Texas Instruments 27, 46, 45, 47, ADS5525 User Manual

...
ADS5525/27/45/46/47 EVM User Guide
User's Guide
November 2006
SLWU028B
2 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
1 Overview .................................................................................................................... 5
1.1 EVM Basic Functions ............................................................................................ 5
2 EVM Quick Start Guide ................................................................................................ 6
2.1 EVM LVDS Output Mode Quick Start (Default) .............................................................. 6
2.2 EVM CMOS Output Mode Quick Start ........................................................................ 6
3 Circuit Description ...................................................................................................... 7
3.1 Schematic Diagram .............................................................................................. 7
3.2 Circuit Function ................................................................................................... 7
4 Expansion Options .................................................................................................... 13
4.1 Custom FPGA Code ........................................................................................... 13
4.2 Expansion Slot .................................................................................................. 13
4.3 Optional USB SPI Interface ................................................................................... 13
5 Physical Description .................................................................................................. 14
5.1 PCB Layout ...................................................................................................... 14
5.2 Bill of Materials .................................................................................................. 20
5.3 PCB Schematics ................................................................................................ 25
SLWU028B – January 2006 – Revised November 2006 Table of Contents 3
Submit Documentation Feedback
List of Figures
1 ADS5547 SNR Performance vs Decoupling ............................................................................. 8
2 THS4509 + ADS5545 EVM Performance ................................................................................ 9
3 Eye Diagram of Data on Header J4. ..................................................................................... 11
4 Top Layer .................................................................................................................... 14
5 Layer 2, Ground Plane .................................................................................................... 15
6 Layer 3, Power Plane #1 .................................................................................................. 16
7 Layer 4, Power Plane #2 .................................................................................................. 17
8 Layer 5, Ground Plane .................................................................................................... 18
9 Layer 6, Bottom Layer ..................................................................................................... 19
List of Tables
1 DIP Switch SW1 ............................................................................................................. 7
2 EVM Power Options ......................................................................................................... 8
3 Output Connector J4 ....................................................................................................... 10
4 Test Points .................................................................................................................. 12
5 Bill of Materials ............................................................................................................. 21
4 List of Figures SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
1 Overview
1.1 EVM Basic Functions
User's Guide
SLWU028B January 2006 Revised November 2006
This manual assists users in using the ADS5525/27/45/46/47 evaluation module (EVM) for evaluating the performance of the ADS5525/27/45/46/47 (ADCs). The EVM provides a powerful and robust capability in evaluation of the many features of the ADCs and the performance of the device der many conditions.
Analog input to the ADC is provided via external SMA connectors. The user supplies a single-ended input, which is converted into a differential signal. One input path uses a differential amplifier, while the other input is transformer-coupled.
The EVM provides an external SMA connector for input of the ADC clock. The single-ended input is converted into a differential signal at the input of the device.
Digital output from the EVM is via a 40-pin connector. Power connections to the EVM are via banana jack sockets. Separate sockets are provided for the ADC
analog and digital supplies, the FPGA supply, and the differential amplifier supply.
CAUTION
Exceeding the maximum input voltages can damage EVM components. Undervoltage may cause improper operation of some or all of the EVM components.
Xilinx, Spartan, WebPACK are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.
SLWU028B – January 2006 – Revised November 2006 5
Submit Documentation Feedback
www.ti.com
EVM Quick Start Guide
2 EVM Quick Start Guide
The ADC has two basic modes of output operation, ensuring compatibility in a broad range of systems. Follow the steps below to get the EVM operating quickly with the ADC in either DDR LVDS output mode or CMOS output mode.
Note: Follow the steps in the listed order; not doing so could result in improper operation.
2.1 EVM LVDS Output Mode Quick Start (Default)
1. Ensure a jumper is installed between pins 1 and 2 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to LVDS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a filtered, low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered, sinusoidal analog input to J3.
8. Using a logic analyzer and Table 3 in this manual, monitor the ADC output on J4.
2.2 EVM CMOS Output Mode Quick Start
1. Ensure a jumper is installed between pins 2 and 3 on JP2.
2. Ensure DIP switch SW1, switch 2 is set to CMOS.
3. Ensure DIP switch SW1, switch 8 is set to PARALLEL.
4. Use a regulated power supply to provide 3.3 VDC to the ADC at J11 and J15, with the corresponding returns connected to J9 and J16.
5. Use a regulated power supply to provide a 5-VDC input to J14, while connecting the return to J17.
6. Provide a low-phase-noise, sinusoidal 1.5-Vrms, 170-MHz clock to J7.
7. Provide a filtered sinusoidal analog input to J3.
8. Briefly depress S1, which resets the EVM.
9. Using a logic analyzer and Table 3 in this manual, monitor the ADC output on J4.
6 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
3 Circuit Description
3.1 Schematic Diagram
The schematic diagram for the EVM is in Section 5.3 of this document.
3.2 Circuit Function
The following paragraphs describe the function of individual circuits. See the data sheet for complete device operating characteristics.
3.2.1 Configuration Options
The EVM provides a DIP switch, SW1, to control many of the modes of operation when the EVM is configured for parallel-mode operation. Table 1 describes the functionality of the DIP switches.
Note: When the device is configured for serial-mode operation (SW1, switch 8), the DIP settings
SW1 SWITCH
NUMBER
Circuit Description
on SW1, switch 1 through SW1, switch 7 are ignored.
Table 1. DIP Switch SW1
OFF ON DESCRIPTION
1 2s complement Offset binary Determines device output format 2 LVDS CMOS Determines device output mode 3 Reserved Reserved Reserved 4 Internal reference External reference When set to External Reference, ADC uses common-mode
voltage on TP1. 5 Edge = 1 Edge = 2 Allows for output edge programmability 6 Edge = 3 Edge = 4 Allows for output edge programmability 7 Normal Power down Allows for power down 8 Serial Parallel Determines mode for register interface
By switching SW1, switch 8 to OFF, the ADC operates in serial mode, using its programmed register contents. A complete register map can be found in the device datasheet. Three pins on header J6 have been reserved for programming the device while it operates in serial mode. To program the device registers using header J6, place SCLK on pin 21, SDATA on pin 23, and SEN on pin 25. A pattern generator can be used to generate the patterns needed for programming. Alternatively, TI provides an optional USB daughtercard that plugs into the expansion slot of the EVM. The USB daughtercard allows ADC register control via a software package loaded onto the PC.
3.2.2 Power
Power is supplied to the EVM via banana jack sockets. The EVM offers the capability to supply analog and digital 3.3 V independently to the ADC. Table 2 offers a snapshot of the power-supply options. All supply connections are required for default operation, except J12, J10, J13, and J20.
The EVM provides local decoupling for the ADC; however, the ADC features internal decoupling, and in many cases minimal external decoupling can be used without loss in performance. Users are encouraged to experiment to find the optimal amount of external decoupling required for their application. Figure 1 shows the ADS5547 LVDS-mode performance with all of the decoupling capacitors installed and the performance with C4, C5, C6, C7, C8, C9, and C10 removed. By default, the EVM comes with all of the decoupling capacitors installed.
SLWU028B – January 2006 – Revised November 2006 7
Submit Documentation Feedback
www.ti.com
fIN − Input Frequency − MHz
SNR − Signal-to-Noise Ratio − dBFS
G001
9.97 19.94 30.13 40.33 50.13 60.13 69.59 79.87 89.75 100.33 130.13 170.13
68
69
70
71
72
73
74
1 Decoupling Cap
Baseline-All Decoupling Caps
Circuit Description
Table 2. EVM Power Options
BANANA JACK NAME VOLTAGE DESCRIPTION
J9 Device AGND GND J10 AGND GND J11 Device AVDD 3.3 Device analog supply J12 Amplifier negative –5 THS4509 Vs– supply
J13 Amplifier positive rail 5 THS4509 Vs+ supply J14 Auxiliary power 5 Supplies power to all peripheral circuitry including the FPGA
J15 Device DVDD 3.3 Device internal digital output supply J16 DGND GND J17 DGND GND J20 If TP11, TP12, and TP13 are tied low, the TPS75003 is
rail
and PROM. Voltages rails are created by using TI's TPS75003 voltage regulator.
disabled. In this case, one can supply 3.3 V to pin 1, 1.2 V to pin 2, and 2.2 V to pin 3 of J20 while connecting the ground to J17.
Figure 1. ADS5547 SNR Performance vs Decoupling
3.2.3 Analog Inputs
The EVM can be configured to provide the ADC with either transformer-coupled or differential amplifier inputs from a single-ended source. The inputs are provided via SMA connector J3 for transformer-coupled input or SMA connector J1 for differential amplifier input. To set up for one of these options, the EVM must be configured as follows:
1. For a 1:1 transformer-coupled input to the ADC, a single-ended source is connected to J3. Confirm that SJP4 has pins 2 and 3 shorted, and that SJP5 has pins 2 and 3 shorted. The transformer used, the Mini-Circuits TC4-1W, forms an inherent band-pass filter with a pass band from 3 MHz to 800 MHz. This is the default configuration for the EVM.
2. One can use a TI THS4509 amplifier to drive the ADC by applying an input to J1. Reconfigure SJP4 and SJP5 such that both have pins 1 and 2 shorted. A 5-VDC supply must be connected to the board to provide power to U3 for this configuration.
8 SLWU028B – January 2006 – Revised November 2006
The THS4509 amplifier path converts a single-ended signal presented on J1 into a differential signal.
Submit Documentation Feedback
www.ti.com
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
f − Frequency − MHz
Amplitude − dBFS
G002
1
−135
−120
10
−130
−110
−100
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
2
3
4
5
x
Circuit Description
The schematics present various interface options between the amplifier and the ADC. Depending on the input frequencies of interest, further performance optimization can be had by designing a corresponding filter. In its default configuration, R43, R44, and C119 form a first-order, low-pass filter with a cutoff frequency of 70 MHz. Figure 2 shows the performance of the ADS5545 using the THS4509 path.
Figure 2. THS4509 + ADS5545 EVM Performance
3.2.4 Clock Input
A single-ended, harmonically filtered, low-phase-noise, 1.5-Vrms sinusoidal input should be applied to J7. The frequency must not exceed the device specification. In the EVM default configuration, both SPJ1 and SJP2 must have pins 1 and 2 shorted.
In the board default configuration, the transformer provides single-ended to differential conversion. The transformer has an impedance ratio of 4.
3.2.5 Digital Outputs
For compatibility with a broad range of logic analyzers, the EVM outputs 3.3-V parallel CMOS data on header J4, independent of the ADC operational mode. The Xilinx™Spartan™-3E FPGA provides the necessary translation, and it configures itself using one of two different logic files stored in the PROM, based on the EVM configuration. The CMOS data output of the FPGA is contained in data header J4 and
is a standard 40-pin header on a 100-mil grid, which allows easy connection to a logic analyzer. The connector pinout is listed in Table 3 . For quick setup, the eye diagram is shown in Figure 3 . No setup or hold-time adjustments must be made to the logic analyzer if using the rising edge of the output clock to latch in the data.
Note: The eye diagram shown is the output of the FPGA at 210 MSPS, not that of the ADC. For
the ADC output timing, see the respective device data sheet.
SLWU028B – January 2006 – Revised November 2006 9
Submit Documentation Feedback
www.ti.com
Circuit Description
Table 3. Output Connector J4
J4 PIN ADS5525/27 DESCRIPTION ADS5545/46/47 DESCRIPTION
1 CLK CLK 2 GND GND 3 NC NC 4 GND GND 5 Reserved Reserved 6 GND GND 7 Reserved Reserved 8 GND GND
9 NC Data bit 0 (LSB) 10 GND GND 11 NC Data bit 1 12 GND GND 13 Data bit 0 (LSB) Data bit 2 14 GND GND 15 Data bit 1 Data bit 3 16 GND GND 17 Data bit 2 Data bit 4 18 GND GND 19 Data bit 3 Data bit 5 20 GND GND 21 Data bit 4 Data bit 6 22 GND GND 23 Data bit 5 Data bit 7 24 GND GND 25 Data bit 6 Data bit 8 26 GND GND 27 Data bit 7 Data bit 9 28 GND GND 29 Data bit 8 Data bit 10 30 GND GND 31 Data bit 9 Data bit 11 32 GND GND 33 Data bit 10 Data bit 12 34 GND GND 35 Data bit 11 (MSB) Data bit 13 (MSB) 36 GND GND 37 NC NC 38 GND GND 39 NC NC 40 GND GND
10 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
C001
Circuit Description
Figure 3. Eye Diagram of Data on Header J4.
3.2.6 Test Points
For added EVM visibility and control, several test points are provided. Table 4 summarizes the test points available.
SLWU028B – January 2006 – Revised November 2006 11
Submit Documentation Feedback
www.ti.com
Circuit Description
3.2.7 LED Operation
Table 4. Test Points
TP DESCRIPTION
TP1 ADC common mode, input or output
depending on the setting of SW1, switch 4 TP3 THS4509 power down TP4 ADC output enable TP5 AGND TP6 AGND TP7 AGND TP8 DGND TP9 FPGA M0 pin; determines which FPGA logic
file to load
TP10 ADC SCLK TP11 TPS75003 1.2 enable TP12 TPS75003 2.5 enable TP13 TPS75003 3.3 enable
To give greater visibility into the EVM operations, two LEDs are provided, D3 and D4. On power up, D4 is asserted when a successful FPGA boot up is complete. For correct EVM operation, the LED should be asserted at all times. LED D3 is asserted when the ADC and FPGA are operating and decoding in DDR LVDS mode, and is not asserted when the ADC is functioning in CMOS mode. Furthermore, in either DDR LVDS mode or CMOS mode, LED D3 blinks when an ADC overrange condition occurs.
CAUTION
If LED D3 is blinking, the amplitude coming into the ADC input (J3 or J4) must be attenuated immediately; otherwise, damage to the ADC could occur.
12 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
4 Expansion Options
The EVM offers several exciting possibilities to expand the capabilities of the EVM. This allows the utmost flexibility when prototyping an ADC circuit under conditions that mimic the end system, without the need to develop a custom prototype board.
4.1 Custom FPGA Code
Using a standard JTAG interface on JP1, users have the ability to load custom logic onto the FPGA, rapidly speeding up digital development time. This allows the flexibility of prototyping and debugging an ADC digital interface design before developing application-specific hardware.
To take advantage of the onboard FPGA, users can download the free Xilinx WebPACK™ from the Xilinx Web site. Select the XC3S250E-4FT256 as the FPGA and the XCF16PFSG48 as the PROM.
Note: See the Xilinx Spartan-3E Web site for complete documentation of the FPGA at:
Schematically, the FPGA is configured in BPI mode, and it samples FPGA pins M2, M1, and M0 when the FPGA's INIT_B is brought low. Depending of the status of M0, it boots from either the top or the bottom of the PROM contents. The PROM allows for the storage of two FPGA bit files. In its default condition, the EVM stores one file for ADC CMOS output at the beginning of the PROM address space and one file for ADC LVDS output at the end of the PROM address space.
Note: When creating custom FPGA code, store any custom-developed bit files for ADC CMOS
Expansion Options
http://direct.xilinx.com/bvdocs/publications/ds312.pdf
operation in the PROM revision 0 space, and store any custom-developed FPGA code for ADC LVDS operation in the PROM revision 1 space.
4.2 Expansion Slot
For those users who make use of a custom FPGA program on the EVM, J5 and J6 provide an expansion-slot capability. Users can design daughtercards or breakout boards to make use of the unused FPGA I/O pins which are brought out to the headers.
Note: The EVM provides 5 V from J14 to pin 1 of both J5 and J6. This can be used to provide
4.3 Optional USB SPI Interface
In most cases, users can use the ADC parallel interface mode to change the operational modes of the ADC. For users requiring SPI control of the ADC, TI has developed an optional USB daughter card that plugs into the expansion slot. With the USB daughter card, users can use a PC interface to communicate to the ADC three-wire SPI interface, which allows for complete control of the ADC register map. Contact the factory for this optional accessory.
power to any designed daughtercards.
SLWU028B – January 2006 – Revised November 2006 13
Submit Documentation Feedback
www.ti.com
K001
Physical Description
5 Physical Description
5.1 PCB Layout
This chapter describes the physical characteristics and PCB layout of the EVM.
The EVM is constructed on a 6-layer, 0.062-inch thick PCB using FR-4 material. The individual layers are shown in Figure 4 through Figure 9 . The layout features split analog and digital ground planes; however, similar performance can be had with careful layout using a single ground plane. Users can connect the analog and digital ground planes underneath the EVM by soldering the two exposed tinned strips together.
14 SLWU028B – January 2006 – Revised November 2006
Figure 4. Top Layer
Submit Documentation Feedback
www.ti.com
K002
Physical Description
SLWU028B – January 2006 – Revised November 2006 15
Submit Documentation Feedback
Figure 5. Layer 2, Ground Plane
www.ti.com
K003
Physical Description
16 SLWU028B – January 2006 – Revised November 2006
Figure 6. Layer 3, Power Plane #1
Submit Documentation Feedback
www.ti.com
K004
Physical Description
SLWU028B – January 2006 – Revised November 2006 17
Submit Documentation Feedback
Figure 7. Layer 4, Power Plane #2
www.ti.com
K005
Physical Description
18 SLWU028B – January 2006 – Revised November 2006
Figure 8. Layer 5, Ground Plane
Submit Documentation Feedback
www.ti.com
K006
Physical Description
SLWU028B – January 2006 – Revised November 2006 19
Submit Documentation Feedback
Figure 9. Layer 6, Bottom Layer
www.ti.com
Physical Description
5.2 Bill of Materials
20 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
Physical Description
Table 5. Bill of Materials
NOT
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
INSTALLED
CAPACITORS
47- µ F, tantalum, 20%, 10-V 7343 4 ECS-T1AD476R Panasonic PCS2476CT-ND C65, C66, C68, C69 10- µ F, 10-V, 20% 3528 5 ECS-T1AX106R Panasonic PCS2106CT-ND C70, C71, C72, C73,
C74 10- µ F, 10-V, 20% 3216 2 ECS-T1AY106R Panasonic P11309CT-ND C8, C9 100- µ F, 6.3-V, 10% 6032 2 TPSC107K006R0150 AVX 478-1764-2-ND C35, C60
0.1- µ F, 16-V, 10% 805 2 ECJ-2VB1C104K Panasonic PCC1812CT-ND C115, C116
2.2- µ F, 6.3-V, 10% 805 1 ECJ-GVB0J225K Panasonic PCC2310CT-ND C117 10- µ F, 6.3-V, 10% 805 4 GRM21BR60J106KE19L Murata 490-1717-1-ND C13, C30, C40, C41
0.01- µ F, 16-V, 10% 603 1 ECJ-1VB1C103K Panasonic PCC1750CT-ND C57
0.1- µ F, 16-V, 10% 603 18 ECJ-1VB1C104K Panasonic PCC1762CT-ND C14, C15, C18, C25, C52
C26, C27, C28, C32,
C33, C34, C36, C37,
C38, C39, C51, C55,
C62, C113
1.5-nF, 50-V, 10% 603 3 C1608X7R1H152K TDX C31, C58, C59 10-pF, 50-V, ± 0.5-pF 603 1 ECJ-1VC1H100D Panasonic PCC100CVCT-ND C53 1- µ F, 6.3-V, 10% 603 1 ECJ-1VB0J105K Panasonic PCC1915CT-ND C64 10- µ F, 6.3-V, 20% 603 1 ECJ-1VB0J106M Panasonic PCC2395CT-ND C63 100- µ F, 4-V, 20% 603 1 NOJC107M004RWJ AVX 478-1824-1-ND C61
2.2- µ F, 6.3-V, 10% 603 13 ECJ-1VB0J225K Panasonic PCC2273CT-ND C85–C96, C114 18-pF, 50-V, 5% 603 1 GRM1885C1H180JA01D Murata 490-1409-1-ND C119 C2, C118 2-pF, 100-V, ± 0.25-pF 603 0 GQM1885C2A2R0CB01D Murata 490-3555-1-ND C20
0.1- µ F, 16-V, +80/–20% 402 14 ECJ-0EF1C104Z Panasonic PCC1731CT-ND C1, C3, C4, C5, C6,
C7, C10, C11, C12,
C16, C17, C19, C29,
C44, C49
0.22- µ F, 6.3-V , ± 10% 402 17 ECJ-0EB0J224K Panasonic PCC2269CT-ND C42, C43, C46, C48,
C50, C54, C67, C75,
C76, C77, C78, C79,
C80, C81, C82, C83,
C84
0.022- µ F, 6.3-V, +80/–20% 201 16 02016G223ZAT2A AVX 478-1054-1-ND C97, C98, C99, C100,
C101, C102, C103,
C104, C105, C106,
C107, C108, C109,
C110, C111, C112
SLWU028B – January 2006 – Revised November 2006 21
Submit Documentation Feedback
www.ti.com
Physical Description
Table 5. Bill of Materials (continued)
NOT
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
INSTALLED
RESISTORS
0- , 1/10-W, 5% 603 7 ERJ-3GEY0R00V Panasonic P0.0GCT-ND R5, R6, R10, R18, R54, R56
R48, R58, R82 0- , 1/10-W, 5% 402 3 ERJ-GE0R00X Panasonic P0.0JCT-ND R11, C45, C47
4.02- , 1/10-W 1% 603 2 9C06031A4R02FGHFT Yageo 311-4.02HCT-ND R37, R38 20- , 1/16-W, 1% 603 1 ERJ-3EKF20R0V Panasonic P20.0HCT-ND R79
24.9- , 1/16-W, 1% 603 1 ERJ-3EKF24R9V Panasonic P24.9HCT-ND R17
4.7- , 1/2-W, 5% 603 2 ERD-S1TJ4R7V Panasonic P4.7BBCT-ND R44, R47 36- , 1/10-W, 1% 603 0 RC0603FR-0736RL Yaego 311-36.0HRCT-ND R12, R13
49.9- , 1/16-W, 1% 603 2 ERJ-3EKF49R9V Panasonic P49.9HCT-ND R35, R36 R34, R59 100- , 1/16-W, 0.1% 603 3 ERA-3YEB100V Panasonic P100YCT-ND R31, R41, R60 200- , 1/16-W, 1% 603 2 ERJ-3EKF2000V Panasonic P200HCT-ND R15, R16 R85, R86 330- , 1/16-W, 5% 603 3 ERA-V33J331V Panasonic P330CHCT-ND R45, R87, R88 499- , 1/16-W, 1% 603 2 ERJ-3EKF4990V Panasonic P499HCT-ND R83, R84 10-k , 1/16-W, 1% 603 11 ERJ-3EKF1002V Panasonic P10.0KHCT-ND R2, R3, R4, R7, R8,
R9, R26, R32, R33,
R39, R40
4.75-k , 1/16-W, 1% 603 2 ERJ-3EKF4751V Panasonic P4.75KHCT-ND R46, R49
15.4-k , 1/16-W, 1% 603 1 ERJ-3EKF1542V Panasonic P15.4KHCT-ND R65 20-k , 1/16-W, 1% 603 3 ERJ-3EKF2002V Panasonic P20.0KHCT-ND R30, R80, R81
36.5-k , 1/16-W, 1% 603 1 ERJ-3EKF3652V Panasonic P36.5KHCT-ND R66
56.2-k , 1/16-W, 1% 603 1 ERJ-3EKF5622V Panasonic P56.2KHCT-ND R1
4.99-k , 1/16-W, 1% 603 3 ERJ-3EKF4991V Panasonic P4.99KHCT-ND R27, R28, R29
61.9-k , 1/16-W, 1% 603 2 ERJ-3EKF6192V Panasonic P61.9KHCT-ND R63, R64
0.033- , 1/4-W, 5% 805 2 RL1220T-R033-J Susumu Co,. Ltd. RL12T.033JCT-ND R61, R62 348- , 1/16-W, 1% 402 2 ERJ-2RKF3480X Panasonic P348LCT-ND R24, R25
49.9- , 1/16-W, 1% 402 3 ERJ-2RKF49R9X Panasonic P49.9LCT-ND R19, R42, R43
78.7- , 1/16-W, 1% 402 2 ERJ-2RKF78R7X Panasonic P78.7LCT-ND R20, R21 100- , 1/16-W, 1% 402 2 ERJ-2RKF1000X Panasonic P100LCT-ND R22, R23 20- R-pack, 5%, 0.063-W CTS-742_8RES 2 742C163220JTR CTS 742C163220JCT-ND RP1, RP2 10-k resistor pack CTS_742_8RES 1 742C163103JTR CTS 742C163103JCT-ND RP3
22 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
Physical Description
Table 5. Bill of Materials (continued)
NOT
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
INSTALLED
FERRITE BEADS, CONNECTORS, JUMPERS, JACKS, ICs, ETC.
Ferrite bead 1206 5 EXC-ML32A680U Panasonic P10437CT-ND FB2, FB3, FB4, FB6, FB8, FB9,
FB7 FB10 Inductor, SMT, 15- µ H, 2.6-A COIL-CDRH8D43 1 CDRH8D43-150 Sumida L1 Inductor, SMT, 5- µ H, 2.9-A COIL-CDRH6D38 1 CDRH6D38-5R0 Sumida CDRH6D38-5R0NC-ND L2
0.0- , 1/8-W, 5% resistor 805 2 ERJ-6GEY0R00V Panasonic P0.0ACT-ND L3, L4 Red test point Test_point2 8 5000k Keystone 5000K-ND TP1, TP4, TP9, TP10 TP3 TP11
TP12 TP13 Black test point Test_point2 4 5001k Keystone 5000K-ND TP5 TP6 TP7 TP8 40-pin header 20 × 2 × .1 1 HTSW-120-07-L-D Samtec J4 40-pin header smt 20X2_SMT_MMS_ 2 MMS-120-02-T-DV Samtec J5, J6
SAMTEC
Red banana jacks BANANA_JACK 5 ST-351A Allied N/A J11, J12, J13, J14,
J15 Black banana jacks BANANA_JACK 4 ST-351B Allied N/A J9, J10, J16, J17 SMA connectors SMA_Jack 3 901-144-8RFX AMP ARFX1231-ND J1, J3, J7 J8 3POS_header 3pos_jumper 1 HTSW-150-07-L-S Samtec JP2
(1)
6-pin header 6 × 1 × .1 1 HTSW-120-07-L-D Samtec JP1 3-pin power connector 3term_screw_con 0 93F7124 Newark J20 Transformer TC4-1W_ 3 TC4-1W Mini-Circuits T1, T2, T3
TRANSFORMER Diode, Schottky, 1-A, 20-V DIODE-MBRM120 1 MBRM120E ON Semiconductor D2 Diode, Schottky, 3-A, 20-V DO-214AB(SMC) 1 SS32 Vishay D1 Green SM_LED_1206 LED-1206 2 CMD15-21VGC/TR8 Panasonic L62205CT-ND D3, D4 MOSFET, P-CH, 20-V, 4.7-A, 3-SOT-23 2 SI2323DS Vishay Q1, Q2
39-M TRANS BIAS NPN, 50-V SOT416 1 DTC114EET1 ON Semiconductor DTC114EET1OS-ND Q3 Switch EVQ-PJ 1 EVQ-PJX04M Panasonic P8050SCT-ND S1 Switch, 8-Pos, half-pitch SMT SWITCH_8POS_ 1 TDA08H0SK1 ITT CKN1365-ND SW1
SMT
3-circuit jumpers SJP3_RESISTOR 2 ERJ-3GEY0R00V Panasonic P0.0GCT-ND SJP4
(2)
, SJP5
(3)
3-circuit jumpers SJP3_402 2 ERJ-2GE0R00X Panasonic P0.0JCT-ND SJP1
(4)
, SJP2
(5)
(1)
Add jumper for JP2 between pins 1 to 2.
(2)
Add jumper for SJP4 between pins 2 and 3 (use a 0- resistor to short pins).
(3)
Add jumper for SJP5 between pins 2 and 3 (use a 0- resistor to short pins).
(4)
Add jumper for SJP1 between pins 1 and 2 (use a 0- resistor to short pins).
(5)
Add jumper for SJP2 between pins 1 and 2 (use a 0- resistor to short pins).
SLWU028B – January 2006 – Revised November 2006 23
Submit Documentation Feedback
www.ti.com
Physical Description
Table 5. Bill of Materials (continued)
NOT
VALUE FOOTPRINT QTY PART NUMBER VENDOR DIGI-KEY NUMBER REF DESIGNATOR
INSTALLED
ADS5525/27, ADS5545/46/47 48-QFN_MOD 1 ADS5525/27, TI U1
ADS5545/46/47
Spartan-3E XC3S250E 256-BGA- XC3S250E-4FT256CES Xilinx U2
1mm_XILINX IC amp, fully-diff, wideband 16-QFN(RGT) 1 THS4509RGTT TI 296-17730-1-ND U3 XCF16PFSG48 48PIN_BGA_XILINX 1 XCF16PFSG48 Xilinx U4 IC, pwr-mgmt, triple-supply 20-pin-QFN 1 TPS75003RHLR TI 296-17835-2-ND U6 IC, LDO reg, hi-PSRR, 1.8-V 5-SOT(DBV) 1 TPS73018DBVT TI 296-17577-1-ND U7 IC, comparator, R-R, hi-spd 8-TSSOP(DCN) 1 TLV3502AIDCNT TI 296-18147-2-ND U9 IC, EX-OR gate, 2-in 5-SOT(DBV) 1 SN74LVC1G86DBVR TI 296-9853-1-ND U10 2-pos shunt Shorting jumper 1 N/A 3M 929955-06-ND Screw 4-40 × 3/8" 4 N/A Building Fasteners H781-ND Standoff, hex (1/4 x .5") 4-40 screw 4 N/A Keystone 1902CK-ND
24 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
www.ti.com
Physical Description
5.3 PCB Schematics
The schematics for the EVM are on the following pages.
SLWU028B – January 2006 – Revised November 2006 25
Submit Documentation Feedback
A
B
C
D
D
C
B
A
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
FILE:
SIZE:
DATE: REV:
11-Jul-2006
Drawn By:
Engineer:
C4
.1uFC5.1uF
CLKM
CLKP
CLKP CLKM
ADS5545
B
17
J. VENABLE Y. DEWONCK
C10
.1uF
+
C9
10uF
+
C8
10uF
AVDD
DRVDD
C6
.1uFC7.1uF
INP INM
INP INM
IREF
CM
CM
S1
SW-PB
C1
.1uF
R1
56.2K
DRVDD
C3
.1uF
Note 1. Part not installed
R2
10K
(Sh 4) (Sh 4)
(Sh 2)
(Sh 2) (Sh 2)
CLKOUTM CLKOUTP
CLKOUTP
CLKOUTM
2.5V
D2_D3M
D2_D3P
D4_D5M
D4_D5P
D6_D7M
D6_D7P
D8_D9M
D8_D9P
D10_D11M
D10_D11P
2.5V
D0_D1P D0_D1M
DRGND
1
DRVDD
2
OVR
3
CLKOUTM
4
CLKOUTP
5
DFS
6
OE
7
AVDD
8
AGND
9
CLKP
10
CLKPM
11
AGND
12
CM13AGND14INP15INM16AGND17AVDD18AGND19AVDD20IREF21AVDD22MODE23AVDD
24
AGND
25
AVDD
26
SEN
27
SDATA
28
SCLK
29
RESET
30
N/C
31
N/C
32
D0_D1M
33
D0_D1P
34
DRVDD
35
DRGND
36
D2_D3M
37
D2_D3P
38
D4_D5M
39
D4_D5P
40
D6_D7M
41
D6_D7P
42
D8_D9M
43
D8_D9P
44
D10_D11M
45
D10_D11P
46
D12_D13M
47
D12_D13P
48
U1
ADS5545_48PIN-QFN
OE
DFS
RESET
SEN
SDATA
OVR
SCLK
U1-H4
RESET
SCLK
SDATA
SEN
OVR
OE
(Sh 4)
(Sh 4) (Sh 4)
(Sh 4) (Sh 4)
(Sh 4)
C14
.1uF
R5
0
TP1
VCM
VCM
(Sh 2)
1
3
2
JP2
3.3V
VCCO_0
R10
0
+IN A
1
-IN A
2
+IN B
3
-IN B4V-
5
OUT B
6
OUT A
7
V+
8
U9
TLV3502
1 2
4
5
3
U10
SN74LVC1G86
R33
10K
R40
10K
R39
10K
DRVDD
R32
10K
M0
M0
(Sh 4)
DFS
3.3V
C116
.1uF
C115
.1uF
3.3V
C117
2.2uF
R41 100
TP4
TP9
D12_D13M
D12_D13P
TP10
R48 0
R18 0
R6 0
R30
20K
R27
4.99K
R3
10K
3.3V
R80
20K
R28
4.99KR410K
3.3V
R81
20K
R29
4.99KR710K
3.3V
U1-G2
U1-G3
U1-H3
MODE
U1-H6 U1-H5
U1-H3
U1-H5
U1-G3
U1-G2
U1-H4
U1-H6
MODE
(Sh 4) (Sh 4)
(Sh 4)
(Sh 4)
(Sh 4) (Sh 4)
(Sh 4)
(1-2)
IO
A7
IO
A12
IO
B4
IP
B6
IP
B10
IO_VREF_0
D9
IO_L01N_0
A14
IO_L01P_0
B14
IO_L03N_0/VREF_0
A13
IO_L03P_0
B13
IO_L04N_0
E11
IO_L04P_0
D11
IO_L05N_0/VREF_0
B11
IO_L05P_0
C11
IO_L06N_0
E10
IO_L06P_0
D10
IO_L08N_0/GCLK5
F9
IO_L08P_0/GCLK4
E9
IO_L09N_0/GCLK7
A9
IO_L09P_0/GCLK6
A10
IO_L11N_0/GCLK11
D8
IO_L11P_0/GCLK10
C8
IO_L12N_0
F8
IO_L12P_0
E8
NC
C7
NC
B7
IO_L14N_0/VREF_0
D7
IO_L14P_0
E7
IO_L15N_0
D6
IO_L15P_0
C6
IO_L17N_0/VREF_0
A4
IO_L17P_0
A5
IO_L18N_0
C4
IO_L18P_0
C5
IO_L19N_0/HSWAP
B3
IO_L19P_0
C3
IP
A3
IP
C13
IP_L02N_0
C12
IP_L02P_0
D12
IP_L07N_0
C9
IP_L07P_0
C10
IP_L10N_0/GCLK9
B8
IP_L10P_0/GCLK8
A8
IP_L16N_0
E6
IP_L16P_0
D5
VCCO_0
B5
VCCO_0
B12
VCCO_0
F7
VCCO_0
F10
GND
A1
GND
B9
GND
F6
GND
G7
GND
G8
GND
G9
GND
H8
U2A
XILINX XC3S500E_FT256
DFS
(Sh 4)
C19
.1uF
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
FILE:
Drawn By:
Engineer:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
SIZE:
DATE:
REV:
17-Jul-2006
DOCUMENTCONTROL #
1
2
3 4
5
J3
AIN
R34
49.9
R38
4.02
R37
4.02
INP
INM
INP
INM
ADS5545
B
27
J. VENABLE Y. DEWONCK
(Sh 1)
(Sh 1)
R35
49.9
R36
49.9
C55 .1uF
3
1
4
6
2
T2
TC4-1W
Note 1. Part not installed
C52
.1uF
(Note 1)
3
1
4
6
2
T1
TC4-1W
1
2
3 4
5
J1
+VCC
-VCC
SMA_END
C44 .1uF
R21
69.8
N/C
1
Vin-
2
Vout+
3
CM
4
Vs+5Vs+6Vs+7Vs+
8
CM
9
Vout-
10
Vin+
11
PD
12
Vs-13Vs-14Vs-15Vs-
16
U3
THS4509
TP3
C46
.22uF
R19
49.9
C49
.1uF
VCM
C45
0 ohm
C47
0 ohm
R20
69.8
R22 100
R24
348
R23 100
R25 348
C16
.1uF
3 1
2
SJP4
3 1
2
SJP5
C17
.1uF
C29
.1uF
C30
10uF
C11
.1uF
C12
.1uF
C13
10uF
AMPLIFIER PATH: AC Couple (default)
C45 C47 = 0.1uF R26 R27 = 200 Ohms R5 = 0 Ohms
DC Couple
C45 C47 = 0 Ohms R26 R27 = Unpopulated R5 = Unpopulated VCC= 4 V, VEE = -1V
VCC= 5 V, VEE = GND
VCM
(Sh 1)
C40
10uF
C41
10uF
C62
.1uF
C51 .1uF
R15 200
R16 200
CM
CM
C15
.1uF
C113
.1uF
R17
24.9
(Note 1)
R42
49.9
R43
49.9
L3 0 ohm
L4 0 ohm
R44
4.7
R47
4.7
C2
20pF
C118
20pF
C119
20pF
AMP_P
AMP_M
AMP_M
AMP_P
R83 499
R84
499
R85 200
R86 200
CM
(2-3)
(2-3)
R12 36
R13 36
C20 2pF
N
ote : R12, C20, and R13 are to be un-populated
on ADS5525/45/46 EVMs. R12, C20, and R13 may be populated for
future ADC boards; contact factory for details.
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
FILE:
Drawn By:
Engineer:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
SIZE:
DATE:
REV:
11-Jul-2006
DOCUMENTCONTROL #
ADS5545
B
37
J. VENABLE
Y. DEWONCK
Note 1. Part not installed
1
2
3 4
5
J7
CLK_INP
1
2
3 4
5
J8
CLK_INM
R59
49.9
R58 0
R31 100
C25
.1uF
C26 .1uF
CLKP
CLKM
CLKP
CLKM
(Sh 1)
(Sh 1)
1 2
R54 0
R56
0
(Note 1)
(Note 1)
(Note 1)
R60 100
(Note 1)
3 1
2
SJP2
3 1
2
SJP1
3
1
4
6
2
T3
TC4-1W
(1-2)
(1-2)
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
FILE:
Drawn By:
Engineer:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
SIZE:
DATE:
REV:
11-Jul-2006
DOCUMENTCONTROL #
ADS5545
B
47
J. VENABLE Y. DEWONCK
Note 1. Part not installed
3.3V
12 34 56 78
910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940
J4
40PIN_IDC
IO_L01N_1/A15
R15
IO_L01P_1/A16
R16
IO_L02N_1/A13
P15
IO_L02P_1/A14
P16
IO_L04N_1/VREF_1
M16
IO_L04P_1
N16
IO_L06N_1
L15
NC
N15
NC
N14
VCCO_1
E15
VCCO_1
G11
VCCO_1
K11
VCCO_1
M15
NC
L13
NC
L12
NC
E16
NC
E13
IO_L06P_1
L14
IO_L07N_1/A11
K12
IO_L07P_1/A12
K13
IO_L08N_1/VREF_1
K14
IO_L08P_1
K15
IO_L09N_1/A9/RHCLK1
J16
IO_L09P_1/A10/RHCLK0
K16
IO_L10N_1/A7/RHCLK3/TRDY1
J13
IO_L10P_1/A8/RHCLK2
J14
IO_L11N_1/A5/RHCLK5
H14
IO_L11P_1/A6/RHCLK4/IRDY1
H15
IO_L12N_1/A3/RHCLK7
H11
IO_L12P_1/A4/RHCLK6
H12
IO_L13N_1/A1
G16
IO_L13P_1/A2
G15
IO_L14N_1/A0
G14
IO_L14P_1
G13
IO_L15N_1
F15
IO_L15P_1
F14
IO_L16N_1
F12
IO_L16P_1
F13
IO_L18N_1/LDC0
D14
IO_L18P_1/HDC
D15
IO_L19N_1/LDC2
C15
IO_L19P_1/LDC1
C16
IP
B16
IP
E14
IP
G12
IP
H16
IP
J11
IP
J12
IP
M13
IO
M14
IO/VREF_1
D16
IP/VREF_1
H13
GND
A16
GND
F11
GND
G10
GND
H9
GND
H10
GND
J9
GND
J10
GND
J15
U2B
XILINX XC3S500E_FT256
IP
M7
IP
T12
NC
P7
NC
N7
VCCO_2
L7
VCCO_2
L10
VCCO_2
R5
VCCO_2
R12
NC
P10
NC
R10
IO/D5
T8
IO/M1
T10
IO/VREF_2
P13
IO/VREF_2
R4
IO/L01N_2/INIT_B
P4
IO/L01P_2/CSO_B
P3
IO/L03N_2/MOSI/CSI_B
N5
IO/L03P_2/DOUT/BUSY
P5
IO/L04N_2
T5
IO/L04P_2
T4
IO/L05N_2
N6
IO/L05P_2
M6
IO/L06N_2
P6
IO/L06P_2
R6
IO/L09N_2/D6/GCLK13
L8
IO/L09P_2/D7/GCLK12
M8
IO/L10N_2/D3/GCLK15
P8
IO/L10P_2/D4/GCLK14
N8
IO/L12N_2/D1/GCLK3
N9
IO/L12P_2/D2/GCLK2
P9
IO/L13N_2/DIN/D0
M9
IO/L13P_2/M0
L9
IO/L15N_2
M10
IO/L15P_2
N10
IO/L16N_2/A22
P11
IO/L16P_2/A23
R11
IO/L18N_2/A20
N12
IO/L18P_2/A21
P12
IO/L19N_2/VS1/A18
R13
IO/L19P_2/VS2/A19
T13
IO/L20N_2/CCLK
R14
IO/L20P_2/VS0/A17
P14
IP
T2
IP
T14
IP_L02N_2
R3
IP_L02P_2
T3
IP_L08N_2/VREF_2
T7
IP_L08P_2
R7
IP_L11N_2/M2/GCLK1
R9
IP_L11P_2/RDWR_B/GCLK0
T9
IP_L17N_2
M11
IP_L17P_2
N11
GND
K8
GND
K9
GND
K10
GND
L11
GND
R8
GND
T16
U2C
XILINX XC3S500E_FT256
NC
F4
NC
F3
VCCO_3
E2
VCCO_3
G6
VCCO_3
K6
VCCO_3
M2
NC
L2
NC
L3
NC
L4
NC
M4
IO_L01N_3
B2
IO_L01P_3
B1
IO_L02N_3/VREF_3
C2
IO_L02P_3
C1
IO_L03N_3
E4
IO_L03P_3
E3
IO_L05N_3
E1
IO_L05P_3
D1
IO_L06N_3
G4
IO_L06P_3
G5
IO_L07N_3
G2
IO_L07P_3
G3
IO_L08N_3/LHCLK1
H6
IO_L08P_3/LHCLK0
H5
IO_L09N_3/LHCLK3/IRDY2
H4
IO_L09P_3/LHCLK2
H3
IO_L10N_3/LHCLK5
J3
IO_L10P_3/LHCLK4/TRDY2
J2
IO_L11N_3/LHCLK7
J4
IO_L11P_3/LHCLK6
J5
IO_L12N_3
K1
IO_L12P_3
J1
IO_L13N_3
K3
IO_L13P_3
K2
IO_L15N_3
L5
IO_L15P_3
K5
IO_L16N_3
N1
IO_L16P_3
M1
IO_L18N_3
P1
IO_L18P_3
P2
IO_L19N_3
R1
IO_L19P_3
R2
IP
D2
IP
F2
IO
F5
IP
H1
IP
J6
IP
K4
IP
M3
IP
N3
IP/VREF_3
G1
IO/VREF_3
N2
GND
H2
GND
H7
GND
J7
GND
J8
GND
K7
GND
L6
GND
T1
U2D
XILINX XC3S500E_FT256
3.3V
3.3V
12 34 56 78
910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940
J5
40PIN SMT MMS
12 34 56 78
910 1112 1314 1516 1718 1920 2122 2324 2526 2728 2930 3132 3334 3536 3738 3940
J6
40PIN_IDC
RESET
SCLK
SDATA
SEN
OVR
OE
RESET
SCLK SDATA
SEN
OVR
OE
(Sh 1)
(Sh 1) (Sh 1)
(Sh 1)
(Sh 1)
(Sh 1)
CCLK
CCLK
(Sh 5)
(Sh 1)
5V5V
1 16 2 15 3 14 4 13 5
9
12
6 8
10
11
7
RP1
20 Ohm
1 16 2 15 3 14 4 13 5
9
12
6 8
10
11
7
RP2
20 Ohm
M0
INIT_B
INIT_B
(Sh 5)
IO/HDC
IO/HDC
(Sh 5)
BUSY
BUSY
(Sh 5)
A23
A23
(Sh 5)
3.3V
M0
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1 D2 D3 D4 D5 D6 D7
(Sh 5)
CLKOUT
CLKOUT
ADC_D0 ADC_D1 ADC_D2 ADC_D3 ADC_D4 ADC_D5 ADC_D6 ADC_D7 ADC_D8 ADC_D9 ADC_D10 ADC_D11 ADC_D12 ADC_D13 ADC_D0
ADC_D1
ADC_D2
ADC_D3
ADC_D4
ADC_D5
ADC_D6
ADC_D7
ADC_D8 ADC_D9 ADC_D10
ADC_D11
ADC_D12
ADC_D13
CTRL_LE
CTRL_DATA
CTRL_CLK
CTRL_LE CTRL_DATA CTRL_CLK
ADC_D14 ADC_D15
R79
20
ADC_D14 ADC_D15
D3 LED_1206
R87
330
U1-H5
U1-G2 U1-G3
U1-H3
U1-H4
MODE
U1-H5
U1-G3
U1-G2
U1-H4 U1-H3
MODE
(Sh 1) (Sh 1) (Sh 1)
(Sh 1)
(Sh 1) (Sh 1)
1 2 3
16
4
15 14 13
5 6 7
12
8
11 10
9
SW1
SWITCH_8POS_SMT
3.3V
U1-H6
U1-H6
(Sh 1)
SW9
SW10
SW11
SW12
SW13
SW14
SW15
SW16
SW9 SW10
SW11
SW12
SW13
SW14
SW15
SW16
1 16 2 15 3 14 4 13 5
9
12
6 8
10
11
7
RP3
10K Ohm
DFS
(Sh 1)
DFS
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
FILE:
Drawn By:
Engineer:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
SIZE:
DATE:
REV:
11-Jul-2006
DOCUMENTCONTROL #
ADS5545
B
57
J. VENABLE Y. DEWONCK
Note 1. Part not installed
2.5V
1.2V
12345
6
JP1
6X1X.1
R45 330
R46
4.75K
3.3V
DONE
DONE
T15
PROG_B
D3
TCK
A15
TDI
A2
TDO
C14
TMS
B15
VCCAUX
A6
VCCAUX
A11
VCCAUX
F1
VCCAUX
F16
VCCAUX
L1
VCCAUX
L16
VCCAUX
T6
VCCAUX
T11
VCCINT
D4
VCCINT
D13
VCCINT
E5
VCCINT
E12
VCCINT
M5
VCCINT
M12
VCCINT
N4
VCCINT
N13
U2E
XILINX XC3S500E_FT256
2.5V
PROG_B
CCLK
CCLK
(Sh 4)
TMS
TDI
TDO
TCLK
GND
3.3V
(Sh 3)
GND
A1
GND
A2
OE/RESET__
A3
DNC
A4
D6
A5
D7
A6
VCCINT
B1
VCCO
B2
CLK
B3
CE__
B4
D5
B5
GND
B6
BUSY
C1
CLKOUT
C2
DNC
C3
DNC
C4
D4
C5
VCCO
C6
CF__
D1
CEO__
D2
DNC
D3
DNC
D4
D3
D5
VCCO
D6
VCCINT
E1
TMS
E2
DNC
E3
DNC
E4
D2
E5
TDO
E6
GND
F1
DNC
F2
DNC
F3
DNC
F4
GND
F5
GND
F6
TDI
G1
DNCG2REV_SEL0
G3
REV_SEL1
G4
VCCO
G5
VCCINT
G6
GND
H1
VCCJ
H2
TCK
H3
EN_EXT_SEL__
H4
D1
H5
D0
H6
U4
XCF16PFSG48
INIT_B
INIT_B
(Sh 4)
IO/HDC
IO/HDC
(Sh 4)
(Sh 4)
BUSY
BUSY
A23
A23
(Sh 4)
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1 D2 D3 D4 D5 D6 D7
(Sh 4)
1.8V
3.3V
R49
4.75K
2.5V
D4 LED_1206
R88 330
Q3
DTC114EET1
3.3V
R11
0
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
FILE:
SIZE:
DATE: REV:
11-Jul-2006
Drawn By:
Engineer:
ADS5545
B
67
J. VENABLE
Y. DEWONCK
Note 1. Part not installed
OUT3
1
FB32EN33EN24SS25DGND6SW27IN28IS2
9
FB2
10
FB1
11
IS1
12
IN1
13
SW1
14
DGND
15
SS116EN1
17
AGND
18
SS3
19
IN3
20
U6
TPS75003
5V
C64
1uF
C61
100uF
C63
10uF
C59
1.5nF
C28
.1uF
C53
10pF
C27
.1uF
C57
.01uF
C58
1.5nF
R63
61.9K
R65
15.4K R62
.033
R64
61.9K
R66
36.5K
R61 .033
5V
G
1
S
2
D
3
Q2
FET-SI2323DS
2 1
D1
SS32
G
1
S
2
D
3
Q1
FET-SI2323DS
5V
2.5V
FB3
FB2
SW2
IS2
D2
MBRM120
1
2
L2
CDRH6D38-5R0
3.3V
SS3
SS1
SW1
IS1
1.2V
1
2
L1
CDRH8D43-150
+
C60
100uF
C31
1.5nF
+
C35
100uF
C85
2.2uF
BANK 0 DECOUPLING
VCCO_0
C42
.22uF
C48
.22uF
C97
.022uF
C99
.022uF
C86
2.2uF
BANK 1 DECOUPLING
3.3V
C43
.22uF
C50
.22uF
C98
.022uF
C100
.022uF
C87
2.2uF
BANK 2 DECOUPLING
3.3V
C54
.22uF
C75
.22uF
C101
.022uF
C103
.022uF
C88
2.2uF
BANK 3 DECOUPLING
3.3V
C67
.22uF
C76
.22uF
C102
.022uF
C104
.022uF
C89
2.2uF
VCCINT DECOUPLING
2.5V
C77
.22uF
C106
.022uF
C107
.022uF
VCCAUX CORE DECOUPLING
C90
2.2uF
C91
2.2uF
C92
2.2uF
C78
.22uF
C79
.22uF
C80
.22uF
C105
.022uF
C108
.022uF
C93
2.2uF
1.2V
C81
.22uF
C110
.022uF
C111
.022uF
C94
2.2uF
C95
2.2uF
C96
2.2uF
C82
.22uF
C83
.22uF
C84
.22uF
C109
.022uF
C112
.022uF
IN
1
GND
2
EN
3
NR
4
OUT
5
U7
TPS73018DBV
C18
.1uF
C114
2.2uF
5V 1.8V
5V
5V
TP11
TP12
TP13
R8
10K
R9
10K R26
10K
1
2
3
J20
CON_3TERM_SCREW
R82
0
1.2V
3.3V
5uH
15uH
1 2 3 4 56
A
B
C
D
6
54321
D
C
B
A
FILE:
Drawn By:
Engineer:
ti
12500 TI Boulevard. Dallas, Texas 75243
Title:
SHEET: OF:
SIZE:
DATE:
REV:
11-Jul-2006
DOCUMENTCONTROL #
C33
.1uF
AVDD
ADC Analog Supply (+3.3V)
C36
.1uF
+3.3VA-PS
ADS5545
B
5V
77
J11
RED
J9
BLACK
FB2
J14
RED
J17
BLACK
+
C70
10uF
+
C65
47uF
C32
.1uF
FB6
TP5 TP6
TP8
+
C72
10uF
J. VENABLE
Y. DEWONCK
TP7
Note 1. Part not installed
+VCC
J13
RED
J10
BLACK
FB3
+
C71
10uF
+
C66
47uF
C34 .1uF
FB4
+
C73
10uF
+
C68
47uF
C37
.1uF
J12
RED
-VCC
C39
.1uF
DRVDD
ADC DIGITAL SUPPLY(3.3V)
OUTPUT_BUFFER
FB7
J15
RED
+
C74
10uF
+
C69
47uF
C38
.1uF
J16
BLACK
FB8 FB9 FB10
(Note 1) (Note 1)
Diff Amp Positive Supply (+5.0V)
Diff Amp Negative Supply (-5.0V)
FPGA POWER SUPPLY(5V)
(Note 1)
www.ti.com
Physical Description
EVALUATION BOARD/KIT IMPORTANT NOTICE
Texas Instruments (TI) provides the enclosed product(s) under the following conditions: This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein.
Please read the User’s Guide and, specifically, the Warnings and Restrictions notice in the User’s Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI’s environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh .
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.
SLWU028B – January 2006 – Revised November 2006 33
Submit Documentation Feedback
www.ti.com
Physical Description
FCC Warning
This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY and is not considered by TI to be a
finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the AVDD voltage range of –0.3 V to 3.8 V and the DVDD voltage range of –0.3 V to 3.8 V.
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than 25 ° C. The EVM is designed to operate properly with certain components above 50 ° C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2006, Texas Instruments Incorporated
34 SLWU028B – January 2006 – Revised November 2006
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated
Loading...