Terasic DE5-Net User Manual

DE5-Net User Manual
www.terasic.com
August 4, 2017
1
DE5-Net User Manual
www.terasic.com
August 4, 2017
2
CONTENTS
CHAPTER 1
OVERVIEW
........................................................................................................................................ 4
1.1 GENERAL DESCRIPTION ............................................................................................................................................ 4
1.2 KEY FEATURES .......................................................................................................................................................... 5
1.3 BLOCK DIAGRAM ...................................................................................................................................................... 6
CHAPTER 2
BOARD COMPONENTS
.................................................................................................................. 10
2.1 BOARD OVERVIEW .................................................................................................................................................. 10
2.2 CONFIGURATION, STATUS AND SETUP ..................................................................................................................... 11
2.3 GENERAL USER INPUT/OUTPUT .............................................................................................................................. 14
2.4 TEMPERATURE SENSOR AND FAN CONTROL ............................................................................................................ 17
2.5 CLOCK CIRCUIT ...................................................................................................................................................... 18
2.6 RS-422 SERIAL PORT ................................ ................................ ................................................................ .............. 21
2.7 FLASH MEMORY ................................................................................................................................................... 22
2.8 DDR3 SO-DIMM ................................................................................................................................................... 25
2.9 QDRII+ SRAM ...................................................................................................................................................... 32
2.10 SPF+ PORTS .......................................................................................................................................................... 39
2.11 PCI EXPRESS ......................................................................................................................................................... 42
2.12 SATA ................................ ................................................................ ................................ .................................... 44
CHAPTER 3
SYSTEM BUILDER
......................................................................................................................... 48
3.1 INTRODUCTION ....................................................................................................................................................... 48
3.2 GENERAL DESIGN FLOW ......................................................................................................................................... 49
3.3 USING SYSTEM BUILDER ........................................................................................................................................ 50
CHAPTER 4
FLASH PROGRAMMING
................................................................................................................. 57
4.1 CFI FLASH MEMORY MAP ...................................................................................................................................... 57
4.2 FPGA CONFIGURE OPERATION ............................................................................................................................... 58
4.3 FLASH PROGRAMMING WITH USERS DESIGN .......................................................................................................... 58
4.4 RESTORE FACTORY SETTINGS ................................................................................................................................. 60
CHAPTER 5
PROGRAMMABLE OSCILLATOR
................................................................................................. 62
5.1 OVERVIEW .............................................................................................................................................................. 62
5.2 SI570 EXAMPLE BY RTL ......................................................................................................................................... 66
DE5-Net User Manual
www.terasic.com
August 4, 2017
3
5.3 SI570 AND CDCM PROGRAMMING BY NIOS II ........................................................................................................ 73
CHAPTER 6
MEMORY REFERENCE DESIGN
.................................................................................................. 78
6.1 QDRII+ SRAM TEST ............................................................................................................................................. 78
6.2 DDR3 SDRAM TEST ............................................................................................................................................. 81
6.3 DDR3 SDRAM TEST BY NIOS II ............................................................................................................................ 83
CHAPTER 7
PCI EXPRESS REFERENCE DESIGN
....................................................................................... 87
7.1 PCI EXPRESS SYSTEM INFRASTRUCTURE ................................................................................................................ 87
7.2 FPGA PCI EXPRESS SYSTEM DESIGN ..................................................................................................................... 88
7.3 PC PCI EXPRESS SYSTEM DESIGN .......................................................................................................................... 93
7.4 FUNDAMENTAL COMMUNICATION ......................................................................................................................... 105
7.5 EXAMPLE 2: IMAGE PROCESS APPLICATION .......................................................................................................... 110
CHAPTER 8
TRANSCEIVER VERIFICATION
.................................................................................................. 115
8.1 TEST CODE ............................................................................................................................................................ 115
8.2 LOOPBACK FIXTURE ............................................................................................................................................. 115
8.3 TESTING ................................................................................................................................................................ 117
ADDITIONAL INFORMATION
................................................................................................................................... 119
DE5-Net User Manual
www.terasic.com
August 4, 2017
4
Chapter 1
Overview
This chapter provides an overview of the DE5-Net Development Board and installation guide.
11..1
1
GGeenneerraall DDeessccrriippttiioonn
The Terasic DE5-Net Stratix V GX FPGA Development Kit provides the ideal hardware solution for designs that demand high capacity and bandwidth memory interfacing, ultra-low latency communication, and power efficiency. With a full-height, 3/4-length form-factor package, the DE5-Net is designed for the most demanding high-end applications, empowered with the top-of-the-line Altera Stratix V GX, delivering the best system-level integration and flexibility in the industry.
The Stratix® V GX FPGA features integrated transceivers that transfer at a maximum of 12.5 Gbps, allowing the DE5-Net to be fully compliant with version 3.0 of the PCI Express standard, as well as allowing an ultra low-latency, straight connections to four external 10G SFP+ modules. Not relying on an external PHY will accelerate mainstream development of network applications enabling customers to deploy designs for a broad range of high-speed connectivity applications. For designs that demand high capacity and high speed for memory and storage, the DE5-Net delivers with two independent banks of DDR3 SO-DIMM RAM, four independent banks of QDRII+ SRAM, high-speed parallel flash memory, and four SATA ports. The feature-set of the DE5-Net fully supports all high-intensity applications such as low-latency trading, cloud computing, high-performance computing, data acquisition, network processing, and signal processing.
DE5-Net User Manual
www.terasic.com
August 4, 2017
5
11..2
2
KKeeyy FFeeaattuurreess
The following hardware is implemented on the DE5-Net board:
FPGA
Altera Stratix® V GX FPGA (5SGXEA7N2F45C2)
FPGA Configuration
On-Board USB Blaster II or JTAG header for FPGA programming Fast passive parallel (FPPx32) configuration via MAX II CPLD and flash memory
General user input/output:
10 LEDs 4 push-buttons 4 slide switches 2 seven-segment displays
Clock System
50MHz Oscillator Programmable oscillators Si570, CDCM61001 and CDCM61004 One SMA connector for external clock input One SMA connector for clock output
Memory
DDR3 SO-DIMM SDRAM QDRII+ SRAM FLASH
Communication Ports
Four SFP+ connectors Two Serial ATA host ports Two Serial ATA device ports PCI Express (PCIe) x8 edge connector One RS422 transceiver with RJ45 connector
DE5-Net User Manual
www.terasic.com
August 4, 2017
6
System Monitor and Control
Temperature sensor Fan control
Power
PCI Express 6-pin power connector, 12V DC Input PCI Express edge connector power
Mechanical Specification
PCI Express full-height and 3/4-length
11..3
3
BBlloocckk DDiiaaggrraamm
94H94HFigure 1-1 shows the block diagram of the DE5-Net board. To provide maximum flexibility for the
users, all key components are connected with the Stratix V GX FPGA device. Thus, users can configure the FPGA to implement any system design.
DE5-Net User Manual
www.terasic.com
August 4, 2017
7
Figure 1-1 Block diagram of the DE5-Net board
Below is more detailed information regarding the blocks in Figure 1-1.
Stratix V GX FPGA
5SGXEA7N2F45C2 622,000 logic elements (LEs) 50-Mbits embedded memory 48 transceivers (12.5Gbps) 512 18-bit x 18-bit multipliers 256 27-bit x 27-bit DSP blocks
DE5-Net User Manual
www.terasic.com
August 4, 2017
8
2 PCI Express hard IP blocks 840 user I/Os 210 full-duplex LVDS channels 28 phase locked loops (PLLs)
JTAG Header and FPGA Configuration
On-board USB Blaster II or JTAG header for use with the Quartus II Programmer MAXII CPLD EPM2210 System Controller and Fast Passive Parallel (FPP) configuration
Memory devices
32MB QDRII+ SRAM Up to 8GB DDR3 SO-DIMM SDRAM 256MB FLASH
General user I/O
10 user controllable LEDs 4 user push buttons 4 user slide switches 2 seven-segment displays
On-Board Clock
50MHz oscillator Programming PLL providing clock for 10G SFP+ transceiver Programming PLL providing clock for SATA or 1G SFP+ transceiver
Four Serial ATA ports
SATA 3.0 standard at 6Gbps signaling rate
DE5-Net User Manual
www.terasic.com
August 4, 2017
9
Four SFP+ ports
Four SFP+ connector (10 Gbps+)
PCI Express x8 edge connector
Support for PCIe Gen1/2/3 Edge connector for PC motherboard with x8 or x16 PCI Express slot
Power Source
PCI Express 6-pin DC 12V power PCI Express edge connector power
10
Chapter 2
Board Components
This chapter introduces all the important components on the DE5-Net.
22..1
1
BBooaarrdd OOvveerrvviieeww
Figure 2-1 is the top and bottom view of the DE5-Net development board. It depicts the layout of
the board and indicates the location of the connectors and key components. Users can refer to this figure for relative location of the connectors and key components.
Figure 2-1 FPGA Board (Top)
DE5-Net User Manual
www.terasic.com
August 4, 2017
11
Figure 2-2 FPGA Board (Bottom)
22..2
2
CCoonnffiigguurraattiioonn,, SSttaattuuss aanndd SSeettuupp
Configure
The FPGA board supports two configuration methods for the Stratix V FPGA:
Configure the FPGA using the on-board USB-Blaster II. Flash memory configuration of the FPGA using stored images from the flash memory on
power-up.
For programming by on-board USB-Blaster II, the following procedures show how to download a configuration bit stream into the Stratix V GX FPGA:
Make sure that power is provided to the FPGA board Connect your PC to the FPGA board using a mini-USB cable and make sure the USB-Blaster
II driver is installed on PC.
Launch Quartus II programmer and make sure the USB-Blaster II is detected. In Quartus II Programmer, add the configuration bit stream file (.sof), check the associated
Program/Configure item, and click Start to start FPGA programming.
DE5-Net User Manual
www.terasic.com
August 4, 2017
12
Status LED
The FPGA Board development board includes board-specific status LEDs to indicate board status. Please refer to Table 2-1 for the description of the LED indicator.
Table 2-1 Status LED
Board Reference
LED Name
Description
D2
12-V Power
Illuminates when 12-V power is active.
D1
3.3-V Power
Illuminates when 3.3-V power is active.
D15
CONF DONE
Illuminates when the FPGA is successfully configured. Driven by the MAX II CPLD EPM2210 System Controller.
D16
Loading
Illuminates when the MAX II CPLD EPM2210 System Controller is actively configuring the FPGA. Driven by the MAX II CPLD EPM2210 System Controller with the Embedded Blaster CPLD.
D17
Error
Illuminates when the MAX II CPLD EPM2210 System Controller fails to configure the FPGA. Driven by the MAX II CPLD EPM2210 System Controller.
D18
PAGE
Illuminates when FPGA is configured by the factory configuration bit stream.
Setup PCI Express Control DIP switch
The PCI Express Control DIP switch (SW7) is provided to enable or disable different configurations of the PCIe Connector. Table 2-2 lists the switch controls and description.
Table 2-2 SW3 PCIe Control DIP Switch
Board Reference
Signal Name
Description
Default
SW7.1
PCIE_PRSNT2n_x1
On : Enable x1 presence detect Off: Disable x1 presence detect
Off
SW7.2
PCIE_PRSNT2n_x4
On : Enable x4 presence detect Off: Disable x4 presence detect
Off
SW7.3
PCIE_PRSNT2n_x8
On : Enable x8 presence detect Off: Disable x8 presence detect
On
DE5-Net User Manual
www.terasic.com
August 4, 2017
13
Setup Configure Mode Control DIP switch
The Configure Mode Control DIP switch (SW6) is provided to specify the configuration mode of the FPGA. As currently only one mode is supported, please set all positions as shown in 9Figure 2-3.
Figure 2-3 6-Position DIP switch for Configure Mode
Select Flash Image for Configuration
The Image Select DIP switch (SW5) is provided to specify the image for configuration of the FPGA. Setting Position 2 of SW5 to high (right) specifies the default factory image to be loaded, as shown in Figure 2-4. Setting Position 2 of SW5 to low (left) specifies the DE5-Net to load a user-defined image, as shown in 1Figure 2-5.
Figure 2-4 2-position DIP switch for Image Select – Factory Image Load
DE5-Net User Manual
www.terasic.com
August 4, 2017
14
Figure 2-5 2-position DIP switch for Image Select – User Image Load
22..3
3
GGeenneerraall UUsseerr IInnppuutt//OOuuttppuutt
This section describes the user I/O interface to the FPGA.
User Defined Push-buttons
The FPGA board includes four user defined push-buttons that allow users to interact with the Stratix V GX device. Each push-button provides a high logic level or a low logic level when it is not pressed or pressed, respectively. Table 2-3 lists the board references, signal names and their corresponding Stratix V GX device pin numbers.
Table 2-3 Push-button Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
PB6
BUTTON0
High Logic Level when the button is not pressed
2.5-V
PIN_AK15
PB5
BUTTON1
2.5-V
PIN_AK14
PB4
BUTTON2
2.5-V
PIN_AL14
PB3
BUTTON3
2.5-V
PIN_AL15
User-Defined Slide Switch
There are four slide switches on the FPGA board to provide additional FPGA input control. When a slide switch is in the DOWN position or the UPPER position, it provides a low logic level or a high logic level to the Stratix V GX FPGA, respectively, as shown in 0Figure 2-6.
DE5-Net User Manual
www.terasic.com
August 4, 2017
15
Figure 2-6 4 Slide switches
Table 2-4 lists the signal names and their corresponding Stratix V GX device pin numbers.
Table 2-4 Slide Switch Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SW0
SW0
High logic level when SW in the UPPER position.
1.8-V
PIN_B25
SW1
SW1
1.8-V
PIN_A25
SW2
SW2
1.8-V
PIN_B23
SW3
SW3
1.8-V
PIN_A23
User-Defined LEDs
The FPGA board consists of 10 user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Stratix V GX device. Each LED is driven directly by the Stratix V GX FPGA. The LED is turned on or off when the associated pins are driven to a low or high logic level, respectively. A list of the pin names on the FPGA that are connected to the LEDs is given in Table 2-5.
Table 2-5 User LEDs Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
DE5-Net User Manual
www.terasic.com
August 4, 2017
16
D8
LED0
Driving a logic 0 on the I/O port turns the LED ON. Driving a logic 1 on the I/O port turns the LED OFF.
2.5-V
PIN_AW37
D9
LED1
2.5-V
PIN_AV37
D10
LED2
2.5-V
PIN_BB36
D11
LED3
2.5-V
PIN_BB39
D7-1
LED_BRACKET0
2.5-V
PIN_AH15
D7-3
LED_BRACKET1
2.5-V
PIN_AH13
D7-5
LED_BRACKET2
2.5-V
PIN_AJ13
D7-7
LED_BRACKET3
2.5-V
PIN_AJ14
J8-10
LED_RJ45_L
2.5-V
PIN_AG15
J8-12
LED_RJ45_R
2.5-V
PIN_AG16
7-Segment Displays
The FPGA board has two 7-segment displays. As indicated in the schematic in Figure 2-7, the seven segments are connected to pins of the Stratix V GX FPGA. Applying a low or high logic level to a segment will turn it on or turn it off, respectively.
Each segment in a display is identified by an index listed from 0 to 6 with the positions given in
Figure 2-8. In addition, the decimal point is identified as DP. Table 2-6 shows the mapping of the
FPGA pin assignments to the 7-segment displays.
Figure 2-7 Connection between 7-segment displays and Stratix V GX FPGA
DE5-Net User Manual
www.terasic.com
August 4, 2017
17
Figure 2-8 Position and index of each segment in a 7-segment display
Table 2-6 User LEDs Pin Assignments, Schematic Signal Names, and Functions
Board Reference
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
HEX1
HEX1_D0
User-Defined 7-Segment Display. Driving logic 0 on the I/O port turns the 7-segment signal ON. Driving logic 1 on the I/O port turns the 7-segment signal OFF.
1.5-V
PIN_H18
HEX1
HEX1_D1
1.5-V
PIN_G16
HEX1
HEX1_D2
1.5-V
PIN_F16
HEX1
HEX1_D3
1.5-V
PIN_A7
HEX1
HEX1_D4
1.5-V
PIN_B7
HEX1
HEX1_D5
1.5-V
PIN_C9
HEX1
HEX1_D6
1.5-V
PIN_D10
HEX1
HEX1_DP
1.5-V
PIN_E9
HEX0
HEX0_D0
1.5-V
PIN_G8
HEX0
HEX0_D1
1.5-V
PIN_H8
HEX0
HEX0_D2
1.5-V
PIN_J9
HEX0
HEX0_D3
1.5-V
PIN_K10
HEX0
HEX0_D4
1.5-V
PIN_K8
HEX0
HEX0_D5
1.5-V
PIN_K9
HEX0
HEX0_D6
1.5-V
PIN_N8
HEX0
HEX0_DP
1.5-V
PIN_P8
22..4
4
TTeemmppeerraattuurree SSeennssoorr aanndd FFaann CCoonnttrrooll
The FPGA board is equipped with a temperature sensor, MAX1619, which provides temperature sensing and over-temperature alert. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Stratix V GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a
DE5-Net User Manual
www.terasic.com
August 4, 2017
18
two-wire SMBus, which is connected to the Stratix V GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to ‘0011000b’.
An optional 3-pin +12V fan located on J15 of the FPGA board is intended to reduce the temperature of the FPGA. Users can control the fan to turn on/off depending on the measured system temperature. The FAN is turned on when the FAN_CTRL pin is driven to a high logic level.
The pin assignments for the associated interface are listed in Table 2-7.
Table 2-7 Temperature Sensor Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
TEMPDIODEp
Positive pin of temperature diode in Stratix V
1.8-V
PIN_P6
TEMPDIODEn
Negative pin of temperature diode in Stratix V
1.8-V
PIN_P7 TEMP_CLK
SMBus clock
2.5-V
PIN_D21
TEMP_DATAT
SMBus data
2.5-V
PIN_D20
TEMP_OVERT_n
SMBus alert (interrupt)
2.5-V
PIN_C22
TEMP_INT_n
SMBus alert (interrupt)
2.5-V
PIN_C21
FAN_CTRL
Fan control
2.5-V
PIN_AR32
22..5
5
CClloocckk CCiirrccuuiitt
The development board includes one 50 MHz and three programmable oscillators. Figure 2-9 shows the default frequencies of on-board all external clocks going to the Stratix V GX FPGA. The figures also show an off-board external clock from PCI Express Host to the FPGA.
DE5-Net User Manual
www.terasic.com
August 4, 2017
19
Figure 2-9 Clock circuit of the FPGA Board
A clock buffer is used to duplicate the 50 MHz oscillator, so each bank of FPGA I/O bank 3/4/7/8 has two clock inputs. The three programming oscillators are low-jitter oscillators which are used to provide special and high quality clock signals for high-speed transceivers. Figure 2-10 shows the control circuits of programmable oscillators. The clock generator controller in the MAX II CPLD can be used to program the CDCM61001 and CDCM61004 to generate 1G Ethernet SFP+ and SATA reference clocks respectively. The Si570 programmable clock generator is programmed via an I2C serial interface to generate the 10G Ethernet SFP+ reference clock. Two SMA connectors provide external clock input and clock output respectively.
DE5-Net User Manual
www.terasic.com
August 4, 2017
20
Figure 2-10 Control circuits of Programmable Oscillators
1Table 2-8 lists the clock source, signal names, default frequency and their corresponding Stratix V
GX device pin numbers.
Table 2-8 Clock Source, Signal Name, Default Frequency, Pin Assignments and Functions
Source
Schematic Signal Name
Default Frequency
I/O Standard
Stratix V GX Pin Number
Application
Y4
OSC_50_B3B
50.0 MHz
2.5-V
PIN_AW35
OSC_50_B3D
1.8-V
PIN_BC28
OSC_50_B4A
1.8-V
PIN_AP10
OSC_50_B4D
1.8-V
PIN_AY18
OSC_50_B7A
1.5-V
PIN_M8
OSC_50_B7D
1.5-V
PIN_J18
OSC_50_B8A
1.5-V
PIN_R36
OSC_50_B8D
1.8-V
PIN_R25
J13
SMA_CLKIN
User Defined
2.5V
PIN_BB33
External Clock Input
J14
SMA_CLKOUT
User Defined
2.5V
PIN_AV34
Clock Output U49
SFP_REFCLK _p
100.0 MHz
LVDS
PIN_AK7
10G SFP+
U53
SFP1G_REFCLK_p
125.0 MHz
LVDS
PIN_AH6
1G SFP+
U28
SATA_HOST_REFCLK_p
125.0 MHz
LVDS
PIN_V6
SATA HOST
U28
SATA_DEVICE_REFCLK_p
125.0 MHz
LVDS
PIN_V39
SATA DEVICE
J17
PCIE_REFCLK_p
From Host
LVDS
PIN_AK38
PCI Express
DE5-Net User Manual
www.terasic.com
August 4, 2017
21
Table 2-9 lists the programmable oscillator control pins, signal names, I/O standard and their
corresponding Stratix V GX device pin numbers.
Table 2-9 Programmable oscillator control pin, Signal Name, I/O standard, Pin Assignments
and Descriptions
Programmable Oscillator
Schematic Signal Name
I/O Standard
Stratix V GX Pin Number
Description
Si570 (U49)
CLOCK_SCL
2.5-V
PIN_AE15
I2C bus, direct connected with Si570
CLOCK_SDA
2.5-V
PIN_AE16
CDCM61001 (U53)
PLL_SCL
2.5-V
PIN_AF32
I2C bus, connected with MAX II CPLD
PLL_SDA
2.5-V
PIN_AG32
CDCM61004 (U28)
PLL_SCL
2.5-V
PIN_AF32
I2C bus, connected with MAX II CPLD
PLL_SDA
2.5-V
PIN_AG32
22..6
6
RRSS--442222 SSeerriiaall PPoorrtt
The RS-422 is designed to perform communication between boards, allowing a transmission speed of up to 20 Mbps. Figure 2-11 shows the RS-422 block diagram of the development board. The full-duplex LTC2855 is used to translate the RS-422 signal, and the RJ45 is used as an external connector for the RS-422 signal.
Figure 2-11 Block Diagram of RS-422
DE5-Net User Manual
www.terasic.com
August 4, 2017
22
Table 2-10 lists the RS-422 pin assignments, signal names and functions.
Table 2-10 RS-422 Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
RS422_DE
Driver Enable. A high on DE enables the driver. A low input will force the driver outputs into a high impedance state.
2.5-V
PIN_AG14 RS422_DIN
Receiver Output. The data is send to FPGA.
PIN_AE18
RS422_DOUT
Driver Input. The data is sent from FPGA.
PIN_AE17
RS422_RE_n
Receiver Enable. A low enables the receiver. A high input forces the receiver output into a high impedance state.
PIN_AF17
RS422_TE
Internal Termination Resistance Enable. A high input will connect a termination resistor (120Ω typical) between pins A and B.
PIN_AF16
22..7
7
FFLLAASSHH MMeemmoorryy
The development board has two 1Gb CFI-compatible synchronous flash devices for non-volatile storage of FPGA configuration data, user application data, and user code space.
Each interface has a 16-bit data bus and the two devices combined allow for FPP x32 configuration. This device is part of the shared flash and MAX (FM) bus, which connects to the flash memory and MAX II CPLD (EPM2210) System Controller. Figure 2-12 shows the connections between the Flash, MAX and Stratix V GX FPGA.
DE5-Net User Manual
www.terasic.com
August 4, 2017
23
Figure 2-12 Connection between the Flash, Max and Stratix V GX FPGA
Table 2-11 lists the flash pin assignments, signal names, and functions.
Table 2-11 Flash Memory Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
FSM_A0
Address bus
2.5-V
PIN_AU32
FSM_A1
Address bus
2.5-V
PIN_AH30
FSM_A2
Address bus
2.5-V
PIN_AJ30
FSM_A3
Address bus
2.5-V
PIN_AH31
FSM_A4
Address bus
2.5-V
PIN_AK30
FSM_A5
Address bus
2.5-V
PIN_AJ32
FSM_A6
Address bus
2.5-V
PIN_AG33
FSM_A7
Address bus
2.5-V
PIN_AL30
FSM_A8
Address bus
2.5-V
PIN_AK33
FSM_A9
Address bus
2.5-V
PIN_AJ33
FSM_A10
Address bus
2.5-V
PIN_AN30
FSM_A11
Address bus
2.5-V
PIN_AH33
FSM_A12
Address bus
2.5-V
PIN_AK32
FSM_A13
Address bus
2.5-V
PIN_AM32
FSM_A14
Address bus
2.5-V
PIN_AM31
FSM_A15
Address bus
2.5-V
PIN_AL31
FSM_A16
Address bus
2.5-V
PIN_AN33
FSM_A17
Address bus
2.5-V
PIN_AP33
FSM_A18
Address bus
2.5-V
PIN_AT32
FSM_A19
Address bus
2.5-V
PIN_AT29
DE5-Net User Manual
www.terasic.com
August 4, 2017
24
FSM_A20
Address bus
2.5-V
PIN_AP31
FSM_A21
Address bus
2.5-V
PIN_AR30
FSM_A22
Address bus
2.5-V
PIN_AU30
FSM_A23
Address bus
2.5-V
PIN_AJ31
FSM_A24
Address bus
2.5-V
PIN_AP30
FSM_A25
Address bus
2.5-V
PIN_AN31
FSM_A26
Address bus
2.5-V
PIN_AT30
FSM_D0
Data bus
2.5-V
PIN_AG26
FSM_D1
Data bus
2.5-V
PIN_AD33
FSM_D2
Data bus
2.5-V
PIN_AE34
FSM_D3
Data bus
2.5-V
PIN_AF31
FSM_D4
Data bus
2.5-V
PIN_AG28
FSM_D5
Data bus
2.5-V
PIN_AG30
FSM_D6
Data bus
2.5-V
PIN_AF29
FSM_D7
Data bus
2.5-V
PIN_AE29
FSM_D8
Data bus
2.5-V
PIN_AG25
FSM_D9
Data bus
2.5-V
PIN_AF34
FSM_D10
Data bus
2.5-V
PIN_AE33
FSM_D11
Data bus
2.5-V
PIN_AE31
FSM_D12
Data bus
2.5-V
PIN_AF28
FSM_D13
Data bus
2.5-V
PIN_AE30
FSM_D14
Data bus
2.5-V
PIN_AG29
FSM_D15
Data bus
2.5-V
PIN_AG27
FSM_D16
Data bus
2.5-V
PIN_AP28
FSM_D17
Data bus
2.5-V
PIN_AN28
FSM_D18
Data bus
2.5-V
PIN_AU31
FSM_D19
Data bus
2.5-V
PIN_AW32
FSM_D20
Data bus
2.5-V
PIN_BD32
FSM_D21
Data bus
2.5-V
PIN_AY31
FSM_D22
Data bus
2.5-V
PIN_BA30
FSM_D23
Data bus
2.5-V
PIN_BB30
FSM_D24
Data bus
2.5-V
PIN_AM29
FSM_D25
Data bus
2.5-V
PIN_AR29
FSM_D26
Data bus
2.5-V
PIN_AV31
FSM_D27
Data bus
2.5-V
PIN_AV32
FSM_D28
Data bus
2.5-V
PIN_BC31
FSM_D29
Data bus
2.5-V
PIN_AW30
FSM_D30
Data bus
2.5-V
PIN_BC32
FSM_D31
Data bus
2.5-V
PIN_BD31
FLASH_CLK
Clock
2.5-V
PIN_AL29
DE5-Net User Manual
www.terasic.com
August 4, 2017
25
FLASH_RESET_n
Reset
2.5-V
PIN_AE28
FLASH_CE_n[0]
Chip enable of of flash-0
2.5-V
PIN_AE27
FLASH_CE_n[1]
Chip enable of of flash-1
2.5-V
PIN_BA31
FLASH_OE_n
Output enable
2.5-V
PIN_AY30
FLASH_WE_n
Write enable
2.5-V
PIN_AR31
FLASH_ADV_n
Address valid
2.5-V
PIN_AK29
FLASH_RDY_BSY_n[0]
Ready of flash-0
2.5-V
PIN_BA29
FLASH_RDY_BSY_n[1]
Ready of flash-1
2.5-V
PIN_BB32
22..8
8
DDDDRR33 SSOO--DDIIMMMM
The development board supports two independent banks of DDR3 SDRAM SO-DIMM. Each DDR3 SODIMM socket is wired to support a maximum capacity of 8GB with a 64-bit data bus. Using differential DQS signaling for the DDR3 SDRAM interfaces, it is capable of running at up to 800MHz memory clock for a maximum theoretical bandwidth up to 102.4Gbps. Figure 2-13 shows the connections between the DDR3 SDRAM SO-DIMMs and Stratix V GX FPGA.
DE5-Net User Manual
www.terasic.com
August 4, 2017
26
Figure 2-13 Connection between the DDR3 and Stratix V GX FPGA
The pin assignments for DDR3 SDRAM SO-DIMM Bank-A and Bank-B are listed in 119H119HTable 2-12 and Table 2-13, in respectively.
Table 2-12 DDR3-A Bank Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
DDR3A_DQ0
Data [0]
SSTL-15 Class I
PIN_A35
DDR3A_DQ1
Data [1]
SSTL-15 Class I
PIN_A34
DDR3A_DQ2
Data [2]
SSTL-15 Class I
PIN_D36
DDR3A_DQ3
Data [3]
SSTL-15 Class I
PIN_C33
DDR3A_DQ4
Data [4]
SSTL-15 Class I
PIN_B32
DDR3A_DQ5
Data [5]
SSTL-15 Class I
PIN_D35
DDR3A_DQ6
Data [6]
SSTL-15 Class I
PIN_D33
DDR3A_DQ7
Data [7]
SSTL-15 Class I
PIN_E33
DDR3A_DQ8
Data [8]
SSTL-15 Class I
PIN_A32
DDR3A_DQ9
Data [9]
SSTL-15 Class I
PIN_A31
DDR3A_DQ10
Data [10]
SSTL-15 Class I
PIN_C30
DE5-Net User Manual
www.terasic.com
August 4, 2017
27
DDR3A_DQ11
Data [11]
SSTL-15 Class I
PIN_D30
DDR3A_DQ12
Data [12]
SSTL-15 Class I
PIN_B29
DDR3A_DQ13
Data [13]
SSTL-15 Class I
PIN_E30
DDR3A_DQ14
Data [14]
SSTL-15 Class I
PIN_F31
DDR3A_DQ15
Data [15]
SSTL-15 Class I
PIN_G31
DDR3A_DQ16
Data [16]
SSTL-15 Class I
PIN_F35
DDR3A_DQ17
Data [17]
SSTL-15 Class I
PIN_G34
DDR3A_DQ18
Data [18]
SSTL-15 Class I
PIN_J33
DDR3A_DQ19
Data [19]
SSTL-15 Class I
PIN_J34
DDR3A_DQ20
Data [20]
SSTL-15 Class I
PIN_F34
DDR3A_DQ21
Data [21]
SSTL-15 Class I
PIN_E35
DDR3A_DQ22
Data [22]
SSTL-15 Class I
PIN_J31
DDR3A_DQ23
Data [23]
SSTL-15 Class I
PIN_K31
DDR3A_DQ24
Data [24]
SSTL-15 Class I
PIN_P34
DDR3A_DQ25
Data [25]
SSTL-15 Class I
PIN_R33
DDR3A_DQ26
Data [26]
SSTL-15 Class I
PIN_M34
DDR3A_DQ27
Data [27]
SSTL-15 Class I
PIN_L33
DDR3A_DQ28
Data [28]
SSTL-15 Class I
PIN_R34
DDR3A_DQ29
Data [29]
SSTL-15 Class I
PIN_T34
DDR3A_DQ30
Data [30]
SSTL-15 Class I
PIN_W34
DDR3A_DQ31
Data [31]
SSTL-15 Class I
PIN_V35
DDR3A_DQ32
Data [32]
SSTL-15 Class I
PIN_P33
DDR3A_DQ33
Data [33]
SSTL-15 Class I
PIN_P32
DDR3A_DQ34
Data [34]
SSTL-15 Class I
PIN_V33
DDR3A_DQ35
Data [35]
SSTL-15 Class I
PIN_V34
DDR3A_DQ36
Data [36]
SSTL-15 Class I
PIN_N31
DDR3A_DQ37
Data [37]
SSTL-15 Class I
PIN_M31
DDR3A_DQ38
Data [38]
SSTL-15 Class I
PIN_U32
DDR3A_DQ39
Data [39]
SSTL-15 Class I
PIN_U33
DDR3A_DQ40
Data [40]
SSTL-15 Class I
PIN_R31
DDR3A_DQ41
Data [41]
SSTL-15 Class I
PIN_W31
DDR3A_DQ42
Data [42]
SSTL-15 Class I
PIN_U30
DDR3A_DQ43
Data [43]
SSTL-15 Class I
PIN_P31
DDR3A_DQ44
Data [44]
SSTL-15 Class I
PIN_T31
DDR3A_DQ45
Data [45]
SSTL-15 Class I
PIN_Y32
DDR3A_DQ46
Data [46]
SSTL-15 Class I
PIN_T29
DDR3A_DQ47
Data [47]
SSTL-15 Class I
PIN_P30
DDR3A_DQ48
Data [48]
SSTL-15 Class I
PIN_H32
DDR3A_DQ49
Data [49]
SSTL-15 Class I
PIN_H31
DDR3A_DQ50
Data [50]
SSTL-15 Class I
PIN_L30
DDR3A_DQ51
Data [51]
SSTL-15 Class I
PIN_L29
DDR3A_DQ52
Data [52]
SSTL-15 Class I
PIN_F32
DDR3A_DQ53
Data [53]
SSTL-15 Class I
PIN_G32
DDR3A_DQ54
Data [54]
SSTL-15 Class I
PIN_M30
DE5-Net User Manual
www.terasic.com
August 4, 2017
28
DDR3A_DQ55
Data [55]
SSTL-15 Class I
PIN_N29
DDR3A_DQ56
Data [56]
SSTL-15 Class I
PIN_U29
DDR3A_DQ57
Data [57]
SSTL-15 Class I
PIN_V28
DDR3A_DQ58
Data [58]
SSTL-15 Class I
PIN_Y28
DDR3A_DQ59
Data [59]
SSTL-15 Class I
PIN_W29
DDR3A_DQ60
Data [60]
SSTL-15 Class I
PIN_V30
DDR3A_DQ61
Data [61]
SSTL-15 Class I
PIN_V29
DDR3A_DQ62
Data [62]
SSTL-15 Class I
PIN_W28
DDR3A_DQ63
Data [63]
SSTL-15 Class I
PIN_Y27
DDR3A_DQS0
Data Strobe p[0]
Differential 1.5-V SSTL Class I
PIN_C34
DDR3A_DQS_n0
Data Strobe n[0]
Differential 1.5-V SSTL Class I
PIN_B34
DDR3A_DQS1
Data Strobe p[1]
Differential 1.5-V SSTL Class I
PIN_C31
DDR3A_DQS_n1
Data Strobe n[1]
Differential 1.5-V SSTL Class I
PIN_B31
DDR3A_DQS2
Data Strobe p[2]
Differential 1.5-V SSTL Class I
PIN_H35
DDR3A_DQS_n2
Data Strobe n[2]
Differential 1.5-V SSTL Class I
PIN_G35
DDR3A_DQS3
Data Strobe p[3]
Differential 1.5-V SSTL Class I
PIN_U35
DDR3A_DQS_n3
Data Strobe n[4]
Differential 1.5-V SSTL Class I
PIN_T35
DDR3A_DQS4
Data Strobe p[4]
Differential 1.5-V SSTL Class I
PIN_T33
DDR3A_DQS_n4
Data Strobe n[4]
Differential 1.5-V SSTL Class I
PIN_T32
DDR3A_DQS5
Data Strobe p[5]
Differential 1.5-V SSTL Class I
PIN_T30
DDR3A_DQS_n5
Data Strobe n[5]
Differential 1.5-V SSTL Class I
PIN_R30
DDR3A_DQS6
Data Strobe p[6]
Differential 1.5-V SSTL Class I
PIN_J30
DDR3A_DQS_n6
Data Strobe n[6]
Differential 1.5-V SSTL Class I
PIN_H30
DDR3A_DQS7
Data Strobe p[7]
Differential 1.5-V SSTL Class I
PIN_Y30
DDR3A_DQS_n7
Data Strobe n[7]
Differential 1.5-V SSTL Class I
PIN_Y29
DDR3A_DM0
Data Mask [0]
SSTL-15 Class I
PIN_C36
DDR3A_DM1
Data Mask [1]
SSTL-15 Class I
PIN_E32
DDR3A_DM2
Data Mask [2]
SSTL-15 Class I
PIN_H34
DDR3A_DM3
Data Mask [3]
SSTL-15 Class I
PIN_L32
DDR3A_DM4
Data Mask [4]
SSTL-15 Class I
PIN_N32
DDR3A_DM5
Data Mask [5]
SSTL-15 Class I
PIN_W32
DDR3A_DM6
Data Mask [6]
SSTL-15 Class I
PIN_K30
DDR3A_DM7
Data Mask [7]
SSTL-15 Class I
PIN_T28
DDR3A_A0
Address [0]
SSTL-15 Class I
PIN_M39
DDR3A_A1
Address [1]
SSTL-15 Class I
PIN_L35
DDR3A_A2
Address [2]
SSTL-15 Class I
PIN_N38
DDR3A_A3
Address [3]
SSTL-15 Class I
PIN_L36
DDR3A_A4
Address [4]
SSTL-15 Class I
PIN_H36
DDR3A_A5
Address [5]
SSTL-15 Class I
PIN_K29
DDR3A_A6
Address [6]
SSTL-15 Class I
PIN_D37
DDR3A_A7
Address [7]
SSTL-15 Class I
PIN_K35
DDR3A_A8
Address [8]
SSTL-15 Class I
PIN_K32
DDR3A_A9
Address [9]
SSTL-15 Class I
PIN_K37
DDR3A_A10
Address [10]
SSTL-15 Class I
PIN_M38
DE5-Net User Manual
www.terasic.com
August 4, 2017
29
DDR3A_A11
Address [11]
SSTL-15 Class I
PIN_C37
DDR3A_A12
Address [12]
SSTL-15 Class I
PIN_K36
DDR3A_A13
Address [13]
SSTL-15 Class I
PIN_M33
DDR3A_A14
Address [14]
SSTL-15 Class I
PIN_K34
DDR3A_A15
Address [15]
SSTL-15 Class I
PIN_B38
DDR3A_RAS_n
Row Address Strobe
SSTL-15 Class I
PIN_P38
DDR3A_CAS_n
Column Address Strobe
SSTL-15 Class I
PIN_M36
DDR3A_BA0
Bank Address [0]
SSTL-15 Class I
PIN_M37
DDR3A_BA1
Bank Address [1]
SSTL-15 Class I
PIN_P39
DDR3A_BA2
Bank Address [2]
SSTL-15 Class I
PIN_J36
DDR3A_CK0
Clock p0
Differential 1.5-V SSTL Class I
PIN_G37
DDR3A_CK_n0
Clock n0
Differential 1.5-V SSTL Class I
PIN_F36
DDR3A_CK1
Clock p1
Differential 1.5-V SSTL Class I
PIN_J37
DDR3A_CK_n1
Clock n1
Differential 1.5-V SSTL Class I
PIN_H37
DDR3A_CKE0
Clock Enable pin 0
SSTL-15 Class I
PIN_E36
DDR3A_CKE1
Clock Enable pin 1
SSTL-15 Class I
PIN_B35
DDR3A_ODT0
On Die Termination[0]
SSTL-15 Class I
PIN_V36
DDR3A_ODT1
On Die Termination[1]
SSTL-15 Class I
PIN_W35
DDR3A_WE_n
Write Enable
SSTL-15 Class I
PIN_N37
DDR3A_CS_n0
Chip Select [0]
SSTL-15 Class I
PIN_P36
DDR3A_CS_n1
Chip Select [1]
SSTL-15 Class I
PIN_R28
DDR3A_RESET_n
Chip Reset
SSTL-15 Class I
PIN_H33
DDR3A_EVENT_n
Chip Temperature Event
SSTL-15 Class I
PIN_K19
DDR3A_SDA
Chip I2C Serial Clock
1.5V
PIN_P15
DDR3A_SCL
Chip I2C Serial Data Bus
1.5V
PIN_C15
Table 2-13 DDR3-B Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
DDR3B_DQ0
Data [0]
SSTL-15 Class I
PIN_Y17
DDR3B_DQ1
Data [1]
SSTL-15 Class I
PIN_W17
DDR3B_DQ2
Data [2]
SSTL-15 Class I
PIN_V15
DDR3B_DQ3
Data [3]
SSTL-15 Class I
PIN_T15
DDR3B_DQ4
Data [4]
SSTL-15 Class I
PIN_V13
DDR3B_DQ5
Data [5]
SSTL-15 Class I
PIN_V16
DDR3B_DQ6
Data [6]
SSTL-15 Class I
PIN_W14
DDR3B_DQ7
Data [7]
SSTL-15 Class I
PIN_U15
DDR3B_DQ8
Data [8]
SSTL-15 Class I
PIN_T17
DDR3B_DQ9
Data [9]
SSTL-15 Class I
PIN_T16
DDR3B_DQ10
Data [10]
SSTL-15 Class I
PIN_R16
DE5-Net User Manual
www.terasic.com
August 4, 2017
30
DDR3B_DQ11
Data [11]
SSTL-15 Class I
PIN_P16
DDR3B_DQ12
Data [12]
SSTL-15 Class I
PIN_N16
DDR3B_DQ13
Data [13]
SSTL-15 Class I
PIN_M15
DDR3B_DQ14
Data [14]
SSTL-15 Class I
PIN_M14
DDR3B_DQ15
Data [15]
SSTL-15 Class I
PIN_L14
DDR3B_DQ16
Data [16]
SSTL-15 Class I
PIN_T14
DDR3B_DQ17
Data [17]
SSTL-15 Class I
PIN_U14
DDR3B_DQ18
Data [18]
SSTL-15 Class I
PIN_U11
DDR3B_DQ19
Data [19]
SSTL-15 Class I
PIN_T13
DDR3B_DQ20
Data [20]
SSTL-15 Class I
PIN_U12
DDR3B_DQ21
Data [21]
SSTL-15 Class I
PIN_R13
DDR3B_DQ22
Data [22]
SSTL-15 Class I
PIN_P13
DDR3B_DQ23
Data [23]
SSTL-15 Class I
PIN_N13
DDR3B_DQ24
Data [24]
SSTL-15 Class I
PIN_K12
DDR3B_DQ25
Data [25]
SSTL-15 Class I
PIN_J12
DDR3B_DQ26
Data [26]
SSTL-15 Class I
PIN_J10
DDR3B_DQ27
Data [27]
SSTL-15 Class I
PIN_H12
DDR3B_DQ28
Data [28]
SSTL-15 Class I
PIN_N11
DDR3B_DQ29
Data [29]
SSTL-15 Class I
PIN_M11
DDR3B_DQ30
Data [30]
SSTL-15 Class I
PIN_H10
DDR3B_DQ31
Data [31]
SSTL-15 Class I
PIN_H11
DDR3B_DQ32
Data [32]
SSTL-15 Class I
PIN_T10
DDR3B_DQ33
Data [33]
SSTL-15 Class I
PIN_R10
DDR3B_DQ34
Data [34]
SSTL-15 Class I
PIN_M12
DDR3B_DQ35
Data [35]
SSTL-15 Class I
PIN_L12
DDR3B_DQ36
Data [36]
SSTL-15 Class I
PIN_V10
DDR3B_DQ37
Data [37]
SSTL-15 Class I
PIN_V9
DDR3B_DQ38
Data [38]
SSTL-15 Class I
PIN_R12
DDR3B_DQ39
Data [39]
SSTL-15 Class I
PIN_P12
DDR3B_DQ40
Data [40]
SSTL-15 Class I
PIN_D14
DDR3B_DQ41
Data [41]
SSTL-15 Class I
PIN_C13
DDR3B_DQ42
Data [42]
SSTL-15 Class I
PIN_B14
DDR3B_DQ43
Data [43]
SSTL-15 Class I
PIN_B13
DDR3B_DQ44
Data [44]
SSTL-15 Class I
PIN_E14
DDR3B_DQ45
Data [45]
SSTL-15 Class I
PIN_F14
DDR3B_DQ46
Data [46]
SSTL-15 Class I
PIN_A14
DDR3B_DQ47
Data [47]
SSTL-15 Class I
PIN_A13
DDR3B_DQ48
Data [48]
SSTL-15 Class I
PIN_K13
DDR3B_DQ49
Data [49]
SSTL-15 Class I
PIN_K16
DDR3B_DQ50
Data [50]
SSTL-15 Class I
PIN_H13
DDR3B_DQ51
Data [51]
SSTL-15 Class I
PIN_H14
DDR3B_DQ52
Data [52]
SSTL-15 Class I
PIN_J13
DDR3B_DQ53
Data [53]
SSTL-15 Class I
PIN_J16
DDR3B_DQ54
Data [54]
SSTL-15 Class I
PIN_G13
DE5-Net User Manual
www.terasic.com
August 4, 2017
31
DDR3B_DQ55
Data [55]
SSTL-15 Class I
PIN_F13
DDR3B_DQ56
Data [56]
SSTL-15 Class I
PIN_D11
DDR3B_DQ57
Data [57]
SSTL-15 Class I
PIN_C10
DDR3B_DQ58
Data [58]
SSTL-15 Class I
PIN_A10
DDR3B_DQ59
Data [59]
SSTL-15 Class I
PIN_B10
DDR3B_DQ60
Data [60]
SSTL-15 Class I
PIN_G11
DDR3B_DQ61
Data [61]
SSTL-15 Class I
PIN_F11
DDR3B_DQ62
Data [62]
SSTL-15 Class I
PIN_E11
DDR3B_DQ63
Data [63]
SSTL-15 Class I
PIN_E12
DDR3B_DQS0
Data Strobe p[0]
Differential 1.5-V SSTL Class I
PIN_Y16
DDR3B_DQS_n0
Data Strobe n[0]
Differential 1.5-V SSTL Class I
PIN_W16
DDR3B_DQS1
Data Strobe p[1]
Differential 1.5-V SSTL Class I
PIN_V17
DDR3B_DQS_n1
Data Strobe n[1]
Differential 1.5-V SSTL Class I
PIN_U17
DDR3B_DQS2
Data Strobe p[2]
Differential 1.5-V SSTL Class I
PIN_P14
DDR3B_DQS_n2
Data Strobe n[2]
Differential 1.5-V SSTL Class I
PIN_N14
DDR3B_DQS3
Data Strobe p[3]
Differential 1.5-V SSTL Class I
PIN_K11
DDR3B_DQS_n3
Data Strobe n[3]
Differential 1.5-V SSTL Class I
PIN_L11
DDR3B_DQS4
Data Strobe p[4]
Differential 1.5-V SSTL Class I
PIN_U9
DDR3B_DQS_n4
Data Strobe n[4]
Differential 1.5-V SSTL Class I
PIN_T9
DDR3B_DQS5
Data Strobe p[5]
Differential 1.5-V SSTL Class I
PIN_E15
DDR3B_DQS_n5
Data Strobe n[5]
Differential 1.5-V SSTL Class I
PIN_D15
DDR3B_DQS6
Data Strobe p[6]
Differential 1.5-V SSTL Class I
PIN_L15
DDR3B_DQS_n6
Data Strobe n[6]
Differential 1.5-V SSTL Class I
PIN_K14
DDR3B_DQS7
Data Strobe p[7]
Differential 1.5-V SSTL Class I
PIN_D12
DDR3B_DQS_n7
Data Strobe n[7]
Differential 1.5-V SSTL Class I
PIN_C12
DDR3B_DM0
Data Mask [0]
SSTL-15 Class I
PIN_R15
DDR3B_DM1
Data Mask [1]
SSTL-15 Class I
PIN_K15
DDR3B_DM2
Data Mask [2]
SSTL-15 Class I
PIN_V12
DDR3B_DM3
Data Mask [3]
SSTL-15 Class I
PIN_G10
DDR3B_DM4
Data Mask [4]
SSTL-15 Class I
PIN_T12
DDR3B_DM5
Data Mask [5]
SSTL-15 Class I
PIN_C16
DDR3B_DM6
Data Mask [6]
SSTL-15 Class I
PIN_H15
DDR3B_DM7
Data Mask [7]
SSTL-15 Class I
PIN_B11
DDR3B_A0
Address [0]
SSTL-15 Class I
PIN_G17
DDR3B_A1
Address [1]
SSTL-15 Class I
PIN_F17
DDR3B_A2
Address [2]
SSTL-15 Class I
PIN_N17
DDR3B_A3
Address [3]
SSTL-15 Class I
PIN_F19
DDR3B_A4
Address [4]
SSTL-15 Class I
PIN_N19
DDR3B_A5
Address [5]
SSTL-15 Class I
PIN_H16
DDR3B_A6
Address [6]
SSTL-15 Class I
PIN_M17
DDR3B_A7
Address [7]
SSTL-15 Class I
PIN_T18
DDR3B_A8
Address [8]
SSTL-15 Class I
PIN_H17
DDR3B_A9
Address [9]
SSTL-15 Class I
PIN_J19
DDR3B_A10
Address [10]
SSTL-15 Class I
PIN_C19
DE5-Net User Manual
www.terasic.com
August 4, 2017
32
DDR3B_A11
Address [11]
SSTL-15 Class I
PIN_R18
DDR3B_A12
Address [12]
SSTL-15 Class I
PIN_K18
DDR3B_A13
Address [13]
SSTL-15 Class I
PIN_E18
DDR3B_A14
Address [14]
SSTL-15 Class I
PIN_T19
DDR3B_A15
Address [15]
SSTL-15 Class I
PIN_R19
DDR3B_RAS_n
Row Address Strobe
SSTL-15 Class I
PIN_H19
DDR3B_CAS_n
Column Address Strobe
SSTL-15 Class I
PIN_A17
DDR3B_BA0
Bank Address [0]
SSTL-15 Class I
PIN_C18
DDR3B_BA1
Bank Address [1]
SSTL-15 Class I
PIN_G19
DDR3B_BA2
Bank Address [2]
SSTL-15 Class I
PIN_M20
DDR3B_CK0
Clock p0
Differential 1.5-V SSTL Class I
PIN_B16
DDR3B_CK_n0
Clock n0
Differential 1.5-V SSTL Class I
PIN_A16
DDR3B_CK1
Clock p1
Differential 1.5-V SSTL Class I
PIN_E17
DDR3B_CK_n1
Clock n1
Differential 1.5-V SSTL Class I
PIN_D17
DDR3B_CKE0
Clock Enable pin 0
SSTL-15 Class I
PIN_P17
DDR3B_CKE1
Clock Enable pin 1
SSTL-15 Class I
PIN_V18
DDR3B_ODT0
On Die Termination[0]
SSTL-15 Class I
PIN_M18
DDR3B_ODT1
On Die Termination[1]
SSTL-15 Class I
PIN_A19
DDR3B_WE_n
Write Enable
SSTL-15 Class I
PIN_D18
DDR3B_CS_n0
Chip Select [0]
SSTL-15 Class I
PIN_B19
DDR3B_CS_n1
Chip Select [1]
SSTL-15 Class I
PIN_B17
DDR3B_RESET_n
Chip Reset
SSTL-15 Class I
PIN_T20
DDR3B_EVENT_n
Chip Reset
SSTL-15 Class I
PIN_K17
DDR3B_SDA
Chip I2C Serial Clock
1.5V
PIN_P19
DDR3B_SCL
Chip I2C Serial Data Bus
1.5V
PIN_P18
22..9
9
QQDDRRIIII++ SSRRAAMM
The development board supports four independent QDRII+ SRAM memory devices for very-high speed and low-latency memory access. Each of QDRII+ has a x18 interface, providing addressing to a device of up to a 8MB (not including parity bits). The QDRII+ has separate read and write data ports with DDR signaling at up to 550 MHz.
Table 2-14, 1Table 2-15 and Table 2-16 lists the QDRII+ SRAM Bank A, B, C and D pin
assignments, signal names relative to the Stratix I GX device, in respectively.
Table 2-14 QDRII+ SRAM A Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
QDRIIA_A0
Address bus[0]
1.8-V HSTL Class I
PIN_AU29
DE5-Net User Manual
www.terasic.com
August 4, 2017
33
QDRIIA_A1
Address bus[1]
1.8-V HSTL Class I
PIN_BA28
QDRIIA_A2
Address bus[2]
1.8-V HSTL Class I
PIN_AP27
QDRIIA_A3
Address bus[3]
1.8-V HSTL Class I
PIN_AK27
QDRIIA_A4
Address bus[4]
1.8-V HSTL Class I
PIN_AN27
QDRIIA_A5
Address bus[5]
1.8-V HSTL Class I
PIN_AM28
QDRIIA_A6
Address bus[6]
1.8-V HSTL Class I
PIN_AV28
QDRIIA_A7
Address bus[7]
1.8-V HSTL Class I
PIN_AY27
QDRIIA_A8
Address bus[8]
1.8-V HSTL Class I
PIN_BC29
QDRIIA_A9
Address bus[9]
1.8-V HSTL Class I
PIN_AU28
QDRIIA_A10
Address bus[10]
1.8-V HSTL Class I
PIN_AW27
QDRIIA_A11
Address bus[11]
1.8-V HSTL Class I
PIN_AY28
QDRIIA_A12
Address bus[12]
1.8-V HSTL Class I
PIN_BD28
QDRIIA_A13
Address bus[13]
1.8-V HSTL Class I
PIN_AV29
QDRIIA_A14
Address bus[14]
1.8-V HSTL Class I
PIN_AW29
QDRIIA_A15
Address bus[15]
1.8-V HSTL Class I
PIN_BB29
QDRIIA_A16
Address bus[16]
1.8-V HSTL Class I
PIN_BD29
QDRIIA_A17
Address bus[17]
1.8-V HSTL Class I
PIN_AL27
QDRIIA_A18
Address bus[18]
1.8-V HSTL Class I
PIN_AR27
QDRIIA_A19
Address bus[19]
1.8-V HSTL Class I
PIN_AL28
QDRIIA_A20
Address bus[20]
1.8-V HSTL Class I
PIN_AR28
QDRIIA_D0
Write data bus[0]
1.8-V HSTL Class I
PIN_AH28
QDRIIA_D1
Write data bus[1]
1.8-V HSTL Class I
PIN_AH27
QDRIIA_D2
Write data bus[2]
1.8-V HSTL Class I
PIN_AH25
QDRIIA_D3
Write data bus[3]
1.8-V HSTL Class I
PIN_AJ28
QDRIIA_D4
Write data bus[4]
1.8-V HSTL Class I
PIN_AJ27
QDRIIA_D5
Write data bus[5]
1.8-V HSTL Class I
PIN_AJ26
QDRIIA_D6
Write data bus[6]
1.8-V HSTL Class I
PIN_AJ25
QDRIIA_D7
Write data bus[7]
1.8-V HSTL Class I
PIN_AL25
QDRIIA_D8
Write data bus[8]
1.8-V HSTL Class I
PIN_AH24
QDRIIA_D9
Write data bus[9]
1.8-V HSTL Class I
PIN_AN25
QDRIIA_D10
Write data bus[10]
1.8-V HSTL Class I
PIN_AM26
QDRIIA_D11
Write data bus[11]
1.8-V HSTL Class I
PIN_AM25
QDRIIA_D12
Write data bus[12]
1.8-V HSTL Class I
PIN_AL26
QDRIIA_D13
Write data bus[13]
1.8-V HSTL Class I
PIN_AK26
QDRIIA_D14
Write data bus[14]
1.8-V HSTL Class I
PIN_AU27
QDRIIA_D15
Write data bus[15]
1.8-V HSTL Class I
PIN_AU26
QDRIIA_D16
Write data bus[16]
1.8-V HSTL Class I
PIN_AV26
QDRIIA_D17
Write data bus[17]
1.8-V HSTL Class I
PIN_AW26
QDRIIA_Q0
Read Data bus[0]
1.8-V HSTL Class I
PIN_AK23
QDRIIA_Q1
Read Data bus[1]
1.8-V HSTL Class I
PIN_BB26
QDRIIA_Q2
Read Data bus[2]
1.8-V HSTL Class I
PIN_BD26
QDRIIA_Q3
Read Data bus[3]
1.8-V HSTL Class I
PIN_BA24
QDRIIA_Q4
Read Data bus[4]
1.8-V HSTL Class I
PIN_AL23
QDRIIA_Q5
Read Data bus[5]
1.8-V HSTL Class I
PIN_AJ23
DE5-Net User Manual
www.terasic.com
August 4, 2017
34
QDRIIA_Q6
Read Data bus[6]
1.8-V HSTL Class I
PIN_AL21
QDRIIA_Q7
Read Data bus[7]
1.8-V HSTL Class I
PIN_AK21
QDRIIA_Q8
Read Data bus[8]
1.8-V HSTL Class I
PIN_AJ22
QDRIIA_Q9
Read Data bus[9]
1.8-V HSTL Class I
PIN_AW24
QDRIIA_Q10
Read Data bus[10]
1.8-V HSTL Class I
PIN_BC26
QDRIIA_Q11
Read Data bus[11]
1.8-V HSTL Class I
PIN_AY25
QDRIIA_Q12
Read Data bus[12]
1.8-V HSTL Class I
PIN_AU24
QDRIIA_Q13
Read Data bus[13]
1.8-V HSTL Class I
PIN_AV25
QDRIIA_Q14
Read Data bus[14]
1.8-V HSTL Class I
PIN_AU25
QDRIIA_Q15
Read Data bus[15]
1.8-V HSTL Class I
PIN_AR25
QDRIIA_Q16
Read Data bus[16]
1.8-V HSTL Class I
PIN_AP24
QDRIIA_Q17
Read Data bus[17]
1.8-V HSTL Class I
PIN_AL24
QDRIIA_BWS_n0
Byte Write select[0]
1.8-V HSTL Class I
PIN_AJ24
QDRIIA_BWS_n1
Byte Write select[1]
1.8-V HSTL Class I
PIN_AT27
QDRIIA_K_P
Clock P
Differential 1.8-V HSTL Class I
PIN_AP25
QDRIIA_K_N
Clock N
Differential 1.8-V HSTL Class I
PIN_AR26
QDRIIA_CQ_P
Echo clock P
1.8-V HSTL Class I
PIN_AH22
QDRIIA_CQ_N
Echo clock N
1.8-V HSTL Class I
PIN_BA25
QDRIIA_RPS_n
Report Select
1.8-V HSTL Class I
PIN_AT26
QDRIIA_WPS_n
Write Port Select
1.8-V HSTL Class I
PIN_AK24
QDRIIA_DOFF_n
DLL enable
1.8-V HSTL Class I
PIN_AR23
QDRIIA_ODT
On-Die Termination Input
1.8-V HSTL Class I
PIN_AN23
QDRII_QVLD
Valid Output Indicator
1.8-V HSTL Class I
PIN_AM23
Table 2-15 QDRII+ SRAM B Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
QDRIIB_A0
Address bus[0]
1.8-V HSTL Class I
PIN_AR24
QDRIIB_A1
Address bus[1]
1.8-V HSTL Class I
PIN_BB23
QDRIIB_A2
Address bus[2]
1.8-V HSTL Class I
PIN_AK20
QDRIIB_A3
Address bus[3]
1.8-V HSTL Class I
PIN_AJ19
QDRIIB_A4
Address bus[4]
1.8-V HSTL Class I
PIN_AL20
QDRIIB_A5
Address bus[5]
1.8-V HSTL Class I
PIN_AG19
QDRIIB_A6
Address bus[6]
1.8-V HSTL Class I
PIN_AT23
QDRIIB_A7
Address bus[7]
1.8-V HSTL Class I
PIN_AU23
QDRIIB_A8
Address bus[8]
1.8-V HSTL Class I
PIN_AV23
QDRIIB_A9
Address bus[9]
1.8-V HSTL Class I
PIN_AM22
QDRIIB_A10
Address bus[10]
1.8-V HSTL Class I
PIN_AJ20
QDRIIB_A11
Address bus[11]
1.8-V HSTL Class I
PIN_AG20
QDRIIB_A12
Address bus[12]
1.8-V HSTL Class I
PIN_AW23
DE5-Net User Manual
www.terasic.com
August 4, 2017
35
QDRIIB_A13
Address bus[13]
1.8-V HSTL Class I
PIN_BB24
QDRIIB_A14
Address bus[14]
1.8-V HSTL Class I
PIN_AY24
QDRIIB_A15
Address bus[15]
1.8-V HSTL Class I
PIN_BD23
QDRIIB_A16
Address bus[16]
1.8-V HSTL Class I
PIN_BC23
QDRIIB_A17
Address bus[17]
1.8-V HSTL Class I
PIN_AG21
QDRIIB_A18
Address bus[18]
1.8-V HSTL Class I
PIN_AM20
QDRIIB_A19
Address bus[19]
1.8-V HSTL Class I
PIN_AK18
QDRIIB_A20
Address bus[20]
1.8-V HSTL Class I
PIN_AN22
QDRIIB_D0
Write data bus[0]
1.8-V HSTL Class I
PIN_BB21
QDRIIB_D1
Write data bus[1]
1.8-V HSTL Class I
PIN_BD20
QDRIIB_D2
Write data bus[2]
1.8-V HSTL Class I
PIN_BC20
QDRIIB_D3
Write data bus[3]
1.8-V HSTL Class I
PIN_AR22
QDRIIB_D4
Write data bus[4]
1.8-V HSTL Class I
PIN_BB20
QDRIIB_D5
Write data bus[5]
1.8-V HSTL Class I
PIN_AU22
QDRIIB_D6
Write data bus[6]
1.8-V HSTL Class I
PIN_BA21
QDRIIB_D7
Write data bus[7]
1.8-V HSTL Class I
PIN_AY21
QDRIIB_D8
Write data bus[8]
1.8-V HSTL Class I
PIN_AW21
QDRIIB_D9
Write data bus[9]
1.8-V HSTL Class I
PIN_AT21
QDRIIB_D10
Write data bus[10]
1.8-V HSTL Class I
PIN_AR21
QDRIIB_D11
Write data bus[11]
1.8-V HSTL Class I
PIN_AP21
QDRIIB_D12
Write data bus[12]
1.8-V HSTL Class I
PIN_BD22
QDRIIB_D13
Write data bus[13]
1.8-V HSTL Class I
PIN_BC22
QDRIIB_D14
Write data bus[14]
1.8-V HSTL Class I
PIN_BA22
QDRIIB_D15
Write data bus[15]
1.8-V HSTL Class I
PIN_AV22
QDRIIB_D16
Write data bus[16]
1.8-V HSTL Class I
PIN_AY22
QDRIIB_D17
Write data bus[17]
1.8-V HSTL Class I
PIN_AW22
QDRIIB_Q0
Read Data bus[0]
1.8-V HSTL Class I
PIN_AR19
QDRIIB_Q1
Read Data bus[1]
1.8-V HSTL Class I
PIN_AM19
QDRIIB_Q2
Read Data bus[2]
1.8-V HSTL Class I
PIN_AL19
QDRIIB_Q3
Read Data bus[3]
1.8-V HSTL Class I
PIN_AM17
QDRIIB_Q4
Read Data bus[4]
1.8-V HSTL Class I
PIN_AL18
QDRIIB_Q5
Read Data bus[5]
1.8-V HSTL Class I
PIN_AN19
QDRIIB_Q6
Read Data bus[6]
1.8-V HSTL Class I
PIN_AU18
QDRIIB_Q7
Read Data bus[7]
1.8-V HSTL Class I
PIN_AK17
QDRIIB_Q8
Read Data bus[8]
1.8-V HSTL Class I
PIN_AL17
QDRIIB_Q9
Read Data bus[9]
1.8-V HSTL Class I
PIN_AG17
QDRIIB_Q10
Read Data bus[10]
1.8-V HSTL Class I
PIN_AJ18
QDRIIB_Q11
Read Data bus[11]
1.8-V HSTL Class I
PIN_AJ17
QDRIIB_Q12
Read Data bus[12]
1.8-V HSTL Class I
PIN_AG18
QDRIIB_Q13
Read Data bus[13]
1.8-V HSTL Class I
PIN_AU19
QDRIIB_Q14
Read Data bus[14]
1.8-V HSTL Class I
PIN_AW19
QDRIIB_Q15
Read Data bus[15]
1.8-V HSTL Class I
PIN_AV19
QDRIIB_Q16
Read Data bus[16]
1.8-V HSTL Class I
PIN_AP19
QDRIIB_Q17
Read Data bus[17]
1.8-V HSTL Class I
PIN_AN20
DE5-Net User Manual
www.terasic.com
August 4, 2017
36
QDRIIB_BWS_n0
Byte Write select[0]
1.8-V HSTL Class I
PIN_AV20
QDRIIB_BWS_n1
Byte Write select[1]
1.8-V HSTL Class I
PIN_AU21
QDRIIB_K_p
Clock P
Differential 1.8-V HSTL Class I
PIN_AR20
QDRIIB_K_n
Clock N
Differential 1.8-V HSTL Class I
PIN_AT20
QDRIIB_CQ_p
Echo clock P
1.8-V HSTL Class I
PIN_AJ15
QDRIIB_CQ_n
Echo clock N
1.8-V HSTL Class I
PIN_AP18
QDRIIB_RPS_n
Report Select
1.8-V HSTL Class I
PIN_AW20
QDRIIB_WPS_n
Write Port Select
1.8-V HSTL Class I
PIN_AU20
QDRIIB_DOFF_n
PLL Turn Off
1.8-V HSTL Class I
PIN_AH19
QDRIIB_ODT
On-Die Termination Input
1.8-V HSTL Class I
PIN_AH18 QDRIIB_QVLD
Valid Output Indicator
1.8-V HSTL Class I
PIN_AJ16
Table 2-16 QDRII+ SRAM C Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
QDRIIC_A0
Address bus[0]
1.8-V HSTL Class I
PIN_AV16
QDRIIC_A1
Address bus[1]
1.8-V HSTL Class I
PIN_AW16
QDRIIC_A2
Address bus[2]
1.8-V HSTL Class I
PIN_AP16
QDRIIC_A3
Address bus[3]
1.8-V HSTL Class I
PIN_AW9
QDRIIC_A4
Address bus[4]
1.8-V HSTL Class I
PIN_BD7
QDRIIC_A5
Address bus[5]
1.8-V HSTL Class I
PIN_BC7
QDRIIC_A6
Address bus[6]
1.8-V HSTL Class I
PIN_AR17
QDRIIC_A7
Address bus[7]
1.8-V HSTL Class I
PIN_AR18
QDRIIC_A8
Address bus[8]
1.8-V HSTL Class I
PIN_AT17
QDRIIC_A9
Address bus[9]
1.8-V HSTL Class I
PIN_BB9
QDRIIC_A10
Address bus[10]
1.8-V HSTL Class I
PIN_AH21
QDRIIC_A11
Address bus[11]
1.8-V HSTL Class I
PIN_AG20
QDRIIC_A12
Address bus[12]
1.8-V HSTL Class I
PIN_AU16
QDRIIC_A13
Address bus[13]
1.8-V HSTL Class I
PIN_BB8
QDRIIC_A14
Address bus[14]
1.8-V HSTL Class I
PIN_AT18
QDRIIC_A15
Address bus[15]
1.8-V HSTL Class I
PIN_AW17
QDRIIC_A16
Address bus[16]
1.8-V HSTL Class I
PIN_AV17
QDRIIC_A17
Address bus[17]
1.8-V HSTL Class I
PIN_AU8
QDRIIC_A18
Address bus[18]
1.8-V HSTL Class I
PIN_AT9
QDRIIC_A19
Address bus[19]
1.8-V HSTL Class I
PIN_AV8
QDRIIC_A20
Address bus[20]
1.8-V HSTL Class I
PIN_AN17
QDRIIC_D0
Write data bus[0]
1.8-V HSTL Class I
PIN_AG9
QDRIIC_D1
Write data bus[1]
1.8-V HSTL Class I
PIN_AG10
QDRIIC_D2
Write data bus[2]
1.8-V HSTL Class I
PIN_AG12
QDRIIC_D3
Write data bus[3]
1.8-V HSTL Class I
PIN_AG11
QDRIIC_D4
Write data bus[4]
1.8-V HSTL Class I
PIN_AV10
QDRIIC_D5
Write data bus[5]
1.8-V HSTL Class I
PIN_AH12
DE5-Net User Manual
www.terasic.com
August 4, 2017
37
QDRIIC_D6
Write data bus[6]
1.8-V HSTL Class I
PIN_AK12
QDRIIC_D7
Write data bus[7]
1.8-V HSTL Class I
PIN_AL12
QDRIIC_D8
Write data bus[8]
1.8-V HSTL Class I
PIN_AJ12
QDRIIC_D9
Write data bus[9]
1.8-V HSTL Class I
PIN_AN12
QDRIIC_D10
Write data bus[10]
1.8-V HSTL Class I
PIN_AM13
QDRIIC_D11
Write data bus[11]
1.8-V HSTL Class I
PIN_AR12
QDRIIC_D12
Write data bus[12]
1.8-V HSTL Class I
PIN_AR13
QDRIIC_D13
Write data bus[13]
1.8-V HSTL Class I
PIN_AU9
QDRIIC_D14
Write data bus[14]
1.8-V HSTL Class I
PIN_AU10
QDRIIC_D15
Write data bus[15]
1.8-V HSTL Class I
PIN_AU11
QDRIIC_D16
Write data bus[16]
1.8-V HSTL Class I
PIN_AV11
QDRIIC_D17
Write data bus[17]
1.8-V HSTL Class I
PIN_AT12
QDRIIC_Q0
Read Data bus[0]
1.8-V HSTL Class I
PIN_BA12
QDRIIC_Q1
Read Data bus[1]
1.8-V HSTL Class I
PIN_AF14
QDRIIC_Q2
Read Data bus[2]
1.8-V HSTL Class I
PIN_AE13
QDRIIC_Q3
Read Data bus[3]
1.8-V HSTL Class I
PIN_AD14
QDRIIC_Q4
Read Data bus[4]
1.8-V HSTL Class I
PIN_AE12
QDRIIC_Q5
Read Data bus[5]
1.8-V HSTL Class I
PIN_AF11
QDRIIC_Q6
Read Data bus[6]
1.8-V HSTL Class I
PIN_AE11
QDRIIC_Q7
Read Data bus[7]
1.8-V HSTL Class I
PIN_AE10
QDRIIC_Q8
Read Data bus[8]
1.8-V HSTL Class I
PIN_AE9
QDRIIC_Q9
Read Data bus[9]
1.8-V HSTL Class I
PIN_BB11
QDRIIC_Q10
Read Data bus[10]
1.8-V HSTL Class I
PIN_AW11
QDRIIC_Q11
Read Data bus[11]
1.8-V HSTL Class I
PIN_AF10
QDRIIC_Q12
Read Data bus[12]
1.8-V HSTL Class I
PIN_AY12
QDRIIC_Q13
Read Data bus[13]
1.8-V HSTL Class I
PIN_AW10
QDRIIC_Q14
Read Data bus[14]
1.8-V HSTL Class I
PIN_AY10
QDRIIC_Q15
Read Data bus[15]
1.8-V HSTL Class I
PIN_BB12
QDRIIC_Q16
Read Data bus[16]
1.8-V HSTL Class I
PIN_BC10
QDRIIC_Q17
Read Data bus[17]
1.8-V HSTL Class I
PIN_BA10
QDRIIC_BWS_n0
Byte Write select[0]
1.8-V HSTL Class I
PIN_AJ11
QDRIIC_BWS_n1
Byte Write select[1]
1.8-V HSTL Class I
PIN_AJ10
QDRIIC_K_p
Clock P
Differential 1.8-V HSTL Class I
PIN_AP12
QDRIIC_K_n
Clock N
Differential 1.8-V HSTL Class I
PIN_AP13
QDRIIC_CQ_p
Echo clock P
1.8-V HSTL Class I
PIN_BC11
QDRIIC_CQ_n
Echo clock N
1.8-V HSTL Class I
PIN_AF13
QDRIIC_RPS_n
Report Select
1.8-V HSTL Class I
PIN_AH10
QDRIIC_WPS_n
Write Port Select
1.8-V HSTL Class I
PIN_AL11
QDRIIC_DOFF_n
PLL Turn Off
1.8-V HSTL Class I
PIN_AE14
QDRIIC_ODT
On-Die Termination Input
1.8-V HSTL Class I
PIN_BD10
DE5-Net User Manual
www.terasic.com
August 4, 2017
38
QDRIIC_QVLD
Valid Output Indicator
1.8-V HSTL Class I
PIN_BD11
Table 2-17 QDRII+ SRAM D Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
QDRIID_A0
Address bus[0]
1.8-V HSTL Class I
PIN_N26
QDRIID_A1
Address bus[1]
1.8-V HSTL Class I
PIN_P28
QDRIID_A2
Address bus[2]
1.8-V HSTL Class I
PIN_N28
QDRIID_A3
Address bus[3]
1.8-V HSTL Class I
PIN_L26
QDRIID_A4
Address bus[4]
1.8-V HSTL Class I
PIN_K27
QDRIID_A5
Address bus[5]
1.8-V HSTL Class I
PIN_L27
QDRIID_A6
Address bus[6]
1.8-V HSTL Class I
PIN_U26
QDRIID_A7
Address bus[7]
1.8-V HSTL Class I
PIN_T26
QDRIID_A8
Address bus[8]
1.8-V HSTL Class I
PIN_T27
QDRIID_A9
Address bus[9]
1.8-V HSTL Class I
PIN_V27
QDRIID_A10
Address bus[10]
1.8-V HSTL Class I
PIN_U27
QDRIID_A11
Address bus[11]
1.8-V HSTL Class I
PIN_R27
QDRIID_A12
Address bus[12]
1.8-V HSTL Class I
PIN_P27
QDRIID_A13
Address bus[13]
1.8-V HSTL Class I
PIN_V25
QDRIID_A14
Address bus[14]
1.8-V HSTL Class I
PIN_V26
QDRIID_A15
Address bus[15]
1.8-V HSTL Class I
PIN_T25
QDRIID_A16
Address bus[16]
1.8-V HSTL Class I
PIN_P26
QDRIID_A17
Address bus[17]
1.8-V HSTL Class I
PIN_M27
QDRIID_A18
Address bus[18]
1.8-V HSTL Class I
PIN_M28
QDRIID_A19
Address bus[19]
1.8-V HSTL Class I
PIN_P29
QDRIID_A20
Address bus[20]
1.8-V HSTL Class I
PIN_D29
QDRIID_D0
Write data bus[0]
1.8-V HSTL Class I
PIN_H25
QDRIID_D1
Write data bus[1]
1.8-V HSTL Class I
PIN_H24
QDRIID_D2
Write data bus[2]
1.8-V HSTL Class I
PIN_H23
QDRIID_D3
Write data bus[3]
1.8-V HSTL Class I
PIN_J25
QDRIID_D4
Write data bus[4]
1.8-V HSTL Class I
PIN_J24
QDRIID_D5
Write data bus[5]
1.8-V HSTL Class I
PIN_K25
QDRIID_D6
Write data bus[6]
1.8-V HSTL Class I
PIN_D26
QDRIID_D7
Write data bus[7]
1.8-V HSTL Class I
PIN_F25
QDRIID_D8
Write data bus[8]
1.8-V HSTL Class I
PIN_G25
QDRIID_D9
Write data bus[9]
1.8-V HSTL Class I
PIN_N23
QDRIID_D10
Write data bus[10]
1.8-V HSTL Class I
PIN_P24
QDRIID_D11
Write data bus[11]
1.8-V HSTL Class I
PIN_P23
QDRIID_D12
Write data bus[12]
1.8-V HSTL Class I
PIN_L24
QDRIID_D13
Write data bus[13]
1.8-V HSTL Class I
PIN_R24
QDRIID_D14
Write data bus[14]
1.8-V HSTL Class I
PIN_U23
QDRIID_D15
Write data bus[15]
1.8-V HSTL Class I
PIN_U24
QDRIID_D16
Write data bus[16]
1.8-V HSTL Class I
PIN_T24
DE5-Net User Manual
www.terasic.com
August 4, 2017
39
QDRIID_D17
Write data bus[17]
1.8-V HSTL Class I
PIN_T23
QDRIID_Q0
Read Data bus[0]
1.8-V HSTL Class I
PIN_C27
QDRIID_Q1
Read Data bus[1]
1.8-V HSTL Class I
PIN_A26
QDRIID_Q2
Read Data bus[2]
1.8-V HSTL Class I
PIN_B26
QDRIID_Q3
Read Data bus[3]
1.8-V HSTL Class I
PIN_F26
QDRIID_Q4
Read Data bus[4]
1.8-V HSTL Class I
PIN_G26
QDRIID_Q5
Read Data bus[5]
1.8-V HSTL Class I
PIN_C28
QDRIID_Q6
Read Data bus[6]
1.8-V HSTL Class I
PIN_A29
QDRIID_Q7
Read Data bus[7]
1.8-V HSTL Class I
PIN_A28
QDRIID_Q8
Read Data bus[8]
1.8-V HSTL Class I
PIN_B28
QDRIID_Q9
Read Data bus[9]
1.8-V HSTL Class I
PIN_G28
QDRIID_Q10
Read Data bus[10]
1.8-V HSTL Class I
PIN_F28
QDRIID_Q11
Read Data bus[11]
1.8-V HSTL Class I
PIN_D27
QDRIID_Q12
Read Data bus[12]
1.8-V HSTL Class I
PIN_G29
QDRIID_Q13
Read Data bus[13]
1.8-V HSTL Class I
PIN_F29
QDRIID_Q14
Read Data bus[14]
1.8-V HSTL Class I
PIN_H28
QDRIID_Q15
Read Data bus[15]
1.8-V HSTL Class I
PIN_K28
QDRIID_Q16
Read Data bus[16]
1.8-V HSTL Class I
PIN_J28
QDRIID_Q17
Read Data bus[17]
1.8-V HSTL Class I
PIN_H29
QDRIID_BWS_n0
Byte Write select[0]
1.8-V HSTL Class I
PIN_E26
QDRIID_BWS_n1
Byte Write select[1]
1.8-V HSTL Class I
PIN_K26
QDRIID_K_p
Clock P
Differential 1.8-V HSTL Class I
PIN_L23
QDRIID_K_n
Clock N
Differential 1.8-V HSTL Class I
PIN_K24
QDRIID_CQ_p
Echo clock P
1.8-V HSTL Class I
PIN_E29
QDRIID_CQ_n
Echo clock N
1.8-V HSTL Class I
PIN_H27
QDRIID_RPS_n
Report Select
1.8-V HSTL Class I
PIN_F24
QDRIID_WPS_n
Write Port Select
1.8-V HSTL Class I
PIN_M23
QDRIID_DOFF_n
PLL Turn Off
1.8-V HSTL Class I
PIN_E27
QDRIID_ODT
On-Die Termination Input
1.8-V HSTL Class I
PIN_H26 QDRIID_QVLD
Valid Output Indicator
1.8-V HSTL Class I
PIN_J27
22..110
0
SSPPFF++ PPoorrttss
The development board has four independent 10G SFP+ connectors that use one transceiver channel each from the Stratix V GX FPGA device. These modules take in serial data from the Stratix V GX FPGA device and transform them to optical signals. The board includes cage
DE5-Net User Manual
www.terasic.com
August 4, 2017
40
assemblies for the SFP+ connectors. 1Figure 2-14 shows the connections between the SFP+ and Stratix V GX FPGA.
Figure 2-14 Connection between the SFP+ and Stratix V GX FPGA
Table 2-18 and Table 2-19 list the SFP+ A, B, C and D pin assignments and signal names relative
to the Stratix V GX device.
Table 2-18 SFP+ A Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SFPA_TX_p
Transmitter data
1.4-V PCML
PIN_AG4
SFPA_TX_n
Transmitter data
1.4-V PCML
PIN_AG3
SFPA_RX_p
Receiver data
1.4-V PCML
PIN_AK2
SFPA_RX_n
Receiver data
1.4-V PCML
PIN_AK1
SFPA_LOS
Signal loss indicator
2.5V
PIN_F22
SFPA_MOD0_PRSNT_n
Module present
2.5V
PIN_E21
SFPA_MOD1_SCL
Serial 2-wire clock
2.5V
PIN_B20
SFPA_MOD2_SDA
Serial 2-wire data
2.5V
PIN_A20
SFPA_RATESEL0
Rate select 0
2.5V
PIN_E20
SFPA_RATESEL1
Rate select 1
2.5V
PIN_G22
SFPA_TXDISABLE
Turns off and disables the transmitter output
2.5V
PIN_B22
SFPA_TXFAULT
Transmitter fault
2.5V
PIN_A22
DE5-Net User Manual
www.terasic.com
August 4, 2017
41
Table 2-19 SFP+ B Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SFPB_TX_p
Transmitter data
1.4-V PCML
PIN_AL4
SFPB_TX_n
Transmitter data
1.4-V PCML
PIN_AL3
SFPB_RX_p
Receiver data
1.4-V PCML
PIN_AP2
SFPB_RX_n
Receiver data
1.4-V PCML
PIN_AP1
SFPB_LOS
Signal loss indicator
2.5V
PIN_R22
SFPB_MOD0_PRSNT_n
Module present
2.5V
PIN_K22
SFPB_MOD1_SCL
Serial 2-wire clock
2.5V
PIN_K21
SFPB_MOD2_SDA
Serial 2-wire data
2.5V
PIN_K20
SFPB_RATESEL0
Rate select 0
2.5V
PIN_R21
SFPB_RATESEL1
Rate select 1
2.5V
PIN_T22
SFPB_TXDISABLE
Turns off and disables the transmitter output
2.5V
PIN_H22
SFPB_TXFAULT
Transmitter fault
2.5V
PIN_H20
Table 2-20 SFP+ C Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SFPC_TX_p
Transmitter data
1.4-V PCML
PIN_AT6
SFPC_TX_n
Transmitter data
1.4-V PCML
PIN_AT5
SFPC_RX_p
Receiver data
1.4-V PCML
PIN_AW4
SFPC_RX_n
Receiver data
1.4-V PCML
PIN_AW3
SFPC_LOS
Signal loss indicator
2.5V
PIN_L21
SFPC_MOD0_PRSNT_n
Module present
2.5V
PIN_J21
SFPC_MOD1_SCL
Serial 2-wire clock
2.5V
PIN_H21
SFPC_MOD2_SDA
Serial 2-wire data
2.5V
PIN_G20
SFPC_RATESEL0
Rate select 0
2.5V
PIN_J22
SFPC_RATESEL1
Rate select 1
2.5V
PIN_P21
SFPC_TXDISABLE
Turns off and disables the transmitter output
2.5V
PIN_F21
SFPC_TXFAULT
Transmitter fault
2.5V
PIN_F20
Table 2-21 SFP+ C Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
SFPD_TX_p
Transmitter data
1.4-V PCML
PIN_AY6
SFPD_TX_n
Transmitter data
1.4-V PCML
PIN_AY5
SFPD_RX_p
Receiver data
1.4-V PCML
PIN_BB2
SFPD_RX_n
Receiver data
1.4-V PCML
PIN_BB1
SFPD_LOS
Signal loss indicator
2.5V
PIN_N22
SFPD_MOD0_PRSNT_n
Module present
2.5V
PIN_V20
SFPD_MOD1_SCL
Serial 2-wire clock
2.5V
PIN_U21
DE5-Net User Manual
www.terasic.com
August 4, 2017
42
SFPD_MOD2_SDA
Serial 2-wire data
2.5V
PIN_V19
SFPD_RATESEL0
Rate select 0
2.5V
PIN_V21
SFPD_RATESEL1
Rate select 1
2.5V
PIN_M22
SFPD_TXDISABLE
Turns off and disables the transmitter output
2.5V
PIN_U20
SFPD_TXFAULT
Transmitter fault
2.5V
PIN_T21
22..111
1
PPCCII EExxpprreessss
The FPGA development board is designed to fit entirely into a PC motherboard with x8 or x16 PCI Express slot. Utilizing built-in transceivers on a Stratix V GX device, it is able to provide a fully integrated PCI Express-compliant solution for multi-lane (x1, x4, and x8) applications. With the PCI Express hard IP block incorporated in the Stratix V GX device, it will allow users to implement simple and fast protocol, as well as saving logic resources for logic application. Figure 2-15 presents the pin connection established between the Stratix V GX and PCI Express.
The PCI Express interface supports complete PCI Express Gen1 at 2.5Gbps/lane, Gen2 at
5.0Gbps/lane, and Gen3 at 8.0Gbps/lane protocol stack solution compliant to PCI Express base specification 3.0 that includes PHY-MAC, Data Link, and transaction layer circuitry embedded in PCI Express hard IP blocks.
Please note that it is a requirement that you connect the PCIe external power connector to 6-pin 12V DC power connector in the FPGA to avoid FPGA damage due to insufficient power. The PCIE_REFCLK_p signal is a differential input that is driven from the PC motherboard on this board through the PCIe edge connector. A DIP switch (SW7) is connected to the PCI Express to allow different configurations to enable a x1, x4, or x8 PCIe.
Table 2-22 summarizes the PCI Express pin assignments of the signal names relative to the Stratix
V GX FPGA.
DE5-Net User Manual
www.terasic.com
August 4, 2017
43
Figure 2-15 PCI Express pin connection
Table 2-22 PCI Express Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
PCIE_TX_p0
Add-in card transmit bus
1.4-V PCML
PIN_AY39
PCIE_TX_n0
Add-in card transmit bus
1.4-V PCML
PIN_AY40
PCIE_TX_p1
Add-in card transmit bus
1.4-V PCML
PIN_AV39
PCIE_TX_n1
Add-in card transmit bus
1.4-V PCML
PIN_AV40
PCIE_TX_p2
Add-in card transmit bus
1.4-V PCML
PIN_AT39
PCIE_TX_n2
Add-in card transmit bus
1.4-V PCML
PIN_AT40
PCIE_TX_p3
Add-in card transmit bus
1.4-V PCML
PIN_AU41
PCIE_TX_n3
Add-in card transmit bus
1.4-V PCML
PIN_AU42
PCIE_TX_p4
Add-in card transmit bus
1.4-V PCML
PIN_AN41
PCIE_TX_n4
Add-in card transmit bus
1.4-V PCML
PIN_AN42
PCIE_TX_p5
Add-in card transmit bus
1.4-V PCML
PIN_AL41
PCIE_TX_n5
Add-in card transmit bus
1.4-V PCML
PIN_AL42
PCIE_TX_p6
Add-in card transmit bus
1.4-V PCML
PIN_AJ41
PCIE_TX_n6
Add-in card transmit bus
1.4-V PCML
PIN_AJ42
PCIE_TX_p7
Add-in card transmit bus
1.4-V PCML
PIN_AG41
PCIE_TX_n7
Add-in card transmit bus
1.4-V PCML
PIN_AG42
PCIE_RX_p0
Add-in card receive bus
1.4-V PCML
PIN_BB43
PCIE_RX_n0
Add-in card receive bus
1.4-V PCML
PIN_BB44
PCIE_RX_p1
Add-in card receive bus
1.4-V PCML
PIN_BA41
PCIE_RX_n1
Add-in card receive bus
1.4-V PCML
PIN_BA42
PCIE_RX_p2
Add-in card receive bus
1.4-V PCML
PIN_AW41
PCIE_RX_n2
Add-in card receive bus
1.4-V PCML
PIN_AW42
PCIE_RX_p3
Add-in card receive bus
1.4-V PCML
PIN_AY43
DE5-Net User Manual
www.terasic.com
August 4, 2017
44
PCIE_RX_n3
Add-in card receive bus
1.4-V PCML
PIN_AY44
PCIE_RX_p4
Add-in card receive bus
1.4-V PCML
PIN_AT43
PCIE_RX_n4
Add-in card receive bus
1.4-V PCML
PIN_AT44
PCIE_RX_p5
Add-in card receive bus
1.4-V PCML
PIN_AP43
PCIE_RX_n5
Add-in card receive bus
1.4-V PCML
PIN_AP44
PCIE_RX_p6
Add-in card receive bus
1.4-V PCML
PIN_AM43
PCIE_RX_n6
Add-in card receive bus
1.4-V PCML
PIN_AM44
PCIE_RX_p7
Add-in card receive bus
1.4-V PCML
PIN_AK43
PCIE_RX_n7
Add-in card receive bus
1.4-V PCML
PIN_AK44
PCIE_REFCLK_p
Motherboard reference clock
HCSL
PIN_AK38
PCIE_REFCLK_n
Motherboard reference clock
HCSL
PIN_AK39
PCIE_PERST_n
Reset
2.5-V
PIN_AU33
PCIE_SMBCLK
SMB clock
2.5-V
PIN_BD34
PCIE_SMBDAT
SMB data
2.5-V
PIN_AT33
PCIE_WAKE_n
Wake signal
2.5-V
PIN_BD35
PCIE_PRSNT1n
Hot plug detect
-
-
PCIE_PRSNT2n_x1
Hot plug detect x1 PCIe slot enabled using SW3 dip switch
-
­PCIE_PRSNT2n_x4
Hot plug detect x4 PCIe slot enabled using SW3 dip switch
-
­PCIE_PRSNT2n_x8
Hot plug detect x8 PCIe slot enabled using SW3 dip switch
-
-
22..112
2
SSAATTAA
Four Serial ATA (SATA) ports are available on the FPGA development board which are computer bus standard with a primary function of transferring data between the motherboard and mass storage devices (such as hard drives, optical drives, and solid-state disks). Supporting a storage interface is just one of many different applications an FPGA can be used in storage appliances. The Stratix V GX device can bridge different protocols such as bridging simple bus I/Os like PCI Express (PCIe) to SATA or network interfaces such as Gigabit Ethernet (GbE) to SATA. The SATA interface supports SATA 3.0 standard with connection speed of 6 Gbps based on Stratix V GX device with integrated transceivers compliant to SATA electrical standards.
The four Serial ATA (SATA) ports include two available ports for device and two available ports for host capable of implementing SATA solution with a design that consists of both host and target (device side) functions. 1Figure 2-16 depicts the host and device design examples.
DE5-Net User Manual
www.terasic.com
August 4, 2017
45
Figure 2-16 PC and storage device connection to the Stratix V GX FPGA
The transmitter and receiver signals of the SATA ports are connected directly to the Stratix V GX transceiver channels to provide SATA IO connectivity to both host and target devices. To verify the functionality of the SATA host/device ports, a connection can be established between the two ports by using a SATA cable as Figure 2-17 depicts the associated signals connected. 1Figure 2-17 lists the SATA pin assignments, signal names and functions.
DE5-Net User Manual
www.terasic.com
August 4, 2017
46
Figure 2-17 Pin connection between SATA connectors
Table 2-23 lists the SATA pin assignments, signal names and functions.
Table 2-23 Serial ATA Pin Assignments, Schematic Signal Names, and Functions
Schematic Signal Name
Description
I/O Standard
Stratix V GX Pin Number
Device
SATA_DEVICE_RX_p0
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_K43
SATA_DEVICE_RX_n0
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_K44
SATA_DEVICE_TX_n0
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_K40
SATA_DEVICE_TX_p0
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_K39
SATA_DEVICE_RX_p1
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_H43
SATA_DEVICE_RX_n1
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_H44
SATA_DEVICE_TX_n1
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_H40
SATA_DEVICE_TX_p1
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_H39 SATA_DEVICE_REFCLK_p
Reference Clock
HCSL
PIN_V39
SATA_DEVICE_REFCLK_n
Reference Clock
HCSL
PIN_V40
DE5-Net User Manual
www.terasic.com
August 4, 2017
47
Host
SATA_HOST_TX_p0
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_K6
SATA_HOST_TX_n0
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_K5
SATA_HOST_RX_n0
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_K1
SATA_HOST_RX_p0
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_K2
SATA_HOST_TX_p1
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_H6
SATA_HOST_TX_n1
Differential transmit data output before DC blocking capacitor
1.4-V PCML
PIN_H5
SATA_HOST_RX_n1
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_H1
SATA_HOST_RX_p1
Differential receive data input after DC blocking capacitor
1.4-V PCML
PIN_H2 SATA_HOST_REFCLK_ p
Reference Clock
HCSL
PIN_V6
SATA_HOST_REFCLK_ n
Reference Clock
HCSL
PIN_V5
DE5-Net User Manual
www.terasic.com
August 4, 2017
48
Chapter 3
System Builder
This chapter describes how users can create a custom design project on the FPGA board by using the Software Tools – System Builder.
33..1
1
IInnttrroodduuccttiioonn
The System Builder is a Windows based software utility, designed to assist users to create a Quartus II project for the FPGA board within minutes. The generated Quartus II project files include:
Quartus II Project File (.qpf) Quartus II Setting File (.qsf) Top-Level Design File (.v) External PLL Controller (.v) Synopsis Design Constraints file (.sdc) Pin Assignment Document (.htm)
The System Builder not only can generate the files above, but can also provide error-checking rules to handle situation that are prone to errors. The common mistakes that users encounter are the following:
Board damaged for wrong pin/bank voltage assignment. Board malfunction caused by wrong device connections or missing pin counts for connected
ends.
Performance dropped because of improper pin assignments
DE5-Net User Manual
www.terasic.com
August 4, 2017
49
33..2
2
GGeenneerraall DDeessiiggnn FFllooww
This section will introduce the general design flow to build a project for the FPGA board via the System Builder. The general design flow is illustrated in the 1Figure 3-1.
Users should launch System Builder and create a new project according to their design requirements. When users complete the settings, the System Builder will generate two major files which include top-level design file (.v) and the Quartus II setting file (.qsf).
The top-level design file contains top-level Verilog wrapper for users to add their own design/logic. The Quartus II setting file contains information such as FPGA device type, top-level pin assignment, and I/O standard for each user-defined I/O pin.
Finally, Quartus II programmer must be used to download SOF file to the FPGA board using JTAG interface.
DE5-Net User Manual
www.terasic.com
August 4, 2017
50
Figure 3-1 The general design flow of building a design
33..3
3
UUssiinngg SSyysstteemm BBuuiillddeerr
This section provides the detail procedures on how the System Builder is used.
Install and launch the System Builder
The System Builder is located in the directory: "Tools\SystemBuilder" in the System CD. Users can copy the whole folder to a host computer without installing the utility. Before using the System Builder, execute the SystemBuilder.exe on the host computer as appears in Figure 3-2.
DE5-Net User Manual
www.terasic.com
August 4, 2017
51
Figure 3-2 The System Builder window
Select Board Type and Input Project Name
Select the target board type and input project name as show in 1Figure 3-3.
Project Name: Specify the project name as it is automatically assigned to the
name of the top-level design entity.
Figure 3-3 The Quartus Project Name
System Configuration
Under System Configuration users are given the flexibility of enabling their choice of components
DE5-Net User Manual
www.terasic.com
August 4, 2017
52
on the FPGA as shown in 1Figure 3-4. Each component of the FPGA board is listed where users can enable or disable a component according to their design by simply marking a check or removing the check in the field provided. If the component is enabled, the System Builder will automatically generate the associated pin assignments including the pin name, pin location, pin direction, and I/O standards.
Note: The pin assignments for some components (e.g. DDR3 and SFP+) require associated controller codes in the Quartus project otherwise Quartus will result in compilation errors. Therefore, do not select them if they are not necessary in your design. To use the DDR3 controller, please refer to the DDR3 SDRAM demonstration in Chapter 6.
Figure 3-4 System Configuration Group
Programmable Oscillator
There are two external oscillators on-board that provide reference clocks for the following signals SFP_REFCLK, SFP1G_REFCLK, SATA_HOST_REFCLK and SATA_DEVICE_REFCLK. To use these oscillators, users can select the desired frequency on the Programmable Oscillator group, as shown in Figure 3-5. SPF+ or SATA should be checked before users can start to specify the desired frequency in the programmable oscillators.
As the Quartus project is created, System Builder automatically generates the associated controller according to users’ desired frequency in Verilog which facilitates users’ implementation as no additional control code is required to configure the programmable oscillator.
DE5-Net User Manual
www.terasic.com
August 4, 2017
53
Note: If users need to dynamically change the frequency, they would need to modify the generated control code themselves.
Figure 3-5 External Programmable Oscillators
Project Setting Management
The System Builder also provides functions to restore default setting, loading a setting, and saving users’ board configuration file shown in 1Figure 3-6. Users can save the current board configuration information into a .cfg file and load it to the System Builder.
Figure 3-6 Project Settings
DE5-Net User Manual
www.terasic.com
August 4, 2017
54
Project Generation
When users press the Generate button, the System Builder will generate the corresponding Quartus II files and documents as listed in the Table 3-1 in the directory specified by the user.
Table 3-1 The files generated by System Builder
No.
Filename
Description
1
<Project name>.v
Top level Verilog file for Quartus II
2
Si570_controller.v(*)
Si570 External Oscillator controller IP
3
<Project name>.qpf
Quartus II Project File
4
<Project name>.qsf
Quartus II Setting File
5
<Project name>.sdc
Synopsis Design Constraints file for Quartus II
6
<Project name>.htm
Pin Assignment Document
(*) The Si570 Controller includes seven files: Si570_controller.v, initial_config.v, clock_divider.v, edge_detector.v, i2c_reg_controller.v, i2c_controller.v and i2c_bus_controller.v.
Users can use Quartus II software to add custom logic into the project and compile the project to generate the SRAM Object File (.sof).
For Si570, the Controller will be instantiated in the Quartus II top-level file as listed below:
For CDCM61001 and CDCM61004, the Controller will be instantiated in the Quartus II top-level
DE5-Net User Manual
www.terasic.com
August 4, 2017
55
file as listed below:
DE5-Net User Manual
www.terasic.com
August 4, 2017
56
If dynamic configuration for the oscillator is required, users need to modify the code according to users’ desired behavior.
DE5-Net User Manual
www.terasic.com
August 4, 2017
57
Chapter 4
Flash Programming
As you develop your own project using the Altera tools, you can program the flash memory device so that your own design loads from flash memory into the FPGA on power up. This chapter will describe how to use Altera Quartus II Programmer Tool to program the common flash interface (CFI) flash memory device on the FPGA board. The Stratix V GX FPGA development board ships with the CFI flash device preprogrammed with a default factory FPGA configuration for running the Parallel Flash Loader design example.
44..1
1
CCFFII FFllaasshh MMeemmoorryy MMaapp
140H140HTable 4-1 shows the default memory contents of two interlaced 1Gb (128MB) CFI flash device.
Each flash device has a 16-bit data bus and the two combined flash devices allow for a 32-bit flash memory interface. For the factory default code to run correctly and update designs in the user memory, this memory map must not be altered.
Table 4-1 Flash Memory Map (Byte Address)
Block Description
Size(KB)
Address Range
PFL option bits
64
0x00030000 – 0x0003FFFF
Factory hardware
33,280
0x00040000 – 0x020BFFFF
User hardware
33,280
0x020C0000 – 0x0413FFFF
Factory software
8,192
0x04140000 – 0x0493FFFF
User software and data
187,136
0x04940000 – 0x0FFFFFFF
For user application, user hardware must be stored with start address 0x020C0000, and the users software is suggested to be stored with start address 0x04940000. The NIOS II EDS tool nios-2-flash-programmer is used for programming the flash. Before programming, users need to translate their Quartus .sof and NIOS II .elf files into the .flash which is used by the nios-2-flash-programmer. For .sof to .flash translation, NIOS II EDS tool sof2flsh can be used.
DE5-Net User Manual
www.terasic.com
August 4, 2017
58
For the .elf to .flash translation, NIOS II EDS tool elf2flash can be used. For convenience, the System CD contains a batch file for file translation and flash programming with users given .sof and .elf file.
44..2
2
FFPPGGAA CCoonnffiigguurree OOppeerraattiioonn
Here is the procedure to enable FPGA configuration from Flash:
1. Please make sure the FPGA configuration data has been stored in the CFI flash.
2. Set the FPGA configuration mode to FPPx32 mode by setting SW6 MSEL[0:4] as 00010
3. Specify the configuration of the FPGA using the default Factory Configuration or User
Configuration by setting SW5 according to Figure 4-1.
4. Power on the FPGA board or press MAX_RST button if board is already powered on
5. When configuration is completed, the green Configure Done LED will light. If there is error,
the red Configure Error LED will light.
44..3
3
FFllaasshh PPrrooggrraammmmiinngg wwiitthh UUsseerrss DDeessiiggnn
Users can program the flash memory device so that a custom design loads from flash memory into the FPGA on power up. For convenience, the translation and programming batch files are available on the Demonstrations/Hello/flash_programming_batch folder in the System CD. There folder contains five files as shown in Table 4-2
Table 4-2 Flash Memory Map (Byte Address)
Files Name
Description
S5_PFL.sof
Parallel Flash Loader Design
flash_program_ub2.bat
Top batch file to download S5_PFL.sof and launch batch flash_program_bashrc_ub2
flash_program_bashrc_ub2
Translate .sof and .elf into .flash and programming flash with the generated .flash file
Golden_top.sof
Hardware design file for Hello Demo
HELLO_NIOS.elf
Software design file for Hello Demo
To apply the batch file to users .sof and .elf file, users can change the .sof and .elf filename in the
flash_program_bashrc_ub2 file as shown in Figure 4-2.
DE5-Net User Manual
www.terasic.com
August 4, 2017
59
Figure 4-1 Change to usrs .sof and .elf filename
If your design does not contain a NIOS II processor, users can add # to comment (disable) the elf2flash and nios-flash-programmer commands in the flash_program_bashrc_ub2 file as shown in
144H144HFigure 4-2.
Figure 4-2 Disable .elf translation and programming
If your design includes a NIOS II processor and the NIOS II program is stored on external memory, users must to perform following items so the NIOS II program can be boot from flash successfully:
1. QSYS should include a Flash controller for the CFI Flash on the development board. Please
ensure that the base address of the controller is 0x00, as shown in Figure 4-3.
2. In NIOS II processor options, select FLASH as reset vector memory and specify
0x04940000 as reset vector, as shown in 1Figure 4-4.
DE5-Net User Manual
www.terasic.com
August 4, 2017
60
Figure 4-3 Flash Controller Settings in QSYS
Figure 4-4 Reset Vector Settings for NIOS II Processor
For implementation detail, users can refer the Hello example located in the CD folder:
Demonstrations/ Hello
44..4
4
RReessttoorree FFaaccttoorryy SSeettttiinnggss
This section describes how to restore the original factory contents to the flash memory device on the FPGA development board. Perform the following instructions:
1. Make sure the Nios II EDS and USB-Blaster II driver are installed.
2. Make sure the FPGA board and PC are connected with an UBS Cable.
DE5-Net User Manual
www.terasic.com
August 4, 2017
61
3. Power on the FPGA board.
4. Copy the “Demonstrations/PFL/flash_programming_batch folder under the CD to your
PC’s local drive.
5. Execute the batch file flash_program_ub2.bat to start flash programming.
6. Power off the FPGA Board.
7. Set FPGA configure mode as FPPx32 Mode by setting SW6 MSEL[0:4] to 00010.
8. Specify configuration of the FPGA to Factory Hardware by setting the FACTORY_LOAD
dip in SW5 to the 1’ position.
9. Power on the FPGA Board, and the Configure Done LED should light.
Except for programming the Flash with the default code PFL, the batch file also writes PFL (Parallel Flash Loader) Option Bits data into the address 0x30000. The option bits data specifies 0x20C0000 as start address of your hardware design.
The NIOS II EDS tool nios-2-flash-programmer programs the Flash based on the Parallel Flasher Loader design in the FPGA. The Parallel Flash Loader design is included in the default code PFL and the source code is available in the folder Demonstrations/ PFL in System CD.
62
Chapter 5
Programmable Oscillator
This chapter describes how to program the two programmable oscillators Si570 and CDCM61004 on the FPGA board. Also, RTL code based and Nios based reference design are explained in the chapter. The source codes of these examples are all available on the FPGA System CD.
55..1
1
OOvveerrvviieeww
This section describes how to program Si570- and CDCM61004. For detail programming information, please refer to their datasheets which are available on the FPGA System CD.
Si570
The Si570 utilizes Silicon Laboratories advanced DSPLL® circuitry to provide a low-jitter clock at any frequency. The Si570 are user-programmable to any output frequency from 10 to 945 MHz and select frequencies to 1400 MHz with < 1ppb resolution. The device is programmed via an I2C serial interface. The differential clock output of the Si570 directly connects to dedicated reference clock input of the Stratix V GX transceiver for SFP+ channels. Many applications can be implemented using this function. For example, the 10G Ethernet application can be designed onto this board by feeding a necessary clock frequency of 644.53125MHz or 322.265625MHz from the Si570.
Figure 5-1 shows the block diagram of Si570 device. Users can modify the value of the three
registers RFREQ, HS_DIV, and N1 to generate the desired output frequency.
DE5-NET User Manual
63
www.terasic.com
August 4, 2017
Figure 5-1 Si570 Block diagram
The output frequency is calculated using the following equation:
When Si570 is powered on, the default output frequency is 100 MHz. Users can program the output frequency through the I2C interface using the following procedure.
6. Freeze the DCO (bit 4 of Register 137).
7. Write the new frequency configuration (RFREQ,HSDIV, and N1) to Register 7–12.
8. Unfreeze the DCO and assert the NewFreq bit (bit 6 of Register 135).
The I2C address of Si570 is zero and it supports fast mode operation whose transfer rate is up to 400 kbps. 148H148HTable 5-1 shows the register table for Si570.
Table 5-1 Si570 Register Table
Register
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
DE5-NET User Manual
64
www.terasic.com
August 4, 2017
7
High Speed/N1 Dividers
HS_DIV[2:0]
N1[6:2]
8
Reference Frequency
N1[1:0]
RFREQ[37:32]
9
Reference Frequency
RFREQ[31:24]
10
Reference Frequency
RFREQ[23:16]
11
Reference Frequency
RFREQ[15:8]
12
Reference Frequency
RFREQ[7:0]
135
Reference Frequency
RST_REG
NewFreq
Freeze M
Freeze VCADC
RECALL
137
Reference Frequency
Freeze DCO
149H149HTable 5-2 lists the register settings for some common used frequency.
Table 5-2 Si570 Register Table
Output Frequency (MHz)
HS_DIV
HS_DIV Register Setting
NI
NI Register Setting
REF_CLK Register Setting
100
9
101
6
0000101
02F40135A9(hex)
125
11
111
4
0000011
0302013B65(hex)
156.25
9
101
4
0000011
0313814290(hex)
250
11
111
2
0000001
0302013B65(hex)
312.5
9
101
2
0000001
0313814290(hex)
322.265625
4
000
4
0000011
02D1E127AF(hex)
644.53125
4
000
2
0000001
02D1E127AF(hex)
CDCM61004
DE5-NET User Manual
65
www.terasic.com
August 4, 2017
The FPGA board includes another programmable PLL CDCM61004. The CDCM61004 supports output frequency range from 43.75 MHz to 683.264 MHz. It provides a parallel interface for selecting a desired output frequency. The Stratix V GX FPGA's IOs connect to the interface directly. The differential clock outputs of the CDCM61004 are designed for SFP+ and SATA applications on FPGA board.
When CDCM61004 is powered on, the default output frequency is 100 MHZ. Users can change the output frequency by the following control pins:
1. PR0 and PR1
2. OD0, OD1, and OD2
3. RSTN
4. CE
5. OS0 and OS1
The following table lists the frequency which CDCM61004 can generate in the FPGA board.
PRESCALLR DIVIDER
FEEDBACK DIVIDER
OUTPUT DEVIDER
OUTPUT FREQUENCY(MHz)
APPLICATION 4
20 8 62.5
GigE
3
24 8 75
SATA
3
24 6 100
PCI Express
4
20 4 125
GigE
3
24 4 150
SATA
3
25 4 156.25
10 GigE
5
15 2 187.5
12 GigE
3
24 3 200
PCI Express
4
20 2 250
GigE
4
20 2 312.5
XGMII
3
25 1 625
10 GigE
The both values of PRESCALER DIVIDER and FEEDBACK DIVIDER can be specified by the PR0 and PR1 control pins according to the following table:
DE5-NET User Manual
66
www.terasic.com
August 4, 2017
The value of OUTPUT DIVIDER can be specified by the OD0, OD1 and OD2 control pins according to the following table:
After specifying the desired output frequency in the parallel interface, developers must assert the output enable pin CE and control the RSTN pin to generate a rising signal to start the PLL Recalibration process. In the FPGA board, the required output type is LVDS, so always set OS0 and SO1 to 0 and 1, respectively.
55..2
2
SSii557700 EExxaammppllee bbyy RRTTLL
In this section we will demonstrate how to use the Terasic Si570 Controller implemented in Verilog to control the Si570 programmable oscillator on the FPGA board. This controller IP can configure the Si570 to output a clock with a specific frequency via I2C interface. For demonstration, the output clock is used to implement a counter where the MSB is used to drive an LED, so the user can get the result from the frequency of the LED blinking. We will also introduce the port declarations and associated parameter settings of this IP. Figure 5-2 shows the block diagram of this demonstration.
DE5-NET User Manual
67
www.terasic.com
August 4, 2017
Figure 5-2 Block Diagram of this Demonstration
Block Diagrams of Si570 Controller IP
The block diagram of the Si570 controller is shown on Figure 5-3. Shown here are four blocks named i2c_reg_controller, i2c_bus_controller, clock_divider and initial_config in Si570 controller IP. Firstly, the i2c_reg_controller will generate an associated Si570 register value for the i2c_bus_controller based on user-desired frequency. Once i2c_bus_controller receives this data, it will transfer these settings to Si570 via serial clock and data bus using I2C protocol. The registers in Si570 will be configured and output the user-desired frequency.
Secondly, the clock_divider block will divide system clock (50 MHz) into 97.6 KHz which is used as I2C interface clock of i2c_bus_controller. Finally, the initial_config block will generate a control signal to drive i2c_reg_controller which allows the Si570 controller to configure Si570 based on default settings.
Figure 5-3 Block Diagram of Si570 Controller IP
DE5-NET User Manual
68
www.terasic.com
August 4, 2017
Using Si570 Controller IP
Table 5-3 lists the instruction ports of Si570 Controller IP
Table 5-3 Si570 Controller Instruction Ports
Port
Direction
Description
iCLK
input
System Clock (50Mhz)
iRST_n
input
Synchronous Reset (0: Module Reset, 1: Normal)
iStart
input
Start to Configurepositive edge trigger
iFREG_MODE
input
Setting Si570 Output Frequency Value
oController_Ready
output
Si570 Configuration status ( 0: Configuration in Progress, 1: Configuration Complete)
I2C_DATA
inout
I2C Serial Data to/from Si570
I2C_CLK
output
I2C Serial Clock to Si570
To use the Si570 Controller, the first thing users need to determine is the desired output frequency in advance. The Si570 controller provides six optional clock frequencies. These options can be set through an input port named “iFREG_MODE” in Si570 controller. The specified settings with corresponding frequencies are listed in Table 5-4. For example, setting “iFREG_MODE” as 3’b110 will configure Si570 to output 655.53 MHz clock.
Table 5-4 Si570 Controller Frequency Setting
iFREG MODE Setting
Si570 Clock Frequency(MHz)
3'b000
100
3'b001
125
3'b010
156.25
3'b011
250
3'b100
312.25
3'b101
322.26
3'b110
644.53125
3'b111
100
When the output clock frequency is decided, the next thing users need to do is to enable the controller to configure Si570. Before sending enable signal to Si570 controller, users need to monitor an output port named “oController_Ready”. This port indicates if Si570 controller is ready to be configured or not. If it is ready, logic high will be outputted and the user needs to send a high level logic to “iStart” port to enable the Si570 Controller as shown in Figure 5-4. During Si570 configuring, the logic level of “oController_Ready” is low; when it rises to high again that means the user can configure another frequency value.
DE5-NET User Manual
69
www.terasic.com
August 4, 2017
Figure 5-4 Timing Waveform of Si570 Controller
Modify Clock Parameter For Your Own Frequency
If all the six clock frequencies are not desired, you can perform the following steps to modify Si570 controller.
1. Open i2c_reg_controller.v
2. Locate the Verilog code shown below:
always @(*) begin case(iFREQ_MODE) 3'h0 : //100Mhz begin new_hs_div = 4'b0101 ; new_n1 = 8'b0000_1010 ; fdco = 28'h004_E200 ; end 3'h1 : //125Mhz begin new_hs_div = 4'b0101 ; new_n1 = 8'b0000_1000 ; fdco = 28'h004_E200 ; end
DE5-NET User Manual
70
www.terasic.com
August 4, 2017
3'h2 : //156.25Mhz begin new_hs_div = 4'b0100 ; new_n1 = 8'b0000_1000 ; fdco = 28'h004_E200 ; end 3'h3 : //250Mhz begin new_hs_div = 4'b0101 ; new_n1 = 8'b0000_0100 ; fdco = 28'h004_E200 ; end 3'h4 : //312.5Mhz begin new_hs_div = 4'b0100 ; new_n1 = 8'b0000_0100 ; fdco = 28'h004_E200 ; end 3'h5 : //322.265625Mhz begin new_hs_div = 4'b0100 ; new_n1 = 8'b0000_0100 ; fdco = 28'h005_0910 ; end 3'h6 : //644.53125Mhz begin new_hs_div = 4'b0100 ; new_n1 = 8'b0000_0010 ; fdco = 28'h005_0910 ; end default : //100Mhz begin new_hs_div = 4'b0101 ; new_n1 = 8'b0000_1010 ; fdco = 28'h004_E200 ; end endcase
DE5-NET User Manual
71
www.terasic.com
August 4, 2017
end
Users can get a desired frequency output from si570 by modifying these three parameters : new_hs_div ,new_n1 and fdco.
Detailed calculation method is in following equation:
fdco = output frequency * new_hs_div * new_n1 * 64
There are three constraints for the equation:
1. 4850 < output fequency * new_hs_div * new_n1 < 5600
2. 4 <= new_hs_div <= 11
3. 1 <= new_n1 < =128
For example, you want to get a 133.5 mhz clock, then
fdco = 133.5 x 4 x 10 x 64 = 341760d = 0x53700
Find a mode in this RTL code section and modify these three parameters,as shown below:
new_hs_div = 3'b100 ; new_n1 = 4'b1010 ; fdco = 23'h05_3700 ;
In addition, Silicon Lab also provide the corresponding calculation tool.
Users can refer to the Programmable Oscillator tool (See Figure 5-5) mentioned in below link to calculate the values of new_hs_div and new_n1, then, the fdco value can be calcuted with above ftdo equation.
http://www.silabs.com/products/clocksoscillators/oscillators/Pages/oscillator-software-development
-tools.aspx
DE5-NET User Manual
72
www.terasic.com
August 4, 2017
Figure 5-5 Programmable Oscillator Calculator tool
In addition, if the user doesn’t want Si570 controller to configure Si570 as soon as the FPGA configuration finishes, users can change settings in Si570_controller.v, shown below.
initial_config initial_config(
.iCLK(iCLK), // system clock 50mhz .iRST_n(iRST_n), // system reset .oINITIAL_START(initial_start), .iINITIAL_ENABLE(1'b1), );
Changing the setting from ".iINITIAL_ENABLE(1'b1) " to ".iINITIAL_ENABLE(1'b0)" will disable the initialization function of Si570 Controller.
Design Tools
Quartus II 13.1
Demonstration Source Code
DE5-NET User Manual
73
www.terasic.com
August 4, 2017
Project directory: Si570_Demonstration Bit stream used: Si570_Demonstration.sof Demonstration Batch File : test_ub2.bat Demo Batch File Folder: Si570_Demonstration \demo_batch
The demo batch file folders include the following files:
Batch File: test_ub2.bat FPGA Configuration File: Si570_Demonstration.sof
Demonstration Setup
Make sure Quartus II is installed on your PC. Connect the USB Blaster cable to the FGPA board and host PC. Install the USB Blaster II
driver if necessary.
Power on the FPGA board. Execute the demo batch file test_ub2.bat” under the batch file folder,
Si570_Demonstration\demo_batch
Press BUTTON1 to configure the Si570. Observe LED3 status.
55..3
3
SSii557700 aanndd CCDDCCMM PPrrooggrraammmmiinngg bbyy NNiiooss IIII
This demonstration shows how to use the Nios II processor to program both programmable oscillators Si570 and CDCM on the FPGA board. The demonstration also includes a function to monitor system temperature with the on-board temperature sensor.
System Block Diagram
Figure 5-5 shows the system block diagram of this demonstration. The system requires a 50 MHz
clock provided from the board. The three peripheral temperature sensor, Si570, and CDCM61004 are all controlled by Nios II through the PIO controller. The temperature sensor and external PLL Si570 are controlled through I2C interface. The Nios II program toggles the PIO controller to implement the I2C protocol. The CDCM 61004 is programmed through the PIO directly. The Nios
DE5-NET User Manual
74
www.terasic.com
August 4, 2017
II program is running in the on-chip memory.
Figure 5-6 Block diagram of the Nios II Basic Demonstration
The program provides a menu in nios-terminal, as shown in Figure 5-6 to provide an interactive interface. With the menu, users can perform the test for the temperatures sensor and external PLL. Note, pressing ENTER’ should be followed with the choice number.
Figure 5-7 Menu of Demo Program
In temperature test, the program will display local temperature and remote temperature. The remote temperature is the FPGA temperature, and the local temperature the board temperature where the temperature sensor located.
In the external PLL programming test, the program will program the PLL first, and subsequently will use TERASIC QSYS custom CLOCK_COUNTER IP to count the clock count in a specified period to check whether the output frequency is changed as configured. To avoid a Quartus II
DE5-NET User Manual
75
www.terasic.com
August 4, 2017
compilation error, dummy transceiver controllers are created to receive the clock from the external PLL. Users can ignore the functionality of the transceiver controller in the demonstration.
For CDMC61004 programming, users must trigger the CLK_RST_n to notify the chip to perform PLL recalibration. For Si570 programming, please note the device I2C address is 0x00. Also, before configuring the output frequency, users must freeze the DCO (bit 4 of Register 137) first. After configuring the output frequency, users must un-freeze the DCO and assert the NewFreq bit (bit 7 of Register 135).
Design Tools Quartus II 12.1 Nios II Eclipse 12.1 Demonstration Source Code Quartus II Project directory: Nios_BASIC_DEMO Nios II Eclipse: Nios_BASIC_DEMO\Software Nios II IDE Project Compilation Before you attempt to compile the reference design under Nios II Eclipse, make sure the
project is cleaned first by clicking on ‘Clean’ in the ‘Project’ menu of Nios II Eclipse.
Demonstration Batch File
Demo Batch File Folder: Nios_BASIC_DEMO\demo_batch
The demo batch file includes following files:
Batch File for USB-Blaster II: test_ub2.bat, test_bashrc_ub2 FPGA Configure File: golen_top.sof Nios II Program: Nios_DEMO.elf
Demonstration Setup
Make sure Quartus II and Nios II are installed on your PC. Power on the FPGA board. Use the USB Cable to connect your PC and the FPGA board and install USB Blaster II driver
if necessary.
Execute the demo batch file test_ub2.bat” under the batch file folder,
Nios_BASIC_DEMO\demo_batch
After the Nios II program is downloaded and executed successfully, a prompt message will be
displayed in nios2-terminal.
DE5-NET User Manual
76
www.terasic.com
August 4, 2017
For temperature test, please input key 0 and press Enter in the nios-terminal, , as shown in
Figure 5-7.
For programming PLL CDCD61004 test, please input key 1’ and press Enter’ in the
nios-terminal first, then select the desired output frequency , as shown in 158H158H Figure
5-9.
For programming PLL Si570 test, please input key 2’ and press Enter in the nios-terminal
first, then select the desired output frequency , as shown in 159H159H Figure 5-10.
Figure 5-8 Temperature Demo
DE5-NET User Manual
77
www.terasic.com
August 4, 2017
Figure 5-9 CDCM 61004 Demo
Figure 5-10 Si570 Demo
DE5-NET User Manual
78
www.terasic.com
August 4, 2017
Chapter 6
Memory Reference Design
The FPGA development board includes two kinds of high-speed memories:
DDR3 SDRAM: two independent banks, update to 800 MHz QDRII+ SRAM: four independent banks, update to 550 MHz
This chapter will show three examples which use the Altera Memory IP to perform memory test functions. The source codes of these examples are all available on the FPGA System CD. These three examples are:
QDRII+ SRAM Test: Full test of the four banks of QDRII+ SRAM DD3 SDRAM Test: Random test of the two banks of DDR3 SDRAM. DDR3 SDRAM Test by Nios II: Full test of one bank of DDR3 SDRAM with Nios II
Note. 64-Bit Quartus 12.1 or later is strongly recommended for compiling these projects.
66..1
1
QQDDRRIIII++ SSRRAAMM TTeesstt
QDR II/QDR II+ SRAM devices enable you to maximize memory bandwidth with separate read and write ports. The memory architecture features separate read and write ports operating twice per clock cycle to deliver a total of four data transfers per cycle. The resulting performance increase is particularly valuable in bandwidth-intensive and low-latency applications.
This demonstration utilizes four QDRII+ SRAMs on the FPGA board. It describes how to use Altera’s “QDRII and QDRII+ SRAM Controller with UniPHY” IP to implement a memory test function. In the design, the four QDRII controllers share the PLL/DLL/OCT due to limited DLL numbers in the FPGA.
DE5-NET User Manual
79
www.terasic.com
August 4, 2017
Function Block Diagram
Figure 6-1 shows the function block diagram of the demonstration. The four QDRII+ SRAM
controllers are configured as a 72Mb controller. The QDRII+ SRAM IP generates a 550MHz clock as memory clock and a half-rate system clock, 275MHz, for the controllers.
Figure 6-1 Function Block Diagram of the QDRII+ SRAM x4 Demonstration
In this demonstration, four QDRII+ SRAM controllers are sharing the FPGA resources (OCT, PLL, and DLL), and the QDRII+ SRAM (B) is configured as the master to share the resource to the other three slave QDRII+ SRAM (A/C/D).QDRII+ SRAM (A/C) share OCT, PLL, DLL from QDRII+ SRAM (B). QDII+ SRAM (D) shares OCT from QDRII+ SRAM (B) and it has its own PLL and DLL resources. The Avalon bus read/write test (RW_test) modules read and write the entire memory space of each QDRII+ SRAM through the Avalon interface of each controller. In this project, the RW_test module will first write the entire memory and then compare the read back data
DE5-NET User Manual
80
www.terasic.com
August 4, 2017
with the regenerated data (the same sequence as the write data). Test control signals for four QDRII+ SRAMs will generate from BUTTON0 and four LEDs will indicate the test results of four QDRII+ SRAMs.
Altera QDRII and QDRII+ SRAM Controller with UniPHY
To use Altera QDRII+ SRAM controller, users need to perform the following steps in order:
1. Create correct pin assignments for QDRII+.
2. Setup correct parameters in QDRII+ SRAM controller dialog.
3. Perform “Analysis and Synthesis” by clicking Quartus menu: ProcessStartStart
Analysis & Synthesis.
4. Run the TCL files generated by QDRII+ IP by clicking Quartus menu: ToolsTCL
Scripts…
Design Tools Quartus II 12.1 Demonstration Source Code Project directory: QDRIIx4_Test Bit stream used: QDRIIx4_Test.sof Demonstration Batch File
Demo Batch File Folder: QDRIIx4_Test\demo_batch
The demo batch files include the followings:
Batch file for USB-Blaster II: test_ub2.bat, FPGA configuration file: QDRIIx4_Test.sof Demonstration Setup Make sure Quartus II is installed on your PC. Connect the USB cable to the FPGA board and host PC. Install the USB-Blaster II driver if
necessary.
Power on the FPGA Board. Execute the demo batch file test_ub2.bat under the batch file folder,
QDRIIx4_Test\demo_batch.
Press BUTTON0 of the FPGA board to start the verification process. When BUTTON0 is held
DE5-NET User Manual
81
www.terasic.com
August 4, 2017
down, all the LEDs will be turned off. All LEDs should turn back on to indicate test passes upon the release of BUTTON0.
If any LED is not lit up after releasing BUTTON0, it indicates the corresponding QDRII+
SRAM test has failed. 161H161H Table 6-1 lists the matchup for the four LEDs.
Press BUTTON0 again to regenerate the test control signals for a repeat test.
Table 6-1 LED Indicators
NAME
Description
LED0
QDRII+ SRAM(A) test result
LED1
QDRII+ SRAM(B) test result
LED2
QDRII+ SRAM(C) test result
LED3
QDRII+ SRAM(D) test result
66..2
2
DDDDRR33 SSDDRRAAMM TTeesstt
This demonstration presents a memory test function on the two sodimm of DDR3-SDRAM on the FPGA board. The memory size of each DDR3 SDRAM sodimm used in this test is 2 GB.
Function Block Diagram
Figure 6-2 shows the function block diagram of this demonstration. There are two DDR3 SDRAM
controllers. One is the master controller which shares resources with a slave controller. The shared resources include delay-locked loops (DLLs), phase-locked loops (PLLs), and on-chip termination (OCT). The controller uses 50 MHz as a reference clock, generates one 800.0 MHz clock as memory clock, and generates one quarter-rate system clock 200.0 MHz for the controller itself.
DE5-NET User Manual
82
www.terasic.com
August 4, 2017
Figure 6-2 Block Diagram of the DDR3 SDRAM (2G) x2 Demonstration
Altera DDR3 SDRAM Controller with UniPHY
To use the Altera DDR3 controller, users need to perform three major steps:
1. Create correct pin assignments for the DDR3.
2. Setup correct parameters in the DDR3 controller dialog.
3. Perform Analysis and Synthesis by selecting from the Quartus II menu:
ProcessStartStart Analysis & Synthesis.
4. Run the TCL files generated by DDR3 IP by selecting from the Quartus II menu:
ToolsTCL Scripts
Design Tools
64-Bit Quartus 12.1 Demonstration Source Code Project directory: DDR3x2_Test Bit stream used: DDR3x2_Test.sof Demonstration Batch File
DE5-NET User Manual
83
www.terasic.com
August 4, 2017
Demo Batch File Folder: DDR3x2_Test \demo_batch
The demo batch file includes following files:
Batch File: test_ub2.bat FPGA Configure File: DDR3x2_Test .sof
Demonstration Setup
Make sure Quartus II is installed on your PC. Connect the USB Blaster cable to the FPGA board and host PC. Install the USB Blaster II
driver if necessary.
Power on the FPGA board. Execute the demo batch file “test_ub2.bat under the batch file folder, DDR3x2_Test
\demo_batch.
Press BUTTON0 on the FPGA board to start the verification process. When BUTTON0 is
pressed, all the LEDs (LED [3:0]) should turn on. At the instant of releasing BUTTON0, LED1, LED2, LED3 should start blinking. After approximately 5 seconds, LED1 and LED2 should stop blinking and stay on to indicate that the DDR3 (A) and DDR3 (B) have passed the test, respectively. Table 6-2 lists the LED indicators.
If LED3 is not blinking, it means the 50MHz clock source is not working. If LED1 or LED2 do not start blinking after releasing BUTTON0, it indicates local_init_done
or local_cal_success of the corresponding DDR3 failed.
If LED1 or LED2 fail to remain on after 5 seconds, the corresponding DDR3 test has failed. Press BUTTON0 again to regenerate the test control signals for a repeat test.
Table 6-2 LED Indicators
NAME
Description
LED0
Reset
LED1
DDR3 (A) test result
LED2
DDR3 (B) test result
LED3
Blinks
66..3
3
DDDDRR33 SSDDRRAAMM TTeesstt bbyy NNiiooss IIII
Many applications use a high performance RAM, such as a DDR3 SDRAM, to provide temporary
DE5-NET User Manual
84
www.terasic.com
August 4, 2017
storage. In this demonstration hardware and software designs are provided to illustrate how to perform DDR3 memory access in QSYS. We describe how the Altera’s “DDR3 SDRAM Controller with UniPHY” IP is used to access a DDR3-SDRAM, and how the Nios II processor is used to read and write the SDRAM for hardware verification. The DDR3 SDRAM controller handles the complex aspects of using DDR3 SDRAM by initializing the memory devices, managing SDRAM banks, and keeping the devices refreshed at appropriate intervals.
System Block Diagram
Figure 6-3 shows the system block diagram of this demonstration. The system requires a 50 MHz
clock provided from the board. The DDR3 controller is configured as a 1 GB DDR3-800Mhz controller. The DDR3 IP generates one 800 MHz clock as SDRAM’s data clock and one quarter-rate system clock 800/4=200 MHz for those host controllers, e.g. Nios II processor, accessing the SDRAM. In the QSYS, Nios II and the On-Chip memory are designed running with the 233.333 MHz clock, and the Nios II program is running in the on-chip memory.
Figure 6-3 Block diagram of the DDR3 Basic Demonstration
The system flow is controlled by a Nios II program. First, the Nios II program writes test patterns into the whole 1 GB of SDRAM. Then, it calls Nios II system function, alt_dache_flush_all, to make sure all data has been written to SDRAM. Finally, it reads data from SDRAM for data verification. The program will show progress in JTAG-Terminal when writing/reading data to/from
DE5-NET User Manual
85
www.terasic.com
August 4, 2017
the SDRAM. When verification process is completed, the result is displayed in the JTAG-Terminal.
Altera DDR3 SDRAM Controller with UniPHY
To use Altera DDR3 controller, users need to perform the four major steps:
1. Create correct pin assigments for DDR3.
2. Setup correct parameters in DDR3 controller dialog.
3. Perform Analysis and Synthesis by clicking Quartus menu: ProcessStartStart
Analysis & Synthesis.
4. Run the TCL files generated by DDR3 IP by clicking Quartus menu: ToolsTCL Scripts
Quartus II Project
The Quartus II project is designed to only access DDR3-A or DDR3-B at same time due to the address space limitation of Nios II. Users can change the accessed memory target at Quartus compile time by defining the constant USE_DDR3_A for DDR3-A or constant USE_DDR3_B for DDR3-B bank. After the constant is defined, please perform Analysis and Synthesis and then run the TCL files generated by DDR3 IP before starting Quartus II compilation.
Design Tools
Quartus II 12.1 Nios II Eclipse 12.1
Demonstration Source Code
Quartus Project directory: Nios_DDR3 Nios II Eclipse: NIOS_DDR3\Software Nios II Project Compilation
Before you attempt to compile the reference design under Nios II Eclipse, make sure the project is cleaned first by clicking Clean’ from the ‘Project’ menu of Nios II Eclipse.
Demonstration Batch File
DE5-NET User Manual
86
www.terasic.com
August 4, 2017
Demo Batch File Folder:
Nios_DDR3\demo_batch\DDR3_A or Nios_DDR3\demo_batch\DDR3_B
The demo batch file includes following files:
Batch File for USB-Blaseter II: test_ub2.bat, test_bashrc_ub2 FPGA Configure File: Golen_top.sof Nios II Program: TEST_DDR3.elf Demonstration Setup Make sure Quartus II and Nios II are installed on your PC. Power on the FPGA board. Use USB Cable to connect PC and the FPGA board and install USB Blaster II driver if
necessary.
Execute the demo batch file test_ub2.bat under the batch file folder,
NIOS_DDR3\demo_batch\DDR3_A or NIOS_DDR3\demo_batch\DDR3_B
After Nios II program is downloaded and executed successfully, a prompt message will be
displayed in nios2-terminal.
Press Button1~Button0 of the FPGA board to start SDRAM verify process. Press Button0 for
continued test and press any to terminate the continued test.
The program will display progressing and result information, as shown in 164H164H Figure
6-4.
Figure 6-4 Display Progress and Result Information for the DDR3 Demonstration
DE5-NET User Manual
87
www.terasic.com
August 4, 2017
Chapter 7
PCI Express Reference Design
PCI Express is commonly used in consumer, server, and industrial applications, to link motherboard-mounted peripherals. From this demonstration, it will show how the PC and FPGA communicate with each other through the PCI Express interface.
This demonstration uses PCIe driver based on the 30 days trial version from Jungo. Users need to contact Jungo and purchase a valid key after the trial version is expired.
77..1
1
PPCCII EExxpprreessss SSyysstteemm IInnffrraassttrruuccttuurree
The system consists of two primary components, the FPGA hardware implementation and the PC-based application. The FPGA hardware component is developed based on Altera PCIe IP, and the PC-based application is developed under the Jungo driver. Figure 7-1 shows the system infrastructure. The Terasic PCIe IP license is located in the FPGA System CD under the directory (/CDROM/License/Terasic_PCIe_TX_RX). This license is required in order to compile the PCIe design projects provided below. In case the license expires, please visit the FPGA website (DE5-Net.terasic.com) to acquire and download a new license.
DE5-NET User Manual
88
www.terasic.com
August 4, 2017
Figure 7-1 PCI Express System Infrastructure
77..2
2
FFPPGGAA PPCCII EExxpprreessss SSyysstteemm DDeessiiggnn
The PCI Express edge connector is able to allow interconnection to the PCIe motherboard slots. For basic I/O control, a communication is established through the PCI Express bus where it is able to control the LEDs and monitor the button status of the FPGA board. By implementing an internal RAM and FIFO, the demonstration is capable of direct memory access (DMA) transfers. The FPGA can also generate an interrupt to notify the Host System through the PCI Express bus.
PCI Express Basic I/O Transaction
Under read operation, the Terasic PCIe IP issues a read signal followed by the address of the data. Once the address is received, a 32-bit data will be sent along with a read valid signal. Under write operation, the PCIe IP issues a write signal accompany with the address to be written. A 32-bit data is written to the corresponding address with a data enable signal of write operation. All the write commands are issued on the same clock cycle. Table 7–1 lists the associated port names along with the description.
Table 7–1 Single Cycle Transaction Signals of Terasic PCIe IP
Name
Type
Polarity
Description
oCORE_CLK
Output
-
Clock. The reference clock output of PCIe local interface.
oSC_RD_ADDR[11..0]
Output
-
Address bus of read transaction. It is a 32-bit data per address.
iSC_RD_DATA [31..0]
Input
-
Read data bus.
DE5-NET User Manual
89
www.terasic.com
August 4, 2017
oSC_RD_READ
Output
High
Read signal.
iSC_RD_DVAL
Input
High
Read data valid.
oSC_WR_ADDR[11..0]
Output
-
Address bus of write transaction. It is a 32-bit data per address.
oSC_WR_DATA[31..0]
Output
-
Write data bus.
oSC_WR_WRITE
Output
High
Write signal.
Figure 7-2 Read transaction waveform of the PCIe basic I/O interface
Figure 7-3 Write transaction waveform of the PCIe basic I/O interface
PCI Express DMA Transaction
To support greater bandwidth and to improve latency, Terasic PCIe IP provides a high speed DMA channel with two modes of interfaces including memory mapping and FIFO link. The oFIFO_MEM_SEL signal determines the DMA channel used, memory mapping or FIFO link, which is enabled with the assertion of a low and high signal, respectively. The address bus of DMA indicates the FIFO ID which is defined by user from the PC software API.
DE5-NET User Manual
90
www.terasic.com
August 4, 2017
Most interfaces experience read latency during the event data is read and processed to the output. To mitigate the overall effects of read latency, minimum delay and timing efficiency is required to enhance the performance of the high-speed DMA transfer. As oDMARD_READ signal is asserted, the read data valid signal oDMARD_RDVALID is inserted high to indicate the data on the iDMARD_DATA data bus is valid to be read after two clock cycles.
Table 7–2 DMA Channel Signals of Terasic PCIe IP
Name
Type
Polarity
Description
oCORE_CLK
Output
-
Clock. The reference clock output of PCIe local interface.
oDMARD_ADDR[31..0]
Output
-
When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCIe IP and it is 128-bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is a FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.
iDMARD_DATA [127..0]
Input
-
Read data bus.
oDMARD_READ
Output
High
Read signal.
oDMARD_RDVALID
Input
High
Read data valid.
oDMAWR_ADDR[31..0]
Output
-
When oFIFO_MEM_SEL is set to low, it is address bus of DMA transfer and the value of address bus is cumulative by PCIe IP and it is 128-bit data per address. When oFIFO_MEM_SEL is set to high, oDMARD_ADDR bus is a FIFO ID that is used to indicate that which FIFO buffer is selected by PC API.
oDMAWR_DATA[127..0]
Output
-
Write data bus.
oDMAWR_WRITE
Output
High
Write signal.
oFIFO_MEM_SEL
Output
-
Indicates that DMA channel is memory mapping interface or FIFO-link interface. When this signal is asserted high, DMA channel FIFO-link interface. When the signal is asserted low, it is memory mapping interface.
DE5-NET User Manual
91
www.terasic.com
August 4, 2017
Figure 7-4 Read transaction waveform of the PCIe DMA channel on memory
mapping mode
Figure 7-5 Write transaction waveform of the PCIe DMA channel on memory
mapping mode
DE5-NET User Manual
92
www.terasic.com
August 4, 2017
Figure 7-6 Read transaction waveform of the PCIe DMA channel on FIFO-link mode
Figure 7-7 Write transaction waveform of the PCIe DMA channel on FIFO-link mode
PCI Express Interrupt
Altera PCI Express IP supports both interrupt types specified in PCI Express protocol. One of them is Legacy interrupt and the other one is MSI interrupt. This reference design shows how to use Legacy interrupt mechanism to handle interrupt. Table 7-3 lists the associated port names along with the description. The Edge Detector captures the timing when the button is pressed and generates a pulse on iINT_STS. The PCIe Hard IP sends an INTA_Assert message upstream to the Root Complex in response to a low-to-high transition. It also sends an INTA_Deassert message in response to a high-to-low transition. A pulse on oINT_ACK to user logic indicates that an INTA_Assert or INTA_ Deassert message has been sent.
DE5-NET User Manual
93
www.terasic.com
August 4, 2017
Table 7–3 Interrupt Channel Signals of Terasic PCIe IP
NAME
Type
Description
iINT_STS
output
The user logic uses this signal to generate a legacy INT interrupt.
oINT_ACK
input
A pulse on this output indicates that an INTx_Assert or INTX_ Deassert message has been sent.
77..3
3
PPCC PPCCII EExxpprreessss SSyysstteemm DDeessiiggnn
The FPGA System CD contains a PC Windows based SDK to allow users to develop their 32-bits software application on Windows 7/Window XP 32/64-bits. The SDK is located in the CDROM \demonstrations\PCIe_SW_KIT folder which includes:
PCI Express Driver PCI Express Library PCI Express Examples
The kernel mode driver requires users to modify the PCIe vender ID (VID) and device ID (DID) in the driver INF file to match the design in the FPGA where Windows searches for the associated driver.
The PCI Express Library is implemented as a single DLL called TERASIC_PCIE.DLL
DE5-NET User Manual
94
www.terasic.com
August 4, 2017
(TERASIC_PCIEx64.DLL for 64-bits Windows). With the DLL exported to the software API, users can easily communicate with the FPGA. The library provides the following functions:
Device Scanning on PCIe Bus Basic Data Read and Write Data Read and Write by DMA
For high performance data transmission, DMA is required as the read and write operations are specified under the hardware design on the FPGA.
PCI Express Software Stack
Figure 7-8 shows the software stack for the PCI Express application software on 32-bits Windows.
The PCI Express driver is incorporated in the DLL library called TERASIC_PCIE.dll. Users can develop their application based on this DLL. In 64-bits Windows, TERASIC_PCIE.dll is replaced by TERASIC_PCIEx64.dll, and wdapi921.dll is replaced by wdapi1100.dll.
DE5-NET User Manual
95
www.terasic.com
August 4, 2017
Figure 7-8 PCI Express Software Stack
Install PCI Express Driver
To install the PCI Express driver, execute the steps below:
1. From the FPGA system CD locate the PCIe driver folder in the directory
\CDROM\demonstrations\PCIe_SW_KIT\PCIe_DriverInstall.
2. Double click the PCIe_DriverInstall.exe executable file to launch the installation program
shown in Figure 7-9.
DE5-NET User Manual
96
www.terasic.com
August 4, 2017
Figure 7-9 PCIe Driver Installation Program
3. Click Install to begin installation process.
4. It takes several seconds to install the driver. When installation is complete, the following dialog
window will popup shown in Figure 7-10. Click OK and then Exit to close the installation program.
Figure 7-10 PCIe driver installed successfully
5. Once the driver is successfully installed, users can view the device under the device manager
window shown in 170H170HFigure 7-11.
DE5-NET User Manual
97
www.terasic.com
August 4, 2017
Figure 7-11 Device Manager
Create a Software Application
All necessary files to create a PCIe software application are located in the CDROM\demonstration\PCIe_SW_KIT\PCIe_Library which includes the following files:
TERASIC_PCIE.h TERASIC_PCIE.DLL (for 32-bits Windows) TERASIC_PCIEx64.DLL (for 64-bits Windows) wdapi921.dll (for 32-bits Windows) wdapi1100.dll (for 64-bits Windows)
Below lists the procedures to use the SDK files in users’ C/C++ project :
Create a C/C++ project. Include TERASIC_PCIE.h in the 32-bits C/C++ project. Copy TERASIC_PCIE.DLL(TERASIC_PCIEx64.DLL for 64-bits Windows) to the folder
where the project.exe is located.
Dynamically load TERASIC_PCIE.DLL(TERASIC_PCIEx64 for 64-bits Windows) in C/C++
project. To load the DLL, please refer to two examples below.
Call the SDK API to implement the desired application. TERASIC_PCIE.DLL/TERASIC_PCIEx64.DLL Software API
Using the TERASIC_PCIE.DLL/TERASIC_PCIEx64.DLL software API, users can easily
DE5-NET User Manual
98
www.terasic.com
August 4, 2017
communicate with the FPGA through the PCIe bus. The API details are described below :
PCIE_ScanCard
Function:
Lists the PCIe cards which matches the given vendor ID and device ID. Set Both ID to zero to lists the entire PCIe card.
Prototype:
BOOL PCIE_ScanCard(
WORD wVendorID, WORD wDeviceID, DWORD *pdwDeviceNum, PCIE_CONFIG szConfigList[]);
Parameters:
wVendorID:
Specify the desired vendor ID. A zero value means to ignore the vendor ID.
wDeviceID:
Specify the desired device ID. A zero value means to ignore the produce ID.
pdwDeviceNum:
A buffer to retrieve the number of PCIe card which is matched by the desired vendor ID and product ID.
szConfigList:
A buffer to retrieve the device information of PCIe Card found which is matched by the desired vendor ID and device ID.
Return Value:
Return TRUE if PCIe cards are successfully enumeated; otherwise, FALSE is return.
PCIE_Open
Function:
Open a specified PCIe card with vendor ID, device ID, and matched card index.
Prototype:
PCIE_HANDLE PCIE_Open(
WORD wVendorID,
DE5-NET User Manual
99
www.terasic.com
August 4, 2017
WORD wDeviceID, WORD wCardIndex);
Parameters:
wVendorID:
Specify the desired vendor ID. A zero value means to ignore the vendor ID.
wDeviceID:
Specify the desired device ID. A zero value means to ignore the device ID.
wCardIndex:
Specify the matched card index, a zero based index, based on the matched verder ID and device ID.
Return Value:
Return a handle to presents specified PCIe card. A positive value is return if the PCIe card is opened successfully. A value zero means failed to connect the target PCIe card. This handle value is used as a parameter for other functions, e.g. PCIE_Read32. Users need to call PCIE_Close to release handle once the handle is no more used.
PCIE_Close
Function:
Close a handle associated to the PCIe card.
Prototype:
void PCIE_Close(
PCIE_HANDLE hPCIE);
Parameters:
hPCIE:
A PCIe handle return by PCIE_Open function.
Return Value:
None.
PCIE_Read32
Function:
Read a 32-bits data from the FPGA board.
Prototype:
bool PCIE_Read32(
PCIE_HANDLE hPCIE, PCIE_BAR PcieBar, PCIE_ADDRESS PcieAddress,
DE5-NET User Manual
100
www.terasic.com
August 4, 2017
DWORD * pdwData);
Parameters:
hPCIE:
A PCIe handle return by PCIE_Open function.
PcieBar:
Specify the target BAR.
PcieAddress:
Specify the target address in FPGA.
pdwData:
A buffer to retrieve the 32-bits data.
Return Value:
Return TRUE if read data is successful; otherwise FALSE is returned.
PCIE_Write32
Function:
Write a 32-bits data to the FPGA Board.
Prototype:
bool PCIE_Write32(
PCIE_HANDLE hPCIE, PCIE_BAR PcieBar, PCIE_ADDRESS PcieAddress, DWORD dwData);
Parameters:
hPCIE:
A PCIe handle return by PCIE_Open function.
PcieBar:
Specify the target BAR.
PcieAddress:
Specify the target address in FPGA.
dwData:
Specify a 32-bits data which will be written to FPGA board.
Return Value:
Return TRUE if write data is successful; otherwise FALSE is returned.
PCIE_DmaRead
Function:
Loading...