Texas instruments AM1705 ADVANCE INFORMATION

ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
AM1705 ARM Microprocessor
Check for Samples: AM1705

1 AM1705 ARM Microprocessor

123
• Highlights – 375/456-MHz ARM926EJ-S™ RISC Core – ARM9 Memory Architecture – Programmable Real-Time Unit Subsystem – Enhanced Direct-Memory-Access Controller
3 (EDMA3) • Two External Memory Interfaces: – Two External Memory Interfaces – EMIFA – Three Configurable 16550 type UART NOR (8-Bit-Wide Data)
Modules – Two Serial Peripheral Interfaces (SPI) – Multimedia Card (MMC)/Secure Digital (SD) Space
Card Interface with Secure Data I/O (SDIO) – Two Master/Slave Inter-Integrated Circuit – USB 2.0 OTG Port With Integrated PHY – Two Multichannel Audio Serial Ports – 10/100 Mb/s Ethernet MAC (EMAC) – One 64-Bit General-Purpose Timer UART0 only – One 64-bit General-Purpose/Watchdog Timer • Two Serial Peripheral Interfaces (SPI) Each – Three Enhanced Pulse Width Modulators – Three 32-Bit Enhanced Capture Modules
• Applications – Industrial Automation – Home Automation – Test and Measurement – Portable Data Terminals – Educational Consoles – Power Protection Systems
• 375/456-MHz ARM926EJ-S™ RISC Core – 32-Bit and 16-Bit (Thumb®) Instructions – Single Cycle MAC – ARM®Jazelle®Technology – EmbeddedICE-RT™ for Real-Time Debug
• ARM9 Memory Architecture – 16K-Byte Instruction Cache – 16K-Byte Data Cache – 8K-Byte RAM (Vector Table) – 64K-Byte ROM
• Enhanced Direct-Memory-Access Controller 3 (EDMA3):
– 2 Transfer Controllers
– 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size
• 128K-Byte RAM Memory
• 3.3V LVCMOS IOs (except for USB interface)
– EMIFB
16-Bit SDRAM With 256MB Address
• Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – 16-byte FIFO – 16x or 13x Oversampling Option – Autoflow control signals (CTS, RTS) on
With One Chip-Select
• Programmable Real-Time Unit Subsystem (PRUSS)
– Two Independent Programmable Realtime
Unit (PRU) Cores
32-Bit Load/Store RISC architecture
4K Byte instruction RAM per core
512 Bytes data RAM per core
PRU Subsystem (PRUSS) can be disabled via software to save power
– Standard power management mechanism
Clock gating
Entire subsystem under a single PSC clock gating domain
– Dedicated interrupt controller – Dedicated switched central resource
• Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO)
• Two Master/Slave Inter-Integrated Circuit (I2C Bus™)
• USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 Full-Speed Client – USB 2.0 Full-/Low-Speed Host
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited. 3ARM, Jazelle are registered trademarks of ARM Limited.
ADVANCE INFORMATION concerns new products in the sampling or preproduction phaseof development. Characteristic dataand other specifications are subjectto change without notice.
Copyright © 2010, Texas Instruments Incorporated
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
– End Point 0 (Control) – 6 Single Edge, 6 Dual Edge Symmetric or 3 – End Points 1,2,3,4 (Control, Bulk, Interrupt or
Dual Edge Asymmetric Outputs
ISOC) Rx and Tx – Dead-Band Generation
• Two Multichannel Audio Serial Ports: – PWM Chopping by High-Frequency Carrier – Six Clock Zones and 28 Serial Data Pins – Trip Zone Input – Supports TDM, I2S, and Similar Formats • Three 32-Bit Enhanced Capture Modules – FIFO buffers for Transmit and Receive
• 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module
• One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
• One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
• Three Enhanced Pulse Width Modulators (eHRPWM):
– Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control
(eCAP): – Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM) outputs
– Single Shot Capture of up to Four Event
Time-Stamps
• Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP)
• 176-pin PowerPAD™ Plastic Quad Flat Pack [PTP suffix], 0.5-mm Pin Pitch
• Commercial, Industrial, or Extended Temperature
• Community Resources – TI E2E CommunityTI Embedded Processors Wiki
2 AM1705 ARM Microprocessor Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

1.2 Trademarks

All trademarks are the property of their respective owners.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated AM1705 ARM Microprocessor 3
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

1.3 Description

The device is a low-power ARM microprocessor based on an ARM926EJ-S™. The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 3 multichannel audio serial port (McASP) with serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.
www.ti.com
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration.
TheI2C, SPI, and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The device has a complete set of development tools for the ARM. These include C compilers and a Windows™ debugger interface for visibility into source code execution.
4 AM1705 ARM Microprocessor Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
Switched Central Resource (SCR)
16 KB
I-Cache
16 KB
D-Cache
4 KB ETB
ARM926EJ-S CPU
With MMU
ARM Subsystem
JTAG Interface
System Control
Input
Clock(s)
64 KB ROM
8 KB RAM
(Vector Table)
Power/Sleep
Controller
Pin
Multiplexing
PLL/Clock Generator
w/OSC
General­Purpose
Timer
General­Purpose
Timer
(Watchdog)
Serial Interfaces
I C
(2)
2
SPI
(2)
UART
(3)
Audio Ports
McASP w/FIFO
(2)
DMA
Peripherals
External Memory Interfaces
Connectivity
EDMA3
Control Timers
eHRPWM
(3)
eCAP
(3)
eQEP
(2)
(10/100)
EMAC
(RMII)
MDIO
USB2.0
OTG Ctlr
PHY
MMC/SD
(8b)
EMIFB
SDRAM Only
(16b/32b)
GPIO 128 KB
RAM
Shared Memory
EMIFA
NAND/ Flash
(8b)
PRU
Subsystem
Customizable Interface
AM1705
www.ti.com

1.4 Functional Block Diagram

SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated AM1705 ARM Microprocessor 5
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
1 AM1705 ARM Microprocessor ........................ 1 6.9 General-Purpose Input/Output (GPIO) ............. 53
1.1 Features .............................................. 1 6.10 EDMA ............................................... 56
1.2 Trademarks .......................................... 3
1.3 Description ........................................... 4
1.4 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Overview ........................................ 8
3.1 Device Characteristics ............................... 8
3.2 Device Compatibility ................................. 9
3.3 ARM Subsystem ..................................... 9
3.4 Memory Map Summary ............................. 12
3.5 Pin Assignments .................................... 14
3.6 Terminal Functions ................................. 15
4 Device Configuration ................................. 30
4.1 Boot Modes ......................................... 30
4.2 SYSCFG Module ................................... 31
4.3 Pullup/Pulldown Resistors .......................... 33
5 Device Operating Conditions ....................... 34
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) ................................. 34
5.2 Recommended Operating Conditions .............. 35
5.3 Notes on Recommended Power-On Hours (POH)
...................................................... 36
5.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 37
6 Peripheral Information and Electrical
Specifications .......................................... 38
6.1 Parameter Information .............................. 38
6.2 Recommended Clock and Control Signal Transition
Behavior ............................................ 39
6.3 Power Supplies ..................................... 39
6.4 Unused USB0 (USB2.0) Pin Configurations ....... 39
6.5 Reset ............................................... 40
6.6 Crystal Oscillator or External Clock Input .......... 43 PowerPAD™ Package ............................ 157
6.7 Clock PLLs ......................................... 45 8.5 Mechanical Drawings ............................. 158
6.8 Interrupts ............................................ 49
6.11 External Memory Interface A (EMIFA) ............. 61
6.12 External Memory Interface B (EMIFB) ............. 67
6.13 Memory Protection Units ........................... 72
6.14 MMC / SD / SDIO (MMCSD) ....................... 75
6.15 Ethernet Media Access Controller (EMAC) ......... 78
6.16 Management Data Input/Output (MDIO) ........... 83
6.17 Multichannel Audio Serial Ports (McASP0,
McASP1) ............................................ 85
6.18 Serial Peripheral Interface Ports (SPI0, SPI1) ..... 96
6.19 Enhanced Capture (eCAP) Peripheral ............ 114
6.20 Enhanced Quadrature Encoder (eQEP) Peripheral
..................................................... 117
6.21 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ........................................ 119
6.22 Timers ............................................. 123
6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
..................................................... 125
6.24 Universal Asynchronous Receiver/Transmitter
(UART) ............................................ 130
6.25 USB0 OTG (USB2.0 OTG) ........................ 132
6.26 Power and Sleep Controller (PSC) ................ 140
6.27 Programmable Real-Time Unit Subsystem (PRUSS)
..................................................... 143
6.28 Emulation Logic ................................... 146
6.29 IEEE 1149.1 JTAG ................................ 152
7 Device and Documentation Support ............. 154
7.1 Device Support .................................... 154
7.2 Documentation Support ........................... 154
8 Mechanical Packaging and Orderable
Information ............................................ 155
8.1 Device and Development-Support Tool
Nomenclature ..................................... 155
8.2 Packaging Materials Information .................. 155
8.3 Thermal Data for PTP ............................. 157
8.4 Supplementary Information About the 176-pin PTP
6 Contents Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

2 Revision History

This data manual revision history highlights the changes made to the SPRS657A device-specific data manual to make it an SPRS657B revision.
Table 2-1. Revision History
ADDITIONS/MODIFICATIONS/DELETIONS
Global - Changed SPI td(SCSL_SPC)S min from P to 2P Global - Replaced all "CLKIN" references with "OSCIN" Global - Updated SPI Electrical parameters Global - Document updated to indicate that the AM1705 does not support high-speed operation on USB0.
Figure 3-1 - Updated muxing on pins 116 and 118.
Added Section 5.3, Notes on Recommended Power-On Hours (POH).
Section 6.5- Updated "All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence" to " All
pins are tri-stated with the exception of RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low."
Updated the PLL diagram - Figure 6-9
Copyright © 2010, Texas Instruments Incorporated Revision History 7
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3 Device Overview

3.1 Device Characteristics

Table 3-1 provides an overview of the device . The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 3-1. Characteristics of the Device
HARDWARE FEATURES AM1705
EMIFB 16-bit , upto 512Mb SDRAM EMIFA Asynchronous (8/16-bit bus width) RAM, Flash, NOR, NAND Flash Card Interface MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers
Timers UART 3 (one with RTS and CTS flow control)
SPI 2 (Each with one hardware chip select) I2C 2 (both Master/Slave) Multichannel Audio
Serial Port [McASP] 10/100 Ethernet MAC
Peripherals I/O Not all peripherals pins
are available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
JTAG BSDL_ID DEVIDR0 register CPU Frequency MHz ARM926 375 MHz (1.2V) or 456 MHz (1.3V)
Voltage
Package 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP)
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice.
(1)
with Management Data 1 (RMII Interface)
eHRPWM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel USB 2.0 (USB0) Full-Speed/Low-Speed OTG Controller with on-chip OTG PHY General-Purpose
Input/Output Port PRU Subsystem
(PRUSS) Size (Bytes) 168KB RAM, 64KB ROM
Organization
Core (V) I/O (V) 3.3 V
Product Preview (PP), Advance Information (AI), or Production Data (PD)
2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as
Watch Dog)
2(each with transmit/receive, FIFO buffer, 16/12/4 serializers)
8 banks of 16-bit
2 Programmable PRU Cores
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL MEMORY
128KB RAM
0x8B7D F02F (Silicon Revision 1.1) 0x9B7D F02F (Silicon Revision 2.0)
1.2 V nominal for 375 MHz version
1.3 V nominal for 456 MHz version
375 MHz Versions -PD
456 MHz Version - AI
8 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com

3.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.

3.3 ARM Subsystem

The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian
System Control Co-Processor 15 (CP15)
MMU
16KB Instruction cache
16KB Data cache
Write Buffer
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt controller

3.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
Separate instruction and data caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com

3.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.
Copyright © 2010, Texas Instruments Incorporated Device Overview 9
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.3.3 MMU

A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10

3.3.4 Caches and Write Buffer

The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.
www.ti.com
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.

3.3.5 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.

3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:
10 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'.

3.3.7 ARM Memory Mapping

By default the ARM has access to most on and off chip memory areas, EMIFA, EMIFB, and the additional 128K byte on chip SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default.
See Table 3-2 for a detailed top level device memory map that includes the ARM memory space.
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Copyright © 2010, Texas Instruments Incorporated Device Overview 11
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.4 Memory Map Summary

Table 3-2. AM1705 Top Level Memory Map
Start Address End Address Size ARM Mem Map EDMA Mem PRUSS Mem Master Peripheral
0x0000 0000 0x0000 0FFF 4K - PRUSS Local
0x0000 1000 0x01BB FFFF ­0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory ­0x01BC 1000 0x01BC 17FF 2K ARM ETB reg ­0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher ­0x01BC 1900 0x01BF FFFF ­0x01C0 0000 0x01C0 7FFF 32K EDMA3 Channel Controller 0x01C0 8000 0x01C0 83FF 1024 EDMA3 Transfer Controller 0 0x01C0 8400 0x01C0 87FF 1024 EDMA3 Transfer Controller 1 0x01C0 8800 0x01C0 FFFF ­0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0x01C1 2000 0x01C1 3FFF ­0x01C1 4000 0x01C1 4FFF 4K SYSCFG 0x01C1 5000 0x01C1 FFFF ­0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 3FFF 0x01C2 4000 0x01C3 FFFF 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF ­0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Control 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data 0x01D0 3000 0x01D0 3FFF ­0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Control 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data 0x01D0 7000 0x01D0 BFFF ­0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01DF FFFF
0x01E0 0000 0x01E0 FFFF 64K USB0
0x01E1 0000 0x01E1 1FFF -
0x01E1 2000 0x01E1 2FFF 4K SPI 1
0x01E1 3000 0x01E1 3FFF -
0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1)
0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2)
0x01E1 6000 0x01E1 FFFF -
0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM
0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers
Map Map Mem Map
Address
Space
12 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
Table 3-2. AM1705 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem Map EDMA Mem PRUSS Mem Master Peripheral
0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers
0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port
0x01E2 5000 0x01E2 5FFF -
0x01E2 6000 0x01E2 6FFF 4K GPIO
0x01E2 7000 0x01E2 7FFF 4K PSC 1
0x01E2 8000 0x01E2 8FFF 4K I2C 1
0x01E2 9000 0x01EF FFFF -
0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0
0x01F0 1000 0x01F0 1FFF 4K HRPWM 0
0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1
0x01F0 3000 0x01F0 3FFF 4K HRPWM 1
0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2
0x01F0 5000 0x01F0 5FFF 4K HRPWM 2
0x01F0 6000 0x01F0 6FFF 4K ECAP 0
0x01F0 7000 0x01F0 7FFF 4K ECAP 1
0x01F0 8000 0x01F0 8FFF 4K ECAP 2
0x01F0 9000 0x01F0 9FFF 4K EQEP 0 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x5FFF FFFF -
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2)
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3)
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4)
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5)
0x6800 0000 0x6800 7FFF 32K EMIFA Control Registers
0x6800 8000 0x7FFF FFFF -
0x8000 0000 0x8001 FFFF 128K On-chip RAM
0x8002 0000 0xAFFF FFFF -
0xB000 0000 0xB000 7FFF 32K EMIFB Control Registers
0xB000 8000 0xBFFF FFFF ­0xC000 0000 0xCFFF FFFF 256M EMIFB SDRAM Data 0xD000 0000 0xFFFC FFFF 0xFFFD 0000 0xFFFD FFFF 64K ARM local ROM ­0xFFFE 0000 0xFFFE DFFF -
0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller -
0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM - ARM local -
0xFFFF 2000 0xFFFF FFFF -
Map Map Mem Map
RAM (PRU 0
Only)
Copyright © 2010, Texas Instruments Incorporated Device Overview 13
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
133
RSV2
134
USB0_VDDA12
135
USB0_VDDA18
136
NC
137
USB0_DP
138
USB0_DM
139
NC
140
USB0_VDDA33
141
PLL0_VDDA
142 143
OSCIN
144 145
OSCOUT
146
RESET
147 148
RSV4
149
RSV3
150
RTCK/GP7[14]
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
PLL0_VSSA
OSCVSS
CV
DD
TRST
TMS
TDI
TCK TDO
RV
DD
AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10]
DV
DD
AFSR1/GP4[13]
AXR1[8]/EPWM1A/GP4[8] AXR1[7]/EPWM1B/GP4[7] AXR1[6]/EPWM2A/GP4[6] AXR1[5]/EPWM2B/GP4[5]
1
AXR1[0]/GP4[0]
2
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
3
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
4
AXR1[10]/GP5[10]
5
DV
DD
6
AXR1[11]/GP5[11]
7
SPI1_ENA/UART2_RXD/GP5[12]
8
SPI1_SCS[0]/UART2_TXD/GP5[13]
9
SPI0_SCS[0] UART0_RTS/ /EQEP0B/GP5[4]/BOOT[4]
10
11
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
12
13
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
14
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
15
16
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
17
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
18
19
EMA_WAIT[0]/GP2[10]
2021222324
25
EMA_BA[0]/GP1[14]
262728293031323334353637383940
41
CV
DD
SPI0_ENA UART0_CTS/ /EQEP0A/GP5[3]/BOOT[3]
DV
DD
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
CV
DD
EMA_CS[3]/GP2[6]
EMA_OE/AXR0[13]/GP2[7]
EMA_CS[2]/GP2[5]/BOOT[15]
DV
DD
EMA_BA[1]/GP1[13]
EMA_A[10]/GP1[10]
CV
DD
EMA_A[0]/GP1[0]
EMA_A[1]/MMCSD_CLK/GP1[1]
EMA_A[2]/MMCSD_CMD/GP1[2]
EMA_A[3]/GP1[3]
DV
DD
EMA_A[4]/GP1[4]
EMA_A[5]/GP1[5]
EMA_A[6]/GP1[6]
EMA_A[7]/GP1[7]
CV
DD
EMA_A[8]/GP1[8]
EMA_A[9]/GP1[9]
EMA_A[11]/GP1[11]
EMA_A[12]/GP1[12]
DV
DD
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12]
151
DV
DD
CV
DD
DV
DD
AHCLKX1/EPWM0B/GP3[14]
CV
DD
ACLKX1/EPWM0A/GP3[15]
ACLKR1/ECAP2/APWM2/GP4[12]
CV
DD
DV
DD
AXR1[4]/EQEP1B/GP4[4] AXR1[3]/EQEP1A/GP4[3]
AXR1[2]/GP4[2] AXR1[1]/GP4[1]
42
43
44
88
EMB_SDCKE
87
DV
DD
86
EMB_CLK
85
EMB_WE_DQM[1]/GP5[14]
84
EMB_D[8]/GP6[8]
83
EMB_D[9]/GP6[9]
82
EMB_D[10]/GP6[10]
81
DV
DD
80
EMB_D[11]/GP6[11]
79
EMB_D[12]/GP6[12]
78
EMB_D[13]/GP6[13]
77
CV
DD
76
EMB_D[14]/GP6[14] 75 74
EMB_D[15]/GP6[15] 73
EMB_D[0]/GP6[0] 72
EMB_D[1]/GP6[1] 71
DV
DD
70
EMB_D[2]/GP6[2] 69
CV
DD
68
EMB_D[3]/GP6[3] 67
RV
DD
66
EMB_D[4]/GP6[4] 65
DV
DD
64
EMB_D[5]/GP6[5] 63
EMB_D[6]/GP6[6] 62
EMB_D[7]/GP6[7] 61
CV
DD
60
EMB_WE_DQM[0]/GP5[15] 59
EMB_WE 58
DV
DD
57
EMB_CAS 56
CV
DD
55
EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 54
EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 53
DV
DD
52
EMA_D[6]/MMCSD_DAT[6]/GP0[6] 51
EMA_D[5]/MMCSD_DAT[5]/GP0[5] 50
CV
DD
49
EMA_D[4]/MMCSD_DAT[4]/GP0[4] 48
EMA_D[3]/MMCSD_DAT[3]/GP0[3] 47
DV
DD
46
EMA_D[2]/MMCSD_DAT[2]/GP0[2] 45
EMA_D[1]/MMCSD_DAT[1]/GP0[1]
DV
DD
132
AMUTE1/EPWMTZ/GP4[14]
131
AFSR0/GP3[12]
130
ACLKR0/ECAP1/APWM1/GP2[15]
129
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
128
DV
DD
127
AFSX0/GP2[13]/BOOT[10]
126
ACLKX0/ECAP0/APWM0/GP2[12]
125
AHCLKX0/USB_REFCLKIN/GP2[11]
124
AXR0[11]/GP3[11]
123
UART1_TXD/AXR0[10]/GP3[10]
122
UART1_RXD/AXR0[9]/GP3[9]
121
AXR0[8]/MDIO_D/GP3[8]
120
AXR0[7]/MDIO_CLK/GP3[7]
119
118
AXR0[6]/RMII_RXER/GP3[6]
117
AXR0[5]/RMII_RXD[1]/GP3[5]
116
AXR0[4]/RMII_RXD[0]/GP3[4]
115
AXR0[3]/RMII_CRS_DV/GP3[3]
114
113
AXR0[2]/RMII_TXEN/GP3[2]
112
AXR0[1]/RMII_TXD[1]/GP3[1]
111
AXR0[0]/RMII_TXD[0]/GP3[0]
110
EMB_RAS
109
DV
DD
108
EMB_CS[0]
107
EMB_BA[0]/GP7[1]
106
EMB_BA[1]/GP7[0]
105
EMB_A[10]/GP7[12]
104
103
EMB_A[0]/GP7[2]
102
EMB_A[1]/GP7[3]
101
EMB_A[2]/GP7[4]
100
EMB_A[3]/GP7[5]
99
98
EMB_A[4]/GP7[6]
97
EMB_A[5]/GP7[7]
96
EMB_A[6]/GP7[8]
95
EMB_A[7]/GP7[9]
94
EMB_A[8]/GP7[10]
93
92
EMB_A[9]/GP7[11]91EMB_A[11]/GP7[13]
90
89
EMB_A[12]/GP3[13]
DV
DD
DV
DD
CV
DD
DV
DD
CV
DD
CV
DD
V
(177)
SS
Thermal Pad
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.5 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.

3.5.1 Pin Map (Bottom View)

www.ti.com
14 Device Overview Copyright © 2010, Texas Instruments Incorporated
Figure 3-1. Pin Map (PTP)
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6 Terminal Functions

Table 3-3 to Table 3-20 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.

3.6.1 Device Reset and JTAG

Table 3-3. Reset and JTAG Terminal Functions
SIGNAL NAME TYPE
RESET 146 I Device reset input
TMS 152 I IPU JTAG test mode select TDI 153 I IPU JTAG test data input TDO 156 O IPD JTAG test data output TCK 155 I IPU JTAG test clock TRST 150 I IPD JTAG test reset RTCK / GP7[14] 157 I/O IPD JTAG Test Clock Return Clock Output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
RESET
JTAG
(2)
DESCRIPTION

3.6.2 High-Frequency Oscillator and PLL

Table 3-4. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL NAME TYPE
OSCIN 143 I Oscillator input OSCOUT 145 O Oscillator output OSCVSS 144 GND Oscillator ground
PLL0_VDDA 141 PWR PLL analog VDD(1.2-V filtered supply) PLL0_VSSA 142 GND PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
1.2-V OSCILLATOR
1.2-V PLL
(2)
DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated Device Overview 15
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.3 External Memory Interface A (ASYNC)

Table 3-5. External Memory Interface A (EMIFA) Terminal Functions
PIN
SIGNAL NAME TYPE
EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I/O IPU EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 I/O IPU
EMA_D[5]/MMCSD_DAT[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 I/O IPU
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I/O IPU EMA_A[12]/GP1[12] 42 O IPU
EMA_A[11]/ GP1[11] 41 O IPU EMA_A[10]/GP1[10] 27 O IPU EMA_A[9]/GP1[9] 40 O IPU EMA_A[8]/GP1[8] 39 O IPU EMA_A[7]/GP1[7] 37 O IPD EMA_A[6]/GP1[6] 36 O IPD EMA_A[5]/GP1[5] 35 O IPD EMA_A[4]/GP1[4] 34 O IPD EMA_A[3]/GP1[3] 32 O IPD EMA_A[2]/MMCSD_CMD/GP1[2] 31 O IPU EMA_A[1]/MMCSD_CLK/GP1[1] 30 O IPU EMIFA address bus EMA_A[0]/GP1[0] 29 O IPD EMA_BA[1]/GP1[13] 26 O IPU EMA_BA[0]/GP1[14] 25 O IPU GPIO EMA_CS[3] /GP2[6] 21 O IPU GPIO EMA_CS[2]/GP2[5]/BOOT[15] 23 O IPU GPIO, BOOT EMA_OE /AXR0[13]/GP2[7] 22 O IPU McASP0, GPIO EMIFA output enable
EMA_WAIT[0]/ GP2[10] 19 I IPU GPIO
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
MMC/SD, GPIO, BOOT
MMC/SD, GPIO EMIFA data bus
MMC/SD, GPIO, BOOT
GPIO EMIFA address bus
MMCSD, GPIO
GPIO
EMIFA bank address
EMIFA Async Chip Select
EMIFA wait input/interrupt
16 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.4 External Memory Interface B (only SDRAM )

Table 3-6. External Memory Interface B (EMIFB) Terminal Functions
SIGNAL NAME TYPE
EMB_D[15]/GP6[15] 74 I/O IPD EMB_D[14]/GP6[14] 76 I/O IPD EMB_D[13]/GP6[13] 78 I/O IPD EMB_D[12]/GP6[12] 79 I/O IPD EMB_D[11]/GP6[11] 80 I/O IPD EMB_D[10]/GP6[10] 82 I/O IPD EMB_D[9]/GP6[9] 83 I/O IPD EMB_D[8]/GP6[8] 84 I/O IPD EMB_D[7]/GP6[7] 62 I/O IPD EMB_D[6]/GP6[6] 63 I/O IPD EMB_D[5]/GP6[5] 64 I/O IPD EMB_D[4]/GP6[4] 66 I/O IPD EMB_D[3]/GP6[3] 68 I/O IPD EMB_D[2]/GP6[2] 70 I/O IPD EMB_D[1]/GP6[1] 72 I/O IPD EMB_D[0]/GP6[0] 73 I/O IPD EMB_A[12]/GP3[13] 89 O IPD EMB_A[11]/GP7[13] 91 O IPD EMB_A[10]/GP7[12] 105 O IPD EMB_A[9]/GP7[11] 92 O IPD EMB_A[8]/GP7[10] 94 O IPD EMB_A[7]/GP7[9] 95 O IPD EMB_A[6]/GP7[8] 96 O IPD EMB_A[5]/GP7[7] 97 O IPD EMB_A[4]/GP7[6] 98 O IPD EMB_A[3]/GP7[5] 100 O IPD EMB_A[2]/GP7[4] 101 O IPD EMB_A[1]/GP7[3] 102 O IPD GPIO EMB_A[0]/GP7[2] 103 O IPD EMB_BA[1]/GP7[0] 106 O IPU EMB_BA[0]/GP7[1] 107 O IPU EMB_CLK 86 O IPU EMIF SDRAM clock EMB_SDCKE 88 I/O IPU EMIFB SDRAM clock enable EMB_WE 59 O IPU EMIFB write enable
EMB_RAS 110 O IPU EMB_CAS 57 O IPU EMIFB column address strobe
EMB_CS[0] 108 O IPU EMIFB SDRAM chip select 0 EMB_WE_DQM[1] /GP5[14] 85 O IPU EMB_WE_DQM[0] /GP5[15] 60 O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
GPIO EMIFB SDRAM data bus
GPIO
GPIO
EMIFB SDRAM row/column address bus
EMIFB SDRAM row/column address
EMIFB SDRAM bank address
EMIFB SDRAM row address strobe
EMIFB write enable/data mask for EMB_D
Copyright © 2010, Texas Instruments Incorporated Device Overview 17
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.5 Serial Peripheral Interface Modules (SPI0, SPI1)

Table 3-7. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL NAME TYPE
SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I/O IPU SPI0 chip select
SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I/O IPU SPI0 enable SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I/O IPD eQEP1, GPIO, BOOT SPI0 clock SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I/O IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I/O IPD
SPI1_SCS[0] /UART2_TXD/GP5[13] 8 I/O IPU SPI1 chip select SPI1_ENA /UART2_RXD/GP5[12] 7 I/O IPU SPI1 enable SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I/O IPD eQEP1, GPIO, BOOT SPI1 clock
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
SPI0
SPI1
(1)
PULL
(2)
MUXED DESCRIPTION
UART0, EQEP0B, GPIO, BOOT
UART0, EQEP0A, GPIO, BOOT
eQEP0, GPIO, BOOT
UART2, GPIO
I2C1, GPIO, BOOT
SPI0 data slave-in-master-out
SPI0 data slave-out-master-in
SPI1 data slave-in-master-out
SPI1 data slave-out-master-in
18 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.6 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)

The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed.
Table 3-8. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL NAME TYPE
ACLKX0/ECAP0/APWM0/GP2[12] 126 I/O IPD McASP0, GPIO input or auxiliary
ACLKR0/ECAP1/APWM1/GP2[15] 130 I/O IPD McASP0, GPIO input or auxiliary
ACLKR1/ECAP2/APWM2/GP4[12] 165 I/O IPD McASP1, GPIO input or auxiliary
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eCAP0
eCAP1
eCAP2
(1)
PULL
(2)
MUXED DESCRIPTION
enhanced capture 0 PWM 0 output
enhanced capture 1 PWM 1 output
enhanced capture 2 PWM 2 output
Copyright © 2010, Texas Instruments Incorporated Device Overview 19
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.7 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)

Table 3-9. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL NAME TYPE
ACLKX1/EPWM0A/GP3[15] 162 I/O IPD (with
AHCLKX1/EPWM0B/GP3[14] 160 I/O IPD eHRPWM0 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM1, GPIO,
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD
AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD eHRPWM1 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM0, GPIO,
AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD eHRPWM2 B output
AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD eHRPWM0, GPIO,
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eHRPWM0
eHRPWM1
eHRPWM2
(1)
PULL
(2)
MUXED DESCRIPTION
eHRPWM0 A output
McASP1, GPIO
McASP1, eHRPWM2
McASP1, eHRPWM0 module eHRPWM0, GPIO or sync output to
McASP1, GPIO
McASP1, eHRPWM2
McASP1, GPIO
McASP1, eHRPWM2
high-resolution)
eHRPWM0 trip zone input
Sync input to
external PWM
eHRPWM1 A (with high-resolution)
eHRPWM1 trip zone input
eHRPWM2 A (with high-resolution)
eHRPWM2 trip zone input
20 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.8 Enhanced Quadrature Encoder Pulse Module (eQEP)

Table 3-10. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions
SIGNAL NAME TYPE
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD eQEP0 index
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD eQEP0 strobe
AXR1[3]/EQEP1A/GP4[3] 174 I IPD
AXR1[4]/EQEP1B/GP4[4] 173 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPI0, GPIO, BOOT eQEP1 index
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, GPIO, BOOT eQEP1 strobe
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
eQEP0
eQEP1
(1)
PULL
(2)
MUXED DESCRIPTION
SPIO, UART0, GPIO, BOOT
SPI0, GPIO, BOOT
McASP1, GPIO
eQEP0A quadrature input
eQEP0B quadrature input
eQEP1A quadrature input
eQEP1B quadrature input
Copyright © 2010, Texas Instruments Incorporated Device Overview 21
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.9 Boot

PULL
(1)
(3)
MUXED DESCRIPTION
EMIFA, McASP0, GPIO
EMIFA, MMC/SD, GPIO
McASP0, EMAC, GPIO
UART0, I2C0, Timer0, GPIO
UART0, I2C0, Timer0, GPIO
SPI1, I2C1, GPIO
SPI0, UART0, eQEP0, GPIO
SPI0, UART0, eQEP0, GPIO
SPI0, eQEP0, GPIO
Boot Selection Signals
Table 3-11. Boot Terminal Functions
SIGNAL NAME TYPE
EMA_CS[2]/GP2[5]/BOOT[15] 23 I IPU EMIFA, GPIO EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 I IPU EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I IPU
EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I IPU AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I IPD AFSX0/GP2[13]/BOOT[10] 127 I IPD McASP0, GPIO UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I IPU
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, eQEP1, GPIO
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPIO, eQEP1, GPIO
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD
(1) Boot decoding will be defined in the ROM datasheet. (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(3) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
(2)
www.ti.com
22 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.10 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)

Table 3-12. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU
SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] 9 O IPU ready-to-send
SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] 12 I IPU
UART1_RXD/AXR0[9]/GP3[9]
UART1_TXD/AXR0[10]/GP3[10]
SPI1_ENA/UART2_RXD/GP5[12] 7 I IPU
SPI1_SCS[0]/UART2_TXD/GP5[13] 8 O IPU
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (3) As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if
UART1 boot mode is used.
(3)
(3)
PIN NO
PTP
UART0
UART1
122 I IPD
123 O IPD
UART2
(1)
PULL
(2)
MUXED DESCRIPTION
I2C0, BOOT, UART0 receive Timer0, GPIO, data
I2C0, Timer0, UART0 transmit GPIO, BOOT data
UART0
SPIO, eQEP0, GPIO, BOOT
McASP0, GPIO
SPI1, GPIO
output UART0
clear-to-send input
UART1 receive data
UART1 transmit data
UART2 receive data
UART2 transmit data

3.6.11 Inter-Integrated Circuit Modules(I2C0, I2C1)

Table 3-13. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I/O IPU I2C0 serial data
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I/O IPU I2C0 serial clock
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU I2C1 serial data SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU I2C1 serial clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Copyright © 2010, Texas Instruments Incorporated Device Overview 23
Submit Documentation Feedback
Product Folder Link(s): AM1705
PIN NO
PTP
I2C0
I2C1
(1)
PULL
(2)
UART0, Timer0, GPIO, BOOT
UART0, Timer0, GPIO, BOOT
SPI1, GPIO, BOOT
MUXED DESCRIPTION
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.12 Timers

Table 3-14. Timers Terminal Functions
SIGNAL NAME TYPE
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU Timer0 lower input UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU
No external pins. The Timer1 peripheral pins are not pinned out as external pins.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
TIMER0
TIMER1 (Watchdog )
(1)
PULL
(2)
UART0, I2C0, GPIO, BOOT
MUXED DESCRIPTION
Timer0 lower output
24 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.13 Multichannel Audio Serial Ports (McASP0, McASP1)

Table 3-15. Multichannel Audio Serial Ports (McASPs) Terminal Functions
SIGNAL NAME TYPE
EMA_OE/AXR0[13]/GP2[7] 22 I/O IPU EMIFA, GPIO EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 I/O IPU
AXR0[11] / GP3[11] 124 I/O IPD UART1_TXD/AXR0[10]/GP3[10] 123 I/O IPD GPIO
UART1_RXD/AXR0[9]/GP3[9] 122 I/O IPD GPIO
AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 I/O IPD AXR0[6]/RMII_RXER/GP3[6] 118 I/O IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 I/O IPD AXR0[4]/RMII_RXD[0]/GP3[4] 116 I/O IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 I/O IPD EMAC, GPIO AXR0[2]/RMII_TXEN/GP3[2] 113 I/O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 I/O IPD AXR0[0]/RMII_TXD[0]/GP3[0] 111 I/O IPD
AHCLKX0/USB_REFCLKIN/GP2[11] 125 I/O IPD USB, GPIO transmit master
ACLKX0/ECAP0/APWM0/GP2[12] 126 I/O IPD eCAP0, GPIO transmit bit
AFSX0/GP2[13]/BOOT[10] 127 I/O IPD GPIO, BOOT transmit frame
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD
ACLKR0/ECAP1/APWM1/GP2[15] 130 I/O IPD eCAP1, GPIO
AFSR0/GP3[12] 131 I/O IPD GPIO
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
McASP0
(1)
PULL
(2)
MUXED DESCRIPTION
EMIFA, GPIO, BOOT
McASP2, GPIO
MDIO, GPIO
EMAC, GPIO, McASP0 receive BOOT master clock
McASP0 serial data
McASP0 clock
McASP0 clock
McASP0 sync
McASP0 receive bit clock
McASP0 receive frame sync
Copyright © 2010, Texas Instruments Incorporated Device Overview 25
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com
Table 3-15. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
SIGNAL NAME TYPE
AXR1[11]/GP5[11] 6 I/O IPU AXR1[10]/GP5[10] 4 I/O IPU
AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD
AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD
AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD
AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD AXR1[4]/EQEP1B/GP4[4] 173 I/O IPD
AXR1[3]/EQEP1A/GP4[3] 174 I/O IPD AXR1[2]/GP4[2] 175 I/O IPD AXR1[1]/GP4[1] 176 I/O IPD GPIO AXR1[0]/GP4[0] 1 I/O IPD
AHCLKX1/EPWM0B/GP3[14] 160 I/O IPD transmit master
ACLKX1/EPWM0A/GP3[15] 162 I/O IPD transmit bit
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD transmit frame
ACLKR1/ECAP2/APWM2/GP4[12] 165 I/O IPD eCAP2, GPIO
AFSR1/GP4[13] 166 I/O IPD GPIO
AMUTE1/EPWMTZ/GP4[14] 132 O IPD
PIN NO
PTP
McASP1
(1)
PULL
(2)
MUXED DESCRIPTION
GPIO
eHRPWM1 A, GPIO
eHRPWM1 B, GPIO
eHRPWM2 A, GPIO
eHRPWM2 B, GPIO
eQEP, GPIO
eHRPWM0, GPIO
eHRPWM0, GPIO
eHRPWM0, GPIO
eHRPWM0, eHRPWM1, McASP1 mute eHRPWM2, output GPIO
McASP1 serial data
McASP1 clock
McASP1 clock
McASP1 sync
McASP1 receive bit clock
McASP1 receive frame sync
26 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.14 Universal Serial Bus Modules (USB0)

Table 3-16. Universal Serial Bus (USB) Terminal Functions
SIGNAL NAME TYPE
USB0_DM 138 A USB0 PHY data minus USB0_DP 137 A USB0 PHY data plus USB0_VDDA33 140 PWR USB0 PHY 3.3-V supply USB0_VDDA18 135 PWR USB0 PHY 1.8-V supply input USB0_VDDA12
AHCLKX0/USB_REFCLKIN/GP2[11] 125 I IPD USB_REFCLKIN. Optional clock input.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (3) Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 uF capacitor to VSS.
(3)
PIN NO
PTP
USB0 2.0 OTG (USB0)
134 PWR USB0 PHY 1.2-V LDO output for bypass cap
(1)
PULL
(2)
DESCRIPTION

3.6.15 Ethernet Media Access Controller (EMAC)

Table 3-17. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL NAME TYPE
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD McASP0, GPIO, BOOT clock input or
AXR0[6]/RMII_RXER/GP3[6] 118 I IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 I IPD
AXR0[4]/RMII_RXD[0]/GP3[4] 116 I IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 I IPD McASP0, GPIO
AXR0[2]/RMII_TXEN/GP3[2] 113 O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 O IPD
AXR0[0]/RMII_TXD[0]/GP3[0] 111 O IPD
AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 O IPD
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
PTP
RMII
MDIO
(1)
PULL
(2)
McASP0, GPIO MDIO data clock
MUXED DESCRIPTION
EMAC 50-MHz output
EMAC RMII receiver error
EMAC RMII receive data
EMAC RMII carrier sense data valid
EMAC RMII transmit enable
EMAC RMII trasmit data
Copyright © 2010, Texas Instruments Incorporated Device Overview 27
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010
www.ti.com

3.6.16 Multimedia Card/Secure Digital (MMC/SD)

Table 3-18. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
PIN
SIGNAL NAME TYPE
EMA_A[1]/MMCSD_CLK/GP1[1] 30 O IPU MMCSD Clock EMA_A[2]/MMCSD_CMD/GP1[2] 31 I/O IPU MMCSD Command EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 I/O IPU EMIFA, GPIO, BOOT EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 I/O IPU EMA_D[5]/MMCSD_DAT[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 I/O IPU EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 I/O IPU EMIFA, GPIO, BOOT
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
NO
PTP
(1)
PULL
(2)
MUXED DESCRIPTION
EMIFA, GPIO
EMIFA, GPIO MMC/SD data

3.6.17 Reserved and No Connect

Table 3-19. Reserved and No Connect Terminal Functions
SIGNAL NAME TYPE
RSV2 133 PWR
RSV3 149 PWR RSV4 148 I Reserved. This pin may be tied high or low.
NC 136 - No Connect (leave unconnected) NC 139 - No Connect (leave unconnected)
(1) PWR = Supply voltage.
PIN NO
PTP
(1)
Reserved. For proper device operation, this pin must be tied directly to CVDD.
Reserved. For proper device operation, this pin must be tied directly to CVDD.
DESCRIPTION
28 Device Overview Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
www.ti.com
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

3.6.18 Supply and Ground

Table 3-20. Supply and Ground Terminal Functions
SIGNAL NAME TYPE
CVDD (Core supply) 77, 93, 104, PWR Core supply voltage pins
RVDD (Internal RAM supply) 67, 159 PWR Internal ram supply voltage pins
DVDD (I/O supply) 87, 90, 99, PWR I/O supply voltage pins
VSS (Ground) 177 GND Ground pins
(1) PWR = Supply voltage, GND - Ground.
PIN NO
PTP
10, 20, 28, 38, 50, 56, 61, 69,
114, 147, 154, 161, 167
5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81,
109, 119, 128, 151, 158, 164, 172
(1)
DESCRIPTION
Copyright © 2010, Texas Instruments Incorporated Device Overview 29
Submit Documentation Feedback
Product Folder Link(s): AM1705
ADVANCEINFORMATION
AM1705
SPRS657B–FEBRUARY 2010–REVISED OCTOBER 2010

4 Device Configuration

4.1 Boot Modes

This device supports a variety of boot modes through an internal ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins
The following boot modes are supported:
NAND Flash boot – 8-bit NAND
NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit)
I2C0 / I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode)
SPI0 / SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode)
UART0 / UART1 / UART2 Boot – External Host
www.ti.com
30 Device Configuration Copyright © 2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): AM1705
Loading...
+ 133 hidden pages