TERSUS GNSS RTK Board Series, Precis-BX316, Precis-BX306, Precis-BX306Z User Manual

User Manual
Log & Command Reference
For Precis-BX306 & BX306Z & BX316 GNSS RTK Board
©2017 Tersus GNSS Inc. All rights reserved.
Sales & Technical Support:
More details, please visit www.tersus-gnss.com
Version V1.0-20170906
sales@tersus-gnss.com & support@tersus-gnss.com
Table of Content
1 General Description ....................................................................................................6
1.1 Output Format ............................................................................................................ 6
1.2 NMEA Sentence ......................................................................................................... 6
1.2.1 General Sentence Format .................................................................................... 6
1.2.2 Talker Sentences ................................................................................................. 6
1.2.3 GGA Sentence Format ........................................................................................ 7
1.2.4 RMC Sentence .................................................................................................... 8
1.2.5 VTG Sentence..................................................................................................... 9
1.2.6 GSA Sentence ..................................................................................................... 9
1.2.7 GSV Sentence ................................................................................................... 10
2 Commands ................................................................................................................10
2.1 Overview of Command System ............................................................................... 10
2.2 Command Reference ................................................................................................ 11
2.2.1 ANTENNAMODE ........................................................................................... 11
2.2.2 COM ................................................................................................................. 12
2.2.3 DGPSTXID ...................................................................................................... 12
2.2.4 ECUTOFF ........................................................................................................ 13
2.2.5 FIX .................................................................................................................... 13
2.2.6 FRESET ............................................................................................................ 14
2.2.7 INTERFACEMODE ........................................................................................ 14
2.2.8 LOG .................................................................................................................. 15
2.2.9 LOGFILE ......................................................................................................... 15
2.2.10 MARKCONTROL ........................................................................................... 16
2.2.11 NMEATALKER ............................................................................................... 17
2.2.12 PPSCONTROL ................................................................................................. 17
2.2.13 POSAVE ........................................................................................................... 17
2.2.14 PSRDIFFTIMEOUT ........................................................................................ 18
2.2.15 RESET .............................................................................................................. 19
2.2.16 RTKCOMMAND ............................................................................................. 19
2.2.17 RTKSOURCE .................................................................................................. 19
1 / 49
2.2.18 RTKTIMEOUT ................................................................................................ 20
2.2.19 SAVECONFIG ................................................................................................. 20
2.2.20 SERIALCONFIG ............................................................................................. 20
2.2.21 SHOWCONFIG................................................................................................ 21
2.2.22 UNDULATION ................................................................................................ 21
2.2.23 UNLOG ............................................................................................................ 22
2.2.24 UNLOGALL .................................................................................................... 22
3. Logs……………………………………………………………………………….23
3.1 Log reference ........................................................................................................... 23
3.1.1 BDSEPHEMERIS ............................................................................................ 23
3.1.2 BESTPOS ......................................................................................................... 24
3.1.3 BESTVEL ......................................................................................................... 25
3.1.4 BESTXYZ ........................................................................................................ 25
3.1.26 CMROBS ......................................................................................................... 26
3.1.27 CMRREF .......................................................................................................... 26
3.1.28 CMRDESC ....................................................................................................... 26
3.1.29 CMRPLUS ....................................................................................................... 26
3.1.5 GPGGA ............................................................................................................ 27
3.1.6 GPGLL ............................................................................................................. 27
3.1.7 GPGSA ............................................................................................................. 28
3.1.8 GPGSV ............................................................................................................. 28
3.1.9 GPVTG ............................................................................................................. 29
3.1.10 GPZDA ............................................................................................................. 29
3.1.11 GPRMC ............................................................................................................ 29
3.1.12 GPGST ............................................................................................................. 29
3.1.13 GPGRS ............................................................................................................. 30
3.1.14 GPSEPHEM ..................................................................................................... 30
3.1.15 GLOEPHEMERIS ............................................................................................ 32
3.1.16 IONUTC ........................................................................................................... 35
3.1.17 LOGLIST ......................................................................................................... 35
2 / 49
3.1.18 MARKTIME .................................................................................................... 36
3.1.19 PASSCOMx ..................................................................................................... 36
3.1.20 PSRDOP ........................................................................................................... 37
3.1.21 RANGE ............................................................................................................ 37
3.1.22 RANGECMP .................................................................................................... 40
3.1.23 RTCM messages ............................................................................................... 42
3.1.24 SATVIS ............................................................................................................ 44
3.1.25 TIME ................................................................................................................ 44
3.1.26 TRACKSTAT ................................................................................................... 45
3.1.27 VERSION ......................................................................................................... 45
4 RTK Configuration Example ....................................................................................46
5 Terminology ..............................................................................................................47
3 / 49
List of Tables
Table 1 NMEA taker identifier for GSV/GSA .......................................................................... 8
Table 2 NMEA taker identifier for GGA/RMC/VTG/GST/ZDA ............................................. 8
Table 3 Antennamode .............................................................................................................. 11
Table 4 Configuring serial port baud rate ................................................................................ 12
Table 5 Sets DGPS station ID ................................................................................................. 12
Table 6 ECUTOFF .................................................................................................................. 13
Table 7 Fix the coordinate of the base station ......................................................................... 13
Table 8 Reset to factory mode and freset options ................................................................... 14
Table 9 Value definition .......................................................................................................... 14
Table 10 Configuring serial port mode ................................................................................... 15
Table 11 Save current configuration ....................................................................................... 15
Table 12 Logfile ...................................................................................................................... 16
Table 13 MARKCONTROL ................................................................................................... 16
Table 14 Change the NMEA talker during NMEA output ...................................................... 17
Table 15 PPSCONTROL ........................................................................................................ 17
Table 16 Implements base station position averaging ............................................................. 18
Table 17 PSRDIFFTIMEOUT ................................................................................................ 18
Table 18 RESET ...................................................................................................................... 19
Table 19 Sets the RTK correction source ................................................................................ 19
Table 20 Sets the RTK correction source ................................................................................ 19
Table 21 RTKTIMEOUT ........................................................................................................ 20
Table 22 Save current configuration ....................................................................................... 20
Table 23 Configuring serial port settings ................................................................................ 20
Table 24 Serial port mode ....................................................................................................... 20
Table 25 SHOWCONFIG ....................................................................................................... 21
Table 26 Undulation ................................................................................................................ 21
Table 27 Cancel a particular output......................................................................................... 22
Table 28 Cancel all output ....................................................................................................... 22
Table 29 BDSEPHEMERIS .................................................................................................... 23
Table 30 BESTPOS ................................................................................................................. 25
Table 31 BESTVEL ................................................................................................................ 25
Table 32 BESTXYZ ................................................................................................................ 25
Table 33 CMROBS ................................................................................................................. 26
Table 34 CMRREF .................................................................................................................. 26
Table 35 CMRDESC ............................................................................................................... 26
Table 36 CMRPLUS ............................................................................................................... 26
Table 37 Sets the RTK correction source ................................................................................ 27
Table 38 GPGLL ..................................................................................................................... 27
Table 39 GPGSA ..................................................................................................................... 28
Table 40 GPGSV ..................................................................................................................... 28
Table 41 GPVTG .................................................................................................................... 29
Table 42 GPZDA .................................................................................................................... 29
Table 43 GPRMC .................................................................................................................... 29
4 / 49
Table 44 GPGST ..................................................................................................................... 30
Table 45 GPGRS ..................................................................................................................... 30
Table 46 GPSEPHEM ............................................................................................................. 30
Table 47 GLOEPHEMERIS ................................................................................................... 32
Table 48 IONUTC ................................................................................................................... 35
Table 49 Check logged message types .................................................................................... 35
Table 50 Marktime .................................................................................................................. 36
Table 51 PASSCOMx ............................................................................................................. 36
Table 52 PSRDOP ................................................................................................................... 37
Table 53 RANGE .................................................................................................................... 37
Table 54 Tracking status.......................................................................................................... 38
Table 55 Tracking State ........................................................................................................... 39
Table 56 Correlator Type ......................................................................................................... 40
Table 57 RANGECMP ............................................................................................................ 40
Table 58 Range Record Format ............................................................................................... 41
Table 59 Collection of supported RTCM2 message ................................................................ 42
Table 60 Collection of supported RTCM3.2 message types ................................................... 43
Table 61 SATVIS .................................................................................................................... 44
Table 62 Time .......................................................................................................................... 44
Table 63 TRACKSTAT ........................................................................................................... 45
Table 64 Display version information ..................................................................................... 45
Table 65 List of terminology ................................................................................................... 47
5 / 49
1 General Description
Thank you for choosing Tersus GNSS. This log and command reference book is for Precis-BX306, Precis-BX306Z and Precis-BX316 GNSS RTK boards and they have companion documents to this reference manual with details on the hardware operation. Afterwards, this document will be your primary reference guide for commands and logs. Current FW supports 1Hz output only, higher frequency will be supported by future FW, please contact Tersus support for the latest information.
1.1 Output Format
Tersus GNSS systems support NMEA0183 format, RTCM 2.X, RTCM 3.X and private observation format.
1.2 NMEA Sentence
The National Marine Electronics Association (NMEA) standard defines an electrical interface and data protocol for communications between marine instrumentation. The solution output of Tersus GNSS systems follow NMEA0183 format, so that it can be easily integrated with host devices.
1.2.1 General Sentence Format
All data is transmitted in the form of sentences. Only printable ASCII characters are allowed, plus CR (carriage return) and LF (line feed). Each sentence starts with a "$" sign and ends with <CR><LF>. Tersus GNSS systems support talker sentences.
1.2.2 Talker Sentences
The general format for a talker sentence is given below. $ttsss, d1, d2 ...*xx<CR><LF> Each sentence begins with a '$' and ends with a carriage return/line feed sequence and can be no longer than 80 characters of visible text (plus the line terminators). The data fields in a single line are separated by commas. If data for a field is not available, the
6 / 49
field is omitted, but the delimiting commas are still there, with no space between them. The data may vary in the amount of precision contained in the message. For example time might be indicated to decimal parts of a second or location may be show with 3 or even 4 digits after the decimal point. Programs that read the data should only use the commas to determine the field boundaries and not depend on column positions.
1.2.3 GGA Sentence Format
GGA sentences contain Global Positioning System Fix Data, including Time, Position and fix related data for a GPS receiver.
$GxGGA,<1> ,<2>,3>,4>,5>,6>,7>,8>,9>,10>,11>,12>,13>,14>*xx<CR><LF> Gx: NMEA taker identifier. Different identifier can be applied according to user configuration, e.g. GP, GN, GL, and BD <1> Time (UTC), format: hhmmss.ss <2> Latitude, format ddmm.mmmm <3> N or S (North or South) <4>Longitude, format ddmm.mmmm <5>E or W (East or West) <6>GPS Quality Indicator: 0: unknown 1: single point positioning, 2 DGPS, 3 invalid PPS, 4 RTK fixed solution, 5: RTK float solution, 6: Estimating 7: user constrained positioning 8: Simulation 9: WAAS <7>Number of satellites in view <8> Horizontal Dilution of precision <9> Antenna Altitude above/below mean-sea-level (geoid) <10> Units of antenna altitude, meters <11> Geoidal separation, the difference between the WGS-84 earth ellipsoid and mean-sea-level (geoid), "-" means mean-sea-level below ellipsoid <12> Units of geoidal separation, meters <13>Age of differential GPS data, time in seconds since last SC104 type 1 or 9 update, null field when DGPS is not used <14> Differential reference station ID, 0000-1023 * end of sentence xx checksum of the all ASCII code <CR><LF> carriage return and line feed
Example:
7 / 49
$GNGGA,031107.00,3111.4238950,N,12135.5912579,E,1,16,1.0,44.529,M,11.518,M
Type
GPS
GLONASS
BDS
AUTO
GP
GL
BD
GP
GP
--
--
Type
GPS
GLONASS
BDS
Dual or triple constellations
AUTO
GP
GL
BD
GN
GP
GP
GP
GP
GP
,,*41
Table 1 NMEA taker identifier for GSV/GSA
Table 2 NMEA taker identifier for GGA/RMC/VTG/GST/ZDA
1.2.4 RMC Sentence
RMC sentence contains Recommended Minimum Navigation Information $GxRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>*xx<CR><LF> Gx: NMEA taker identifier. Different identifier can be applied according to user configuration, e.g. GP, GN, GL and BD <1> Time (UTC), format: hhmmss.sss <2> Status, V = Navigation receiver warning <3>Latitude <4> N or S <5>Longitude <6>E or W <7>Speed over ground, knots <8>Track made good, degrees true <9>Date, format:ddmmyy <10> Magnetic Variation, degrees <11> E or W * end of sentence xx checksum of the all ASCII code <CR><LF> carriage return and line feed
Example: $GPRMC,024813.640,A,3158.4608,N,11848.3737,E,10.05,324.27,150706,,,A*50
8 / 49
1.2.5 VTG Sentence
VTG contains Track Made Good and Ground Speed $GxVTG, <1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>*xx<CR><LF> Gx: NMEA taker identifier. Different identifier can be applied according to user configuration, e.g. GP, GN, GL, BD <1> Track Degrees <2>T = True <3>Track Degrees <4>M = Magnetic <5>Speed Knots <6>N = Knots <7>Speed Kilometers Per Hour <8>K = Kilometres Per Hour * end of sentence xx checksum of the all ASCII code <CR><LF> carriage return and line feed
Example: $GPVTG,89.68,T,,M,0.00,N,0.0,K*5F
1.2.6 GSA Sentence
GSA contains GPS DOP and active satellites information. $GxGSA, <1>,<2>,<3>,<4>,…,<14>,<15>,<16>,<17>*xx<CR><LF> Gx: NMEA taker identifier. Different identifier can be applied according to user configuration, e.g. GP, GN <1>Selection mode: A: automatic M: manual <2> Mode: 1: no position 2: 2D position 3:3D position <3> PRN of 1st satellite used for fix <4> PRN of 2nd satellite used for fix ... <14> PRN of 12th satellite used for fix <15> Positioning Dilution of precision (PDOP) <16> Horizontal Dilution of precision (HDOP) <17> Vertical Dilution of precision (VDOP) * end of sentence xx checksum of the all ASCII code
9 / 49
<CR><LF> carriage return and line feed
Example: $GPGSA,A,3,3,10,14,16,22,25,26,29,31,32,,,1.0,0.8,0.6*06 $GLGSA,A,3,14,2,22,13,12,23,3,4,,,,,1.0,0.8,0.6*11 $BDGSA,A,3,161,162,163,164,166,167,169,170,,,,,1.0,0.8,0.6*21
Remarks: PRN: GPS: 1~32; GLONASS:1~28; BDS:161~197
1.2.7 GSV Sentence
GSV contains information of Satellites in view. $GxGSV, <1>,<2>,<3>,<4>,<5>,<6>,<7>,...*xx<CR><LF> Gx: NMEA taker identifier. Different identifier can be applied according to user configuration, e.g. GP, GN <1>total number of messages <2> message number <3> satellites in view <4>satellite number <5>elevation in degrees <6>azimuth in degrees to true <7>SNR in dB more satellite information like 4)-7) * end of sentence xx checksum of the all ASCII code CR>LF> carriage return and line feed
Example: $GPGSV,3,1,10,20,78,331,45,01,59,235,47,22,41,069,,13,32,252,45*70
2 Commands
2.1 Overview of Command System
Tersus GNSS systems allow users modify its configuration with command systems. Here are some general remarks on this command system:
10 / 49
All commands are not case-sensitive.
dgpstxid
ecutoff
fix
interfacemode
logfile
posave
rtktimeout
rtksource
serialconfig
undulation
Name
Value
All log related command must specify the serial port. If the serial port is not
specified, then the command is applied to current port.
If the commands are executed successfully, the board returns ok. Otherwise,
returns an error message.
Some commands, listed in the following table, configure can be shown with
command ‘log command, for example, you can input Log ecutoff to show the ecutoff configure.
2.2 Command Reference
2.2.1 ANTENNAMODE
This command is used to configuration which signals will be tracked by the primary and secondary antennas, respectively. It’s valid only for the receivers supporting dual antennas, including BX316, BX316R and BX316D.
The command will not work immediately after it’s inputted. Follow the following steps:
Input ANTENNAMODE command to choose the mode. Input SAVECONFIG Power cycle the board or input RESET commands.
Table 3 Antennamode
11 / 49
Command
ANTENNAMODE option
Example
ANTENNAMODE DUALGPSBDS
Function Parameter
Option
Specific which signals will be tracked by the two antennas. DUALGPSBDS: Primary antenna tracks GPS L1/L2, BDS B1/B2; secondary antenna tracks
GPS L1, BDS B2 DUALGPSGLO: Primary antenna tracks GPS L1/L2, GLO G1/G2; secondary antenna tracks
GPS L1, GLO G2 0 (default): Primary antenna track GPS L1/L2, GLO G1/G2, BDS B1/B2.
Name
Value
Command
COM [port] bps
Example
COM COM1 115200
Function
change baud rate of a serial port
Parameter description
port
COM1/ COM2
bps
baud rate 9600/19200/38400/57600/115200/230400/460800/921600
Name
Value
Command
DGPSTXID auto ID
Example
DGPSTXID auto 2
Function
Sets DGPS station ID
ID
limited four character string
2.2.2 COM
This command is used to change the baud rate of the serial port to adapt its host device requirement.
Table 4 Configuring serial port baud rate
2.2.3 DGPSTXID
This command is used to set the DGPS station ID value for the receiver when it is transmitting corrections.
Table 5 Sets DGPS station ID
12 / 49
2.2.4 ECUTOFF
Name
Value
Command
ECUTOFF angle
Example
ECUTOFF 15.0
Function
Sets elevation cut-off angle for all the constellations.
Name
Value
Command
Fix position latitude longitude height
Example
Fix position 31.24523012 121.58922341 40.35
Function
Fix a position to a receiver.
Parameter description
Lat
Latitude in degree (-90.0~90.0)
Lon
Longitude in degree (-180.0~180.0)
Ht
Mean sea level in meter
This command is used to set the elevation cut-off angle (unit is degree) for tracked satellites.
Table 6 ECUTOFF
2.2.5 FIX
This command is used to fix height or position to the input values. FIX POSITION should only be used for base station receivers. A station coordinate command is used to manage whether fix the station coordinate. For RTK, the coordinates should be fixed as known value when it serves as the base station. If the position is unknown, please refer to POSAVE command in 0.
FIX POSITION This command is to fix the coordinate of base station coordinate.
Table 7 Fix the coordinate of the base station
Please notice that the base coordinates are expressed in DEGREE and METER, so you need to input with right unit.
FIX NONE This command is for cancelling fixed coordinate. When switch the role of the board
13 / 49
from base station to rover station, removed the fixed coordinate is necessary. In this
Name
Value
Command
FRESET option
Example
Option
NOERASE EPHEM ALMANAC UTC LAST_POSITION CONFIG bitmaskX
freset bitmask11; reset the ephemeris, almanac and last position
All the data and configure of the receiver will be erased. No data is deleted, only reset the board. Only ephemeris is reset. Only almanac is reset. Only the UTC time is reset. Only the last position is reset. Only the receiver’s configure is reset. bitmaskX can be used to reset two or more items above. X is the sum of the options’ value, which is defined in Table
9.
EPHEM
1
ALMANAC
2
UTC
4
LAST_POSITION
8
CONFIG
16
case, use this command to remove the fixed coordinate.
2.2.6 FRESET
This command is used to clear all the data or part of the data which is stored in flash memory. Such data includes the almanac, ephemeris, and any user specific configurations. Options are used to choose which data will be reset.
Options are used for sophisticated customers; a general user can neglect all the options and just input FRESET to erase all the data or FRESET NOERASE to reboot the board.
Table 8 Reset to factory mode and freset options
Table 9 Value definition
2.2.7 INTERFACEMODE
This command is used to configure the read and write mode of the serial port.
14 / 49
Name
Value
Command
Interfacemode port rxtype txtype resp
Example
Interfacemode COM1 auto auto on
Function
change input/output mode of serial port
Parameter description
port
the serial port number of the board,COM1 and COM2
rxtype
Receive interface mode, see Table 24
txtype
Reserve (auto)
resp
whether response commands
Name
Value
Command
LOG [port] message [trigger [period]] [hold]
Example 1
LOG COM1 BESTPOS ONTIME 7 HOLD
Function
The above example shows BESTPOS logging to com port 1 at 7 second intervals. The [hold] parameter is set so that logging is not disrupted by the UNLOGALL command.
Example 2
LOG COM1 BESTPOS ONCE NOHOLD
Table 10 Configuring serial port mode
2.2.8 LOG
This command is to requests logs from the receiver.
If the log is synchronous, the trigger is ONTIME, if it’s asynchronous, the trigger is
ONCHANGED. The unit of period is second.
The optional parameter [hold] prevents a log from being removed when the UNLOGALL command, with its defaults, is issued. To remove a log which was invoked using the [hold] parameter requires the specific use of the UNLOG command. To remove all logs that have the [hold] parameter, use the UNLOGALL command with the held field set to 1.
Table 11 Save current configuration
2.2.9 LOGFILE
This command is used to open and close a log file, saved on SD card. This command is only valid for BX316 and BX316R boards.
15 / 49
Table 12 Logfile
Name
Value
Command
LOGFILE [switch]
Example
LOGFILE CLOSE
Function Parameter Description
Switch OPEN [filename] CLOSE AUTO
Manual (default)
Creates a file for saving loggings, file name is optional. Stop the file saving. The file saving will start automatically after the board is power on. The file saving will not start after the board is power on. ‘Logfile open’ must be input to start file saving.
If you want to save the loggings automatically after the board is power on, please follow:
1) Input all the loggings to be saved, for example, input ‘log file gpgga ontime 1’, ‘log file
rangeb ontime 1’
2) Input ‘logfile auto’
3) Input ‘saveconfig’
4) Power cycle the board and file saving start.
5) Input ‘logfile close’ when file saving is completed.
The last step is recommended although it’s not mandatory. If power is off during the file saving, up to 4K data will be lost
If you want to save the loggings manually after the board is power on, please follow:
1) Input all the loggings to be saved, for example, input ‘log file gpgga ontime 1’, ‘log file
rangeb ontime 1’
2) Input ‘saveconfig’
3) Input ‘logfile open’ when you want to start file saving.
4) Input ‘logfile close’ when file saving is completed.
If no file name is input, a name related to the board running time will be given.
2.2.10 MARKCONTROL
This command is used to control the mark inputs. Using this command, the event mark inputs can be enabled or disabled, polarity can be positive or negative, and a time offset and guard against extraneous pulses are optional.
Table 13 MARKCONTROL
16 / 49
Name
Value
Command
MARKCONTROLsignal[switch[polarity[timebias [timeguard]]]]
Example
MARKCONTROL MARK1 ENABLE POSITIVE 500 100
Function Parameter Description
Switch Polarity Timebias
timeguard
Controls processing of mark inputs ENABLE or DISABLE POSITIVE or NEGATIVE
An offset, unit is ns, to be applied to the time the mark pulse is input. A time period, unit is ms, during which no response to the input pulses.
2.2.11 NMEATALKER
Name
Value
Command
Nmeatalker id
Example
Nmeatalker GP
Function
change nmeatalker
Parameter description
id GP/AUTO
Name
Value
Command
PPSCONTROL [switch [polarity [period [pulse width]]]]
Example
PPSCONTROL enable negative 1.0 2000
Function
Control the polarity, period and pulse width of the PPS signal.
This command is for NMEA talker configuration. Tersus GNSS systems can output NMEA0183 format, RTCM2.X/3.2 format and its own observation format.
Table 14 Change the NMEA talker during NMEA output
2.2.12 PPSCONTROL
This command is used to control the polarity, period and pulse width of the PPS output signal, the unit of period is second, is microseconds for pulse width.
Table 15 PPSCONTROL
2.2.13 POSAVE
This command implements position averaging for base stations. Position averaging
17 / 49
continues for a specified number of hours or until the estimated averaged position
Name
Value
Command
POSAVE state [maxtime [maxhstd [maxvstd]]]
Example
POSAVE on 1 1 2
State
ON OFF
Implements position averaging for base stations.
Delete the saved posave command.
Name
Value
Command
PSRDIFFTIMEOUT delay
Example
PSRDIFFTIMEOUT 100
Function
Sets maximum age of pseudorange differential data
error is within specified accuracy limits.
Averaging stops when the time limit or the horizontal standard deviation limit or the vertical standard deviation limit is achieved. When averaging is complete, the FIX POSITION command is automatically invoked.
If initiating differential logging, then issue the POSAVE command followed by the SAVECONFIG command, the receiver averages positions after every power on or reset. It then invokes the FIX POSITION command to enable it to send differential corrections. POSAVE OFF can be input to erase the saved POSAVE command.
The unit of parameter maxtime is hour, and is meter for maxhstd (desired horizontal standard deviation 0-100m) and maxvstd (desired vertical standard deviation 0-100m). The minimal value of maxtime is 0.01, that is, 36 seconds.
Table 16 Implements base station position averaging
2.2.14 PSRDIFFTIMEOUT
This command is used to set the maximum age of pseudorange differential correction data to use when operating as a rover station. Pseudorange differential correction data whose age is more than this value will not be used by the rover.
Table 17 PSRDIFFTIMEOUT
18 / 49
2.2.15 RESET
Name
Value
Command
RESET
Example
RESET
Name
Value
Command
RTKCOMMAND action
Example
RTKCOMMAND reset
Function
Resets or sets the RTK filter to defaults
action
reset/use_defaults
Name
Value
Command
RTKSOURCE type [id]
Example
RTKSOURCE RTCMV3 6
Function
Sets the RTK correction source
Set the default value
rtksource auto any
type
Auto/RTCM/RTCMV3/CMR/NONE
id
Any/ID (limited four character string), is null when type is NONE
This command is used to perform a software reset. No data saved in the flash memory, such as almanac and ephemeris data, or the configure, will be erased.
Table 18 RESET
2.2.16 RTKCOMMAND
This command is used to reset the RTK filter or clear any set RTK parameters. The RESET parameter causes the RTK algorithm to undergo a complete reset.
Table 19 Sets the RTK correction source
2.2.17 RTKSOURCE
This command is used to set the RTK correction source, identify from which base station to accept RTK (RTCM, RTCMV3, CMR differential corrections.
Table 20 Sets the RTK correction source
19 / 49
2.2.18 RTKTIMEOUT
Name
Value
Command
RTKTIMEOUT delay
Example
RTKTIMEOUT 40
Function
Sets maximum age of RTK data
Name
Value
Command
saveconfig
Example
saveconfig
Function
Save current configuration to flash
Name
Value
Command
SERIALCONFIG [port]baud[parity[databits[stopbits]]]
Example
serialconfig com1 9600 n 8 1
Function
configure serial port settings
Mode
Description
This command is used to set the maximum age (unit second) of RTK data to use when operating as a rover station.
Table 21 RTKTIMEOUT
2.2.19 SAVECONFIG
This command is used to save current configurations to flash. The saved configurations are still valid even if the board is rebooted.
Table 22 Save current configuration
2.2.20 SERIALCONFIG
This command is to configure serial port settings.
Table 23 Configuring serial port settings
Table 24 Serial port mode
20 / 49
Auto
Identify commands and corrections format automatically
RTCMV3
The port accepts/generates RTCM Version3.X corrections and commands
RTCMV2
The port accepts/generates RTCM Version2.X corrections and commands
CMR
The port accepts/generates CMR/CMR+ corrections and commands
2.2.21 SHOWCONFIG
Name
Value
Command
SHOWCONFIG
Example
SHOWCONFIG
Function
To show all the configuration of the receiver, including ports config, loglist and commands input, etc.
Name
Value
Command
UNDULATION option [separation]
Example
UNDULATION USER -1.006
Function Parameter
Option
Specific geoidal undulation value. OSU89B/EGM96(default)/USER
This command is used to show all the configuration of the receiver.
Table 25 SHOWCONFIG
2.2.22 UNDULATION
This command permits you to enter a specific geoidal undulation value. Three options are provided in the option field, the EGM96 table provides ellipsoid heights at a 1 by 1 spacing, the OSU89B table provides ellipsoid height at a 2 by 3 spacing. EGM96 is a more accurate model.
The relation between ellipsoid height and mean sea-level (MSL) height is:
h = H + N
N = geoid/ellipsoid separation or geoid undulation H = mean sea-level height or geoid height (height above the geoid) h = ellipsoidal height (height above ellipsoid)
Table 26 Undulation
21 / 49
Description
separation
Is required when USER option is selected.
Name
Value
Command
Unlog port message
Example
Unlog COM1 GPGGA
Function
change input/output mode of serial port
Parameter description
port
COM1 / COM2
message
NMEA message /rtcm message/ observation message
Name
Value
Command
Unlogall [port] [held]
Example
Unlogall
Function
Cancel all output
Parameter description
port
COM1 / COM2
held
Remove previously held logs
2.2.23 UNLOG
This command is used to stop specified output, which is cancelling particular output.
Table 27 Cancel a particular output
2.2.24 UNLOGALL
This command is used to stop all output from specified serial port.
Table 28 Cancel all output
22 / 49
3. Logs
Name
Value
Input
log bdsephemeris onchanged
Example
<BDSEPHEMERIS COM1 0 0.0 FINESTEERING 1943 445511.000 00000000 407 20161214 171 587 1.00 0 7.80e-09 2.30e-09 6 442800
2.07488891e-04 -8.79385453e-12 -9.48676901e-20 7 442800,5282.596361 2.1449478809e-03 -2.358018891 3.9215919215e-09
2.9904806491e+00 -2.33 90842837e+00 -7.0638656669e-09
9.8075003362e-01 2.7715440174e-10 2.2682361305e-06
3.2796524465e-06 3.0654687500e+02 4.7078125000e+01
-4.2840838432e-08 -5.6810677052e-08
Function
Decoded BDS ephemeris.
ID
Field
Description
Type
Binary Bytes
Offset
1
BDSEPHE M header
Log header
H 0 2
satellite ID
ID/ranging code, start from 161
Ulong
4 H 3
Week
Week numbe
Ulong
4
H+4
4
URA
User range accuracy (metres). This is the evaluated URAI/URA lookup-table value
Double
8
H+8
5
health 1
Autonomous satellite health flag. 0 means broadcasting satellite is good and 1 means not.
Ulong
4
H+16
6
tgd1
Equipment group delay differential for the B1 signal (seconds)
Double
8
H+20
7
tgd2
Equipment group delay differential for the B2 signal (seconds)
Double
8
H+28 8
AODC
Age of data, clock
Ulong
4
H+36
9
toc
Reference time of clock parameters
Ulong
4
H+40
3.1 Log reference
3.1.1 BDSEPHEMERIS
This log contains a single set of BDS ephemeris parameters with appropriate scaling applied. Multiple messages are transmitted, one for each SV ephemeris collected.
Table 29 BDSEPHEMERIS
23 / 49
10
a0
Constant term of clock correction polynomial (seconds)
Double
8
H+44
11
a1
Linear term of clock correction polynomial (seconds/ seconds)
Double
8
H+52
12
a2
Quadratic term of clock correction polynomial (seconds/ seconds^2)
Double
8
H+60 13
AODE
Age of data, ephemeris
Ulong
4
H+64
14
toe
Reference time of ephemeris parameters
Ulong
4
H+68
15
RootA
Square root of semi-major axis (sqrt(metres))
Double
8
H+76
16
ecc
Eccentricity (sqrt(metres))
Double
8
H+84
17
ω
Argument of perigee
Double
8
H+92
18
ΔN
Mean motion difference from computed value (radians/ second)
Double
8
H+10 0
19
M0
Mean anomaly at reference time (radians)
Double
8
H+10 8
20
Ω0
Longitude of ascending node of orbital of plane computed according to reference time (radians)
Double
8
H+11 6
21
Ω dot
Rate of right ascension (radians/second)
Double
8
H+12 4
22
I0
Inclination angle at reference time (radians)
Double
8
H+13 2
23
IDOT
Rate of inclination angle (radians/second)
Double
8
H+14 0
24
cuc
Amplitude of cosine harmonic correction term to the argument of latitude (radians)
Double
8
H+14 8
25
cus
Amplitude of sine harmonic correction term to the argument of latitude (radians)
Double
8
H+15 6
26
crc
Amplitude of cosine harmonic correction term to the orbit radius (metres)
Double
8
H+16 4
27
crs
Amplitude of sine harmonic correction term to the orbit radius (metres)
Double
8
H+17 2
28
cic
Amplitude of cosine harmonic correction term to the angle of inclination (radians)
Double
8
H+18 0
29
cis
Amplitude of sine harmonic correction term to the angle of inclination (radians)
Double
8
H+18 8
30
xxxx
32-bit CRC (ASCII and Binary only)
Ulong
4
H+19 6
31
[CR][LF]
Sentence terminator (ASCII only)
- - -
3.1.2 BESTPOS
This log contains the best position solution computed by the receiver. It also reports
24 / 49
several status indicators, including differential age. A differential age of 0 indicates
Name
Value
Input
log bestpos ontime 1
Example
BESTPOS COM2 0 81.000000 FINE 1942 184263.200000 00000000 53928672 18 <SOL_COMPUTED SINGLE 31.19041517905 121.59317866614
37.9262 0.0000 WGS84 0.4609 0.4584 0.4594 "0000" 0.000 0.000 30 30 0 30 0 00 00 00
Function
Best position
Name
Value
Input
log bestvel ontime 1
Example
BESTVEL COM2 0 85.000000 FINE 1942 184402.600000 00000000 54068072 18 <SOL_COMPUTED DOPPLER_VELOCITY 0 0.0000 0.0271
121.117463 0.0449 0.0
Function
Best available velocity data.
Name
Value
Input
log bestxyz ontime 1
Example
BESTXYZ COM2 0 85.000000 FINE 1942 184489.800000 00000000 54155271 18
that no differential correction was used.
Table 30 BESTPOS
3.1.3 BESTVEL
This log contains the best available velocity information computed by the receiver. In addition, it reports a velocity status indicator, which is useful to indicate whether or not the corresponding data is valid.
Table 31 BESTVEL
3.1.4 BESTXYZ
This log contains the receiver’s best available position and velocity in ECEF
coordinates. The position and velocity status fields indicate whether or not the corresponding data is valid.
Table 32 BESTXYZ
25 / 49
<SOL_COMPUTED SINGLE -2860996.5850 4651724.3093
3283991.6664 0.4438 0.4415 0.4328 SOL_COMPUTED DOPPLER_VELOCITY -0.0117 0.0445 -0.0083 0.0123 0.0128 0.0121 "0000" 0 0.000 0.000 30 30 0 30 0 00 00 00
Function
Best available cartesian position and velocity
3.1.26 CMROBS
Name
Value
Command
LOG COM2 CMROBS ONTIME 1
Function
BASE Station Satellite Observation Information
Name
Value
Command
LOG COM2 CMRREF ONTIME 10
Function
BASE Station Satellite Observation Information
Name
Value
Command
LOG COM2 CMRDESC ONTIME 10
Function
BASE Station Satellite Observation Information
Name
Value
A proprietary RTK data transmission standard from Trimble Navigation Ltd.
Table 33 CMROBS
3.1.27 CMRREF
A proprietary RTK data transmission standard from Trimble Navigation Ltd.
Table 34 CMRREF
3.1.28 CMRDESC
A proprietary RTK data transmission standard from Trimble Navigation Ltd.
Table 35 CMRDESC
3.1.29 CMRPLUS
A proprietary RTK data transmission standard from Trimble Navigation Ltd.
Table 36 CMRPLUS
26 / 49
Command
LOG COM2 CMRPLUS ONTIME 1
Function
BASE Station Satellite Observation Information
3.1.5 GPGGA
Name
Value
Input
log gpgga ontime 1
Example
$GNGGA,030405.60,3111.42512346,N,12135.59044629,E,1,24,0 .6,28.2297,M,11.5902,M,00,0000*4A
Function
Log positioning solution and status in NMEA format
Parameter description
Message
gpgga/gpgsa/gpgsv/gpvtg/gprmc
Interval
1 or above (below 1 will be supported later)
This log contains time, position and fixes related data of the GNSS receiver. The GPGGA log outputs these messages without waiting for a valid almanac.
Table 37 Sets the RTK correction source
The NMEA (National Marine Electronics Association) has defined standards that specify how electronic equipment for marine users communicates. GNSS receivers are part of this standard and the NMEA has defined the format for several GNSS data logs otherwise known as 'sentences'. Each NMEA sentence begins with a '$' followed by the prefix 'GL' or ‘GN’ followed by a sequence of letters that define the type of information contained in the sentence. Data contained within the sentence is separated by commas and the sentence is terminated with a two digit checksum followed by a carriage return/line feed. Here is an example of a NMEA sentence describing time, position and fix related data.
$GNGGA,032845.00,3111.4246954,N,12135.5908737,E,1,27,1.0,26.120,M,11.518, M,,*48. The GPGGA sentence shown above and other NMEA logs are output the same no matter what GNSS receiver is used, providing a standard way to communicate and process GNSS information.
3.1.6 GPGLL
This log contains latitude and longitude of present vessel position, time of position fix and status.
Table 38 GPGLL
27 / 49
Name
Value
Input
log gpgll ontime 1
Example (GPS only)
$GPGLL,3111.4253764,N,12135.5908779,E,015133.00,A,A*7C
Example (Combined GPS/GLONASS/BDS)
$GNGLL,3111.4253694,N,12135.5908841,E,015128.00,A,A*7C Function
Geographic position
3.1.7 GPGSA
Name
Value
Input
log gpgsa ontime 1
Example (GPS only)
$GPGSA,A,3,10,12,14,25,26,29,31,32,,,,,1.0,0.8,0.6*31
Example (Combined GPS /GLONASS/BDS)
$GPGSA,A,3,10,12,14,18,22,25,26,29,31,32,,,0.9,0.8,0.6*30 $GLGSA,A,3,6,9,16,15,5,17,4,,,,,,0.9,0.8,0.6*22 $BDGSA,A,3,161,162,163,164,166,167,169,170,,,,,0.9,0.8,0.6*29
Function
GPS DOP and active satellites
Name
Value
Input
log gpgsv ontime 1
Example (Combined GPS/GLONASS/BDS)
$GPGSV,3,1,11,03,15,264,44,04,,,50,14,38,158,46,16,62,285,51*45 $GLGSV,3,3,09,17,22,160,49*50 $BDGSV,3,3,09,170,50,305,47*67
Function
Satellites in view
This log contains GNSS receiver operating mode, satellites used for navigation and DOP values. The GPGSA log outputs these messages without waiting for a valid almanac.
Table 39 GPGSA
3.1.8 GPGSV
This log contains the number of GPS SVs in view, PRN numbers, elevation, and azimuth and SNR value.
Table 40 GPGSV
28 / 49
3.1.9 GPVTG
Name
Value
Input
log gpvtg ontime 1
Example (GPS only)
$GPVTG,47.251,T,47.251,M,0.124,N,0.230,K,A*3B
Example (Combined GPS/GLONASS/BDS)
$GNVTG,56.703,T,56.703,M,0.068,N,0.127,K,A*37 Function
Track made good and ground speed
Name
Value
Input
log gpzda ontime 1
Example
$GNZDA,053045.00,07,04,2017,00,*78
Function
UTC time and date
Name
Value
Input
log gprmc ontime 1
Example (GPS only)
$GPRMC,033255.00,A,3111.4246749,N,12135.5908896,E,0.065,
0.0,070417,0.0,E,A*04
Example (Combined GPS/GLONASS/BDS)
$GNRMC,030840.40,A,3111.42520653,N,12135.59053522,E,0.0 38,138.4,280317,0.0,E,A*22
Function
GPS specific information
This log contains the track made good and speed relative to the ground.
Table 41 GPVTG
3.1.10 GPZDA
The GPSZDA log outputs the UTC date and time.
Table 42 GPZDA
3.1.11 GPRMC
This log contains time, date, position, track made good and speed data provided by the GPS navigation receiver.
Table 43 GPRMC
3.1.12 GPGST
This log contains pseudorange measurement noise statistics are translated in the
29 / 49
position domain in order to give statistical measures of the quality of the position
Name
Value
Input
log gpgst ontime 1
Example (GPS only)
$GPGST,033407.00,0.00,0.00,0.00,0.0000,0.45,0.43,0.45*63
Example (Combined GPS/GLONASS/BDS)
$GNGST,033437.00,0.00,0.00,0.00,0.0000,0.44,0.42,0.44*61 Function
Pseudorange measurement noise statistics
Name
Value
Input
log gpgrs ontime 1
Example (GPS only)
$GPGRS,033854.00,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,*47
Example (Combined GPS /GLONASS/BDS)
$GPGRS,033950.00,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,*42 $GLGRS,033950.00,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,*13 $BDGRS,033950.00,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,*4B
Function
GPS range residuals for each satellite
Name
Value
Input
log gpsephem onchanged
Example
<GPSEPHEM COM1 0 0.0 FINESTEERING 1943 445309.000 00000000 407 20161214 3 439200.0 0 30 30 1943 1943 446400.0
2.656135670e+07 4.344466679e-09 2.021661162e+00
5.580164725e-04 1.520378678e-01 -1.028180122e-06
solution.
Table 44 GPGST
3.1.13 GPGRS
This log reports the range residuals. The residuals are recomputed after the position solution in the GPGGA message is computed.
Table 45 GPGRS
3.1.14 GPSEPHEM
This log contains a single set of GPS ephemeris parameters. This command is used to log GPS broadcast ephemeris in ASCII format.
Table 46 GPSEPHEM
30 / 49
1.158006489e-05 1.547500000e+02 -1.865625000e+01
-3.352761269e-08 1.862645149e-09 9.600372875e-01
-4.928776732e-11 -4.734842780e-01 -7.874970881e-09 30 446400.0
1.862645149e-09 -1.05151e-04 1.13687e-12 0.00000e+00 TRUE
1.458500140e-04 1.0000000e+00
Function
T Decoded GPS ephemerides.
ID
Field
Description
Type
Binary Bytes
Offset
1
GPSEPHE M header
Log header
H 0 2
PRN
Satellite PRN number
Ulong
4 H 3
tow
Time stamp of subframe 1 (seconds)
Double
8
H+4
4
health
Health status - a 6-bit health code as defined in ICD-GPS-200
Ulong
4
H+12 5
IODE1
Issue of ephemeris data 1
Ulong
4
H+16
6
IODE2
Issue of ephemeris data 2
Ulong
4
H+20
7
week
toe week number (computed from Z count week)
Ulong
4
H+24
8
z week
Z count week number. This is the week number
from subframe 1 of the ephemeris. The ‘toe
week’ (field #7) is derived from this to account
for rollover
Ulong
4
H+28
9
toe
Reference time for ephemeris, seconds
Double
8
H+32
10 A Semi-major axis, metres
Double
8
H+40
11
ΔN
Mean motion difference, radians/second
Double
8
H+48
12
M0
Mean anomaly of reference time, radians
Double
8
H+56
13
Ecc
Eccentricity, dimensionless - quantity defined for a conic section where e= 0 is a circle, e = 1 is a parabola, 0<e<1 is an ellipse and e>1 is a hyperbola
Double
8
H+64
14
ω
Argument of perigee, radians - measurement along the orbital path from the ascending node to the point where the SV is closest to the Earth, in the direction of the SV's motion
Double
8
H+72
15
cuc
Argument of latitude (amplitude of cosine, radians)
Double
8
H+80
16
cus
Argument of latitude (amplitude of sine, radians)
Double
8
H+88 17
crc
Orbit radius (amplitude of cosine, metres)
Double
8
H+96
18
crs
Orbit radius (amplitude of sine, metres)
Double
8
H+10 4
31 / 49
19
cic
Inclination (amplitude of cosine, radians)
Double
8
H+11 2
20
cis
Inclination (amplitude of sine, radians)
Double
8
H+12 0
21
I0
Inclination angle at reference time, radians
Double
8
H+12 8
22
IDOT
Rate of inclination angle, radians/second
Double
8
H+13 6
23
Ω0
Right ascension, radians
Double
8
H+14 4
24
Ω dot
Rate of right ascension, radians/second
Double
8
H+15 2
25
iodc
Issue of data clock
Ulong
4
H+16 0
26
toc
SV clock correction term, seconds
Double
8
H+16 4
27
tgd
Estimated group delay difference, seconds
Double
8
H+17 2
28
af0
Clock aging parameter, seconds (s)
Double
8
H+18 0
29
af1
Clock aging parameter, (s/s)
Double
8
H+18 8
30
af2
Clock aging parameter, (s/s/s)
Double
8
H+19 6
31
AS
Anti-spoofing on: 0 = FALSE 1 = TRUE
Double
8
H+20 4
32
N
Corrected mean motion, radians/second Note: This field is computed by the receiver.
Double
8
H+20 8
33
URA
User Range Accuracy variance, m2. The ICD a specifies that the URA index transmitted in the ephemerides can be converted to a nominal standard deviation value using an algorithm listed there.
Double
8
H+21 6
34
xxxx
32-bit CRC (ASCII and Binary only)
Ulong
4
H+22 4
35
[CR][LF]
Sentence terminator (ASCII only)
Name
Value
3.1.15 GLOEPHEMERIS
This log contains GLONASS ephemeris information.
Table 47 GLOEPHEMERIS
32 / 49
Input
log gloephemeris onchanged
Example
<GLOEPHEMERIS COM1 0 0.0 FINESTEERING 1943 445444.000 00000000 407 20161214 39 3 1 0 1943 445518000 10782 463 0 0 27 0 -1.3815634277343750e+07 1.9141996093750000e+07
-9.5697236328125000e+06 6.8848896026611328e+02
-1.1339406967163086e+03 -3.253355026245117 2e+03
9.3132257461547852e-07 3.7252902984619141e-06
0.0000000000000000e+00 -2.4393666535615921e-04
5.5879354476928711e-09 9.0949470177292824e-13 23400 1 0 0 13
Function
Decoded GLONASS ephemeris
ID
Field
Description
Type
Binary Bytes
Offset
1
GLO EPHEMERI S header
Log header
H 0 2 sloto
Slot information offset - PRN identification (Slot + 37). This is also called SLOTO in Connect
Ushort
2
H 3
freqo
Frequency channel offset for satellite in the range 0 to 20
Ushort
2
H+2
4
sat type
Satellite type where 0 = GLO_SAT 1 = GLO_SAT_M (M type) 2 = GLO_SAT_K (K type)
Uchar
1
H+4
5
Reserved
1
H+5
6
e week
Reference week of ephemeris (GPS reference time)
Ushort
2
H+6
7
e time
Reference time of ephemeris (GPS reference time) in ms
Ulong
4
H+8
8
t offset
Integer seconds between GPS and GLONASS time. A positive value implies GLONASS is ahead of GPS reference time.
Ulong
4
H+12 9
Nt
Calendar number of day within 4 year interval starting at Jan 1 of a leap year
Ushort
2
H+16 10
Reserved
1
H+18
11
Reserved
1
H+19
12
issue
15 minute interval number corresponding to ephemeris reference time
Ulong
4
H+20
13
health
Ephemeris health where 0-3 = GOOD 4-15 = BAD
Ulong
4
H+24
33 / 49
14
pos x
X coordinate for satellite at reference time (PZ-90.02), in metres
Double
8
H+28
15
pos y
Y coordinate for satellite at reference time (PZ-90.02), in metres
Double
8
H+36
16
pos z
Z coordinate for satellite at reference time (PZ-90.02), in metres
Double
8
H+44
17
vel x
X coordinate for satellite velocity at reference time (PZ-90.02), in metres/s
Double
8
H+52
18
vel y
Y coordinate for satellite velocity at reference time (PZ-90.02), in metres/s
Double
8
H+60
19
vel z
Z coordinate for satellite velocity at reference time (PZ-90.02), in metres/s
Double
8
H+68
20
LS acc x
X coordinate for lunisolar acceleration at reference time (PZ90.02), in metres/s/s
Double
8
H+76
21
LS acc y
Y coordinate for lunisolar acceleration at reference time (PZ-90.02), in metres/s/s
Double
8
H+84
22
LS acc z
Z coordinate for lunisolar acceleration at reference time (PZ-90.02), in metres/s/s
Double
8
H+92
23
tau_n
Correction to the nth satellite time t_n relative to GLONASS time t_c, in seconds
Double
8
H+10 0
24
delta_tau_n
Time difference between navigation RF signal transmitted in L2 sub-band and navigation RF signal transmitted in L1 sub-band by nth satellite, in seconds
Double
8
H+10 8 25
gamma
Frequency correction, in seconds/second
Double
8
H+11 6
26
Tk
Time of frame start (since start of GLONASS day), in seconds
Ulong
4
H+12 4
27 P Technological parameter
Ulong
4
H+12 8
28
Ft
User range
Ulong
4
H+13 2
29
age
Age of data, in days
Ulong
4
H+13 6
30
Flags
Information flags,
Ulong
4
H+14 0
31
xxxx
32-bit CRC (ASCII and Binary only)
Ulong
4
H+14 4
32
[CR][LF]
Sentence terminator (ASCII only)
- - -
34 / 49
3.1.16 HEADING
Name
Value
Input
log heading onchanged
Example
<HEADING,COM2,0,0.0,FINESTEERING,1966,206193.000,0000000 0,912,20161214; <SOL_COMPUTED,NARROW_INT,1.134773612,33.758979797,0.0 82313374,0.0,0.000000000,0.000000000,"0000",18,18,18,18,00,23,30, 03*5cb59781
Name
Value
Input
log ionutc onchanged
Example
<IONUTC COM1 0 0.0 FINESTEERING 1943 445738.000 00000000 407 20161214 1.117587089538574e-08 1.490116119384766e-08
-5.960464477539062e-08 -5.960464477539062e-08
8.806400000000000e+04 1.638400000000000e+04
-1.966080000000000e+05 -1.310720000000000e+05 152 1 5
2.7939677238464355e-09 2.664535259e-15 137 7 18 18 0
Function
Ionospheric and UTC data.
Name
Value
This log contains the heading angle from True North of the base to rover vector in a clockwise direction. This log is only supported by BX316 and BX316D boards. Please ensure dual antennas mode is chosen before heading is output, see command antennamode in page 11 for more detail.
Table 48 heading
3.1.17 IONUTC
This log contains the Ionospheric Model parameters (ION) and the Universal Time Coordinated parameters (UTC).
Table 49 IONUTC
3.1.17 LOGLIST
This command lists all the output message.
Table 50 Check logged message types
35 / 49
Input
Log loglist once
Function Example
Check output loggings. <LOGLIST COM1 0 0.0 FINESTEERING 1943 452446.000 00000000 407 20161214 <0003 <COM2 GPGGA ONTIME 1.000000 NOHOLD <COM2 GPGSV ONTIME 1.000000 NOHOLD <COM2 RANGEB ONTIME 1.000000 NOHOLD
3.1.18 MARKTIME
Name
Value
Input
log marktime onnew
Example
<MARK1TIMEA,COM1,0,0.0,FINESTEERING,1965,294881.000,00000000, 906,20161214 <1965,294881.241929,0,0.000000,0.000000,VALID*8a7a5383
Function
Event mark Time output
Name
Value
Input
log passcom1 onnew
Example
<PASSCOM1 COM1 0 0.0 FINESTEERING 1965 282002.000 00000000 906 20161214 <177\xd3\x00\xabC&KC;\xf9\xa2\x00!\xa6HQ@\x00\x00\x00\x00 \x01\x00m\xfe\xdbt\x84\x94T\xa4\xc4\xb4u%%\xf9`\xf4\xdfZvZ\xa3v q\x88qp\xcbP%\x00\x1d\xb2\xd7\xe5c\xcar\x7f,\xfaa\xf3\xef\x0e]\xec| "w\x8a\x0b.\x11HA\x00p?\xf3\x7f\xea\xff\xde\x83\x90^\x0c\xb30\x0
Marktime log contains the time of the leading edge of the detected mark input pulse. MARKTIME/MARK2TIME is generated when a pulse occurs on an event1 input or on an event2 input.
Table 51 Marktime
3.1.19 PASSCOMx
The pass-through logging enables the receiver to redirect any ASCII or binary data, input at a specified port, to any specified receiver port. It allows the receiver to perform bi-directional communications with other devices such as a modem, terminal or another receiver.
This logging can be used at the rover side to save the corrections from the base.
Table 52 PASSCOMx
36 / 49
Function
Pass the received data from a port
Name
Value
Input
log psrdop ontime 60
Example
<PSRDOP COM1 0 0.0 FINESTEERING 1943 447720.000 00000000 407 20161214 <0.0000 0.8906 0.7136 0.0000 0.0000 0.0000 30 3 14 16 22 23 25 26 29 31 32 14 2 22 13 15 5 24 23 3 4 161 162 163 164 166 167 168 169 170 171
Function
Pseudorange DOP
Name
Value
Input
log range ontime 30
Example
log range <RANGE COM1 0 0.0 FINESTEERING 1943 446264.000 00000000 407 20161214 <59 <31 0 20926654.251 0.591 -109970306.033920 0.100 546.984 52.16
2756.000 08105c00 <31 0 20926652.893 0.947 -85691146.728299 0.100 426.195 45.37 2756.000 01305c00 <170 0 37194658.672 0.525 -193682346.192198 0.100 713.652 46.83
2784.000 18145d20 <170 0 37194659.208 0.503 -149767479.753185 0.100 551.807 45.86
2784.000 00345d20
3.1.20 PSRDOP
The DOP (Dilution Of Precision) value is calculated using the geometry of only those satellites currently being tracked and used in the position solution. This log is updated once every 60 seconds.
Table 53 PSRDOP
3.1.21 RANGE
The RANGE log contains the raw measurements for the currently tracked satellites.
Table 54 RANGE
37 / 49
Function
Satellite range information.
ID
Field
Description
Type
Binary Bytes
Offset
1
Range Header
Log Header
H 0 2 #obs
Number of observations with information to follow
ULON G
4
H
3
PRN/slot
Satellite PRN number of range measurement GPS: 1 ~ 32
GLONASS: 1~28(slot, it’s diffrent with
$GPGSV) BDS:161~197
UShort
2
H+4
4
glofreq
(GLONASS Frequency + 7)
UShort
2
H+6
5
psr
Pseudorange measurement (m)
Double
8
H=8
6
psrstd
Pseudorange measurement standard deviation (m)
Float
4
H+16
7
adr
Carrier phase, in cycles (accumulated Doppler range)
Double
8
H+20
8
adrstd
Estimated carrier phase standard deviation (cycles)
Float
4
H+28 9
dopp
Instantaneous carrier Doppler frequency (Hz)
Float
4
H+32
10
C/No
Carrier to noise density ratio C/No = 10[log10(S/N0)] (dB-Hz)
Float
4
H+36 11
locktime
Seconds of continuous tracking(no cycle slipping)
Float
4
H+40
12
ch-tr-stat us
Tracking status(see Table 55 Tracking status)
Float
4
H+44
13. ..
Next PRN offset = H + 4 + (#obs x 44)
xxxx
32-bit crc(ASCII and Binary only)
Hex
4
H+4+ (#obs x
44)
[CR][LF ]
Sentence terminator (ASCII only)
- - ­Nibble
Bit
Mask
Description
Value
N0
0
0x00000001
Tracking state
See Table 56 Tracking State
1
0x00000002
2
0x00000004
3
0x00000008
N1 4 0x00000010
SV channel number
(n-1) (0 = first, n = last) n depends on the
Table 55 Tracking status
38 / 49
5
0x00000020
receiver
6
0x00000040
7
0x00000080
N2
8
0x00000100
9
0x00000200
10
0x00000400
Phase lock flag
0 = Not locked, 1 = Locked
11
0x00000800
Parity known flag
0 = Not known, 1 = Known
N3
12
0x00001000
Code locked flag
0 = Not locked, 1 = Locked
13
0x00002000
Correlator type
See Table 57 Correlator Type
14
0x00004000
15
0x00008000
N4
16
0x00010000
Satellite system
0 = GPS 1 = GLONASS 4 = BEIDOU
17
0x00020000
18
0x00040000
19
0x00080000
N5
20
0x00100000
Grouping
0 = Not grouped, 1 = Grouped
21
0x00200000
Signal type
GPS: 0 = L1C/A 5 = L2P 9 = L2P codeness 14 = L5 Q 17 = L2C
GLONASS 0 = L1 C/A 5 = L2 P
BD2: 0=B1 17 =B2 21 = B3
22
0x00400000
23
0x00800000
N6
24
0x01000000
25
0x02000000
26
0x04000000
Reserved
27
0x08000000
Primary L1 channel
0 = Not primary, 1 = Primary
N7
28
0x10000000
Carrier phase measurement
0 = Half Cycle Not Added 1 = Half Cycle Added
29
0x20000000
Reserved
30
0x40000000
PRN lock flag
0 = PRN Not Locked Out 1 = PRN Locked Out
31
0x80000000
Channel assignment
0 = Automatic 1 = Forced
State
Description
0
Idle 1 Sky Search
2
Wide frequency band pull-in
3
Narrow frequency band pull-in
4
Phase lock loop
6
Channel steering
7
Frequency lock loop
9
Channel alignment
Table 56 Tracking State
39 / 49
10
Code search
11
Aided phase lock loop
State
Description
0
N/A
1
Standard correlator: spacing = 1 chip
2
Narrow Correlator: spacing < 1 chip
3
Reserved
4
Pulse Aperture Correlator (PAC)
5-6
Reserved
Name
Value
Input
log rangecmp ontime 10
Example
log rangecmp <RANGECMP COM1 0 0.0 FINESTEERING 1943 446408.000 00000000 407 20161214 <59 <005c1008a0100230d037fb0923a88771f71f806ae1030000 <005c3001e59b01c0c437fb09ecea1964f71f806a21030000 <205d14187fca02106a72bc110b749674f6aa006e61030000 <205d34007a2802606d72bc113e0cb012f6aa006e41030000
Function
Compressed version of the RANGE log.
ID
Field
Description
Type
Binary Bytes
Offset
1
RANGEC MP header
Log Header
H 0 2 #obs
Number of satellite observations with information to follow
Ulong
4
H
3
1st range record
Compressed range log in format of Table 59 Range Record Format
Hex
24
H+4 4
Next rangecmp offset = H+4 (#obs x 24)
Table 57 Correlator Type
3.1.22 RANGECMP
This log contains the RANGE data in a compressed format.
Table 58 RANGECMP
40 / 49
5
xxxx
32-bit CRC (ASCII and Binary only)
Ulong
4
H+4+ (#obs x 24)
6
[CR][LF]
Sentence terminator (ASCII only)
- - -
Data
Bits first to last
Length(bits)
Scale Factory
Units
Channel Tracking Status
0-31
32 -
Doppler Frequency
32-59
28
1/256
hz
Pseudorange (PSR)
60-95
36
1/128
m
ADR
96-127
32
1/256
cycles
StdDev-PSR(1)
128-131
4
See (2)
m
StdDev-ADR
132-135
4
(n+1)/512
cycles
PRN/Slot(3)
136-143
8 1 -
Lock Time(4)
144-164
21
1/32
s
C/No(5)
165-169
5
(20+n)
dB-Hz
Reserved
170-191
22
Table 59 Range Record Format
1. ADR (Accumulated Doppler Range) is calculated as follows:
ADR_ROLLS = (RANGECMP_PSR / WAVELENGTH + RANGECMP_ADR) /
MAX_VALUE
Round to the closest integer IF (ADR_ROLLS <= 0) ADR_ROLLS = ADR_ROLLS - 0.5 ELSE ADR_ROLLS = ADR_ROLLS + 0.5 At this point integerise ADR_ROLLS CORRECTED_ADR = RANGECMP_ADR - (MAX_VALUE*ADR_ROLLS) where ADR has units of cycles WAVELENGTH = 0.1902936727984 for GPS L1 WAVELENGTH = 0.2442102134246 for GPS L2
MAX_VALUE = 8388608 Note: GLONASS satellites emit L1 and L2 carrier waves at a satellite-specific frequency, refer to the GLONASS section of An Introduction to GNSS
2. Code StdDev-PSR (m)
0 0.050
1 0.075
2 0.113
3 0.169
4 0.253
5 0.380
6 0.570
7 0.854
8 1.281
9 2.375
10 4.750
41 / 49
11 9.500
Message type
Description
1
Differential GPS Corrections
3
GPS Reference Station Parameter (X, Y, Z coordinates in ECEF coordinate system )
18
Uncorrected Carrier phase measurements
19
Uncorrected pseudorange measurements
22
Extended Base Station
24
Reference station Antenna Reference Point Parameter (X, Y, Z coordinates in ECEF coordinate system) with antenna height, which is more precise than message type 3
31
Differential GLONASS Corrections
32
GLONASS Reference Station Parameters (X, Y, Z coordinates in ECEF coordinate system)
1819
Raw Measurements
12 19.000
13 38.000
14 76.000
15 152.000
3. GPS: 1 to 32, GLONASS: 1 to 28,and BDS: 161-197.
4. The Lock Time field of the RANGECMP log is constrained to a maximum value of 2,097,151 which represents a lock time of 65535.96875 s (2097151 ¸ 32).
5. C/No is constrained to a value between 20-51 dB-Hz. Thus, if it is reported that C/No = 20 dB-Hz, the actual value could be less. Likewise, if it is reported that C/No = 51, the true value could be greater.
3.1.23 RTCM messages
RTCM 2.X and RTCM 3.X standard are supported, which is used to deliver the base station information to user side. RTCM defined a set of message types to deliver different information.
3.1.23.1 RTCM2 messages
Below is a list of RTCM version 2.x message types supported by Precis products.
Table 60 Collection of supported RTCM2 message
42 / 49
3.1.23.2 RTCM3 messages
Message type
Flag
Description
1001
B
L1 only GPS RTK observables
1002
R/B
Extended L1-only GPS RTK observables
1003
B
L1&L2 GPS RTK observables
1004
B
Extended L1&L2 GPS RTK observables
1005
R/B
Stationary RTK Reference Station ARP
1006
R/B
Stationary RTK Reference Station ARP with Antenna Height
1009
B
L1 only GLONASS RTK observables
1010
R/B
Extended L1-only GLONASS RTK observables
1011
B
L1&L2 GLONASS RTK observables
1012
R/B
Extended L1&L2 GLONASS RTK observables
1019
R
GPS Ephemerides
1020
R
GLONASS Ephemerides
1071
B
MSM1, GPS Code Measurements
1072
B
MSM2, GPS Phase Measurements
1073
B
MSM3, GPS Code and Phase Measurements
1074
R/B
GPS MSM4, includes pseudorange, carrier phase and C/N0 observation
1075
R/B
GPS MSM5, includes pseudorange, carrier phase, phase rate and C/N0 observation
1076
R/B
MSM6, Extended GPS Code, Phase and CNR Measurements
1077
R/B
MSM7, Extended GPS Code, Phase, CNR and Doppler Measurements
1081
B
MSM1, GLONASS Code Measurements
1082
B
MSM2, GLONASS Phase Measurements
1083
B
MSM3, GLONASS Code and Phase Measurements
1084
R/B
GLONASS MSM4, includes pseudorange, carrier phase and C/N0 observation
1085
R/B
GLONASS MSM5, includes pseudorange, carrier phase, phase rate and C/N0 observation
1087
R/B
MSM7, Extended GLONASS Code, Phase, CNR and Doppler Measurements
1121
B
MSM1, BeiDou Code Measurements
1122
B
MSM2, BeiDou Phase Measurements
1123
B
MSM3, BeiDou Code and Phase Measurements
1124
R/B
MSM4, BeiDou Code, Phase and CNR Measurements
Below is a list of RTCM 3 message types that supported by Precis products. B in flag filed means the message is supported by a base, R means the message is supported by a rover, R/B means the message is supported both by a base and a rover.
Table 61 Collection of supported RTCM3.2 message types
43 / 49
1125
R/B
Beidou MSM5, includes pseudorange, carrier phase, phase rate and C/N0 observation
1126
R/B
MSM6, Extended BeiDou Code, Phase and CNR Measurements
1127
R/B
MSM7, Extended BeiDou Code, Phase, CNR and Doppler Measurements
3.1.24 SATVIS
Name
Value
Input
log satvis ontime 60
Example
log satvis <SATVIS COM1 2 0.0 FINESTEERING 1943 446505.000 00000000 407 20161214 <GPS TRUE TRUE 11 <3 0 18.9 302.8 1007.386 1743.990 <32 0 52.0 137.4 -2125.748 -1389.144 <GLONASS TRUE TRUE 10 <14-7 0 38.4 294.9 975.846 1724.878 <4+6 0 40.7 312.3 2035.114 2784.146 <BEIDOU TRUE TRUE 10 <161 0 49.6 146.3 28.225 758.133 <171 0 10.7 46.0 -1152.683 -422.776
Function
Satellite visibility.
Name
Value
Input
log time ontime 1
Example
<TIME COM1 0 0.0 FINESTEERING 1943 446734.000 00000000 407 20161214
This log contains satellite visibility data for all available constellations with additional satellite information.
Table 62 SATVIS
3.1.25 TIME
This log provides several time related pieces of information including UTC time.
Table 63 Time
44 / 49
<CONVERGING 0 0 0 2017 4 7 4 9 0 INVALID
Function
Time data
3.1.26 TRACKSTAT
Name
Value
Input
log trackstat ontime 1
Example
log TRACKSTAT <TRACKSTAT COM1 0 0.0 FINESTEERING 1943 447377.000 00000000 407 20161214 <SOL_COMPUTED SINGLE 0.0 60 <31 0 08105c00 20985668.535 360.714 51.56 3868.998 0.000 UNKNOW 0.000 <31 0 01305c00 20985667.785 281.019 46.28 3868.998 0.000 UNKNOW 0.000 <170 0 00345d20 37200720.664 529.217 46.07 3896.998 0.000 UNKNOW 0.000
Function
Tracking status.
Name
Value
Input
Log version
Function
Version Information
Example
<VERSION COM1 0 0.0 FINESTEERING 1943 448010.000 00000000 407 20161214 <BX306 G2SB2G2 008001171500000023 0150 20161123 3.0 Sep 5 2017 11:46:57
The TRACKSTAT log contains an entry for each channel. If there are multiple signal channels for one satellite (for example L1, L2 P(Y), L2C, and L5 for GPS), then there will be multiple entries for that satellite. The signal type can be determined from the channel tracking status word.
Table 64 TRACKSTAT
3.1.27 VERSION
This command is used to display the version information of the current board.
Table 65 Display version information
45 / 49
4 RTK Configuration Example
Example of RTK configuration (base mode):
FIX POSITION 31.000302123 114.289244543 26.130 ECUTOFF 15.0 (optional) INTERFACEMODE COM2 AUTO AUTO ON (optional) LOG COM2 RTCM1074 ONTIME 1 LOG COM2 RTCM1084 ONTIME 1 LOG COM2 RTCM1124 ONTIME 1 LOG COM2 RTCM1005 ONTIME 10 SAVECONFIG
Example of RTK configuration (rover mode):
FIX NONE INTERFACEMODE COM2 AUTO AUTO ON LOG GPGGA ONTIME 1 SAVECONF
46 / 49
5 Terminology
Abbreviation
Definition
ASCII
American Standard Code for Information Interchange
CMR
Compact Measurement Record
DC
Direct Current
ESD
Electro Static Discharge
ECEF
Earth Center Earth Fixed
GLONASS
GLObal NAvigation Satellite System
GNSS
Global Navigation Satellite System
GPS
Global Positioning System
IF
Intermediate Frequency
IMU
Inertial Measurement Unit
IO
Input/Output
LED
Light Emitting Diode
LNA
Low Noise Amplifier
MPU
Micro Processing Unit
NMEA
National Marine Electronics Association
PC
Personal Computer
PPS
Pulse Per Second
RF
Radio Frequency
RINEX
Receiver Independent Exchange format
RMS
Root Mean Squares
RTK
Real-Time Kinematic
RTCM
Radio Technical Commission for Maritime Services
SMA
Sub-Miniature-A interface
TTFF
Time to First Fix
TTL
Transistor-Transistor Logic level
UART
Universal Asynchronous Receiver/Transmitter
USB
Universal Serial BUS
WGS84
Word Geodetic System 1984
Table 66 List of terminology
47 / 49
Proprietary Notice All Information in this document is subject to change without notice and does not reflect the commitment on Tersus GNSS. No part of this manual may be reproduced or transmitted by all means without authorization of Tersus GNSS. The software described in this document must be used in terms of the agreement. Any reverse software engineer or modification without permission from Tersus GNSS is not allowed.
48 / 49
Loading...