ADS5525/27/45/46/47 EVM User
Guide
User's Guide
November 2006
SLWU028B
2 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Contents
1 Overview .................................................................................................................... 5
1.1 EVM Basic Functions ............................................................................................ 5
2 EVM Quick Start Guide ................................................................................................ 6
2.1 EVM LVDS Output Mode Quick Start (Default) .............................................................. 6
2.2 EVM CMOS Output Mode Quick Start ........................................................................ 6
3 Circuit Description ...................................................................................................... 7
3.1 Schematic Diagram .............................................................................................. 7
3.2 Circuit Function ................................................................................................... 7
4 Expansion Options .................................................................................................... 13
4.1 Custom FPGA Code ........................................................................................... 13
4.2 Expansion Slot .................................................................................................. 13
4.3 Optional USB SPI Interface ................................................................................... 13
5 Physical Description .................................................................................................. 14
5.1 PCB Layout ...................................................................................................... 14
5.2 Bill of Materials .................................................................................................. 20
5.3 PCB Schematics ................................................................................................ 25
SLWU028B – January 2006 – Revised November 2006 Table of Contents 3
Submit Documentation Feedback
List of Figures
1 ADS5547 SNR Performance vs Decoupling ............................................................................. 8
2 THS4509 + ADS5545 EVM Performance ................................................................................ 9
3 Eye Diagram of Data on Header J4. ..................................................................................... 11
4 Top Layer .................................................................................................................... 14
5 Layer 2, Ground Plane .................................................................................................... 15
6 Layer 3, Power Plane #1 .................................................................................................. 16
7 Layer 4, Power Plane #2 .................................................................................................. 17
8 Layer 5, Ground Plane .................................................................................................... 18
9 Layer 6, Bottom Layer ..................................................................................................... 19
List of Tables
1 DIP Switch SW1 ............................................................................................................. 7
2 EVM Power Options ......................................................................................................... 8
3 Output Connector J4 ....................................................................................................... 10
4 Test Points .................................................................................................................. 12
5 Bill of Materials ............................................................................................................. 21
4 List of Figures SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
1 Overview
1.1 EVM Basic Functions
User's Guide
SLWU028B – January 2006 – Revised November 2006
This manual assists users in using the ADS5525/27/45/46/47 evaluation module (EVM) for evaluating the
performance of the ADS5525/27/45/46/47 (ADCs). The EVM provides a powerful and robust capability in
evaluation of the many features of the ADCs and the performance of the device der many conditions.
Analog input to the ADC is provided via external SMA connectors. The user supplies a single-ended input,
which is converted into a differential signal. One input path uses a differential amplifier, while the other
input is transformer-coupled.
The EVM provides an external SMA connector for input of the ADC clock. The single-ended input is
converted into a differential signal at the input of the device.
Digital output from the EVM is via a 40-pin connector.
Power connections to the EVM are via banana jack sockets. Separate sockets are provided for the ADC
analog and digital supplies, the FPGA supply, and the differential amplifier supply.
CAUTION
Exceeding the maximum input voltages can damage EVM components.
Undervoltage may cause improper operation of some or all of the EVM
components.
Xilinx, Spartan, WebPACK are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.
SLWU028B – January 2006 – Revised November 2006 5
Submit Documentation Feedback
EVM Quick Start Guide
2 EVM Quick Start Guide
The ADC has two basic modes of output operation, ensuring compatibility in a broad range of systems.
Follow the steps below to get the EVM operating quickly with the ADC in either DDR LVDS output mode
or CMOS output mode.
Note: Follow the steps in the listed order; not doing so could result in improper operation.
2.1 EVM LVDS Output Mode Quick Start (Default)
1. Ensure a jumper is installed between pins 1 and 2 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to LVDS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding
returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a filtered, low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered, sinusoidal analog input to J3.
8. Using a logic analyzer and Table 3 in this manual, monitor the ADC output on J4.
2.2 EVM CMOS Output Mode Quick Start
1. Ensure a jumper is installed between pins 2 and 3 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to CMOS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding
returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered sinusoidal analog input to J3.
8. Briefly depress S1, which resets the EVM.
9. Using a logic analyzer and Table 3 in this manual, monitor the ADC output on J4.
6 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
3 Circuit Description
3.1 Schematic Diagram
The schematic diagram for the EVM is in Section 5.3 of this document.
3.2 Circuit Function
The following paragraphs describe the function of individual circuits. See the data sheet for complete
device operating characteristics.
3.2.1 Configuration Options
The EVM provides a DIP switch, SW1, to control many of the modes of operation when the EVM is
configured for parallel-mode operation. Table 1 describes the functionality of the DIP switches.
Note: When the device is configured for serial-mode operation (SW1, switch 8), the DIP settings
SW1 SWITCH
NUMBER
Circuit Description
on SW1, switch 1 through SW1, switch 7 are ignored.
Table 1. DIP Switch SW1
OFF ON DESCRIPTION
1 2s complement Offset binary Determines device output format
2 LVDS CMOS Determines device output mode
3 Reserved Reserved Reserved
4 Internal reference External reference When set to External Reference, ADC uses common-mode
voltage on TP1.
5 Edge = 1 Edge = 2 Allows for output edge programmability
6 Edge = 3 Edge = 4 Allows for output edge programmability
7 Normal Power down Allows for power down
8 Serial Parallel Determines mode for register interface
By switching SW1, switch 8 to OFF, the ADC operates in serial mode, using its programmed register
contents. A complete register map can be found in the device datasheet. Three pins on header J6 have
been reserved for programming the device while it operates in serial mode. To program the device
registers using header J6, place SCLK on pin 21, SDATA on pin 23, and SEN on pin 25. A pattern
generator can be used to generate the patterns needed for programming. Alternatively, TI provides an
optional USB daughtercard that plugs into the expansion slot of the EVM. The USB daughtercard allows
ADC register control via a software package loaded onto the PC.
3.2.2 Power
Power is supplied to the EVM via banana jack sockets. The EVM offers the capability to supply analog
and digital 3.3 V independently to the ADC. Table 2 offers a snapshot of the power-supply options. All
supply connections are required for default operation, except J12, J10, J13, and J20.
The EVM provides local decoupling for the ADC; however, the ADC features internal decoupling, and in
many cases minimal external decoupling can be used without loss in performance. Users are encouraged
to experiment to find the optimal amount of external decoupling required for their application. Figure 1
shows the ADS5547 LVDS-mode performance with all of the decoupling capacitors installed and the
performance with C4, C5, C6, C7, C8, C9, and C10 removed. By default, the EVM comes with all of the
decoupling capacitors installed.
SLWU028B – January 2006 – Revised November 2006 7
Submit Documentation Feedback
fIN − Input Frequency − MHz
SNR − Signal-to-Noise Ratio − dBFS
G001
9.97 19.94 30.13 40.33 50.13 60.13 69.59 79.87 89.75 100.33 130.13 170.13
68
69
70
71
72
73
74
1 Decoupling Cap
Baseline-All Decoupling Caps
Circuit Description
Table 2. EVM Power Options
BANANA JACK NAME VOLTAGE DESCRIPTION
J9 Device AGND GND
J10 AGND GND
J11 Device AVDD 3.3 Device analog supply
J12 Amplifier negative –5 THS4509 Vs– supply
J13 Amplifier positive rail 5 THS4509 Vs+ supply
J14 Auxiliary power 5 Supplies power to all peripheral circuitry including the FPGA
J15 Device DVDD 3.3 Device internal digital output supply
J16 DGND GND
J17 DGND GND
J20 If TP11, TP12, and TP13 are tied low, the TPS75003 is
rail
and PROM. Voltages rails are created by using TI's TPS75003
voltage regulator.
disabled. In this case, one can supply 3.3 V to pin 1, 1.2 V to
pin 2, and 2.2 V to pin 3 of J20 while connecting the ground to
J17.
Figure 1. ADS5547 SNR Performance vs Decoupling
3.2.3 Analog Inputs
The EVM can be configured to provide the ADC with either transformer-coupled or differential amplifier
inputs from a single-ended source. The inputs are provided via SMA connector J3 for transformer-coupled
input or SMA connector J1 for differential amplifier input. To set up for one of these options, the EVM must
be configured as follows:
1. For a 1:1 transformer-coupled input to the ADC, a single-ended source is connected to J3. Confirm
that SJP4 has pins 2 and 3 shorted, and that SJP5 has pins 2 and 3 shorted. The transformer used,
the Mini-Circuits TC4-1W, forms an inherent band-pass filter with a pass band from 3 MHz to 800 MHz.
This is the default configuration for the EVM.
2. One can use a TI THS4509 amplifier to drive the ADC by applying an input to J1. Reconfigure SJP4
and SJP5 such that both have pins 1 and 2 shorted. A 5-VDC supply must be connected to the board
to provide power to U3 for this configuration.
8 SLWU028B – January 2006 – Revised November 2006
The THS4509 amplifier path converts a single-ended signal presented on J1 into a differential signal.
Submit Documentation Feedback
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
f − Frequency − MHz
Amplitude − dBFS
G002
1
−135
−120
10
−130
−110
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
2
3
4
5
x
Circuit Description
The schematics present various interface options between the amplifier and the ADC. Depending on
the input frequencies of interest, further performance optimization can be had by designing a
corresponding filter. In its default configuration, R43, R44, and C119 form a first-order, low-pass filter
with a cutoff frequency of 70 MHz. Figure 2 shows the performance of the ADS5545 using the
THS4509 path.
3.2.4 Clock Input
3.2.5 Digital Outputs
SLWU028B – January 2006 – Revised November 2006 9
Submit Documentation Feedback
Figure 2. THS4509 + ADS5545 EVM Performance
A single-ended, harmonically filtered, low-phase-noise, 1.5-Vrms sinusoidal input should be applied to J7.
The frequency must not exceed the device specification. In the EVM default configuration, both SPJ1 and
SJP2 must have pins 1 and 2 shorted.
In the board default configuration, the transformer provides single-ended to differential conversion. The
transformer has an impedance ratio of 4.
For compatibility with a broad range of logic analyzers, the EVM outputs 3.3-V parallel CMOS data on
header J4, independent of the ADC operational mode. The Xilinx™Spartan™-3E FPGA provides the
necessary translation, and it configures itself using one of two different logic files stored in the PROM,
based on the EVM configuration. The CMOS data output of the FPGA is contained in data header J4 and
is a standard 40-pin header on a 100-mil grid, which allows easy connection to a logic analyzer. The
connector pinout is listed in Table 3 . For quick setup, the eye diagram is shown in Figure 3 . No setup or
hold-time adjustments must be made to the logic analyzer if using the rising edge of the output clock to
latch in the data.
Note: The eye diagram shown is the output of the FPGA at 210 MSPS, not that of the ADC. For
the ADC output timing, see the respective device data sheet.
Circuit Description
Table 3. Output Connector J4
J4 PIN ADS5525/27 DESCRIPTION ADS5545/46/47 DESCRIPTION
1 CLK CLK
2 GND GND
3 NC NC
4 GND GND
5 Reserved Reserved
6 GND GND
7 Reserved Reserved
8 GND GND
9 NC Data bit 0 (LSB)
10 GND GND
11 NC Data bit 1
12 GND GND
13 Data bit 0 (LSB) Data bit 2
14 GND GND
15 Data bit 1 Data bit 3
16 GND GND
17 Data bit 2 Data bit 4
18 GND GND
19 Data bit 3 Data bit 5
20 GND GND
21 Data bit 4 Data bit 6
22 GND GND
23 Data bit 5 Data bit 7
24 GND GND
25 Data bit 6 Data bit 8
26 GND GND
27 Data bit 7 Data bit 9
28 GND GND
29 Data bit 8 Data bit 10
30 GND GND
31 Data bit 9 Data bit 11
32 GND GND
33 Data bit 10 Data bit 12
34 GND GND
35 Data bit 11 (MSB) Data bit 13 (MSB)
36 GND GND
37 NC NC
38 GND GND
39 NC NC
40 GND GND
10 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Circuit Description
Figure 3. Eye Diagram of Data on Header J4.
3.2.6 Test Points
For added EVM visibility and control, several test points are provided. Table 4 summarizes the test points
available.
SLWU028B – January 2006 – Revised November 2006 11
Submit Documentation Feedback
Circuit Description
3.2.7 LED Operation
Table 4. Test Points
TP DESCRIPTION
TP1 ADC common mode, input or output
depending on the setting of SW1, switch 4
TP3 THS4509 power down
TP4 ADC output enable
TP5 AGND
TP6 AGND
TP7 AGND
TP8 DGND
TP9 FPGA M0 pin; determines which FPGA logic
file to load
TP10 ADC SCLK
TP11 TPS75003 1.2 enable
TP12 TPS75003 2.5 enable
TP13 TPS75003 3.3 enable
To give greater visibility into the EVM operations, two LEDs are provided, D3 and D4. On power up, D4 is
asserted when a successful FPGA boot up is complete. For correct EVM operation, the LED should be
asserted at all times. LED D3 is asserted when the ADC and FPGA are operating and decoding in DDR
LVDS mode, and is not asserted when the ADC is functioning in CMOS mode. Furthermore, in either DDR
LVDS mode or CMOS mode, LED D3 blinks when an ADC overrange condition occurs.
CAUTION
If LED D3 is blinking, the amplitude coming into the ADC input (J3 or J4) must
be attenuated immediately; otherwise, damage to the ADC could occur.
12 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
4 Expansion Options
The EVM offers several exciting possibilities to expand the capabilities of the EVM. This allows the utmost
flexibility when prototyping an ADC circuit under conditions that mimic the end system, without the need to
develop a custom prototype board.
4.1 Custom FPGA Code
Using a standard JTAG interface on JP1, users have the ability to load custom logic onto the FPGA,
rapidly speeding up digital development time. This allows the flexibility of prototyping and debugging an
ADC digital interface design before developing application-specific hardware.
To take advantage of the onboard FPGA, users can download the free Xilinx WebPACK™ from the Xilinx
Web site. Select the XC3S250E-4FT256 as the FPGA and the XCF16PFSG48 as the PROM.
Note: See the Xilinx Spartan-3E Web site for complete documentation of the FPGA at:
Schematically, the FPGA is configured in BPI mode, and it samples FPGA pins M2, M1, and M0 when the
FPGA's INIT_B is brought low. Depending of the status of M0, it boots from either the top or the bottom of
the PROM contents. The PROM allows for the storage of two FPGA bit files. In its default condition, the
EVM stores one file for ADC CMOS output at the beginning of the PROM address space and one file for
ADC LVDS output at the end of the PROM address space.
Note: When creating custom FPGA code, store any custom-developed bit files for ADC CMOS
Expansion Options
http://direct.xilinx.com/bvdocs/publications/ds312.pdf
operation in the PROM revision 0 space, and store any custom-developed FPGA code for
ADC LVDS operation in the PROM revision 1 space.
4.2 Expansion Slot
For those users who make use of a custom FPGA program on the EVM, J5 and J6 provide an
expansion-slot capability. Users can design daughtercards or breakout boards to make use of the unused
FPGA I/O pins which are brought out to the headers.
Note: The EVM provides 5 V from J14 to pin 1 of both J5 and J6. This can be used to provide
4.3 Optional USB SPI Interface
In most cases, users can use the ADC parallel interface mode to change the operational modes of the
ADC. For users requiring SPI control of the ADC, TI has developed an optional USB daughter card that
plugs into the expansion slot. With the USB daughter card, users can use a PC interface to communicate
to the ADC three-wire SPI interface, which allows for complete control of the ADC register map. Contact
the factory for this optional accessory.
power to any designed daughtercards.
SLWU028B – January 2006 – Revised November 2006 13
Submit Documentation Feedback
Physical Description
5 Physical Description
5.1 PCB Layout
This chapter describes the physical characteristics and PCB layout of the EVM.
The EVM is constructed on a 6-layer, 0.062-inch thick PCB using FR-4 material. The individual layers are
shown in Figure 4 through Figure 9 . The layout features split analog and digital ground planes; however,
similar performance can be had with careful layout using a single ground plane. Users can connect the
analog and digital ground planes underneath the EVM by soldering the two exposed tinned strips together.
Figure 4. Top Layer
14 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
Figure 5. Layer 2, Ground Plane
SLWU028B – January 2006 – Revised November 2006 15
Submit Documentation Feedback
Physical Description
Figure 6. Layer 3, Power Plane #1
16 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
Figure 7. Layer 4, Power Plane #2
SLWU028B – January 2006 – Revised November 2006 17
Submit Documentation Feedback
Physical Description
Figure 8. Layer 5, Ground Plane
18 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
Figure 9. Layer 6, Bottom Layer
SLWU028B – January 2006 – Revised November 2006 19
Submit Documentation Feedback
Physical Description
5.2 Bill of Materials
20 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
CAPACITORS
47- µ F, tantalum, 20%, 10-V 7343 4 ECS-T1AD476R Panasonic PCS2476CT-ND C65, C66, C68, C69
10- µ F, 10-V, 20% 3528 5 ECS-T1AX106R Panasonic PCS2106CT-ND C70, C71, C72, C73,
C74
10- µ F, 10-V, 20% 3216 2 ECS-T1AY106R Panasonic P11309CT-ND C8, C9
100- µ F, 6.3-V, 10% 6032 2 TPSC107K006R0150 AVX 478-1764-2-ND C35, C60
0.1- µ F, 16-V, 10% 805 2 ECJ-2VB1C104K Panasonic PCC1812CT-ND C115, C116
2.2- µ F, 6.3-V, 10% 805 1 ECJ-GVB0J225K Panasonic PCC2310CT-ND C117
10- µ F, 6.3-V, 10% 805 4 GRM21BR60J106KE19L Murata 490-1717-1-ND C13, C30, C40, C41
0.01- µ F, 16-V, 10% 603 1 ECJ-1VB1C103K Panasonic PCC1750CT-ND C57
0.1- µ F, 16-V, 10% 603 18 ECJ-1VB1C104K Panasonic PCC1762CT-ND C14, C15, C18, C25, C52
C26, C27, C28, C32,
C33, C34, C36, C37,
C38, C39, C51, C55,
C62, C113
1.5-nF, 50-V, 10% 603 3 C1608X7R1H152K TDX C31, C58, C59
10-pF, 50-V, ± 0.5-pF 603 1 ECJ-1VC1H100D Panasonic PCC100CVCT-ND C53
1- µ F, 6.3-V, 10% 603 1 ECJ-1VB0J105K Panasonic PCC1915CT-ND C64
10- µ F, 6.3-V, 20% 603 1 ECJ-1VB0J106M Panasonic PCC2395CT-ND C63
100- µ F, 4-V, 20% 603 1 NOJC107M004RWJ AVX 478-1824-1-ND C61
2.2- µ F, 6.3-V, 10% 603 13 ECJ-1VB0J225K Panasonic PCC2273CT-ND C85–C96, C114
18-pF, 50-V, 5% 603 1 GRM1885C1H180JA01D Murata 490-1409-1-ND C119 C2, C118
2-pF, 100-V, ± 0.25-pF 603 0 GQM1885C2A2R0CB01D Murata 490-3555-1-ND C20
0.1- µ F, 16-V, +80/–20% 402 14 ECJ-0EF1C104Z Panasonic PCC1731CT-ND C1, C3, C4, C5, C6,
C7, C10, C11, C12,
C16, C17, C19, C29,
C44, C49
0.22- µ F, 6.3-V , ± 10% 402 17 ECJ-0EB0J224K Panasonic PCC2269CT-ND C42, C43, C46, C48,
C50, C54, C67, C75,
C76, C77, C78, C79,
C80, C81, C82, C83,
C84
0.022- µ F, 6.3-V, +80/–20% 201 16 02016G223ZAT2A AVX 478-1054-1-ND C97, C98, C99, C100,
C101, C102, C103,
C104, C105, C106,
C107, C108, C109,
C110, C111, C112
NOT
INSTALLED
SLWU028B – January 2006 – Revised November 2006 21
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
RESISTORS
0- Ω , 1/10-W, 5% 603 7 ERJ-3GEY0R00V Panasonic P0.0GCT-ND R5, R6, R10, R18, R54, R56
R48, R58, R82
0- Ω , 1/10-W, 5% 402 3 ERJ-GE0R00X Panasonic P0.0JCT-ND R11, C45, C47
4.02- Ω , 1/10-W 1% 603 2 9C06031A4R02FGHFT Yageo 311-4.02HCT-ND R37, R38
20- Ω , 1/16-W, 1% 603 1 ERJ-3EKF20R0V Panasonic P20.0HCT-ND R79
24.9- Ω , 1/16-W, 1% 603 1 ERJ-3EKF24R9V Panasonic P24.9HCT-ND R17
4.7- Ω , 1/2-W, 5% 603 2 ERD-S1TJ4R7V Panasonic P4.7BBCT-ND R44, R47
36- Ω , 1/10-W, 1% 603 0 RC0603FR-0736RL Yaego 311-36.0HRCT-ND R12, R13
49.9- Ω , 1/16-W, 1% 603 2 ERJ-3EKF49R9V Panasonic P49.9HCT-ND R35, R36 R34, R59
100- Ω , 1/16-W, 0.1% 603 3 ERA-3YEB100V Panasonic P100YCT-ND R31, R41, R60
200- Ω , 1/16-W, 1% 603 2 ERJ-3EKF2000V Panasonic P200HCT-ND R15, R16 R85, R86
330- Ω , 1/16-W, 5% 603 3 ERA-V33J331V Panasonic P330CHCT-ND R45, R87, R88
499- Ω , 1/16-W, 1% 603 2 ERJ-3EKF4990V Panasonic P499HCT-ND R83, R84
10-k Ω , 1/16-W, 1% 603 11 ERJ-3EKF1002V Panasonic P10.0KHCT-ND R2, R3, R4, R7, R8,
R9, R26, R32, R33,
R39, R40
4.75-k Ω , 1/16-W, 1% 603 2 ERJ-3EKF4751V Panasonic P4.75KHCT-ND R46, R49
15.4-k Ω , 1/16-W, 1% 603 1 ERJ-3EKF1542V Panasonic P15.4KHCT-ND R65
20-k Ω , 1/16-W, 1% 603 3 ERJ-3EKF2002V Panasonic P20.0KHCT-ND R30, R80, R81
36.5-k Ω , 1/16-W, 1% 603 1 ERJ-3EKF3652V Panasonic P36.5KHCT-ND R66
56.2-k Ω , 1/16-W, 1% 603 1 ERJ-3EKF5622V Panasonic P56.2KHCT-ND R1
4.99-k Ω , 1/16-W, 1% 603 3 ERJ-3EKF4991V Panasonic P4.99KHCT-ND R27, R28, R29
61.9-k Ω , 1/16-W, 1% 603 2 ERJ-3EKF6192V Panasonic P61.9KHCT-ND R63, R64
0.033- Ω , 1/4-W, 5% 805 2 RL1220T-R033-J Susumu Co,. Ltd. RL12T.033JCT-ND R61, R62
348- Ω , 1/16-W, 1% 402 2 ERJ-2RKF3480X Panasonic P348LCT-ND R24, R25
49.9- Ω , 1/16-W, 1% 402 3 ERJ-2RKF49R9X Panasonic P49.9LCT-ND R19, R42, R43
78.7- Ω , 1/16-W, 1% 402 2 ERJ-2RKF78R7X Panasonic P78.7LCT-ND R20, R21
100- Ω , 1/16-W, 1% 402 2 ERJ-2RKF1000X Panasonic P100LCT-ND R22, R23
20- Ω R-pack, 5%, 0.063-W CTS-742_8RES 2 742C163220JTR CTS 742C163220JCT-ND RP1, RP2
10-k Ω resistor pack CTS_742_8RES 1 742C163103JTR CTS 742C163103JCT-ND RP3
NOT
INSTALLED
22 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
FERRITE BEADS, CONNECTORS, JUMPERS, JACKS, ICs, ETC.
Ferrite bead 1206 5 EXC-ML32A680U Panasonic P10437CT-ND FB2, FB3, FB4, FB6, FB8, FB9,
Inductor, SMT, 15- µ H, 2.6-A COIL-CDRH8D43 1 CDRH8D43-150 Sumida L1
Inductor, SMT, 5- µ H, 2.9-A COIL-CDRH6D38 1 CDRH6D38-5R0 Sumida CDRH6D38-5R0NC-ND L2
0.0- Ω , 1/8-W, 5% resistor 805 2 ERJ-6GEY0R00V Panasonic P0.0ACT-ND L3, L4
Red test point Test_point2 8 5000k Keystone 5000K-ND TP1, TP4, TP9, TP10 TP3 TP11
Black test point Test_point2 4 5001k Keystone 5000K-ND TP5 TP6 TP7 TP8
40-pin header 20 × 2 × .1 1 HTSW-120-07-L-D Samtec J4
40-pin header smt 20X2_SMT_MMS_ 2 MMS-120-02-T-DV Samtec J5, J6
SAMTEC
Red banana jacks BANANA_JACK 5 ST-351A Allied N/A J11, J12, J13, J14,
Black banana jacks BANANA_JACK 4 ST-351B Allied N/A J9, J10, J16, J17
SMA connectors SMA_Jack 3 901-144-8RFX AMP ARFX1231-ND J1, J3, J7 J8
3POS_header 3pos_jumper 1 HTSW-150-07-L-S Samtec JP2
6-pin header 6 × 1 × .1 1 HTSW-120-07-L-D Samtec JP1
3-pin power connector 3term_screw_con 0 93F7124 Newark J20
Transformer TC4-1W_ 3 TC4-1W Mini-Circuits T1, T2, T3
TRANSFORMER
Diode, Schottky, 1-A, 20-V DIODE-MBRM120 1 MBRM120E ON Semiconductor D2
Diode, Schottky, 3-A, 20-V DO-214AB(SMC) 1 SS32 Vishay D1
Green SM_LED_1206 LED-1206 2 CMD15-21VGC/TR8 Panasonic L62205CT-ND D3, D4
MOSFET, P-CH, 20-V, 4.7-A, 3-SOT-23 2 SI2323DS Vishay Q1, Q2
39-M Ω
TRANS BIAS NPN, 50-V SOT416 1 DTC114EET1 ON Semiconductor DTC114EET1OS-ND Q3
Switch EVQ-PJ 1 EVQ-PJX04M Panasonic P8050SCT-ND S1
Switch, 8-Pos, half-pitch SMT SWITCH_8POS_ 1 TDA08H0SK1 ITT CKN1365-ND SW1
SMT
3-circuit jumpers SJP3_RESISTOR 2 ERJ-3GEY0R00V Panasonic P0.0GCT-ND SJP4
3-circuit jumpers SJP3_402 2 ERJ-2GE0R00X Panasonic P0.0JCT-ND SJP1
(1)
Add jumper for JP2 between pins 1 to 2.
(2)
Add jumper for SJP4 between pins 2 and 3 (use a 0- Ω resistor to short pins).
(3)
Add jumper for SJP5 between pins 2 and 3 (use a 0- Ω resistor to short pins).
(4)
Add jumper for SJP1 between pins 1 and 2 (use a 0- Ω resistor to short pins).
(5)
Add jumper for SJP2 between pins 1 and 2 (use a 0- Ω resistor to short pins).
FB7 FB10
J15
(1)
(2)
(4)
(3)
, SJP5
(5)
, SJP2
NOT
INSTALLED
TP12 TP13
SLWU028B – January 2006 – Revised November 2006 23
Submit Documentation Feedback
Physical Description
Table 5. Bill of Materials (continued)
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
ADS5525/27, ADS5545/46/47 48-QFN_MOD 1 ADS5525/27, TI U1
ADS5545/46/47
Spartan-3E XC3S250E 256-BGA- XC3S250E-4FT256CES Xilinx U2
1mm_XILINX
IC amp, fully-diff, wideband 16-QFN(RGT) 1 THS4509RGTT TI 296-17730-1-ND U3
XCF16PFSG48 48PIN_BGA_XILINX 1 XCF16PFSG48 Xilinx U4
IC, pwr-mgmt, triple-supply 20-pin-QFN 1 TPS75003RHLR TI 296-17835-2-ND U6
IC, LDO reg, hi-PSRR, 1.8-V 5-SOT(DBV) 1 TPS73018DBVT TI 296-17577-1-ND U7
IC, comparator, R-R, hi-spd 8-TSSOP(DCN) 1 TLV3502AIDCNT TI 296-18147-2-ND U9
IC, EX-OR gate, 2-in 5-SOT(DBV) 1 SN74LVC1G86DBVR TI 296-9853-1-ND U10
2-pos shunt Shorting jumper 1 N/A 3M 929955-06-ND
Screw 4-40 × 3/8" 4 N/A Building Fasteners H781-ND
Standoff, hex (1/4 x .5") 4-40 screw 4 N/A Keystone 1902CK-ND
NOT
INSTALLED
24 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
Physical Description
5.3 PCB Schematics
The schematics for the EVM are on the following pages.
SLWU028B – January 2006 – Revised November 2006 25
Submit Documentation Feedback
U2A
XILINX XC3S 500E_FT256
A14
IO_L01N_0
B14
IO_L01P_0
A13
IO_L03N_0/VREF_0
B13
IO_L03P_0
2. 5V
E11
IO_L04N_0
D11
U1-G2
U1-H4
U1-H3
MODE
B11
C11
E10
D10
A10
C13
C12
D12
C10
A12
B10
U1-G3
F8
E8
F9
E9
A9
B8
A8
D8
C8
D7
E7
D6
C6
E6
D5
A4
A5
C4
C5
B3
C3
A3
C9
A7
B4
B6
D9
SEN
(Sh 4)
(Sh 4)
(Sh 4)
IO_L04P_0
IO_L05N_0/VREF_0
IO_L05P_0
IO_L06N_0
IO_L06P_0
IO_L12N_0
IO_L12P_0
IO_L08N_0/GCLK5
IO_L08P_0/GCLK4
IO_L09N_0/GCLK7
IO_L09P_0/GCLK6
IP_L10N_0/GCLK9
IP_L10P_0/GCLK8
IO_L11N_0/GCLK11
IO_L11P_0/GCLK10
IO_L14N_0/VREF_0
IO_L14P_0
IO_L15N_0
IO_L15P_0
IP_L16N_0
IP_L16P_0
IO_L17N_0/VREF_0
IO_L17P_0
IO_L18N_0
IO_L18P_0
IO_L19N_0/HSWAP
IO_L19P_0
IP
IP
IP_L02N_0
IP_L02P_0
IP_L07N_0
IP_L07P_0
IO
IO
IO
IP
IP
IO_VREF_0
U1-G2
U1-G3
SEN
D
C9
+
10uF
U1-H6
U1-H5
DFS
TLV3502
U1-H6
U1-H5
R3
C115
10K
3.3V
C117
.1uF
2.2uF
5
1
2
3
DFS
3.3V
U9
8
V+
7
OUT A
6
OUT B
5
(Sh 4)
C
B
DRVDD
R32
10K
R33
10K
R39
10K
(Sh 4)
(Sh 4)
DFS
1
2
3
+IN A
-IN A
+IN B
-IN B4V-
DRVDD
C10
.1uF
R5
(Sh 2)
(Sh 2)
C8
+
10uF
D12_D13P
D12_D13M
D10_D11P
D10_D11M
D8_D9P
D8_D9M
D6_D7P
RESET
SCLK
SDATA
AVDD
AGND
SEN
D6_D7M
D4_D5P
D4_D5M
D2_D3P
D2_D3M
36
TP10
35
34
33
32
N/C
31
N/C
30
29
28
27
26
25
IREF
D0_D1P
D0_D1M
R41 100
R48 0
R6 0
R2
10K
R1
56.2K
R18 0
S1
SW-PB
3.3V
R80
20K
RESET
SCLK
SDATA
DRVDD
R28
4.99KR410K
AVDD
C19
.1uF
38
40
42
44
45
47
46
48
1
2
3
4
5
0
INP
INM
6
7
8
9
TP4
10
11
12
TP1
0
C14
.1uF
INP
INM
D12_D13P
DRGND
DRVDD
OVR
CLKOUTM
CLKOUTP
DFS
OE
AVDD
AGND
CLKP
CLKPM
AGND
CM13AGND14INP15INM16AGND17AVDD18AGND19AVDD20IREF21AVDD22MODE23AVDD
D10_D11P
D10_D11M
D12_D13M
ADS5545_48PIN-QF N
43
D8_D9P
D8_D9M
U1
41
D6_D7P
D6_D7M
39
D4_D5P
D4_D5M
37
D2_D3P
D2_D3M
D0_D1P
D0_D1M
24
DRGND
DRVDD
C1
C3
.1uF
.1uF
C4
.1uFC5.1uF
R27
4.99K
(Sh 4)
(Sh 4) (Sh 4)
(Sh 4)
(Sh 4)
C116
.1uF
U10
4
SN74LVC1G86
C6
.1uFC7.1uF
3.3V
R30
20K
OVR
OVR
OE
CLKP
CLKM
(Sh 2)
VCM
(Sh 2)
CM
TP9
M0
OE
CLKP
CLKM
M0
VCM
CM
R10
(Sh 4)
CLKOUTM
CLKOUTP
RESET
SCLK
SDATA
CLKOUTM
CLKOUTP
(Sh 4)
(Sh 4)
3.3V
R81
20K
U1-H4
U1-H3
MODE
R29
4.99KR710K
(Sh 4)
(Sh 4)
(Sh 4)
VCCO_0
VCCO_0
VCCO_0
VCCO_0
GND
GND
GND
GND
GND
GND
GND
NC
NC
VCCO_0
B5
B12
F7
F10
C7
B7
A1
B9
F6
G7
G8
G9
H8
3.3V
2.5V
1
2
JP2
(1-2)
3
D
C
B
R40
A
10K
Note 1. Part not installed
Engineer:
Drawn By:
FILE:
J. VENABLE
Y. DEWONCK
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SIZE:
ADS5545
DATE: REV:
11-Jul-2006
B
SHEET: OF:
17
A
5 4 3 2 1
6
D
C
B
A
Note 1. Part not installed
+VCC
C11
C12
C13
.1uF
.1uF
R24
348
J1
SMA_END
5
(Sh 1)
VCM
J3
AIN
1
3 4
2
5
1 2 3 4 56
R34
49.9
(Note 1)
T1
4
6
TC4-1W
C44 .1uF
1
3 4
2
VCM
C16
.1uF
3
R15
2
200
1
C62
.1uF
R22
100
R20
69.8
C49
.1uF
R21
69.8
R19
49.9
C46
.22uF
R16
200
R83
499
R84
499
R23
100
T2
1
2
3
TC4-1W
C51
.1uF
TP3
12
PD
1
N/C
2
Vin-
11
Vin+
4
CM
CM
9
C15
6
.1uF
C113
4
.1uF
Vs+5Vs+6Vs+7Vs+
U3
THS4509
Vs-13Vs-14Vs-15Vs-
C17
C29
.1uF
.1uF
R35
49.9
8
Vout+
16
R25
348
Vout-
C30
10uF
3
10
-VCC
C41
10uF
R17
24.9
R36
49.9
C55
.1uF
10uF
C40
10uF
C45
R42
0 ohm
C47
R43
0 ohm
CM
CM
SJP4
C52
.1uF
(Note 1)
L3
49.9
0 ohm
L4
49.9
0 ohm
AMP_M
2
(2-3)
3 1
SJP5
3 1
R37
4.02
AMP_P
R38
2
(2-3)
4.02
C2
20pF
C118
20pF
INM
R12
36
C20
2pF
R13
36
R44
4.7
C119
20pF
R47
4.7
(Sh 1)
INM
INP
(Sh 1)
INP
Engineer:
Drawn By:
FILE:
AMP_P
R85
200
CM
R86
200
AMP_M
ote : R12, C20, and R13 are to be un-populated
on ADS5525/45/46 EVMs.
R12, C20, and R13 may be populated for
future ADC boards; contact factory for details.
Title:
J. VENABLE
Y. DEWONCK
DOCUMENTCONTROL #
DATE:
AMPLIFIER PATH:
AC Couple (default)
C45 C47 = 0.1uF
R26 R27 = 200 Ohms
R5 = 0 Ohms
VCC= 5 V, VEE = GND
DC Couple
C45 C47 = 0 Ohms
R26 R27 = Unpopulated
R5 = Unpopulated
VCC= 4 V, VEE = -1V
ti
12500 TI Boulevard. Dallas, Texas 75243
ADS5545
17-Jul-2006
SIZE:
SHEET: OF:
REV:
B
27
D
C
B
A
5 4 3 2 1
6
D
J7
CLK_INP
1
3 4
5
J8
CLK_INM
(Note 1)
C
B
1
3 4
5
2
R59
2
49.9
(Note 1)
R58
0
(Note 1)
R54
1 2
0
T3
6
4
TC4-1W
R56
(Note 1)
1
2
3
0
R60
100
R31
100
C25
.1uF
SJP2
CLKP
2
CLKM
(1-2)
3 1
(Sh 1)
CLKM
C26
.1uF
2
SJP1
(1-2)
3 1
CLKP
(Sh 1)
D
C
B
A
Note 1. Part not installed
REV:
B
37
A
ti
12500 TI Boulevard. Dallas, Texas 75243
Engineer:
J. VENABLE
Drawn By:
Y. DEWONCK
1 2 3 4 56
FILE:
Title:
DOCUMENTCONTROL #
DATE:
11-Jul-2006
ADS5545
SIZE:
SHEET: OF:
D
C
B
(Sh 1)
(Sh 5)
(Sh 5)
(Sh 5)
A
Note 1. Part not installed
5 4 3 2 1
J4
40PIN_IDC
M0
CCLK
A23
D0
D1
D2
D3
D4
D5
D6
D7
XILINX XC3S 500E_FT256
R15
IO_L01N_1/A15
R16
IO_L01P_1/A16
P15
IO_L02N_1/A13
P16
IO_L02P_1/A14
M16
IO_L04N_1/VREF_1
N16
IO_L04P_1
L15
IO_L06N_1
L14
IO_L06P_1
J16
IO_L09N_1/A9/RHCLK1
K16
IO_L09P_1/A10/RHCLK0
H14
IO_L11N_1/A5/RHCLK5
H15
IO_L11P_1/A6/RHCLK4/IRDY1
G16
IO_L13N_1/A1
G15
IO_L13P_1/A2
F15
IO_L15N_1
F14
IO_L15P_1
D14
IO_L18N_1/LDC0
D15
IO_L18P_1/HDC
C15
IO_L19N_1/LDC2
C16
IO_L19P_1/LDC1
K12
IO_L07N_1/A11
K13
IO_L07P_1/A12
K14
IO_L08N_1/VREF_1
K15
IO_L08P_1
J13
IO_L10N_1/A7/RHCLK3/TRDY1
J14
IO_L10P_1/A8/RHCLK2
H11
IO_L12N_1/A3/RHCLK7
H12
IO_L12P_1/A4/RHCLK6
G14
IO_L14N_1/A0
G13
IO_L14P_1
F12
IO_L16N_1
F13
IO_L16P_1
B16
IP
E14
IP
G12
IP
H16
IP
J11
IP
J12
IP
M13
IP
M14
IO
D16
IO/VREF_1
H13
IP/VREF_1
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCCO_1
VCCO_1
VCCO_1
VCCO_1
SW1
SW16
SW15
SW14
SW13
SW12
SW11
SW10
SW9
VCCO_2
VCCO_2
VCCO_2
VCCO_2
GND
GND
GND
GND
GND
GND
J5
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
40PIN SMT MMS
L7
L10
R5
R12
P7
NC
N7
NC
P10
NC
R10
NC
K8
K9
K10
L11
R8
T16
1 2
3 4
5 6
7 8
9 10
SW16
SW15
SW14
SW13
SW12
SW9
OVR
DFS
IO/HDC
SW10
SW11
CTRL_LE
CTRL_DATA
CTRL_CLK
OE
OE
OVR
DFS
3.3V
(Sh 5)
D3
LED_1206
IO/HDC
CTRL_LE
CTRL_DATA
CTRL_CLK
(Sh 1)
(Sh 1)
(Sh 1)
R87
330
3.3V
R79
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
(Sh 5)
(Sh 5)
20
BUSY
INIT_B
CLKOUT
INIT_B
M0
CCLK
A23
D0
D1
D2
D3
D4
D5
D6
D7
RP1
20 Ohm
1 16
2 15
3 14
4 13
5
6
7
8
1 16
2 15
3 14
4 13
5
6
7
8
RP2
20 Ohm
ADC_D14
ADC_D15
ADC_D0
ADC_D1
ADC_D2
ADC_D3
ADC_D4
12
ADC_D5
11
ADC_D6
10
ADC_D7
9
ADC_D8
ADC_D9
ADC_D10
ADC_D11
ADC_D12
12
ADC_D13 ADC_D0
11
ADC_D14
10
ADC_D15
9
U2C
XILINX XC3S 500E_FT256
IP
IP
IO/D5
IO/M1
IO/VREF_2
IO/VREF_2
IP_L11N_2/M2/GCLK1
IP_L11P_2/RDWR_B/GCLK0
IO/L03N_2/MOSI/CSI_B
IO/L03P_2/DOUT/BUSY
IO/L01N_2/INIT_B
IO/L01P_2/CSO_B
IP_L02N_2
IP_L02P_2
IO/L04N_2
IO/L04P_2
IO/L05N_2
IO/L05P_2
IO/L06N_2
IO/L06P_2
IP_L08N_2/VREF_2
IP_L08P_2
IO/L12N_2/D1/GCLK3
IO/L12P_2/D2/GCLK2
IO/L16N_2/A22
IO/L16P_2/A23
IO/L18N_2/A20
IO/L18P_2/A21
IO/L19N_2/VS1/A18
IO/L19P_2/VS2/A19
IO/L09N_2/D6/GCLK13
IO/L09P_2/D7/GCLK12
IO/L10N_2/D3/GCLK15
IO/L10P_2/D4/GCLK14
IO/L13N_2/DIN/D0
IO/L13P_2/M0
IO/L15N_2
IO/L15P_2
IP_L17P_2
IP_L17N_2
IO/L20N_2/CCLK
IO/L20P_2/VS0/A17
IP
IP
BUSY
ADC_D7
ADC_D8
ADC_D9
ADC_D10
ADC_D13
ADC_D12
ADC_D11
3.3V
M7
T12
T8
T10
P13
R4
R9
T9
N5
P5
P4
P3
R3
T3
T5
T4
N6
M6
P6
R6
T7
R7
N9
P9
P11
R11
N12
P12
R13
T13
L8
M8
P8
N8
M9
L9
M10
N10
N11
M11
R14
P14
T2
T14
GND
GND
GND
GND
GND
GND
GND
GND
3.3V
E15
G11
K11
M15
N15
NC
N14
NC
L13
NC
L12
NC
E16
NC
E13
NC
A16
F11
G10
H9
H10
J9
J10
J15
RP3
10K Ohm
1 16
2 15
3 14
4 13
5
6
7
8
U2B
SWITCH_8POS_SMT
1 2 3 4 56
J6
40PIN_IDC
5V 5V
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
(Sh 1)
MODE
(Sh 1)
U1-G2
(Sh 1)
U1-G3
(Sh 1)
U1-H6
(Sh 1)
U1-H5
(Sh 1)
U1-H4
(Sh 1)
U1-H3
(Sh 1)
RESET
(Sh 1)
SCLK
(Sh 1)
SDATA
(Sh 1)
SEN
12
11
10
9
Engineer:
Drawn By:
FILE:
ADC_D6
ADC_D5
ADC_D4
ADC_D3
ADC_D2
ADC_D1
MODE
U1-G2
U1-G3
U1-H6
U1-H5
U1-H4
U1-H3
RESET
CLKOUT
SCLK
SDATA
SEN
J. VENABLE
Y. DEWONCK
XILINX XC3S 500E_FT256
R1
IO_L19N_3
R2
IO_L19P_3
P1
IO_L18N_3
P2
IO_L18P_3
N1
IO_L16N_3
M1
IO_L16P_3
L5
IO_L15N_3
K5
IO_L15P_3
K1
IO_L12N_3
J1
IO_L12P_3
E1
IO_L05N_3
D1
IO_L05P_3
E4
IO_L03N_3
E3
IO_L03P_3
C2
IO_L02N_3/VREF_3
C1
IO_L02P_3
B2
IO_L01N_3
B1
IO_L01P_3
G4
IO_L06N_3
G5
IO_L06P_3
G2
IO_L07N_3
G3
IO_L07P_3
H6
IO_L08N_3/LHCLK1
H5
IO_L08P_3/LHCLK0
H4
IO_L09N_3/LHCLK3/IRDY2
H3
IO_L09P_3/LHCLK2
J3
IO_L10N_3/LHCLK5
J2
IO_L10P_3/LHCLK4/TRDY2
J4
IO_L11N_3/LHCLK7
J5
IO_L11P_3/LHCLK6
K2
IO_L13P_3
K3
IO_L13N_3
D2
IP
F2
IP
H1
IP
J6
IP
K4
IP
M3
IP
N3
IP
F5
IO
G1
IP/VREF_3
N2
IO/VREF_3
12500 TI Boulevard. Dallas, Texas 75243
Title:
DOCUMENTCONTROL #
DATE:
11-Jul-2006
ti
U2D
ADS5545
SIZE:
6
3.3V
E2
VCCO_3
VCCO_3
VCCO_3
VCCO_3
GND
GND
GND
GND
GND
GND
GND
SHEET: OF:
NC
NC
NC
NC
NC
NC
G6
K6
M2
F4
F3
L2
L3
L4
M4
H2
H7
J7
J8
K7
L6
T1
REV:
B
47
D
C
B
A
D
C
(Sh 3)
3.3V
1.8V
5 4 3 2 1
3.3V
2.5V
R49
INIT_B
CCLK
BUSY
D0
D1
D2
D3
D4
D5
D6
D7
IO/HDC
A23
4.75K
(Sh 4)
INIT_B
(Sh 4)
CCLK
(Sh 4)
BUSY
D0
D1
D2
D3
(Sh 4)
D4
D5
D6
D7
A23
R11
0
(Sh 4)
IO/HDC
(Sh 4)
U4
XCF16PFSG48
B1
E1
G6
B2
C6
D6
G5
H2
A4
C3
C4
D3
D4
E3
E4
F2
F3
F4
G2
A1
A2
B6
F1
F5
F6
H1
VCCINT
VCCINT
VCCINT
VCCO
VCCO
VCCO
VCCO
VCCJ
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
DNC
GND
GND
GND
GND
GND
GND
GND
OE/RESET__
EN_EXT_SEL__
CLK
CE__
BUSY
CLKOUT
CF__
CEO__
TMS
TDO
REV_SEL0
REV_SEL1
TCK
A3
B3
B4
C1
C2
H6
D0
H5
D1
E5
D2
D5
D3
C5
D4
B5
D5
A5
D6
A6
D7
D1
D2
E2
E6
G1
TDI
G3
G4
H3
H4
R88
330
D4
LED_1206
Q3
DTC114EET1
JP1
6X1X.1
2.5V
R45
R46
4.75K
330
12345
TMS
TDI
TDO
DONE
PROG_B
3.3V
6
GND
3.3V
TCLK
T15
D3
A15
A2
C14
B15
U2E
XILINX XC3S 500E_FT256
DONE
PROG_B
TCK
TDI
TDO
TMS
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
1.2V
D4
D13
E5
E12
M5
M12
N4
N13
2.5V
A6
A11
F1
F16
L1
L16
T6
T11
6
D
C
B
A
Note 1. Part not installed
B
REV:
B
57
A
ti
12500 TI Boulevard. Dallas, Texas 75243
Engineer:
J. VENABLE
Drawn By:
Y. DEWONCK
1 2 3 4 56
FILE:
Title:
DOCUMENTCONTROL #
DATE:
11-Jul-2006
ADS5545
SIZE:
SHEET: OF:
5 4 3 2 1
6
D
C57
C58
D
5V
R8
10K
C61
100uF
J20
C
B
CON_3TERM_SCREW
2.5V
3
1.2V
3.3V
C63
10uF
5V
2
1
15.4K
R63
61.9K
R65
.01uF
TP11
5V
C64
1uF
20
IN3
R82
1
0
R9
10K
R26
10K
OUT3
FB3
TP12
TP13
C31
1.5nF
1.5nF
SS3
SS1
17
19
18
SS116EN1
SS3
AGND
U6
TPS75003
FB32EN33EN24SS25DGND6SW27IN28IS2
C59
1.5nF
FET-SI2323DS
SW1
13
14
15
IN1
SW1
DGND
R62
.033
SW2
3
D
FET-SI2323DS
2
S
Q1
IS1
12
IS1
11
FB1
10
FB2
9
IS2
Q2
S
G
R61
.033
5V
C27
.1uF
FB2
5V
C28
.1uF
2
1
D2
MBRM120
1
G
3
CDRH8D43-150
D1
SS32
2 1
L2
1
CDRH6D38-5R0
5uH
L1
1
15uH
2
C53
10pF
2
R64
61.9K
100uF
1.2V
C60
+
100uF
R66
36.5K
3.3V
C35
+
1.2V
C89
C90
2.2uF
2.2uF
VCCO_0
3.3V
3.3V
3.3V
C91
2.2uF
BANK 0 DECOUPLING
C85
C42
2.2uF
.22uF
BANK 1 DECOUPLING
C86
C43
2.2uF
.22uF
BANK 2 DECOUPLING
C87
C54
2.2uF
.22uF
BANK 3 DECOUPLING
C88
C67
2.2uF
.22uF
C92
2.2uF
C48
.22uF
C50
.22uF
C75
.22uF
C76
.22uF
VCCINT DECOUPLING
C77
C78
.22uF
.22uF
C97
.022uF
C98
.022uF
C101
.022uF
C102
.022uF
C79
.22uF
C99
.022uF
C100
.022uF
C103
.022uF
C104
.022uF
C80
.22uF
C105
.022uF
C106
.022uF
C107
.022uF
D
C
B
C108
.022uF
IN
EN
U7
TPS73018DBV
GND
2
OUT
2.2uF
C81
C96
.22uF
VCCAUX CORE DECOUPLING
C82
C83
.22uF
.22uF
C84
.22uF
Engineer:
Drawn By:
FILE:
C109
.022uF
J. VENABLE
Y. DEWONCK
C110
.022uF
C111
C112
.022uF
.022uF
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
DATE: REV:
SIZE:
ADS5545
11-Jul-2006
B
67
SHEET: OF:
A
5
C114
2.2uF
4
NR
2.5V
2.2uF
C93
C94
C95
2.2uF
2.2uF
5V 1.8V
1
C18
.1uF
3
A
Note 1. Part not installed
1 2 3 4 56
5 4 3 2 1
Diff Amp Positive Supply (+5.0V)
J13
D
+3.3VA-PS
J11
RED
J9
BLACK
FB2
C32
.1uF
C65
+
47uF
ADC Analog Supply (+3.3V)
AVDD
C33
C70
+
.1uF
10uF
RED
J10
BLACK
J12
RED
FB3
C34
.1uF
FB4
C37
.1uF
+VCC
C71
C66
+
+
10uF
47uF
Diff Amp Negative Supply (-5.0V)
-VCC
C73
C68
+
+
10uF
47uF
6
D
C
B
A
Note 1. Part not installed
C
TP5 TP6
(Note 1) (Note 1)
FB8 FB9 FB10
C69
+
47uF
ADC DIGITAL SUPPLY(3.3V)
DRVDD
C39
C74
+
.1uF
10uF
TP8
OUTPUT_BUFFER
J15
RED
J16
BLACK
1 2 3 4 56
FB7
C38
.1uF
TP7
FB6
(Note 1)
J14
RED
J17
BLACK
FPGA POWER SUPPLY(5V)
5V
C36
C72
+
.1uF
10uF
Engineer:
J. VENABLE
Drawn By:
Y. DEWONCK
FILE:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
DOCUMENTCONTROL #
DATE:
11-Jul-2006
ADS5545
SIZE:
77
SHEET: OF:
B
A
REV:
B
Physical Description
EVALUATION BOARD/KIT IMPORTANT NOTICE
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a
finished end-product fit for general consumer use. Persons handling the product(s) must have
electronics training and observe good engineering practice standards. As such, the goods being
provided are not intended to be complete in terms of required design-, marketing-, and/or
manufacturing-related protective considerations, including product safety and environmental
measures typically found in end products that incorporate such semiconductor components or
circuit boards. This evaluation board/kit does not fall within the scope of the European Union
directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling
(WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these
directives or other related directives.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the
board/kit may be returned within 30 days from the date of delivery for a full refund. THE
FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER
AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY,
INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further,
the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the
open construction of the product, it is the user’s responsibility to take any and all appropriate
precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY
SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein.
Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s
Guide prior to handling the product. This notice contains important safety information about
temperatures and voltages. For additional information on TI’s environmental and/or safety
programs, please contact the TI application engineer or visit www.ti.com/esh .
No license is granted under any patent right or other intellectual property right of TI covering or
relating to any machine, process, or combination in which such TI products or services might be
or are used.
SLWU028B – January 2006 – Revised November 2006 33
Submit Documentation Feedback
Physical Description
FCC Warning
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a
finished end-product fit for general consumer use. It generates, uses, and can radiate radio
frequency energy and has not been tested for compliance with the limits of computing devices
pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against
radio frequency interference. Operation of this equipment in other environments may cause
interference with radio communications, in which case the user at his own expense will be
required to take whatever measures may be required to correct this interference.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the AVDD voltage range of –0.3 V to 3.8 V and the
DVDD voltage range of –0.3 V to 3.8 V.
Exceeding the specified input range may cause unexpected operation and/or irreversible damage
to the EVM. If there are questions concerning the input range, please contact a TI field
representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or
possible permanent damage to the EVM. Please consult the EVM User's Guide prior to
connecting any load to the EVM output. If there is uncertainty as to the load specification, please
contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than
25 ° C. The EVM is designed to operate properly with certain components above 50 ° C as long as
the input and output ranges are maintained. These components include but are not limited to
linear regulators, switching transistors, pass transistors, and current sense resistors. These types
of devices can be identified using the EVM schematic located in the EVM User's Guide. When
placing measurement probes near these devices during operation, please be aware that these
devices may be very warm to the touch.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
34 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007 , Texas Instruments Incorporated