Terasic TR5 User Manual

www.terasic.com
July 27, 2017
1
www.terasic.com
July 27, 2017
2
CONTENTS
CHAPTER 1
OVERVIEW
........................................................................................................................................ 4
1.1 GENERAL DESCRIPTION ............................................................................................................................................ 4
1.2 KEY FEATURES .......................................................................................................................................................... 4
1.3 BLOCK DIAGRAM ...................................................................................................................................................... 6
CHAPTER 2
BOARD COMPONENTS
.................................................................................................................... 9
2.1 BOARD OVERVIEW .................................................................................................................................................... 9
2.2 CONFIGURATION, STATUS AND SETUP ..................................................................................................................... 11
2.3 GENERAL USER INPUT/OUTPUT .............................................................................................................................. 17
2.4 TEMPERATURE SENSOR, FAN CONTROL AND POWER MONITOR .............................................................................. 21
2.5 CLOCK CIRCUIT ...................................................................................................................................................... 22
2.6 FLASH AND SSRAM MEMORY .............................................................................................................................. 25
2.7 DDR3 SO-DIMM ................................................................................................................................................... 28
2.8 FMC CONNECTORS ................................................................................................................................................. 32
2.9 SATA ...................................................................................................................................................................... 39
2.10 GPIO .................................................................................................................................................................... 40
2.11 PCI EXPRESS ......................................................................................................................................................... 43
CHAPTER 3
SYSTEM BUILDER
......................................................................................................................... 47
3.1 INTRODUCTION ....................................................................................................................................................... 47
3.2 GENERAL DESIGN FLOW ......................................................................................................................................... 48
3.3 USING SYSTEM BUILDER ........................................................................................................................................ 49
CHAPTER 4
FLASH PROGRAMMING
................................................................................................................. 59
4.1 CFI FLASH MEMORY MAP ...................................................................................................................................... 59
4.2 FPGA CONFIGURE OPERATION ............................................................................................................................... 60
4.3 FLASH PROGRAMMING WITH USERS DESIGN .......................................................................................................... 61
4.4 RESTORE FACTORY SETTINGS ................................................................................................................................. 64
CHAPTER 5
PROGRAMMABLE PLL
................................................................................................................... 65
5.1 CONFIGURE CDCM6208 AND LMK04096B IN RTL ............................................................................................... 65
www.terasic.com
July 27, 2017
3
5.2 NIOS II CONTROL FOR PLL/TEMPERATURE/POWER ................................................................................................. 80
CHAPTER 6
EXAMPLES OF ADVANCED DEMONSTRATION
...................................................................... 86
6.1 FLASH AND SSRAM TEST ...................................................................................................................................... 86
6.2 DDR3 SDRAM TEST ............................................................................................................................................. 89
6.3 DDR3 SDRAM TEST BY NIOS II ............................................................................................................................ 92
6.4 FAN SPEED CONTROL .............................................................................................................................................. 95
6.5 UART TO USB CONTROL ....................................................................................................................................... 98
CHAPTER 7
PCI EXPRESS REFERENCE DESIGN
..................................................................................... 103
7.1 PCI EXPRESS SYSTEM INFRASTRUCTURE .............................................................................................................. 103
7.2 PC PCI EXPRESS SOFTWARE SDK ........................................................................................................................ 104
7.3 REFERENCE DESIGN - FUNDAMENTAL ................................................................................................................... 116
7.4 PCIE REFERENCE DESIGN DDR3 ....................................................................................................................... 123
CHAPTER 8
TRANSCEIVER VERIFICATION
................................................................................................ 130
8.1 FUNCTION OF THE TRANSCEIVER TEST CODE ....................................................................................................... 130
8.2 FUNCTION OF THE TRANSCEIVER TEST CODE ....................................................................................................... 130
8.1 TESTING ................................................................................................................................................................ 132
CHAPTER 9
FMC CONNECTORS PIN OUT
.................................................................................................... 135
ADDITIONAL INFORMATION
................................................................................................................................... 162
www.terasic.com
July 27, 2017
4
Chapter 1
Overview
This chapter provides an overview of the TR5 Development Board and installation guide.
1.1 General Description
The Terasic TR5 Stratix V GX FPGA Development Kit provides the ideal hardware solution for designs that demand high capacity and bandwidth interface, ultra-low latency communication, high pin count and power efficiency. With an iPass PCIe gen3 connector, the TR5 is designed for the most demanding high-end applications, empowered with the Altera 28 nm Stratix V GX, delivering the best system-level integration and flexibility in the industry.
The Stratix® V GX FPGA features integrated transceivers that transfer at a maximum of 12.5Gbps, this allows the TR5 to be fully compliant with version 3.0 of the PCI Express standard. Not relying on an external PHY will accelerate mainstream development of network applications enabling customers to deploy designs for a broad range of high-speed connectivity applications. For designs that demand high capacity and high speed for memory and storage, the TR5 delivers with one independent bank of DDR3 SO-DIMM RAM, one ZBT SSRAM, and high-speed parallel flash memory. The feature-set of the TR5 fully supports all high-intensity applications such as ASIC verification, data acquisition, and signal processing.
1.2 Key Features
The following hardware is implemented on the TR5 board:
FPGA
Altera Stratix® V GX FPGA 5SGXEA7N2F45C2 /5SGXEABN3F45I3YY
www.terasic.com
July 27, 2017
5
FPGA Configuration
On-Board USB Blaster II or JTAG header for FPGA programming Fast passive parallel (FPPx16) configuration via MAX II CPLD and flash memory
General user input/output:
4 LEDs 4 push-buttons 4 slide switches
Clock System
50MHz Oscillator CDCM6208 Programmable PLL LMK04096B Programmable PLL SMA connector pairs for differential clock input and output
Memory
DDR3 SO-DIMM SDRAM QDRII+ SRAM FLASH SD Card
Communication Ports
PCI Express (PCIe) x4 iPass connector Serial ATA host and device ports PCI Express (PCIe) x8 edge connector One mini Uart to USB connector
System Monitor and Control
Temperature sensor Fan control Power monitor
Mechanical Specification
4 FPGA Mezzanine Card (FMC) Connectors One 40-pin Expansion Header
www.terasic.com
July 27, 2017
6
Power
12V DC Input
1.3 Block Diagram
94H94HFigure 1-1 shows the block diagram of the TR5 board. To provide maximum flexibility for the users,
all key components are connected with the Stratix V GX FPGA device. Thus, users can configure the FPGA to implement any system design.
Figure 1-1 Block diagram of the TR5 board
Below is more detailed information regarding the blocks in 95H95HFigure 1-1.
Stratix V GX FPGA
5SGXEA7N2F45C2
622K logic elements (LEs) 57.16-Mbits embedded memory
www.terasic.com
July 27, 2017
7
48 transceivers (12.5Gbps) 512 18 x18 multipliers 256 Variable-precision DSP blocks 28 Fractional PLLs and 4DLLs
5SGXEABN3F45I3YY
952K logic elements (LEs) 62.96-Mbits embedded memory 48 transceivers (12.5Gbps) 704 18 x18 multipliers 352 Variable-precision DSP blocks 28 Fractional PLLs and 4DLLs
JTAG Header and FPGA Configuration
On-board USB Blaster II or JTAG header for use with the Quartus II Programmer MAXII CPLD EPM2210 System Controller and Fast Passive Parallel (FPP) configuration
Memory devices
2MB ZBT SSRAM Up to 8GB DDR3 SO-DIMM SDRAM 256MB FLASH
General user I/O
4 user controllable LEDs 4 user push buttons 4 user slide switches
On-Board Clock
www.terasic.com
July 27, 2017
8
50MHz oscillator Programming PLL providing clock for FMC transceivers Programming PLL providing clock for PCIe transceiver Programming PLL providing clocks for DDR3 SDRAM
Two Serial ATA ports
SATA 3.0 standard at 6Gbps signaling rate
Four FMC Connectors
2 HPC (high-pin count) FMC connectors up to 172 x2 Single-end I/O 2 LPC (low-pin count) FMC connectors up to 76 x2 Single-end I/O 10 Transceiver Channels for HPC and 1 Transceiver Channel for LPC FMC VITA 57.1 Compliant Adjustable VADJ: 1.2V/1.5V/1.8V/2.5V/3.0V Don’t support bidirectional LVDS due to Stratix V device only support single directional LVDS
One 40-pin GPIO Expansion Header
36 FPGA I/O pins; 4 power and ground lines I/O standards: 3.3V (with level shift from 2.5V to 3.3V)
External PCI Express x4 iPass Connector
Support for PCIe x4 Gen1/2/3 iPass connector with x4 PCI Express slot
Power Source
DC 12V power adapter
www.terasic.com
July 27, 2017
9
Chapter 2
Board Components
This chapter introduces all the important components on the TR5.
2.1 Board Overview
96H96HFigure 2-1 is the top and bottom view of the TR5 development board. It depicts the layout of the
board and indicates the location of the connectors and key components. Users can refer to this figure for relative location of the connectors and key components.
www.terasic.com
July 27, 2017
10
Figure 2-1 FPGA Board (Top)
www.terasic.com
July 27, 2017
11
Figure 2-2 FPGA Board (Bottom)
2.2 Configuration, Status and Setup
Configure
The FPGA board supports two configuration methods for the Stratix V FPGA:
Configure the FPGA using the on-board USB-Blaster II. Flash memory configuration of the FPGA using stored images from the flash memory on power-
up.
For programming by on-board USB-Blaster II, the following procedures show how to download a configuration bit stream into the Stratix V GX FPGA:
www.terasic.com
July 27, 2017
12
Make sure that power is provided to the FPGA board. Connect your PC to the FPGA board using a mini-USB cable and make sure the USB-Blaster II
driver is installed on PC.
Launch Quartus II programmer and make sure the USB-Blaster II is detected. In Quartus II Programmer, add the configuration bit stream file (.sof), check the associated
Program/Configure item, and click Start to start FPGA programming.
Status LED
The FPGA Board development board includes board-specific status LEDs to indicate board status. Please refer to 97H9HTable 2-1 for the description of the LED indicator.
Table 2-1 Status LED
Board Reference
LED Name
Description
D6
12-V Power
Illuminates when 12-V power is active.
D1
3.3-V Power
Illuminates when 3.3-V power is active.
D21
CONF_DONE
Illuminates when the FPGA is successfully configured. Driven by the MAX II CPLD EPM2210 System Controller.
D22
LOAD
Illuminates when the MAX II CPLD EPM2210 System Controller is actively configuring the FPGA. Driven by the MAX II CPLD EPM2210 System Controller with the Embedded Blaster CPLD.
D23
ERROR
Illuminates when the MAX II CPLD EPM2210 System Controller fails to configure the FPGA. Driven by the MAX II CPLD EPM2210 System Controller.
D24
BOOT_PAGE
Illuminates when FPGA is configured by the factory configuration bit stream.
D12~D20,D33~D35
FMC Voltage Value Indicator
See Section 2.8 FMC Connectors
Setup Configure Mode Control DIP switch
The Configure Mode Control DIP switch (SW5) is provided to specify the configuration mode of the FPGA. As currently only one mode is supported, please set all positions as shown in 99H99HFigure 2-3.
www.terasic.com
July 27, 2017
13
Figure 2-3 4-Position DIP switch for Configure Mode
Select Flash Image for Configuration
The Image Select DIP switch (SW4) is provided to specify the image for configuration of the FPGA. Setting SW4 to high (0) specifies the default factory image to be loaded, setting SW4 to low (1) specifies the TR5 to load a user-defined image, as shown in 101H101HFigure 2-4.
www.terasic.com
July 27, 2017
14
Figure 2-4 2-position DIP switch for Image Select
FMC VCCIO Voltage Setting Header
The I/O voltage of all the four FMC connectors is adjustable within 1.2/1.5/1.8/2.5/3.0V. For example, user can adjust the I/O voltage to 2.5V to support LVDS differential I/O stand. The user can independently control the voltage of FMCA~FMCD through JP5, JP6, JP7 and JP9. As shown in
Figure 2-5, make short circuit onto JP5 pin 7 and pin 8, the status of D12, D13 and D14 will be set
as “ON/OFF/ON” for representing the FMCA VCCIO is 2.5V. Table 2-2, Table 2-3, Table 2-4 and
Table 2-5 lists the voltage settings of the FMCA~FMCD VCCIO and their corresponding LED
display status.
www.terasic.com
July 27, 2017
15
Figure 2-5 FMC A VCCIO Voltage Setting to 2.5V
Table 2-2 FMC A VCCIO Voltage Setting
JP5 Setting
LED Status
FMC A VCCIO Voltage
D12
D13
D14
Short Pin 1 & 2
OFF
OFF
ON
1.2V
Short Pin 3 & 4
OFF
ON
OFF
1.5V
Short Pin 5 & 6
OFF
ON
ON
1.8V
Short Pin 7 & 8
ON
OFF
ON
2.5V(Default)
Short Pin 9 & 10
ON
ON
OFF
3.0V
Table 2-3 FMC B VCCIO Voltage Setting
JP6 Setting
LED Status
FMC B VCCIO Voltage
D15
D16
D17
Short Pin 1 & 2
OFF
OFF
ON
1.2V
Short Pin 3 & 4
OFF
ON
OFF
1.5V
Short Pin 5 & 6
OFF
ON
ON
1.8V
Short Pin 7 & 8
ON
OFF
ON
2.5V(Default)
Short Pin 9 & 10
ON
ON
OFF
3.0V
www.terasic.com
July 27, 2017
16
Table 2-4 FMC C VCCIO Voltage Setting
JP7 Setting
LED Status
FMC C VCCIO Voltage
D18
D19
D20
Short Pin 1 & 2
OFF
OFF
ON
1.2V
Short Pin 3 & 4
OFF
ON
OFF
1.5V
Short Pin 5 & 6
OFF
ON
ON
1.8V
Short Pin 7 & 8
ON
OFF
ON
2.5V(Default)
Short Pin 9 & 10
ON
ON
OFF
3.0V
Table 2-5 FMC D VCCIO Voltage Setting
JP9 Setting
LED Status
FMC D VCCIO Voltage
D33
D34
D35
Short Pin 1 & 2
OFF
OFF
ON
1.2V
Short Pin 3 & 4
OFF
ON
OFF
1.5V
Short Pin 5 & 6
OFF
ON
ON
1.8V
Short Pin 7 & 8
ON
OFF
ON
2.5V(Default)
Short Pin 9 & 10
ON
ON
OFF
3.0V
FMC JTAG Header
The TR5 supports individual JTAG interfaces on each FMC connector. This feature allows users to extend the JTAG chain to FMC daughter cards. The JTAG signals on each FMC connector can be removed or included in the active JTAG chain via 3-Pin header (See Figure 2-6). Table 2-6 lists the setting of the headers and their associated interfaces. Note that if the JTAG interface on FMC connector is enabled, make sure that the active JTAG chain must be a closed loop or the FPGA may not be detected.
www.terasic.com
July 27, 2017
17
Figure 2-6 FMCC JTAG Header
Table 2-6 FMC JTAG Header Setting
Headers
Setting
Description
JP1
Short Pin 1 & 2
Disable FMCA JTAG
Short Pin 2 & 3
Enable FMCA JTAG
JP2
Short Pin 1 & 2
Disable FMCD JTAG
Short Pin 2 & 3
Enable FMCD JTAG
JP3
Short Pin 1 & 2
Disable FMCB JTAG
Short Pin 2 & 3
Enable FMCB JTAG
JP4
Short Pin 1 & 2
Disable FMCC JTAG
Short Pin 2 & 3
Enable FMCC JTAG
2.3 General User Input/Output
This section describes the user I/O interface to the FPGA.
User Defined Push-buttons
The FPGA board includes four user defined push-buttons that allow users to interact with the Stratix V GX device. Each push-button provides a high logic level or a low logic level when it is not pressed
www.terasic.com
July 27, 2017
18
or pressed, respectively. 102H102HTable 2-7 lists the board references, signal names and their corresponding Stratix V GX device pin numbers.
Table 2-7 Push-button Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
BUTTON0
BUTTON0
High Logic Level when the button is not pressed
1.5-V
PIN_BC7
BUTTON1
BUTTON1
1.5-V
PIN_BD7
BUTTON 2
BUTTON2
1.5-V
PIN_BB8
BUTTON 3
BUTTON3
1.5-V
PIN_BB9
User-Defined Slide Switch
There are four slide switches on the FPGA board to provide additional FPGA input control. When a slide switch is in the DOWN position or the UPPER position, it provides a low logic level or a high logic level to the Stratix V GX FPGA. The down position provides a low logic level and the upper position provides a high logic level.
104H104HTable 2-8 lists the signal names and their corresponding Stratix V GX device pin numbers.
Table 2-8 Slide Switch Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SW0
SW0
High logic level when SW in the UPPER position.
1.5-V
PIN_AT9
SW1
SW1
1.5-V
PIN_AU8
SW2
SW2
1.5-V
PIN_AK9
SW3
SW3
1.5-V
PIN_AL9
User-Defined LEDs
The FPGA board consists of four user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Stratix V GX device. Each LED is driven directly by the Stratix V GX FPGA. The LEDs are turned on or off when the associated pins are driven to a low or high logic level, respectively. A list of the pin names on the FPGA that are connected to the LEDs is given in 105H105HTable 2-9.
www.terasic.com
July 27, 2017
19
Table 2-9 User LEDs Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
LED0
LED0
Driving a logic 0 on the I/O port turns the LED ON. Driving a logic 1 on the I/O port turns the LED OFF.
1.5-V
PIN_AT32
LED1
LED1
1.5-V
PIN_BA31
LED2
LED2
1.5-V
PIN_AN27
LED3
LED3
1.5-V
PIN_AH27
UART-To-USB
The UART is designed to perform communication between the board and the PC, allowing a
transmission speed of up to 3Mbps. This interface wouldn’t support HW flow control signals. The
physical interface is done using UART-USB on-board bridge from a FT232R chip and connects to the host using a USB Type-B connector. For detailed information on how to use the transceiver, please
refer to the datasheet, which is available on the manufacturer’s website, or under the
Datasheets\FT232 folder on the Kit System CD. Figure 2-7 shows the related schematics, and Table
2-10 lists the UART pin assignments, signal names and functions.
Figure 2-7 Connection between UART-To-USB and Stratix V GX FPGA
Table 2-10 UART-To-USB Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
UART_TX
UART_TX
Uart TX output from FPGA
1.2/1.5/1.8/2.5/3.0-
PIN_T26
www.terasic.com
July 27, 2017
20
V
UART_RX
UART_RX
Uart RX input to FPGA
1.2/1.5/1.8/2.5/3.0­V
PIN_T25
Micro SD-Card
The development board supports Micro SD card interface using 4 data lines. Figure 2-8 shows the related signals connections between the SD Card and Stratix V GX FPGA. Table 2-11 lists all the associated pins
Figure 2-8 Connection between the SD Card Socket and Stratix V GX FPGA
Table 2-11 Micro SD Card Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SD_CLK
Serial Clock
1.5-V
PIN_BB39
SD_CMD
Command, Response
1.5-V
PIN_BA36
SD_DAT0
Serial Data 0
1.5-V
PIN_AV37
SD_DAT1
Serial Data 1
1.5-V
PIN_AY37
www.terasic.com
July 27, 2017
21
SD_DAT2
Serial Data 2
1.5-V
PIN_BB36
SD_DAT3
Serial Data 3
1.5-V
PIN_AW37
2.4 Temperature Sensor, Fan Control and Power
Monitor
The FPGA board is equipped with a temperature sensor, MAX1619, which provides temperature sensing and over-temperature alert. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Stratix V GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a two-wire SMBus, which is connected to the Stratix V GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to ‘0011000b’.
A 3-pin +12V fan located on J12 of the FPGA board is intended to reduce the temperature of the FPGA. The board is equipped with a Fan-Speed regulator and monitor MAX6650 with an I2C/SMBus interfaces, Users regulate and monitor the speed of fan depending on the measured system temperature.
The TR5 has implemented a power monitor chip to monitor the board input power voltage and current.
Figure 2-9 shows the connection between the power monitor chip and the Stratix V GX FPGA. The
power monitor chip monitors both shunt voltage drops and board input power voltage allows user to monitor the total board power consumption. Programmable calibration value, conversion times, and averaging, combined with an internal multiplier, enable direct readouts of current in amperes and power in watts. Note that, the temperature sensor, fan control and power monitor share the same I2C/SMBUS.
www.terasic.com
July 27, 2017
22
Figure 2-9 Connections between the temperature sensor/fan control/power monitor and the
Stratix V GX FPGA
Table 2-12 Temperature Sensor and Fan Speed Control Pin Assignments, Schematic Signal
Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
TEMPDIODEp
Positive pin of temperature diode in Stratix V
-
PIN_P6
TEMPDIODEn
Negative pin of temperature diode in Stratix V
-
PIN_P7 FPGA_I2C_SCL
SMBus clock
1.5-V
PIN_AN11
FPGA_I2C_SDA
SMBus data
1.5-V
PIN_AP9
TEMP_OVERT_n
SMBus alert (interrupt)
1.5-V
PIN_AR9
TEMP_INT_n
SMBus alert (interrupt)
1.5-V
PIN_AT8
POWER_MONITOR_ALERT
Active-high ALERT input
1.5-V
PIN_AY9
FAN_ALERT_n
Active-low ALERT input
1.5-V
PIN_AM11
2.5 Clock Circuit
The development board includes one 50 MHz and two programmable clock generators. Figure 2-10 shows the default frequencies of on-board all external clocks going to the Stratix V GX FPGA.
www.terasic.com
July 27, 2017
23
Figure 2-10 Clock circuit of the FPGA Board
A clock buffer is used to duplicate the 50 MHz oscillator, so there are seven 50MHz clocks fed into seven different FPGA banks. The two programming clock generators are low-jitter oscillators which are used to provide special and high quality clock signals for high-speed transceivers and high bandwidth memory. Through I2C serial interface, the clock generator controllers in the Stratix V GX FPGA can be used to program the CDCM6208 and LMK04096B to generate PCIe, SATA and high bandwidth memory reference clocks respectively. Two SMA connectors and Four FMC connectors provide external differential clock input(s) and clock output(s) respectively.
112H112HTable 2-9 lists the clock source, signal names, default frequency and their corresponding Stratix V
GX device pin numbers.
Table 2-9 Clock Source, Signal Name, Default Frequency, Pin Assignments and Functions
Source
Schematic Signal Name
Default Frequency
I/O Standard
Stratix V GX Pin Number
Application
Y1
CLK_50_B3B
50.0 MHz
1.5-V
PIN_AW35
CLK_50_B4A
1.5-V
PIN_AP10
CLK_50_B4D
1.2/1.5/1.8/2.5/3.0­V
PIN_AY18
CLK_50_B7A
1.2/1.5/1.8/2.5/3.0­V
PIN_M8
www.terasic.com
July 27, 2017
24
CLK_50_B7D
1.2/1.5/1.8/2.5/3.0­V
PIN_J18
CLK_50_B8A
1.2/1.5/1.8/2.5/3.0­V
PIN_R36
CLK_50_B8D
1.2/1.5/1.8/2.5/3.0­V
PIN_R25
J3
SMA_CLKIN_p
User Defined
1.5-V
PIN_BC8
External Clock Input
J4
SMA_CLKIN_n
User Defined
1.5-V
PIN_BD8
Clock Output
J1
SMA_CLKOUT_p
User Defined
1.5-V
PIN_AV8
J2
SMA_CLKOUT_n
User Defined
1.5-V
PIN_AW9
U21
FMCA_ONBOARD_REFCLK_p0
125 MHz
LVDS
PIN_Y38
FMCA port xcvr reference clock
FMCD_ONBOARD_REFCLK_p0
125 MHz
LVDS
PIN_Y7
FMCD port xcvr reference clock
PCIE_ONBOARD_REFCLK_p
100 MHz
LVDS
PIN_AH39
PCIe reference clock
SATA_DEVICE_REFCLK_p
150 MHz
LVDS
PIN_AK7
SATA Device reference clock
SATA_HOST_REFCLK_p
150 MHz
PIN_BB33
SATA Host reference clock
DDR3_REFCLK_p
133.333 MHz
DDR3 reference clock
U43
FMCA_ONBOARD_REFCLK_p1
644.53125 MHz
LVDS
PIN_T38
FMCA port xcvr reference clock
FMCD_ONBOARD_REFCLK_p1
644.53125 MHz
LVDS
PIN_T7
FMCD port xcvr reference clock
FMCC_ONBOARD_REFCLK_p0
644.53125 MHz
LVDS
PIN_AD39
FMCB port xcvr reference clock
FMCC_ONBOARD_REFCLK_p1
644.53125 MHz
LVDS
PIN_AD6
FMCC port xcvr reference clock
113H113HTable 2-10 lists the programmable oscillator control pins, signal names, I/O standard and their
corresponding Stratix V GX device pin numbers.
Table 2-10 Programmable oscillator control pin, Signal Name, I/O standard, Pin
Assignments and Descriptions
www.terasic.com
July 27, 2017
25
Programmable Oscillator
Schematic Signal Name
I/O Standard
Stratix V GX Pin Number
Description
CDCM6208 (U21)
CLOCK_SCL
2.5-V
PIN_AR25
I2C bus, connected with CDCM6208
CLOCK_SDA
2.5-V
PIN_BC25
LMK04906B (U43)
LMK04906_CLK
2.5-V
PIN_AT24
I2C bus master output only, connected with LMK04096B
LMK04906_DATAIN
2.5-V
PIN_BD25
LMK04906_DATAOUT
1.5-V
PIN_BC29
I2C bus master input signal
LMK04906_LE
1.5-V
PIN_AT33
LMK04096B PLL locked signal
2.6 FLASH and SSRAM Memory
The development board has a 1G bit CFI-compatible synchronous flash device for non-volatile storage of FPGA configuration data, user application data, and user code space, and a 2M byte ZBT SSRAM for data Cache.
The flash has a 16-bit data bus and allow for FPP x16 configuration. This device is part of the shared flash and MAX (FM) bus, which connects to the flash memory and MAX II CPLD (EPM2210) System Controller. The SSRAM also has a 16-bit data bus and share address and data bus with the flash. 1Figure 2-11 shows the connections between the Flash, SSRAM, MAX and Stratix V GX FPGA.
www.terasic.com
July 27, 2017
26
Figure 2-11 Connection between the Flash, Max and Stratix V GX FPGA
117H117HTable 2-11 lists the flash pin assignments, signal names, and functions.
Table 2-13 Flash Memory Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
FSM_A1
Address bus
2.5V
PIN_AE11
FSM_A2
Address bus
2.5V
PIN_AD14
FSM_A3
Address bus
2.5V
PIN_AE14
FSM_A4
Address bus
2.5V
PIN_AE10
FSM_A5
Address bus
2.5V
PIN_AF10
FSM_A6
Address bus
2.5V
PIN_AE12
FSM_A7
Address bus
2.5V
PIN_AF11
FSM_A8
Address bus
2.5V
PIN_AG13
FSM_A9
Address bus
2.5V
PIN_AJ10
FSM_A10
Address bus
2.5V
PIN_AF13
FSM_A11
Address bus
2.5V
PIN_AE13
FSM_A12
Address bus
2.5V
PIN_AJ11
FSM_A13
Address bus
2.5V
PIN_BD11
FSM_A14
Address bus
2.5V
PIN_AW10
FSM_A15
Address bus
2.5V
PIN_AF14
www.terasic.com
July 27, 2017
27
FSM_A16
Address bus
2.5V
PIN_AY12
FSM_A17
Address bus
2.5V
PIN_AY10
FSM_A18
Address bus
2.5V
PIN_BD10
FSM_A19
Address bus
2.5V
PIN_BB12
FSM_A20
Address bus
2.5V
PIN_BA12
FSM_A21
Address bus
2.5V
PIN_BA10
FSM_A22
Address bus
2.5V
PIN_BC11
FSM_A23
Address bus
2.5V
PIN_AE9
FSM_A24
Address bus
2.5V
PIN_AW11
FSM_A25
Address bus
2.5V
PIN_BC10
FSM_A26
Address bus
2.5V
PIN_BB11
FSM_D0
Data bus
2.5V
PIN_AG10
FSM_D1
Data bus
2.5V
PIN_AH10
FSM_D2
Data bus
2.5V
PIN_AG11
FSM_D3
Data bus
2.5V
PIN_AK12
FSM_D4
Data bus
2.5V
PIN_AV10
FSM_D5
Data bus
2.5V
PIN_AR12
FSM_D6
Data bus
2.5V
PIN_AL12
FSM_D7
Data bus
2.5V
PIN_AR13
FSM_D8
Data bus
2.5V
PIN_AG9
FSM_D9
Data bus
2.5V
PIN_AH12
FSM_D10
Data bus
2.5V
PIN_AG12
FSM_D11
Data bus
2.5V
PIN_AL11
FSM_D12
Data bus
2.5V
PIN_AN12
FSM_D13
Data bus
2.5V
PIN_AU9
FSM_D14
Data bus
2.5V
PIN_AM13
FSM_D15
Data bus
2.5V
PIN_AJ12
FLASH_CLK
Flash Clock
2.5V
PIN_AU11
FLASH_RESET_n
Flash Reset, active low
2.5V
PIN_AV25
FLASH_CE_n
Flash Chip enable,active low
2.5V
PIN_AU24
FLASH_OE_n
Flash Output enable, active low
2.5V
PIN_AP12 FLASH_WE_n
Flash Write enable, active low
2.5V
PIN_AT12
FLASH_ADV_n
Flash Address valid, active low
2.5V
PIN_BD26 FLASH_RDY_BSY_n
Flash ready output
2.5V
PIN_AU25
SSRAM_CLK
SSRAM Clock
2.5V
PIN_AP13
SSRAM_CKE_n
SSRAM Clock enable, active low
2.5V
PIN_AW24
SSRAM_CE_n
SSRAM Chip enable, active low
2.5V
PIN_AP24
www.terasic.com
July 27, 2017
28
SSRAM_WE_n
Flash Write enable, active low
2.5V
PIN_AV11
SSRAM_OE_n
Flash output enable, active low
2.5V
PIN_AU10
SSRAM_ADV
Flash Address valid, active high
2.5V
PIN_BC26 SSRAM_BWA_n
SSRAM Byte Write enable
2.5V
PIN_AY25
SSRAM_BWB_n
SSRAM Byte Write enable
2.5V
PIN_BA24
FLASH_CLK
Clock
2.5V
PIN_T9
FLASH_RESET_n
Reset
2.5V
PIN_C17
FLASH_CE_n
Chip enable of of flash-0
2.5V
PIN_H10
Chip enable of of flash-1
2.5V
PIN_N16
FLASH_OE_n
Output enable
2.5V
PIN_C16
FLASH_WE_n
Write enable
2.5V
PIN_U10
FLASH_ADV_n
Address valid
2.5V
PIN_H7
FLASH_RDY_BSY_n
Ready of flash-0
2.5V
PIN_J8
2.7 DDR3 SO-DIMM
The development board supports DDR3 SDRAM SO-DIMM. The DDR3 SODIMM socket is wired to support a maximum capacity of 8GB with a 64-bit data bus. Using differential DQS signaling for the DDR3 SDRAM interfaces, it is capable of running at up to 800MHz memory clock for a maximum theoretical bandwidth up to 95.4Gbps. Figure 2-12 shows the connections between the DDR3 SDRAM SO-DIMMs and Stratix V GX FPGA.
www.terasic.com
July 27, 2017
29
Figure 2-12 Connection between the DDR3 and Stratix V GX FPGA
The pin assignments for DDR3 SDRAM SO-DIMM are listed in Table 2-14.
Table 2-14 DDR3 Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
DDR3_DQ0
Data [0]
SSTL-15 Class I
PIN_AH31
DDR3_DQ1
Data [1]
SSTL-15 Class I
PIN_AJ31
DDR3_DQ2
Data [2]
SSTL-15 Class I
PIN_AN30
DDR3_DQ3
Data [3]
SSTL-15 Class I
PIN_AP30
DDR3_DQ4
Data [4]
SSTL-15 Class I
PIN_AH30
DDR3_DQ5
Data [5]
SSTL-15 Class I
PIN_AJ30
DDR3_DQ6
Data [6]
SSTL-15 Class I
PIN_AR30
DDR3_DQ7
Data [7]
SSTL-15 Class I
PIN_AT30
DDR3_DQ8
Data [8]
SSTL-15 Class I
PIN_AM29
DDR3_DQ9
Data [9]
SSTL-15 Class I
PIN_AN28
DDR3_DQ10
Data [10]
SSTL-15 Class I
PIN_AP28
www.terasic.com
July 27, 2017
30
DDR3_DQ11
Data [11]
SSTL-15 Class I
PIN_AR29
DDR3_DQ12
Data [12]
SSTL-15 Class I
PIN_AU31
DDR3_DQ13
Data [13]
SSTL-15 Class I
PIN_AV32
DDR3_DQ14
Data [14]
SSTL-15 Class I
PIN_AW32
DDR3_DQ15
Data [15]
SSTL-15 Class I
PIN_AV31
DDR3_DQ16
Data [16]
SSTL-15 Class I
PIN_AF28
DDR3_DQ17
Data [17]
SSTL-15 Class I
PIN_AF29
DDR3_DQ18
Data [18]
SSTL-15 Class I
PIN_AG30
DDR3_DQ19
Data [19]
SSTL-15 Class I
PIN_AG29
DDR3_DQ20
Data [20]
SSTL-15 Class I
PIN_AG28
DDR3_DQ21
Data [21]
SSTL-15 Class I
PIN_AG27
DDR3_DQ22
Data [22]
SSTL-15 Class I
PIN_AG26
DDR3_DQ23
Data [23]
SSTL-15 Class I
PIN_AG25
DDR3_DQ24
Data [24]
SSTL-15 Class I
PIN_BC31
DDR3_DQ25
Data [25]
SSTL-15 Class I
PIN_BC32
DDR3_DQ26
Data [26]
SSTL-15 Class I
PIN_BB30
DDR3_DQ27
Data [27]
SSTL-15 Class I
PIN_BD31
DDR3_DQ28
Data [28]
SSTL-15 Class I
PIN_BD32
DDR3_DQ29
Data [29]
SSTL-15 Class I
PIN_BA30
DDR3_DQ30
Data [30]
SSTL-15 Class I
PIN_AY31
DDR3_DQ31
Data [31]
SSTL-15 Class I
PIN_AW30
DDR3_DQ32
Data [32]
SSTL-15 Class I
PIN_BB29
DDR3_DQ33
Data [33]
SSTL-15 Class I
PIN_BB27
DDR3_DQ34
Data [34]
SSTL-15 Class I
PIN_BA27
DDR3_DQ35
Data [35]
SSTL-15 Class I
PIN_AW27
DDR3_DQ36
Data [36]
SSTL-15 Class I
PIN_AY28
DDR3_DQ37
Data [37]
SSTL-15 Class I
PIN_BA28
DDR3_DQ38
Data [38]
SSTL-15 Class I
PIN_AW29
DDR3_DQ39
Data [39]
SSTL-15 Class I
PIN_AY27
DDR3_DQ40
Data [40]
SSTL-15 Class I
PIN_AT27
DDR3_DQ41
Data [41]
SSTL-15 Class I
PIN_AN25
DDR3_DQ42
Data [42]
SSTL-15 Class I
PIN_AM25
DDR3_DQ43
Data [43]
SSTL-15 Class I
PIN_AL25
DDR3_DQ44
Data [44]
SSTL-15 Class I
PIN_AW26
DDR3_DQ45
Data [45]
SSTL-15 Class I
PIN_AV26
DDR3_DQ46
Data [46]
SSTL-15 Class I
PIN_AU27
DDR3_DQ47
Data [47]
SSTL-15 Class I
PIN_AM26
DDR3_DQ48
Data [48]
SSTL-15 Class I
PIN_AU28
DDR3_DQ49
Data [49]
SSTL-15 Class I
PIN_AU29
DDR3_DQ50
Data [50]
SSTL-15 Class I
PIN_AM28
DDR3_DQ51
Data [51]
SSTL-15 Class I
PIN_AL27
Loading...
+ 133 hidden pages