TEMIC U2893B Technical data

查询U2893B供应商
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2893B is a monolithic integrated circuit. It is realized using TEMIC’s advanced silicon bipolar UHF5S technology. The device integrates a mixer, an I/Q modu­lator, a phase-frequency detector (PFD) with two synchronous-programmable dividers, and a charge pump. The U2893B is designed for cellular phones such as GSM, DCS1800, and PCS1900, applying a transmitter-archi-
tecture where the VCO is operated at the TX output frequency.
U2893B exhibits low power consumption, and the power­down function extends battery life.
The IC is available in a shrinked small-outline 28–pin package (SSO28).
U2893B
Features
D
Supply voltage down to 2.7 V
D
Current consumption 40 mA
D
Power-down function
D
Low-current standby mode
D
High-speed PFD and charge pump
D
Integrated dividers
Block Diagram
MDO
NMDO
+
MDLO
I
NI
90 grd
I/Q modulator
NQ PU
Q
Benefits
D
High-level RF integration
D
TX architecture saves filter costs
D
Low external part count
D
Small SSO28 package
D
One device for various applications
PUMIX
MIXO
Voltage
reference
Mixer
MIXLO
RF
NRF
ND
NND
RD
NRD
MC
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
N : 1
divider
R : 1
divider
Mode
control
MUX
PFD
GND
Figure 1. Block diagram
CPC
GNDP
Preliminary Information
VSP
CPO
VS1 VS2
VS3
12494
1 (14)
U2893B
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
Pin Description
NI
MDLO
GND
MDO
NMDO
VS1
VSP
CPO
GNDP
CPC
PUMIX
RD
NRD
Pin Symbol Function
1
I
2
3
4
5
6
7
8
9
10
11
12
13
14
12495
Figure 2. Pinning
28
27
26
25
24
23
22
21
20
19
18
17
16
15
Q
NQ
VS3
MIXO
GND
NRF
RF
VS2
MIXLO
PU
GND
NND
ND
MC
1 2 3 4 5 6 7 8 9
10
I
NI
MDLO
GND
MDO
NMDO
VS1
VSP CPO
GNDP
CPC
Á11ÁÁÁ
12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28
1)
PUMIX
RD
NRD
MC ND
NND
GND
PU
MIXLO
VS2
RF
NRF
GND
MIXO VS3
NQ
Q
All GND pins must be connected to GND
In-phase baseband input Complementary to I I/Q-modulator LO input
1)
Negative supply I/Q-modulator output Complementary to MDO
3)
Positive supply (I/Q MOD) Pos. supply charge-pump Charge-pump output
2)
Neg. supply charge pump Charge-pump current control
(input)
БББББББББ
Power-up, mixer only R-divider input Complementary to RD Mode control N-divider input Complementary to ND
1)
Negative supply Power-up, whole chip except
mixer Mixer LO input
3)
Positive supply (MISC.) Mixer RF-input Complementary to RF
1)
Negative supply Mixer output
3)
Positive supply (mixer) Complementary to Q Quad.-phase baseband input
potential. No DC voltage between GND pins!
2)
3)
Max. voltage between GNDP and GND pins
v
200 mV
The maximum permissible voltage difference between pins VS1, VS2 and VS3 is 200 mV.
2 (14)
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Absolute Maximum Ratings
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
pp y
VS1
ÁÁÁ
ÁÁÁ
pp y
VS2
ÁÁÁ
ÁÁÁ
pp y
VS3
ÁÁÁ
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Parameters Symbol Value Unit Supply voltage VS1, VS2, VS3 Supply voltage charge pump VSP Voltage at any input Current at any input / output pin
ББББББББББ
except CPC CPC output currents Ambient temperature Storage temperature
Operating Range
Parameters Symbol Value Unit Supply voltage Ambient temperature
Thermal Resistance
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
БББББББ
| I
|
CPC
T
amb
T
stg
V
, V
VS#
VSP
T
amb
U2893B
v
V
VSP
5.5
–0.5 v V
БББББББ
+0.5 v 5.5
VS
2
5
–20 to +85
–40 to +125
2.7 to 5.5
–20 to +85
V V V
mA
ÁÁ
mA
°C °C
V
°C
Parameters Symbol Value Unit Junction ambient SSO28
R
thJA
Electrical Characteristics: General Data
T
= 25°C, VS = 2.7 to 5.5 V
amb
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
DC supply
Supply voltages VS# Supply voltage VSP
ББББББ
Supply current I
Supply current I
Supply current I
Supply current I
ББББББ
VS1
VS2
VS3
VSP
1)
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency R:1 divider frequency Input impedance Input sensitivity
V
= V
VS1
БББББББÁÁÁÁÁ
VS2
= V
VS3
Active (VPU = VS) Standby (VPU = 0) Active (VPU = VS) Standby (VPU = 0) Active (V Standby (V
PUMIX
PUMIX
= VS)
= 0)
Active
БББББББ
= VS, CPO open)
(V
PU
Standby (VPU = 0)
50-W source 50-W source Active & standby 50-W source
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
ÁÁÁÁ
I
VSPY
F
ND
F
RD
ZRD, Z
ND
V
, V
RDeff
NDeff
2.7
V
VS#
ÁÁ
– 0.3
ÁÁ
100 100
1 k
30
130
5.5
5.5
ÁÁÁÁÁ
16
20
21
20
11
30
2)
ÁÁ
20
ÁÁ
20
650 400
2 pF
200
K/W
V V
ÁÁ
mA
m
A
mA
m
A
mA
m
A
mA
ÁÁ
m
A
MHz MHz
mV
1) 100-MHz PFD operation, pump current set to 4 mA, zero phase difference (steady state)
2)
See chapter “Supply Current of the Charge Pump i(VSP) vs. Time”, page 6.
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
Preliminary Information
3 (14)
U2893B
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Electrical Characteristics: General Data (continued)
T
= 25°C, VS = 2.7 to 5.5 V
amb
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
Phase-frequency detector (PFD)
PFD operation
ББББББ
Frequency comparison
ББББББ
only
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
ББББББ
MD_IQ AC voltage
ББББББ
3)
I/Q modulator LO input MDLO
MDLO Input impedance Input level
I/Q modulator outputs MDO, NMDO
DC current Voltage compliance MDO output level
ББББББ
(differential) Carrier suppression Sideband suppression IF spurious Noise
4)
4)
Frequency range
Mixer (900 MHz)
RF input level LO-spurious at
RF/NRF port MIXLO input level MIXO (100-W load) ... Output level
5)
... Carrier suppression
FND = 650 MHz, n = 5
= 300 MHz, r = 2
F
RD
ББББББ
FND = 650 MHz, n = 5
ББББББ
= 300 MHz, r = 2
F
RD
Referred to GND
ББББББ
Frequency range Referred to GND
ББББББ
Differential (preferres)
Frequency range Active & standby 50-W source
V
MDO
V
MDO
500 W to VS
ББББББ
4)
4)
f_LO +/– 3 f_mod @ 400 kHz off carrier
900 MHz @ P9
MIXLO
@ P9
RF
0.05 to 2 GHz Frequency range @ P9
MIXLO
@ P9
MIXLO
, V
NMDO
, V
NMDO
4)
= –10 dBm
= –15 dBm
= –15 dBm = –15 dBm
= VS = VC
FM
PFD
БББББ
FM
V
I,
AC
AC
AC
I
MDO MDO
P9
P9
CS9
FD
V
NI,
FR
IO
AC
I,
Q, ACNQ
AC
DI,
F
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, VC
P
MDOeff
CS
MDO
SS
MDO
SP
MDO
N
MDO
FR
MDO
P9
RF
SP9
RF
MIXLO
FR
MIXO
MIXOeff
MIXO
Q,
NI,
DQ
NMDO
V
NQ
БББББ
V
БББББ
БББББ
VC
БББББ
150
Á
ÁÁ
200
Á
ÁÁÁÁÁÁÁÁ
1.35
Á
VS1/2
ÁÁ
DC
ÁÁÁÁ
200
400
50
250 –12
2.4
120
Á
ÁÁÁÁÁ
–30 –35 –45
–35 –40 –50
–115
50
tbd
tbd
–15
–10
50
70
–20
MHz
ÁÁ
ÁÁ
MHz
VS1/2
+ 0.1
ÁÁ
1
ÁÁÁÁÁ
V
ÁÁ
MHz
mVpp
mVpp
350
MHz
W
–5
dBm
mA
150
mV
ÁÁ
dBc dBc dBc
dBc/Hz
350
MHz
dBm
–40
dBm
dBm
350
MHz
mV dBc
3)
4)
5)
4 (14)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity degrading suppression of odd harmonics
With typical drive levels at MDLO- & I/Q-inputs –1 dB compression point (CP-1)
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Electrical Characteristics: General Data (continued)
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
pp
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
Á
Á
Á
ÁÁÁ
Á
Á
T
= 25°C, VS = 2.7 to 5.5 V
amb
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
Mixer (1900 MHz)
RF input level LO-spurious at
RF/NRF ports MIXLO input level MIXO (100 W load) ... Output level
5)
... Carrier suppression
Charge pump output CPO
Pump current pulse
TK pump current Mismatch source / sink
ББББББ
current
ББББББ
Sensivity to VSP
ББББББ
Charge pump control input CPC
Compensation capacitor Short circuit current
Mode control
Sink current Power-up input PU (power-up for all functions, except mixer) Settling time
ББББББ
High level Low level High-level current Low-level current Power-up input PUMIX (power-up for mixer only) Settling time
ББББББ
ББББББ
High level Low level High-level current Low-level current
ББББББ
0.5 to 2 GHz @ P19
MIXLO
@ P19
= –15 dBm
RF
0.05 to 2 GHz
@ P19
MIXLO
@ P19
MIXLO
CPC open
2.23 k CPC to GND 760 CPC to GND
(I
– I
CPOSI
БББББББ
I
CPOSO
I
БББББББ
CPOSI
D
|
I
6)
CPC grounded
CPOSO
= I
sourc
= I
sink
I
CPO
||
CPO
VMC = VS
Output power within 10% of steady state
БББББББ
values Active Standby Active, V
PUH
Standby, V
Output power within
БББББББ
10% of steady state
БББББББ
values Active Standby Active, V Standby ,
БББББББ
V
PUMIXL
PUMIXH
= 0.4 V
= –10 dBm
= –17 dBm = –17 dBm
)/I
D
VSP
= 2.7 V
= 0.4 V
PUL
= 2.7 V
CPOSI
VSP
ÁÁÁÁ
ÁÁÁÁ
|
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
P19
SP19
P19
P19
CS19
| I
| I
CPO 2
| I
CPO_4
Tk_| I
M
S
C
| I
CPCK
I
S
V
V
I I
V
PUMIXH
V
PUMIXL
I
PUMIXH
I
PUMIXL
RF
RF
MIXLO
MIXO
MIXO
|
CPO
|
CPC
ICPO
ICPO
CPC
|
MC
PU
PUH
PUL PUH PUL
|
|
–20
0.8
1.6
3.6
ÁÁ
ÁÁ
ÁÁ
500
2
ÁÁ
2.5 0
0.1
–10
ÁÁ
ÁÁ
2.5 0
0.1
–10
ÁÁ
U2893B
–17
–40
–8
55
1 2 4
ÁÁ
ÁÁ
ÁÁÁÁÁ
2.7
20
5
ÁÁ
5
ÁÁ
ÁÁ
ÁÁÁÁÁ
1.2
2.4
4.4 15 10
ÁÁ
ÁÁ
0.1
3.7
10
ÁÁ
0.4
0.6
0
10
ÁÁ
ÁÁ
0.4
0.6
0
dBm dBm
dBm
mVeff
dBc
mA mA mA
%/100 k
%
ÁÁ
ÁÁ
ÁÁ
pF
mA
m
A
m
s
ÁÁ
V
V mA mA
m
s
ÁÁ
ÁÁ
V
V mA mA
ÁÁ
6)
See figures 6 and 14.
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
5 (14)
Preliminary Information
U2893B
Supply Current of the Charge Pump i(VSP) vs. Time
Due to the pulsed operation of the charge pump, the cur­rent into the charge-pump supply pin VSP is not constant. Depending on I (see figure 6) and the phase difference at the phase detector inputs, the current i(VSP) over time va­ries. Basically , the total current is the sum of the quiescent current, the charge-/discharge current, and – after each phase comparison cycle – a current spike (see figure 3).
up
down
5I
i(VSP)
3I
I
t
2I
i(CPO)
–2I
Figure 3. Supply current of the charge pump = f(t)
Internal current, I, vs. current out of pin CPC
t
Initial Charge Pump Current after Power-Up
Due to stability reasons, the reference current generator for the charge pump needs an external capacitor (>500 pF from CPC to GND). After power-up, only the on-chip generated current I = I external capacitor. Due to the char ge pump’s architecture, the charge pump current will be 2 I = 2 I the voltage on CPC has reached the reference voltage (1.1 V). The following figures illustrate this behavior .
The behavior of I(CPO) after power-up can be very advantageous for a fast settling of the loop. By using larger capacitors (>1 nF), an even longer period with maximum charge pump current is possible.
V(CPC)
Vref
I(CPC)
2 I
CPCK
I
CPCK
t
1t0
R
is available for charging the
CPCK
CPC
t
2
CPCK
until
t
I vs. I(CPC) ICPC I
CPC open 0 0.5 mA
2.23 kW to GND –0.5 mA 1.0 mA 743 W to GND –1.5 mA 2.0 mA CPC shorted to GND I
CPCK
>2.0 mA
I
t
1
Time t1 can be calculated as t1 [ (1.1 V C e.g., C Time t e.g., C
= 1 nF, I
CPC
can be calculated as t2 [ (R
2
= 1 nF, R
CPC
= 3.5 A ³ t1 [ 0.3 ms.
max
= 2230 W ³ t2 [ 1.1 ms
CPC
Figure 4.
/2230 W) C
CPC
CPC
)/I
t
CPCK
CPC
6 (14)
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
U2893B
Mode Selection
The device can be programmed to different modes via an external resistor (including short, open) connected between Pin MC and VS2. The mode selection controls the N-, R-divider ratios, and the polarity of the charge pump current.
Mode Selection N-Divider R-Divider CPO Current Polarity Application
Mode Resistance between Pin MC
fN < fR
1)
fN < fR
and Pin VS2 1 0 (<50 W) 3:1 5:1 Sink Source GSM 2 2.7 kW (±5%) 2:1 5:1 Source Sink PCS 3 10 kW (±5%) 2:1 6:1 Source Sink DCS 4 36 kW (±5%) 3:1 6:1 Source Sink GSM 5
1)
Frequencies referred to PFD input!
R
(>1 MW) 3:1 6:1 Sink Source GSM
Equivalent Circuits at the IC’s Pins
Vbias_MDLO
1)
VS1
MDO
NI, NQ
RF
NRF
2230
1k
Vref_LO
250
Vref_MDLO
Vbias_LO
I, Q
Baseband input LO input Output
Vbias_RF
1k
890
890
Vref_RF
MDLO
Vref_input
Figure 5. I/Q modulator
1.6k
MIXLO
2230
30p
1.6k
40p
Vref_output
6.3
NMDO
GND
VS3
MIXO
RF input LO input Output
Figure 6. Mixer
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
Preliminary Information
GND
7 (14)
U2893B
Ï
Ï
Ï
Ï
Ï
VS2
CPC
GND
ND/RD
NND/NRD
4
I /4
CPCK
I
gm
up down
1.1 V
2230
ref
2
= Transistor with an emitter area-factor of n
n
ref
2
4
4
2I
2I
VSP
CPO
GNDP
Figure 7. Charge pump
VS2
PU, PUMIX
2k
2k
20k
GND
VS2
MC
GND
Vref_div
Figure 8. Dividers
60 A
m
Figure 10. Mode control
GND
Logic
N-divider
R-divider
MUX
Figure 9. Power-up
^
C (U)
@
2.5 pF 2 V
Figure 11. ESD-protection diodes
8 (14)
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Application Hints
For some of the baseband ICs it may be necessary to reduce the I/Q voltage swing so that it can be handled by the U2893B. In those cases, the following circuitry can be used.
I
Figure 12. Interfacing the U2893B to I/Q baseband circuits
NI Q
NQ
R1
R1
R1
R1
R2
R2
NI
Q
NQ
I
U2893BBaseband IC
12496
U2893B
U2893B
1 nF
CPC
R1 R2
R1 = 2230 R R2 = 1160 R (incl. rds_on of FET)
4 mA
2 mA
GND
Figure 14. Programming the charge pump current
12497
Application examples for programming different modes.
U2893B U2893B
VS2
RMODE
a) single mode b) any mode & mode 5
RMODE
c) any mode d) mode 5 & mode 3 or mode 4
MC
RMODE 1
RMODE 2
VS2 VS2
MC
Figure 13. Mode control
RMODE
36k or
VS2
MC
U2893BU2893B
MC
10k
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
9 (14)
Preliminary Information
U2893B
Ì
Test Circuit
<450 mV
1.35 V – VS1/2 + 0.1 V
Modulator
pp
VAC
VDC
50
LO input
Modulator outputs
VS
50
VSP
VDO
PFD Pulse output
PFD input
50
Bias voltage for
VS
charge pump output:
0.5 V < VDO < VSP – 0.5 V
1 n
50
50
1
I
2
NI
3
MDLO
4
GND
5
MDO
6
NMDO
7
VS1
8
VSP
9
CPO
10
GNDP
11
CPC
12
PUMIX
13
RD
14
NRD
Power-up
Baseband inputs
Mode control
Q
NQ
VS3
MIXO
GND
NRF
RF
VS2
MIXLO
PU GND NND
ND
MC
VS2
R1 R2 R3
28 27 26 25 24 23 22 21 20 19 18 17 16 15
50
50
<450 mV
VAC
1.35 V –
VDC
VS1/2 + 0.1 V
VS
VS
pp
Mixer output
Mixer input
Mixer
LO input
PFD input
13315
10 (14)
Figure 15. Test circuit
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Application Circuit (900 MHz)
Baseband processor
U2893B
f_Ref
v
rms
Dr
= 55 mV
2.7 to 3.5 V
Dr
4.7p
47nH
47nH
1k
NRD
MDO
NMDO
ND
NND
RD
50
MC
I
+
N : 1 divider
R : 1 divider
Mode control
NI
MDLO
90
grd
I/Q modulator
Q
MUX
GND
NQ
200
PUMIX
PFD
U2893B
27n
12p
PU
Voltage
reference
12p
CPC
MIXO
Mixer
Charge pump
LO (–10 dBm) 1192 MHz
MIXLO
GNDP
RF
NRF
VSP
CPO
VS1
VS2 VS3
to 3.5 V
68p
50
2.7
2.7 to 3.5 V
Figure 16. Power-up, charge pump control, and mode control must be connected according to the application used
VCO
3.3n
390
390
10
6 dB
attn.
MQE 550
To PA
13316
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
11 (14)
Preliminary Information
U2893B
Measurements
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on several factors. The following figure is an extraction from measurements performed in an arrangement like the ap­plication circuit. It shows that a loop settling time of a few
m
s can be achieved.
CPC: 1 k to GND
CPC ‘open’
Vertical: VCO tuning voltage 1 V/Div Horizontal: Time 1 ms/Div
Figure 17.
Modulation Spectrum & Phase Error
The figure of the TX spectrum and the phase error dis­tribution, respectively, shows the suitability of the modulation-loop concept for GSM.
Vertical: VRef. level = 28.6 dBm, 10 dBm/Div Horizontal: Center = 900 MHz, VBW, RBW = 30 kHz, 400 kHz/Div
Figure 18.
12 (14)
Figure 19.
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Package Information
U2893B
Package SSO28
Dimensions in mm
0.25
0.65
28 15
114
9.10
9.01
8.45
1.30
0.15
0.05
5.7
5.3
4.5
4.3
6.6
6.3
technical drawings according to DIN specifications
0.15
13018
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-97
13 (14)
Preliminary Information
U2893B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol ( 1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
14 (14)
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
TELEFUNKEN Semiconductors
Rev . A1, 29-Jan-76
Preliminary Information
Loading...