = SYSCLK2 period (5) AR - ACLKR0 period. (6) AX - ACLKX0 period. (7) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
ns
ns
ns
ns
ns
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 91
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
6.17.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing
Table 6-46 and Table 6-47 assume testing over recommended operating conditions (see Figure 6-28 and Figure 6-29).
Table 6-46. McASP1 Timing Requirements
No. PARAMETER MIN MAX UNIT
1 t
c(AHCLKRX)
2 t
w(AHCLKRX)
3 t
c(ACLKRX)
4 t
w(ACLKRX)
5 t
su(AFSRX-ACLKRX)
6 t
h(ACLKRX-AFSRX)
7 t
su(AXR-ACLKRX)
8 t
h(ACLKRX-AXR)
(1) ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) P = SYSCLK2 period (3) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 (4) McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1
Cycle time, AHCLKR1 external, AHCLKR1 input 25 Cycle time, AHCLKX1 external, AHCLKX1 input 25 Pulse duration, AHCLKR1 external, AHCLKR1 input 12.5 Pulse duration, AHCLKX1 external, AHCLKX1 input 12.5 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 25 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 25 Pulse duration, ACLKR1 external, ACLKR1 input 12.5 Pulse duration, ACLKX1 external, ACLKX1 input 12.5 Setup time, AFSR1 input to ACLKR1 internal
(3)
Setup time, AFSX1 input to ACLKX1 internal 10.4 Setup time, AFSR1 input to ACLKR1 external input
(3)
Setup time, AFSX1 input to ACLKX1 external input 2.6 Setup time, AFSR1 input to ACLKR1 external output
(3)
Setup time, AFSX1 input to ACLKX1 external output 2.6 Hold time, AFSR1 input after ACLKR1 internal
(3)
Hold time, AFSX1 input after ACLKX1 internal -1.9 Hold time, AFSR1 input after ACLKR1 external input
(3)
Hold time, AFSX1 input after ACLKX1 external input 0.7 Hold time, AFSR1 input after ACLKR1 external output
(3)
Hold time, AFSX1 input after ACLKX1 external output 0.7 Setup time, AXR1[n] input to ACLKR1 internal Setup time, AXR1[n] input to ACLKX1 internal Setup time, AXR1[n] input to ACLKR1 external input Setup time, AXR1[n] input to ACLKX1 external input Setup time, AXR1[n] input to ACLKR1 external output Setup time, AXR1[n] input to ACLKX1 external output Hold time, AXR1[n] input after ACLKR1 internal Hold time, AXR1[n] input after ACLKX1 internal Hold time, AXR1[n] input after ACLKR1 external input Hold time, AXR1[n] input after ACLKX1 external input Hold time, AXR1[n] input after ACLKR1 external output Hold time, AXR1[n] input after ACLKX1 external output
(3) (4)
(3) (4)
(3)
(4) (3) (4)
(3)
(4)
(3) (4)
(1) (2)
10.4
2.6
2.6
-1.9
0.7
0.7
10.4
10.4
2.6
2.6
2.6
2.6
-1.8
-1.8
0.5
0.5
0.5
0.5
ns
ns
ns
ns
ns
ns
ns
ns
92 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Table 6-47. McASP1 Switching Characteristics
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
(1)
No. PARAMETER MIN MAX UNIT
Cycle time, AHCLKR1 internal, AHCLKR1 output 25
9 t
c(AHCLKRX)
Cycle time, AHCLKR1 external, AHCLKR1 output 25 Cycle time, AHCLKX1 internal, AHCLKX1 output 25 Cycle time, AHCLKX1 external, AHCLKX1 output 25
(2) (2) (3) (3)
(4) (4) (4)
(4) (5) (5) (6) (6)
0.5 6.7
10 t
11 t
12 t
w(AHCLKRX)
c(ACLKRX)
w(ACLKRX)
Pulse duration, AHCLKR1 internal, AHCLKR1 output (AHR/2) – 2.5 Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 25 ns Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 25 ns Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 25 ns Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 25 ns Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) – 2.5 Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 Delay time, ACLKR1 internal, AFSR output
(7)
Delay time, ACLKX1 internal, AFSX output 0.5 6.7
13 t
d(ACLKRX-AFSRX)
Delay time, ACLKR1 external input, AFSR output Delay time, ACLKX1 external input, AFSX output 3.4 13.8 Delay time, ACLKR1 external output, AFSR output
(7)
(7)
3.4 13.8
3.4 13.8 Delay time, ACLKX1 external output, AFSX output 3.4 13.8 Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7
14 t
d(ACLKX-AXRV)
Delay time, ACLKX1 external input, AXR1[n] output 3.4 13.8 ns Delay time, ACLKX1 external output, AXR1[n] output 3.4 13.8 Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7
15 t
dis(ACLKX-AXRHZ)
Disable time, ACLKX1 external input, AXR1[n] output 3.9 13.8 ns Disable time, ACLKX1 external output, AXR1[n] output 3.9 13.8
(1) McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 (2) AHR - Cycle time, AHCLKR1. (3) AHX - Cycle time, AHCLKX1. (4) P = SYSCLK2 period (5) AR - ACLKR1 period. (6) AX - ACLKX1 period. (7) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1
ns
ns
ns
ns
ns
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 93
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
8
7
4
4
3
2
21
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data In/Receive)
6
5
ACLKR/X (CLKRP = CLKXP = 0)
(A)
ACLKR/X (CLKRP = CLKXP = 1)
(B)
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
Figure 6-28. McASP Input Timings
94 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
15
14
13
13
13
13
13
13
13
12
12
11
10
10
9
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data Out/Transmit)
ACLKR/X (CLKRP = CLKXP = 0)
(B)
ACLKR/X (CLKRP = CLKXP = 1)
(A)
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
Figure 6-29. McASP Output Timings
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 95
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
GPIO
Control
(all pins)
State
Machine
Clock
Control
SPIx_SIMO SPIx_SOMI
SPIx_ENA SPIx_SCS
SPIx_CLK
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.18 Serial Peripheral Interface Ports (SPI0, SPI1)

Figure 6-30 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options.
Figure 6-30. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low.
www.ti.com
In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this device.
96 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
Optional − Slave Chip Select
Optional Enable (Ready)
SLAVE SPIMASTER SPI
SPIx_SIMOSPIx_SIMO
SPIx_SOMI SPIx_SOMI
SPIx_CLK SPIx_CLK
SPIx_ENA SPIx_ENA
SPIx_SCS SPIx_SCS
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Figure 6-31. Illustration of SPI Master-to-SPI Slave Connection
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 97
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.18.1 SPI Peripheral Registers Description(s)

Table 6-48 is a list of the SPI registers.
Table 6-48. SPIx Configuration Registers
SPI0 SPI1
BYTE ADDRESS BYTE ADDRESS
0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register
0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register
0x01C4 1010 0x01E1 2010 SPIFLG Flag Register 0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction)
0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In)
0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear)
0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register
0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register 0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select)
0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select)
0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register 0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register 0x01C4 1048 0x01E1 2048 SPIDELAY Delay Register
0x01C4 104C 0x01E1 204C SPIDEF Default Chip Select Register
0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 0 0x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 1 0x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 2
0x01C4 105C 0x01E1 205C SPIFMT3 Format Register 3
0x01C4 1060 0x01E1 2060 Reserved Reserved - Do not write to this register 0x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1
ACRONYM REGISTER DESCRIPTION
www.ti.com
98 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

6.18.2 SPI Electrical Data/Timing

6.18.2.1 Serial Peripheral Interface (SPI) Timing
Table 6-49 through Table 6-64 assume testing over recommended operating conditions (see Figure 6-32
through Figure 6-35).
Table 6-49. General Timing Requirements for SPI0 Master Modes
No. PARAMETER MIN MAX UNIT
1 t 2 t
3 t
c(SPC)M
w(SPCH)M w(SPCL)M
Cycle Time, SPI0_CLK, All Master Modes 256P ns Pulse Width High, SPI0_CLK, All Master Modes 0.5t
Pulse Width Low, SPI0_CLK, All Master Modes 0.5t
Polarity = 0, Phase = 0, to SPI0_CLK rising
Polarity = 0, Phase = 1,
4 t
d(SIMO_SPC)M
Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK
(2)
to SPI0_CLK rising Polarity = 1, Phase = 0,
to SPI0_CLK falling Polarity = 1, Phase = 1,
to SPI0_CLK falling Polarity = 0, Phase = 0,
from SPI0_CLK rising Polarity = 0, Phase = 1,
from SPI0_CLK falling Polarity = 1, Phase = 0,
from SPI0_CLK falling
5 t
d(SPC_SIMO)M
Delay, subsequent bits valid on SPI0_SIMO after transmit edge of ns SPI0_CLK
Polarity = 1, Phase = 1, from SPI0_CLK rising
Polarity = 0, Phase = 0, from SPI0_CLK falling
Polarity = 0, Phase = 1,
6 t
oh(SPC_SIMO)M
Output hold time, SPI0_SIMO valid afterreceive edge of SPI0_CLK
from SPI0_CLK rising Polarity = 1, Phase = 0,
from SPI0_CLK rising Polarity = 1, Phase = 1,
from SPI0_CLK falling Polarity = 0, Phase = 0,
to SPI0_CLK falling Polarity = 0, Phase = 1,
7 t
su(SOMI_SPC)M
Input Setup Time, SPI0_SOMI valid beforereceive edge of SPI0_CLK
to SPI0_CLK rising Polarity = 1, Phase = 0,
to SPI0_CLK rising Polarity = 1, Phase = 1,
to SPI0_CLK falling Polarity = 0, Phase = 0,
from SPI0_CLK falling Polarity = 0, Phase = 1,
8 t
ih(SPC_SOMI)M
Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK
from SPI0_CLK rising Polarity = 1, Phase = 0,
from SPI0_CLK rising Polarity = 1, Phase = 1,
from SPI0_CLK falling
(1) P = SYSCLK2 period (2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
greater of 3P or
c(SPC)M c(SPC)M
0.5t
c(SPC)M
0.5t
c(SPC)M
0.5t
c(SPC)M
0.5t
c(SPC)M
0
0
0
0
5
5
5
5
(1)
20 ns
- 1 ns
- 1 ns
- 0.5t
- 0.5t
c(SPC)M
c(SPC)M
+ 5
+ 5
-3
-3
-3
-3
5
5
5
5
5
5
ns
ns
ns
ns
Copyright © 2010, Texas Instruments Incorporated Peripheral Information and Electrical Specifications 99
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 6-50. General Timing Requirements for SPI0 Slave Modes
(1)
www.ti.com
No. PARAMETER MIN MAX UNIT
9 t
10 t 11 t
12 t
13 t
14 t
15 t
16 t
c(SPC)S
w(SPCH)S w(SPCL)S
su(SOMI_SPC)S
d(SPC_SOMI)S
oh(SPC_SOMI)S
su(SIMO_SPC)S
ih(SPC_SIMO)S
Cycle Time, SPI0_CLK, All Slave Modes ns Pulse Width High, SPI0_CLK, All Slave Modes 18 ns
Pulse Width Low, SPI0_CLK, All Slave Modes 18 ns
Polarity = 0, Phase = 0, to SPI0_CLK rising
Setup time, transmit data written to SPI before initial clock edge from master.
(3)
Polarity = 0, Phase = 1, to SPI0_CLK rising
(2)
Polarity = 1, Phase = 0, to SPI0_CLK falling
Polarity = 1, Phase = 1, to SPI0_CLK falling
Polarity = 0, Phase = 0, from SPI0_CLK rising
Delay, subsequent bits valid on SPI0_SOMI after transmit edge of ns SPI0_CLK
Polarity = 0, Phase = 1, from SPI0_CLK falling
Polarity = 1, Phase = 0, from SPI0_CLK falling
Polarity = 1, Phase = 1, from SPI0_CLK rising
Polarity = 0, Phase = 0, from SPI0_CLK falling
Polarity = 0, Phase = 1,
Output hold time, SPI0_SOMI valid afte receive edge of SPI0_CLK
from SPI0_CLK rising Polarity = 1, Phase = 0,
from SPI0_CLK rising Polarity = 1, Phase = 1,
from SPI0_CLK falling Polarity = 0, Phase = 0,
to SPI0_CLK falling Polarity = 0, Phase = 1,
Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK
to SPI0_CLK rising Polarity = 1, Phase = 0,
to SPI0_CLK rising Polarity = 1, Phase = 1,
to SPI0_CLK falling Polarity = 0, Phase = 0,
from SPI0_CLK falling Polarity = 0, Phase = 1,
Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK
from SPI0_CLK rising Polarity = 1, Phase = 0,
from SPI0_CLK rising Polarity = 1, Phase = 1,
from SPI0_CLK falling
greater of 3P or
20 ns
2P
2P
2P
2P
0.5t
c(SPC)S
0.5t
c(SPC)S
0.5t
c(SPC)S
0.5t
c(SPC)S
0
0
0
0
5
5
5
5
ns
18.5
18.5
18.5
18.5
-3
-3 ns
-3
-3
ns
ns
(1) P = SYSCLK2 period (2) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
(3) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
100 Peripheral Information and Electrical Specifications Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
Loading...