Teledyne PowerMAX Operation Manual

214579 REV C ECO 18776 03/26/2019
Teledyne Paradise Datacom Phone: (814) 238-3450 328 Innovation Blvd., Suite 100 Fax: (814) 238-3829 State College, PA 16803 USA Web: www.paradisedata.com Email: sales@paradisedata.com
PowerMAX
SSPA System
Operations Manual
PowerMAX is covered by U.S. Patent No. 8,189,338 B2
2 214579 REV C PowerMAX SSPA System Operations Manual
Teledyne Paradise Datacom, a division of Teledyne Defense Electronics LLC, is a single source for high power solid state amplifiers (SSPAs), Low Noise Amplifiers (LNAs), Block Up Converters (BUCs), and Modem products. Operating out of two primary locations, Witham, United Kingdom, and State College, PA, USA, Teledyne Paradise Datacom has a more than 20 year history of providing innovative solutions to enable satellite uplinks, battlefield communications, and cellular backhaul.
Teledyne Paradise Datacom Teledyne Paradise Datacom Ltd.
328 Innovation Blvd., Suite 100 2&3 The Matchyns, London Road, Rivenhall End State College, PA 16803 USA Witham, Essex CM8 3HA England (814) 238-3450 (switchboard) +44 (0) 1376 515636 (814) 238-3829 (fax) +44 (0) 1376 533764 (fax)
Information in this document is subject to change without notice. The latest revision of this document may be downloaded from the company web site: http://www.paradisedata.com.
Use and Disclosure of Data
The items described herein are controlled by the U.S. Government and authorized for export only to the country of ultimate destination for use by the ultimate consignee or end-user(s) herein identified. They may not be resold, transferred, or otherwise disposed of, to any other country or to any person other than the authorized ultimate consignee or end-user(s), either in their original form or after being incorpo­rated into other items, without first obtaining approval from the U.S. government or as otherwise author­ized by U.S. law and regulations.
Proprietary and Confidential
The information contained in this document is the sole property of Teledyne Paradise Datacom. Any re­production in part or as a whole without the written permission of Teledyne Paradise Datacom is prohib­ited.
All other company names and product names in this document are property of the respective compa­nies.
© 2018-2019 Teledyne Paradise Datacom
Printed in the USA
PowerMAX SSPA System Operations Manual 214579 REV C 3
Section 1: General Information ............................................................................................................. 11
1.0 Introduction ............................................................................................................................ 11
1.1 Theory of Operation .............................................................................................................. 11
1.1.1 Four-Module Systems ........................................................................................... 14
1.1.2 Eight-Module Systems .......................................................................................... 15
1.1.3 16-Module Systems ............................................................................................... 16
1.2 Specifications ........................................................................................................................ 17
1.3 Inspection .............................................................................................................................. 17
1.4 Shipment ............................................................................................................................... 17
1.5 Safety Considerations ........................................................................................................... 18
1.5.1 High Voltage Hazards ........................................................................................... 18
1.5.2 High Current Hazards ............................................................................................ 18
1.5.3 RF Transmission Hazards ..................................................................................... 19
1.5.4 Electrical Discharge Hazards ................................................................................ 19
1.5.5 Tipping Hazard ...................................................................................................... 20
1.5.6 High Potential for Waveguide Arcing .................................................................... 20
1.6 Waveguide Pressurization and Dehydration ......................................................................... 20
Section 2: System Components ........................................................................................................... 23
2.0 Introduction ............................................................................................................................ 23
2.1 PowerMAX SSPA Chassis .................................................................................................... 23
2.1.1 Front Panel Features ............................................................................................. 23
2.1.1.1 Fault Condition LEDs ............................................................................ 23
2.1.1.2 Master/Slave Indicator........................................................................... 24
2.1.1.3 Front Panel Display ............................................................................... 24
2.1.1.4 Navigation Keys .................................................................................... 24
2.1.1.5 Main Menu Key .................................................................................... 24
2.1.1.6 Local/Remote Key ................................................................................ 24
2.1.1.7 Mute/Unmute Key ................................................................................. 24
2.1.1.8 Output Sample Port [Type N (F)] .......................................................... 24
2.1.1.9 Removable Fan Assembly .................................................................... 24
2.1.1.10 Removable Face Plate ........................................................................ 25
2.1.2 Rear Panel Features ............................................................................................. 25
2.1.2.1 RF Input Port (J1) [Type N (F)] ............................................................. 25
2.1.2.2 RF Output Port (J2) [Band specific] ...................................................... 25
2.1.2.3 Switch Port (J3) [6-pin MS-type] ........................................................... 26
2.1.2.4 Serial Main (J4) [DB9 (F)] ..................................................................... 26
2.1.2.5 Serial Local (J5) [DB9 (M)] .................................................................... 26
2.1.2.6 Program Port (J6) [DB25 (M)] ............................................................... 27
2.1.2.7 Parallel I/O (J7) [DB37 (F)] .................................................................... 27
2.1.2.7.1 Hardware Mute (Tx Enable) ............................................................... 27
2.1.2.8 Link Port (J8) [DB9 (F)] ......................................................................... 27
2.1.2.9 Ethernet Port (J9) [RJ45] ...................................................................... 29
2.1.2.10 Power Supply M&C/Alarm (J12) [DB9 (M)] ......................................... 29
2.1.2.11 Removable Rear Fan Assembly ......................................................... 29
2.1.2.12 DC Input Port [bus bars] ...................................................................... 30
2.2 Power Supply Chassis .......................................................................................................... 31
2.2.1 AC Distribution Panel ............................................................................................ 33
2.2.2 DC Distribution Panel ............................................................................................ 34
2.3 RF Distribution Panel ............................................................................................................ 35
2.3.1 J1 to J8 RF Out - SSPA # [Type N (F)] ................................................................ 35
2.3.2 J9 RF In [Type N (F)] ............................................................................................. 32
2.3.3 J10 Sample [Type N (F)] ....................................................................................... 35
Table of Contents
4 214579 REV C PowerMAX SSPA System Operations Manual
2.3.4 J11 RF Input Sample [Type N (F)] ........................................................................ 35
2.3.5 J12 RF Output Sample [Type N (F)] ..................................................................... 36
2.3.6 J13 RF Out [SMA] ................................................................................................. 36
2.3.7 J14 4-Way Input [SMA] ......................................................................................... 36
2.3.8 J15 8-Way Input [SMA] ......................................................................................... 36
2.3.9 J16 8-Way Output [SMA] ....................................................................................... 36
2.3.10 Phase Adjusters, SSPA 2-4 and SSPA 6-8 ........................................................ 36
2.4 Ethernet Switch (Optional) .................................................................................................... 37
2.4.1 Ethernet Switch Specifications .............................................................................. 37
2.5 Forward/Reflected Power Detector ....................................................................................... 38
2.5.1 Reflected Power Alarm .......................................................................................... 38
2.5.2 J40 Forward RF Sample In [SMA (F)] .................................................................. 39
2.5.3 J41 Reflected RF Sample In [SMA (F)] ................................................................ 39
2.5.4 J42 RF Sample Out [SMA (F)] .............................................................................. 39
2.5.5 J43 +12V Input [Pin] .............................................................................................. 39
2.5.6 J44 RS-485 Connector [DB9 (F)] .......................................................................... 39
Section 3: System Installation .............................................................................................................. 41
3.0 Introduction ............................................................................................................................ 41
3.1 System Installation ................................................................................................................ 42
3.1.1 Uncrating the Equipment ....................................................................................... 42
3.1.1.1 Uncrate the System Cabinet ................................................................. 42
3.1.1.2 Uncrate the SSPA Module/Heatsink Assemblies, Power Supplies ...... 43
3.1.2 Setting Cabinet Upright ......................................................................................... 44
3.1.3 Inspect Waveguide ................................................................................................ 45
3.1.4 Inspect Cables ....................................................................................................... 45
3.1.4.1 RF Input Cables .................................................................................... 46
3.1.5 Install SSPA Module/Heatsink Assemblies ........................................................... 47
3.1.6 Install Power Supply Modules ............................................................................... 51
3.1.7 Cabinet I/O Connectors ......................................................................................... 52
3.1.10 Apply Power ........................................................................................................ 52
3.2 Cabinet Exhaust Option ........................................................................................................ 53
3.2.1 Rotate Impeller Housing for Eight-Module Systems with Exhaust Option ............ 54
3.3 Four-module to Eight-module Upgrade Paths ....................................................................... 55
3.3.1 Four-module to Eight-module PowerMAX Upgrade, Maximum Output Power ... 56
3.3.2 Four-module to Eight-module PowerMAX Upgrade, Hitless Operation ............... 57
3.3.3 System Gain and Power vs. Number of Modules in System ................................ 59
Section 4: Troubleshooting and Maintenance .................................................................................... 67
4.0 Troubleshooting Faults .......................................................................................................... 67
4.0.1 Summary Fault ...................................................................................................... 67
4.0.2 Voltage Fault ......................................................................................................... 67
4.0.3 Temperature Fault ................................................................................................. 67
4.0.4 Current Fault ......................................................................................................... 68
4.0.5 Power Supply Fault ............................................................................................... 69
4.0.6 Fan Fault ............................................................................................................... 69
4.0.7 Low RF Fault ......................................................................................................... 70
4.1 Modular SSPA Architecture ................................................................................................... 71
4.1.1 Removable Fans (intake and exhaust) ................................................................. 71
4.1.1.1 Fan and Heatsink Maintenance ............................................................ 72
4.1.2 SSPA Module/Heatsink Removal/Replacement ................................................... 74
4.1.3 Power Supply Module Removal ............................................................................ 76
4.1.4 Removable Controller Card (Rear Panel) ............................................................. 78
4.1.5 Firmware Upgrade Procedure ............................................................................... 79
4.1.5.1 Required Hardware ............................................................................... 79
4.1.5.2 Required Software ................................................................................. 79
4.1.5.3 Web Upgrade Procedure ...................................................................... 80
4.1.5.4 USB Port Upgrade Procedure ............................................................... 82
PowerMAX SSPA System Operations Manual 214579 REV C 5
4.2 Phase Adjustment ................................................................................................................. 83
4.2.1 Adjusting Phase After Replacing SSPA 1, 2, 3 or 4 .............................................. 83
4.2.2 Adjusting Phase After Replacing SSPA 5, 6, 7 or 8 .............................................. 85
4.3 Changing N+1 Hierarchy ....................................................................................................... 87
4.3.1 Changing Hierarchical Order of Slave Units ......................................................... 87
4.3.2 Exchange N+1 Privileges Between Master and Slave Units ................................ 87
4.3.3 Add SSPA Unit to the System ............................................................................... 88
Section 5: Front Panel Operation ......................................................................................................... 89
5.0 Operational Basics ................................................................................................................ 89
5.0.1 Selecting the Master Unit ...................................................................................... 89
5.0.2 Controlling System Operation ............................................................................... 90
5.0.3 N+1 Addressing ..................................................................................................... 90
5.0.4 Adjust System Gain ............................................................................................... 91
5.0.5 N+1 Automatic Gain Control Option ...................................................................... 91
5.0.6 N+1 RF Power Measurements .............................................................................. 91
5.0.7 N+1 Fault Detection............................................................................................... 92
5.0.8 Automatic Fan Speed Control ............................................................................... 92
5.1 Menus .................................................................................................................................... 93
5.1.1 System Information Sub-Menu .............................................................................. 94
5.1.1.1 Sys Info Page 1 ..................................................................................... 95
5.1.1.1.1 Clear Faults Menu ................................................................. 95
5.1.1.2 Sys Info Page 2 ..................................................................................... 96
5.1.1.3 Sys Info Page 3 ..................................................................................... 96
5.1.1.4 Sys Info Page 4 ..................................................................................... 96
5.1.1.5 Sys Info Page 5 ..................................................................................... 97
5.1.1.6 Sys Info Page 6 ..................................................................................... 97
5.1.1.7 Sys Info Page 7 ..................................................................................... 98
5.1.1.8 Sys Info Page 8 ..................................................................................... 98
5.1.1.9 Sys Info Page 9 (version 6.00) .............................................................. 98
5.1.1.10 Sys Info Page 10 (version 6.00) .......................................................... 99
5.1.1.11 IP Info Page 1 .................................................................................... 100
5.1.1.12 IP Info Page 2 .................................................................................... 100
5.1.1.13 IP Info Page 3 .................................................................................... 100
5.1.1.14 IP Info Page 4 .................................................................................... 101
5.1.1.15 Firmware Info Page 1 ........................................................................ 101
5.1.1.16 Firmware Info Page 2 (version 4.0) ................................................... 101
5.1.1.17 Firmware Info Pages 3, 4, 5, 6 and 7 (version 4.0) ........................... 101
5.1.1.18 Hardware Info Page 8 (version 6.00) ................................................ 101
5.1.1.19 HPA Local Time Page 9 (version 6.00) ............................................. 102
5.1.1.20 HPA Run Time Page 10 (version 6.00) ............................................. 102
5.1.1.21 N+1 Master Info Page 1 .................................................................... 102
5.1.1.21.1 Clear Faults Menu ............................................................. 103
5.1.1.22 N+1 Slave Info Page ......................................................................... 103
5.1.1.22.1 Clear Faults Menu ............................................................. 103
5.1.1.23 N+1 Master Info Page 2 .................................................................... 104
5.1.1.24 N+1 Master Info Page 3 .................................................................... 104
5.1.2 Communication Setup Sub-Menu ....................................................................... 105
5.1.2.1 Protocol ............................................................................................... 105
5.1.2.2 Baud Rate ........................................................................................... 105
5.1.2.3 System Address .................................................................................. 106
5.1.2.4 Interface .............................................................................................. 106
5.1.2.5 IP Setup ............................................................................................... 106
5.1.2.5.1 More (SNMP, IP and Web Settings) ................................... 107
5.1.2.5.2 More (Traps and Time Settings) ......................................... 108
5.1.2.6 N+1 Control (Floating Master Mode) ................................................... 109
5.1.3 Operation Setup Sub-Menu................................................................................. 111
5.1.3.1 Info....................................................................................................... 111
6 214579 REV C PowerMAX SSPA System Operations Manual
5.1.3.2 Buzzer ................................................................................................. 111
5.1.3.3 Mute..................................................................................................... 111
5.1.3.4 Sys. Mode ........................................................................................... 111
5.1.3.5 Attenuation .......................................................................................... 112
5.1.3.6 RF Units .............................................................................................. 112
5.1.4 Fault Monitoring Setup Sub-Menu ...................................................................... 113
5.1.4.1 BUC Fault ............................................................................................ 113
5.1.4.2 Auxiliary Faults .................................................................................... 113
5.1.4.3 RF Switch Faults ................................................................................. 114
5.1.4.4 Fault Latch ........................................................................................... 114
5.1.4.5 Forward RF / Automatic Level Control ................................................ 114
5.1.4.5.1 Disable ................................................................................ 114
5.1.4.5.2 Low RF ................................................................................ 114
5.1.4.5.3 High RF ............................................................................... 115
5.1.4.5.4 ALC On (Automatic Level Control) ...................................... 115
5.1.4.5.5 Set Level ............................................................................. 116
5.1.4.5.6 Back .................................................................................... 116
5.1.5 Options Sub-Menu .............................................................................................. 117
5.1.5.1 Backup User Settings .......................................................................... 117
5.1.5.2 Restore ................................................................................................ 117
5.1.5.3 Lamp Test ........................................................................................... 118
5.1.5.4 Password ............................................................................................. 118
5.1.5.5 Fan Speed ........................................................................................... 118
5.1.5.6 Reset ................................................................................................... 119
5.1.6 Redundancy Sub-Menu ....................................................................................... 121
5.1.6.1 Switching ............................................................................................. 121
5.1.6.2 Standby Select .................................................................................... 121
5.1.6.3 Standby Mode ..................................................................................... 121
5.1.6.4 Status .................................................................................................. 121
5.1.6.5 Priority ................................................................................................. 122
5.1.6.6 N+1 System Operation Parameters .................................................... 122
5.1.6.6.1 N+1 Array Size .................................................................... 122
5.1.6.6.2 N+1 Address ....................................................................... 122
5.1.6.6.3 Auto Gain Control ................................................................ 122
5.1.6.6.4 N+1 Info ............................................................................... 123
5.1.6.6.5 Module Eject ........................................................................ 124
5.1.6.6.6 Back .................................................................................... 124
Section 6: Remote Control Interface .................................................................................................. 125
6.0 Overview .............................................................................................................................. 125
6.1 Remote Control - Parallel ................................................................................................... 127
6.1.1 Control Outputs .................................................................................................. 127
6.1.2 Control Inputs ..................................................................................................... 127
6.2 Serial Communication Protocol ........................................................................................... 128
6.2.1 Header Sub-Packet ............................................................................................. 128
6.2.1.1 Frame Sync Word ............................................................................... 128
6.2.1.2 Destination Address ............................................................................ 128
6.2.1.3 Source Address ................................................................................... 128
6.2.2 Data Packet ......................................................................................................... 129
6.2.2.1 Protocol ID ........................................................................................... 129
6.2.2.2 Request ID .......................................................................................... 129
6.2.2.3 Command ............................................................................................ 129
6.2.2.4 Data Tag .............................................................................................. 130
6.2.2.5 Error Status / Data Address ................................................................ 130
6.2.2.6 Data Length ......................................................................................... 131
6.2.2.7 Data Field ............................................................................................ 131
6.2.3 Trailer Packet ...................................................................................................... 132
6.2.3.1 Frame Check ....................................................................................... 132
PowerMAX SSPA System Operations Manual 214579 REV C 7
6.2.4 Timing issues ...................................................................................................... 132
6.2.5 Serial Communications Protocol ......................................................................... 133
6.3 Access SSPA Subsystem through Packet Wrapper Technique ......................................... 139
6.4 Example 1 Check SSPA settings ........................................................................................ 140
6.5 Terminal Mode Serial Protocol for Paradise Datacom SSPA ............................................. 142
6.6 Ethernet Interface ................................................................................................................ 144
6.6.1 IPNet Interface .................................................................................................... 144
6.6.1.1 General Concept ................................................................................. 144
6.6.1.2 Setting IPNet interface ........................................................................ 146
6.6.1.3 Using the Rack Mount Web Interface ................................................. 147
6.6.2 SNMP Interface ................................................................................................... 149
6.6.2.1 Interface .............................................................................................. 149
6.6.2.2 SNMP V3 Issues in Teledyne Paradise Datacom SSPAs .................. 149
6.6.2.3 SNMP MIB Tree .................................................................................. 152
6.6.2.4 Description of MIB Entities .................................................................. 153
6.6.2.5 Configuring RM SSPA Unit to Work with SNMP Protocol ................... 154
6.6.2.6 Connecting to a MIB Browser ............................................................. 159
6.6.3 Extended SNMP Operation ................................................................................. 161
6.6.3.1 Extended SNMP MIB Tree .................................................................. 162
6.6.3.2 Extended SNMP MIB Tree Elements in Detail .................................... 164
Section 7: RM SSPA Control with Universal M&C ............................................................................ 167
7.0 Download the Universal M&C Application ........................................................................... 167
7.1 Add Each RM SSPA to the Universal M&C ....................................................................... 167
7.2 Add PowerMAX System to the Universal M&C ................................................................... 168
7.3 Universal M&C Overview .................................................................................................... 169
Appendix A: Ethernet Interface Quick Set-Up ................................................................................... 177
Appendix B: 10/100 Base-T Ethernet Cable Wiring .......................................................................... 181
Appendix C: Documentation ............................................................................................................... 185
8 214579 REV C PowerMAX SSPA System Operations Manual
Figures
Figure 1-1: System Block Diagrams, PowerMAX Systems ......................................................... 13
Figure 1-2: Block Diagram of 4-Module PowerMAX System ...................................................... 14
Figure 1-3: Block Diagram of 8-Module PowerMAX System ...................................................... 15
Figure 1-4: Block Diagram of 16-Module PowerMAX System .................................................... 16
Figure 1-5: Degradation of Breakdown Power by VSWR ........................................................... 22
Figure 2-1: PowerMAX SSPA Chassis Front Panel .................................................................... 23
Figure 2-2: C-Band SSPA Rear Panel ........................................................................................ 25
Figure 2-3: Plastic Safety Cover; Bus Bar Connections .............................................................. 30
Figure 2-4: Connect Power Cables Between SSPA and Bus Rail .............................................. 30
Figure 2-5: 1RU Power Supply Module Insertion/Extraction ....................................................... 31
Figure 2-6: 1RU Power Supply AC Line Inputs/Outputs ............................................................. 32
Figure 2-7: Connect Cables to Power Supply DC Output Bus Bar ............................................. 32
Figure 2-8: Connect Cables to System Bus Bar ......................................................................... 32
Figure 2-9: AC Terminal Block, Example .................................................................................... 33
Figure 2-10: AC Distribution Panel .............................................................................................. 33
Figure 2-11: DC Distribution Panel.............................................................................................. 34
Figure 2-12: RF Distribution Panel, Front and Rear Views ......................................................... 35
Figure 2-13: Phase Adjustment Screws (Under Thumb Screws) ............................................... 36
Figure 2-14: Ethernet Switch ....................................................................................................... 37
Figure 2-15: Forward/Reflected RF Power Detector Box............................................................ 38
Figure 3-1: 4-Chassis (Left) and 8-Chassis PowerMAX System Configurations ........................ 41
Figure 3-2: Remove and Save Shipping Brackets ...................................................................... 42
Figure 3-3: Remove Crate Side Walls ......................................................................................... 43
Figure 3-4: Slide Cabinet so Base Hangs Over Edge of Crate Base .......................................... 44
Figure 3-5: Lift Near Top of Cabinet to Tilt Cabinet Upright ........................................................ 44
Figure 3-6: RF Input Cables ........................................................................................................ 46
Figure 3-7: Extend Rack Slides ................................................................................................... 47
Figure 3-8: Move Cables Out of Way to Install Module/Heatsink Assembly ............................... 47
Figure 3-9: Install SSPA Module/Heatsink into Rack Slides ....................................................... 48
Figure 3-10: Slide SSPA Module/Heatsink into Enclosure.......................................................... 48
Figure 3-11: Close Compression Latches ................................................................................... 48
Figure 3-12: Open-End Wrench Secured to Front, Top of Cabinet ............................................ 49
Figure 3-13: Connect RF In Connector and Power Cables ........................................................ 49
Figure 3-14: Connect M&C Cables to Fan Boost Board ............................................................. 50
Figure 3-15: Tuck Cables into Enclosure and Re-Seat Front Panel ........................................... 50
Figure 3-16: Install Power Supply Modules ................................................................................. 51
Figure 3-17: System I/O Panel .................................................................................................... 52
Figure 3-18: AC Terminal Block .................................................................................................. 52
Figure 3-19: Hinge Pin ................................................................................................................ 53
Figure 3-20: Impeller Mounting ................................................................................................... 53
Figure 3-21: Impeller Power ........................................................................................................ 53
Figure 3-22: Cabinet Exhaust, as Shipped ................................................................................. 54
Figure 3-23: Remove Bolts to Rotate Housing ............................................................................ 54
Figure 3-24: Block Diagram, Four-way PowerMAX system ........................................................ 55
Figure 3-25: Eight-module PowerMAX systems with (8) and (4) modules ................................. 56
Figure 3-26: Four Module PowerMAX with 1, 2, and 3 Modules ................................................ 59
Figure 3-27: Eight Module PowerMAX Systems with 7 and 6 Modules ...................................... 60
Figure 3-28: Eight Module PowerMAX Systems with 5 and 4 Modules ...................................... 61
Figure 3-29: Eight Module PowerMAX Systems with 3 and 2 Modules ...................................... 62
Figure 3-30: 16 Module PowerMAX Systems with 15 Modules .................................................. 63
Figure 3-31: 16 Module PowerMAX Systems with 14 Modules .................................................. 64
Figure 3-32: 16 Module PowerMAX Systems with 13 Modules .................................................. 65
Figure 3-33: 16 Module PowerMAX Systems with 12 Modules .................................................. 66
Figure 4-1: Front Panel Fault Display .......................................................................................... 67
Figure 4-2: Unscrew Thumbscrews ............................................................................................. 71
Figure 4-3: Unplug Power Plug ................................................................................................... 71
Figure 4-4: Unscrew Thumbscrews ............................................................................................. 71
PowerMAX SSPA System Operations Manual 214579 REV C 9
Figure 4-5: Unplug Connector .................................................................................................... 71
Figure 4-6: Example of Dust Blocking Heatsink Fins .................................................................. 72
Figure 4-7: Heatsink Fins Cleared of Debris ............................................................................... 73
Figure 4-8: Unplug M&C Cables ................................................................................................ 74
Figure 4-9: Unplug RF In Cable .................................................................................................. 74
Figure 4-10: Toggle Release Levers to Remove Module from Rack Slides ............................... 74
Figure 4-11: Install New SSPA Module ....................................................................................... 75
Figure 4-12: Reinstall Front Panel ............................................................................................... 75
Figure 4-13: Slide Power Supply Module from the Chassis ........................................................ 76
Figure 4-14: Loosen Retaining Thumbscrews ............................................................................ 78
Figure 4-15: Slide M&C Card Out to Remove ............................................................................. 78
Figure 4-16: Web Upgrade Authentication Window .................................................................... 80
Figure 4-17: Firmware Upload Form ........................................................................................... 80
Figure 4-18: Proceed With Upgrade Prompt ............................................................................... 81
Figure 4-19: Upload Process Message ....................................................................................... 81
Figure 4-20: Upload Completed Message .................................................................................. 81
Figure 4-21: Windows Device Manager > Ports .......................................................................... 82
Figure 4-22: Command Window Showing Program Prompts ..................................................... 82
Figure 4-23: Front Panel Display of System RF Power .............................................................. 83
Figure 4-24: Phase Adjusters for SSPA 2, SSPA 3 and SSPA 4 ............................................... 83
Figure 4-25: Adjust 8-Way Phase Trimmer ................................................................................. 84
Figure 4-26: Adjusting Phase of SSPA 6, SSPA 7 and SSPA 8 ................................................. 85
Figure 4-27: Adjust 8-Way Phase Trimmer ................................................................................. 86
Figure 5-1: Front Panel Display, Master Unit (Online LED Illuminated) ...................................... 89
Figure 5-2: Front Panel Display, Slave Unit (Online LED Dark).................................................. 89
Figure 5-3: Front Panel Menu Structure ...................................................................................... 93
Figure 5-4: System Information Menu Structure ......................................................................... 94
Figure 5-5: Slave Unit Display ................................................................................................... 103
Figure 5-6: Communication Setup Sub-Menu ........................................................................... 104
Figure 5-7: Operation Setup Sub-Menu .................................................................................... 111
Figure 5-8: Fault Setup Sub-Menu ............................................................................................ 113
Figure 5-9: Options Sub-Menu .................................................................................................. 117
Figure 5-10: Redundancy Sub-Menu ........................................................................................ 121
Figure 5-11: N+1 Info Menu ...................................................................................................... 123
Figure 6-1: SSPA Remote Control Interface Stack ................................................................... 125
Figure 6-2: Parallel I/O Form C Relay ...................................................................................... 127
Figure 6-3: Basic Communication Packet ................................................................................. 128
Figure 6-4: Header Sub-Packet ................................................................................................. 128
Figure 6-5: Data Sub-Packet ..................................................................................................... 129
Figure 6-6: Trailer Sub-Packet .................................................................................................. 132
Figure 6-7: Packet Wrapper Technique .................................................................................... 139
Figure 6-8: Terminal Mode Session Example ........................................................................... 143
Figure 6-10: UDP Redirect Frame Example.............................................................................. 145
Figure 6-10: Web Interface Login Window ................................................................................ 147
Figure 6-11: RM SSPA Web Interface, Status Tab ................................................................... 148
Figure 6-12: GetIF Application Parameters Tab ....................................................................... 159
Figure 6-13: GetIF MBrowser Window, with Update Data in Output Data Box......................... 159
Figure 6-14: Getif MBrowser Window, Setting settingValue.5 to a Value of ‘1’ ........................ 160
Figure 7-1: Select Rackmount SSPA ........................................................................................ 166
Figure 7-2: Add Rackmount SSPA Dialog Window ................................................................... 166
Figure 7-3: Select N+1 System’ ................................................................................................ 168
Figure 7-4: Add N+1 System Dialog Window ............................................................................ 168
Figure 7-5: Status Screen ......................................................................................................... 169
Figure 7-6: Settings Screen ....................................................................................................... 170
Figure 7-7: Faults Screen .......................................................................................................... 171
Figure 7-8: IP Setup Screen ...................................................................................................... 172
Figure 7-9: N+1 Screen (Master)............................................................................................... 173
Figure 7-10: N+1 Screen (Slave)............................................................................................... 173
10 214579 REV C PowerMAX SSPA System Operations Manual
Figure 7-11: PowerMAX System Overview ............................................................................... 174
Figure 7-12: Mouse-over Unit # for Condition Synopsis ........................................................... 175
Figure A-1: TCP/IP Properties Window ..................................................................................... 177
Figure B-1: Modular Plug Crimping Tool ................................................................................... 181
Figure B-2: Transmission Line .................................................................................................. 181
Figure B-3: Ethernet Cable Pin-Outs ......................................................................................... 182
Figure B-4: Ethernet Wire Color Code Standards ..................................................................... 183
Figure B-5: Wiring Using 568A Color Codes ............................................................................. 183
Figure B-6: Wiring Using 568A and 568B Color Codes ............................................................ 183
Tables
Table 1-1: PowerMAX Output Power Reduction ......................................................................... 12
Table 1-2: Four-Module PowerMAX System Output Power Example ........................................ 14
Table 1-3: Eight-Module PowerMAX System Output Power Example ........................................ 15
Table 1-4: 16-Module PowerMAX System Output Power Example ............................................ 17
Table 1-5: Recommended Output Power Thresholds for W/G System Pressurization .............. 21
Table 1-6: De-rating of Popular Waveguide Components Relative to Straight Waveguide ........ 21
Table 2-1: Switch Port (J3) pin outs ............................................................................................ 26
Table 2-2: Serial Main (J4) pin outs ............................................................................................ 26
Table 2-3: Parallel I/O (J7) pin outs ............................................................................................. 28
Table 2-4: Ethernet Port (J9) pin outs ......................................................................................... 29
Table 2-5: Prime Input Power Example (400W GaN C-Band SSPA Module) ............................ 31
Table 3-1: RF Input Cable Connections ...................................................................................... 46
Table 6-1: Interfaces Enabled Based on Chosen Interface Setting Selection .......................... 126
Table 6-2: Command Byte Values ............................................................................................ 129
Table 6-3: Data Tag Byte Values .............................................................................................. 130
Table 6-4: Error Status Byte Values .......................................................................................... 131
Table 6-5: Request Frame Structure ......................................................................................... 133
Table 6-6: Response Frame Structure ...................................................................................... 133
Table 6-7: System Setting Details ............................................................................................. 134
Table 6-8: System Threshold Addressing Details (Read Only) ................................................ 136
Table 6-9: System Conditions Addressing Details .................................................................... 137
Table 6-10: OSI Model for RM SSPA Ethernet IP Interface ..................................................... 145
Table 6-11: SNMP Detailed Settings ......................................................................................... 155
Table 6-12: SNMP Detailed Thresholds .................................................................................... 157
Table 6-13: SNMP Detailed Conditions..................................................................................... 158
PowerMAX SSPA System Operations Manual 214579 REV C 11
1.0 Introduction
The PowerMAX technology is the preeminent system technology in High Power Amplifier (HPA) redundancy. PowerMAX is the only purely parallel redundant amplifier system. All aspects of the systems active components are parallel redundant including SSPA modules, monitor and control circuitry, power supplies, and fans. In addition to being parallel redundant all of the active components are hot-swap removable from either the front or rear panels. Once installed there is never a need to remove a solid
state power amplifier (SSPA) chassis from the cabinet. All active components are
easily spared on site making the PowerMAX the easiest amplifier system to maintain.
The PowerMAX system architecture is based on a single SSPA module per chassis. This allows PowerMAX systems to be configured with a large variety of output power levels. For example, C-Band output power levels range from 400W to 10.0kW.
Furthermore, PowerMAX is a scalable amplifier system. For example, a PowerMAX system may be initially configured with four modules and later upgraded to eight or 16 modules in the field. There is never a need to return any part of the system to the factory as the upgrades are easily installed in the field. This provides a tremendous protection of investment in the amplifier system. The system can easily grow with future power and bandwidth demands.
1.1 Theory of Operation
PowerMAX is a purely parallel redundant, modular HPA system. It can be populated with any number of modules between three and sixteen. For maximum RF efficiency it is recommended to power combine binary arrays of four, eight, or sixteen modules. A modular system is used either as an extremely high output power amplifier or as a self­redundant amplifier system. Parallel architecture systems make excellent redundant systems. The PowerMAX system concept is purely parallel throughout all aspects of the design. The failure of a power supply module, fan, or monitor and control card has no effect on the system operation. Full output power capability is maintained as well as remote communications and control of the amplifier system. The system will issue a minor alarm and indicate precisely which component has failed. The maintenance
technician can then perform the replacement of the failed component without removing
the amplifier from service. This is referred to as hot-swap component replacement. These components can be replaced without the need to remove an amplifier chassis from the equipment cabinet.
When used as a self-redundant amplifier system, the PowerMAX should be configured such that there is one modules worth of excess output power capacity. In this way a failure of one SSPA module will still allow the system to provide the minimum output power necessary. This type of architecture is referred to as n+1 redundant, meaning that there is one additional RF module then required for normal system operation.
Section 1: General Information
12 214579 REV C PowerMAX SSPA System Operations Manual
When configuring n+1 redundant system output power with binary array systems the output power guideline shown in Table 1-1 should be followed.
Parallel architecture redundant systems have a distinct advantage over traditional
systems with their absence of transfer switching. Microwave transfer switches used in
traditional redundant systems have an inherent break-before-make characteristic. This means that there is a finite period of time in which the RF output of the system is completely dropped. This time can vary between hundreds of milliseconds to seconds depending on the system design. Many satellite communication links are adversely affected by a complete loss of carrier even for 100 milliseconds. Because there is no transfer switch used in the PowerMAX system, there is never a complete loss of output power for any period of time. The system will only lose a percentage of its output pow­er as shown in the system configuration tables (Tables 1-2, 1-3 and 1-4). Under normal operation (i.e., when output power levels are a few dB backed off from maximum output power) there is no noticeable change in operation with a failure of an SSPA module. The system gain of the PowerMAX will automatically compensate for the failed module resulting in no change in the operating output power level.
The sophisticated firmware design of the PowerMAX permits the system to operate as
if it were a single chassis amplifier. There is no need to communicate directly with each individual amplifier chassis, whether operating the system by remote link or locally via the front panel. The system maintains a hierarchy of control whereby one of the n modules in a system becomes the master control point. If the master amplifier were to fail, control is automatically passed on to the next amplifier in the array. The master amplifier is easily identified in the array by the front panel display.
The firmware design also provides for power savings operation. Any number of the chassis can be placed in mute mode during periods in which full output power is not required. This will make significant savings in electricity costs required to operate the system. Otherwise the system provides 20dB of gain adjustment in 0.5dB increments as well as optional ALC operation.
The system output power is measured with true rms power detection. Unlike peak detection circuits common in many HPA systems, true rms detection gives a very accurate measurement of the systems output power in the presence of multiple carriers and modulation types.
Table 1-1: PowerMAX Output Power Reduction
System Configuration Loss of One (1) Module Reduction in Output Power
4-Module 3 of 4 modules operating -2.4 dB
8-Module 7 of 8 modules operating -1.2 dB
16-Module 15 of 16 modules operating -0.6 dB
PowerMAX SSPA System Operations Manual 214579 REV C 13
Figure 1-1 shows a simplified block diagram of the various system configura­tions.
Figure 1-1: System Block
Diagrams of 4-Module,
8-Module and 16-Module
PowerMAX Systems
4-Module System
8-Module System
16-Module System
14 214579 REV C PowerMAX SSPA System Operations Manual
1.1.1 Four-Module Systems
Figure 1-2 displays a simple block diagram of a Four -Module PowerMAX system. Table 1-2 shows an example of maximum and redundant output powers at P
sat
and P
Linear
for Four-Module PowerMAX systems. Refer to the specification sheet in Ap-
pendix C for a full list of available power levels and output powers in the Four-Module configuration.
2
1
3
4
2
1
3
4
RF IN
RF OUT
Table 1-2: Four-Module PowerMAX System Output Power Example
SSPA
Module
Power
Level
Typical Maximum
Output Power
4-modules, P
sat
Maximum
Output Power
4-modules, P
Linear
Typical Redundant
Output Power
3-modules, P
sat
Redundant
Output Power
3-modules, P
Linear
C-Band
400 W GaN
61.5 dBm (1.4 kW) 58.5 dBm (700 W) 59.1 dBm (800 W) 56.1 dBm (400 W)
Figure 1-2: Block
Diagram of 4-Module
PowerMAX System
- 3 dBm
- 2.4 dBm
- 3 dBm
A four-module PowerMAX system which experiences a failure in one module will have a 2.4 dBm reduction in output power.
PowerMAX SSPA System Operations Manual 214579 REV C 15
1.1.2 Eight-Module Systems
Figure 1-3 displays a simple block diagram of a Eight -Module PowerMAX system. Table 1-3 shows an example of maximum and redundant output powers at P
sat
and P
Linear
for Eight-Module PowerMAX systems. Refer to the specification sheet in Ap-
pendix C for a full list of available power levels and output powers in the Eight-Module configuration.
2
1
3
4
2
1
3
4
2
1
2
1
3
4
2
1
2
1
3
4
RF IN RF OUT
Table 1-3: Eight-Module PowerMAX System Output Power Example
SSPA
Module
Power
Level
Typical Maximum
Output Power
8-modules, P
sat
Maximum
Output Power
8-modules, P
Linear
Typical Redundant
Output Power
7-modules, P
sat
Redundant
Output Power
7-modules, P
Linear
C-Band
400 W GaN
64.3 dBm (2.6 kW) 61.3 dBm (1.3 kW) 63.1 dBm (2.0 kW) 60.1 dBm (1.0 kW)
Figure 1-3: Block
Diagram of 8-Module
PowerMAX System
- 3 dBm
- 1.2 dBm
- 3 dBm
An eight-module PowerMAX system which experiences a failure in one module will have a 1.2 dBm reduction in output power.
16 214579 REV C PowerMAX SSPA System Operations Manual
1.1.3 16-Module Systems
Figure 1-4 displays a simple block diagram of a 16-Module PowerMAX system. Ta­ble 1-4 shows an example of maximum and redundant output pow ers at P
sat
and
P
Linear
for 16-Module PowerMAX systems. Refer to the specification sheet in Appendix
C for a full list of available power levels and output powers in the 16-Module configura- tion.
2
1
3
4
2
1
3
4
2
1
3
4
2
1
3
4
2
1
3
4
2
1
3
4
2
1
3
4
2
1
3
4
2
1
2
1
2
1
2
1
2
1
2
1
RF IN RF OUT
Figure 1-4: Block Diagram of 16-Module PowerMAX System
PowerMAX SSPA System Operations Manual 214579 REV C 17
1.2 Specifications
Refer to the specification sheet in Appendix C for complete specifications.
1.3 Inspection
When the unit is received, an initial inspection should be completed. First ensure that the shipping container is not damaged. If it is, have a representative from the shipping company present when the container is opened. Perform a visual inspection of the equipment to make sure that all items on the packing list are enclosed. If any damage has occurred or if items are missing, contact:
Teledyne Paradise Datacom 328 Innovation Blvd., Suite 100 State College, PA 16803 USA Phone: +1 (814) 238-3450 Fax: +1 (814) 238-3829
1.4 Shipment
To protect the SSPA Chassis during shipment, use high quality commercial packing methods. When possible, use the original shipping container and its materials. Reliable commercial packing and shipping companies have facilities and materials to adequate­ly repack the instrument.
Table 1-4: 16-Module PowerMAX System Output Power Example
SSPA
Module
Power
Level
Typical Maximum
Output Power
16-modules, P
sat
Maximum
Output Power
16-modules, P
Linear
Typical Redundant
Output Power
15-modules, P
sat
Redundant
Output Power
15-modules, P
Linear
C-Band
400 W GaN
67.0 dBm (5.0 kW) 64.0 dBm (2.5 kW) 66.4 dBm (4.3 kW) 63.4 dBm (2.1 kW)
- 3 dBm
- 0.6 dBm
- 3 dBm
A 16-module PowerMAX system which experiences a failure in one module will have a 0.6 dBm reduction in output power.
18 214579 REV C PowerMAX SSPA System Operations Manual
1.5 Safety Considerations
Potential safety hazards exist unless proper precautions are observed when working with this unit. To ensure safe operation, the user must follow the information, cautions and warnings provided in this manual as well as the warning labels placed on the unit.
1.5.1 High Voltage Hazards
High Voltage, for the purpose of this section, is any voltage in excess of 30V. Voltages above this value can be hazardous and even lethal under certain circumstances. Care should be taken when working with devices that operate at high voltage.
All probes and tools that contact the equipment should be
properly insulated to prevent the operator from coming in contact with the voltage.
The work area should be secure and free from non-
essential items.
Operators should never work alone on high voltage de-
vices. There should always be another person present in the same work area to assist in the event of an emer­gency.
Operators should be familiar with procedures to employ in the event of an
emergency, i.e., remove all power, CPR, etc.
An AC powered unit will have 115 VAC or 230 VAC entering through the
AC power connector. Caution is required when working near this con-
nector, the AC circuit breaker, or the internal power supply.
1.5.2 High Current Hazards
Many high power devices are capable of producing large surges of current. This is true at all voltages, but needs to be emphasized for low voltage devices. Low voltage devices provide security from high voltage hazards, but also require higher current to provide the same power. High current can cause severe injury from burns and explosion. The following precautions should be taken on devices capable of discharging high current:
Remove all conductive personal items (rings, watches,
medals, etc.)
The work area should be secure and free of non-essential
items.
Wear safety glasses and protective clothing. Operators should never work alone on high risk devices.
There should always be another person present in the same area to assist in the event of an emergency.
Operators should be familiar with procedures to employ in the event of an
emergency, i.e., remove all power, CPR, etc.
HIGH
CUR-
PowerMAX SSPA System Operations Manual 214579 REV C 19
Large DC currents are generated to operate the RF Module inside of the enclosure. EXTREME CAUTION IS REQUIRED WHEN THE ENCLOSURE IS OPEN AND THE AMPLIFIER IS OPERATING. DO NOT TOUCH ANY OF THE CONNECTIONS ON THE RF MODULES WHEN THE AMPLIFIER IS OPERATING. CURRENTS IN EX­CESS OF 60 AMPERES MAY EXIST ON ANY ONE CONNECTOR.
1.5.3 RF Transmission Hazards
RF transmissions at high power levels may cause eyesight damage and skin burns. Prolonged exposure to high levels of RF energy has been linked to a variety of health issues. Please use the following precautions with high levels of RF power.
Always terminate the RF input and output connector prior
to applying prime AC input power.
Never look directly into the RF output waveguide Maintain a suitable distance from the source of the trans-
mission such that the power density is below recom­mended guidelines in ANSI/IEEE C95.1. The power den­sity specified in ANSI/IEEE C95.1-1992 is 10 mW/cm2. These requirements adhere to OSHA Standard 1910.97.
When a safe distance is not practical, RF shielding should be used to
achieve the recommended power density levels.
1.5.4 Electrical Discharge Hazards
An electric spark can not only create ESD reliability problems, it can also cause serious
safety hazards. The following precautions should be followed when there is a risk of
electrical discharge:
Follow all ESD guidelines Remove all flammable material and solvents from the area. All probes and tools that contact the equipment should be proper-
ly insulated to Prevent electrical discharge.
The work area should be secure and free from non-essential
items.
Operators should never work alone on hazardous equipment.
There should always be another person present in the same work area to assist in the event of an emergency.
Operators should be familiar with procedures to employ in the event of an
emergency, i.e., remove all power, CPR, etc.
1.5.5 Tipping Hazard
To avoid risk of bodily injury, follow all instructions for maintaining the stability of the equipment during transport, installation and maintenance.
RF
SIGNAL
20 214579 REV C PowerMAX SSPA System Operations Manual
The PowerMAX system is designed to be installed on a level surface. Any attempt to install the cabinet on an uneven surface may cause the cabinet to tip over, which may result in bodily injury.
If the system includes the optional cabinet exhaust fans, do not remove any of the SSPA chassis from the cabinet while the exhaust fan door is open unless the cabinet is secured to the floor.
1.5.6 High Potential for Waveguide Arcing
As with all systems which utilize high power signals within
waveguide, the potential exists for an electric arc to form.
To minimize this risk, Teledyne Paradise Datacom re­quires all waveguide be pressurized and dehydrated.
1.6 Waveguide Pressurization and Dehydration
When working with high power amplifier systems that operate into waveguide, the in­advertent creation of arcs is always a concern. An arc in waveguide is the air discharge breakdown due to the ionization of the air molecules by electrons. This breakdown in waveguide occurs when the rate of electron production becomes greater than the loss of electrons to diffusion to the surrounding walls.
It is extremely difficult to precisely predict the power levels at which the breakdown oc­curs. It is dependent on a variety of factors but the primary factors are:
Waveguide temperature and atmospheric pressure Components in the Waveguide Transmission System such as: Flanges,
Bends, Tees, Combiners, Filters, Isolators, etc.
Load VSWR presented to the amplifier.
When operating such a high power amplifier system it is imperative that the waveguide transmission system be dehydrated and pressurized. Operation with an automatic air dehydrator will provide dry pressurized air to ensure that condensation cannot form in the waveguide. Also the higher the pressure that can be maintained in the waveguide; the higher the power handling is in the waveguide system. Most commonly available air dehydrators are capable of providing pressures of 0.5 to 7.0 psig (25-362 mmHg).
At low power levels (uniform field distribution), low pressure can give good results. For
non-uniform conditions, highly localized breakdown can occur. In this case the wave- guide system will require much higher pressure. This occurs with bends, waveguide flange joints. If line currents flow across a small gap introduced by poor tolerances, flange mismatch, poorly soldered bends, field strengths in excess of that in the main line can occur in the gap. Pressurization with air or high dielectric gases can increase the power handling by factors of 10 to 100.
PowerMAX SSPA System Operations Manual 214579 REV C 21
In High Power Amplifier systems an arc will travel from where it is ignited back to the amplifier. Typical arc travel speed is on the order of 20 ft/sec. Increasing the wave­guide pressure can reduce the speed of arc travel. It is difficult to get an accurate cal­culation of the amount of pressurization needed, but it is a good practice to get as much pressure as your system can handle. All high power systems that meet the crite­ria of Table 1-5 are pressure tested at the factory to 1.5 psig. As a guide we rec- ommend using the power levels in Table 1-5 as the threshold levels w here special attention be given to dehydration and the overall simplification of waveguide system design.
It is a common misconception to look up the maximum theoretical power handling of a particular type of waveguide and assume that this is the maximum power handling. This may be the case for a straight waveguide tube with ideal terminations but these values must be significantly de-rated in practical systems. Phase combined amplifier systems can be particularly sensitive to the potential for waveguide arcing. This is due
to the numerous bends, magic tees, multiple waveguide flange joints, and other wave-
guide components. Table 1-6 shows the power handling capability of some popu- lar waveguide components normalized to the waveguide power rating. From this table, we can see how a practical waveguide systems power handling will de-rate significant­ly.
Table 1-6: Relative De-rating of Popular Waveguide
Components Relative to Straight Waveguide
Waveguide Component Relative Power Rating
H Plane Bend 0.6 to 0.9
E Plane Bend 0.97
90o Twist 0.8 to 0.9
Magic Tee 0.80
E-Plane Tee 0.06
H-Plane Tee 0.80
Cross Guide Coupler 0.21
Table 1-5: Recommended Output Power Thresholds
for Waveguide System Pressurization
Satcom Band Frequency Range Amplifier Output Power Waveguide
S Band 1.7-2.6 GHz > 10 kW WR430
C-Band 5.7 - 6.7 GHz > 2 kW WR137
X-Band 7.9-8.4 GHz > 1kW WR112
Ku-Band 13.75-14.5 GHz > 500W WR75
Ka-Band 27-31 GHz > 100W WR28
22 214579 REV C PowerMAX SSPA System Operations Manual
Most waveguide systems have many of these components integrated before reaching the antenna feed. It is not uncommon for a Satcom waveguide network to de-rate to 5% of the straight waveguide power rating.
The load VSWR also has an impact on the breakdown threshold in waveguide net­works. Standing waves degrade the power handling of any transmission line network. The graph of Figure 1-5 shows the rapid degradation of waveguide breakdown vs. load VSWR. The chart shows that for a 2.0:1 load VSWR, the breakdown potential will be half of what it would be with a perfectly matched load. This can degrade even more when high Q elements such as band pass filters are included in the waveguide net­work.
There are many factors to consider with high power amplifier systems in terms of the output waveguide network. Especially when using HPA systems with output power levels of Table 1-5, it is imperative to ensure that the output waveguide network is pristinely clean and dry. An appropriate dehydrator should be used with capability of achieving adequate pressure for the systems output power. Take extra precaution to make sure that any waveguide flange joints that are not already in place at the factory
are properly cleaned, gasket fitted, and aligned. A properly designed and maintained
waveguide network will ensure that no arcing can be supported and will provide many years of amplifier service life.
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
Power Degradation Ratio
Load VSWR
Degradation of Breakdown Power by VSWR
Figure 1-5: Degradation of Breakdown Power by VSWR
PowerMAX SSPA System Operations Manual 214579 REV C 23
2.0 Introduction
This section contains descriptions of the various components of a PowerMAX SSPA System. These include the SSPA Chassis, the Power Supply Chassis, the RF Distribu­tion Panel, the optional AC Distribution Box and optional Ethernet Switch.
2.1 PowerMAX SSPA Chassis
The PowerMAX SSPA Chassis is a rack-mountable unit designed to fit in a standard
19” (483 mm) wide EIA rack. Each unit is 3 rack units or 5.22 inches (133 mm) high by
25.25 inches (641 mm) deep.
2.1.1 Front Panel Features
Figure 2-1 shows an illustration of the front panel view of a standard 3RU Rack
Mount chassis. The front panel features five (5) fault condition LEDs, a master/slave indicator, a 40x2 character display, navigation keys, removable fan assembly and RF sample port. The entire front panel may be removed to access the SSPA module.
2.1.1.1 Fault Condition LEDs
The RM SSPA has five fault condition LEDs on left side of the front panel which reflect some of the HPA major faults plus the summary fault state.
Section 2: System Components
Figure 2-1: PowerMAX SSPA Chassis Front Panel
24 214579 REV C PowerMAX SSPA System Operations Manual
2.1.1.2 Master/Slave Indicator
When in N+1 Mode, pressing this key will put the designated HPA into Master Mode. The LED beside this key will light when the HPA is in Master mode. If the LED is not lit, the unit is in Slave Mode.
2.1.1.3 Front Panel Display
The front panel 40x2 character display allows the user to get detailed information about state of the HPA and provides easy customization of operation through an inter-active menu structure. See Section 5 for a full description of the menu structure available through the front panel display.
2.1.1.4 Navigation Keys
The Up Arrow (▲), Down Arrow (▼), Left Arrow (◄), Right Arrow (►) and Enter keys on the right side of the front panel allow the user to navigate through the menu selections displayed on the front panel display.
2.1.1.5 Main Menu Key
Provides a shortcut to the SSPA main menu. See Section 5 for a complete description of the menu selections and operation.
2.1.1.6 Local/Remote Key
Allows the user to disable or enable the local control keypad console. If the SSPA is in
"Remote Only" mode, the unit will not react on any keystrokes except the "Local/ Remote" key.
2.1.1.7 Mute/Unmute Key
Provides an easy way to change the Mute state of the SSPA. Muting the amplifier via the front panel requires 100 msec maximum (50 msec minimum).
2.1.1.8 Output Sample Port [Type N (F)]
The Output RF Sample Port connector is located on the right lower corner of the HPA front Panel. This provides a coupled sample of the RF output signal. A calibration tag
is located above the N-type (f) connector.
2.1.1.9 Removable Fan Assembly
The front panel fan assembly can be removed for maintenance. See Section 4 for more details. The three-fan assembly operates at 20 VDC.
PowerMAX SSPA System Operations Manual 214579 REV C 25
2.1.1.10 Removable Face Plate
The entire front panel of the SSPA chassis is removable in order to access the SSPA module. See Section 4, Troubleshooting and Maintenance for details on removing the SSPA module from the chassis.
2.1.2 Rear Panel Features
Figure 2-2 shows the rear panel view of a standard DC input Rack Mount chas-
sis. The rear panel features the prime power connection, a removable Monitor & Con­trol Card Assembly, removable fan assemblies, and the RF input and output ports.
2.1.2.1 RF Input Port (J1) [Type N (F)]
The type N female connector on the right side of the rear panel is used as the RF input.
Note: Typical maximum RF input is +15 dBm.
2.1.2.2 RF Output Port (J2) [Band Specific]
Warning! Do not operate the amplifier without a termination or mat­ing connection on the RF Output Port. RF Hazard warnings apply. Never look directly into an open RF Output Port.
L- and S-Band units have a coaxial output using a Type N (F) connector. Higher frequency units utilize waveguide output flanges.
Figure 2-2: SSPA Rear Panel (Ku-Band shown)
26 214579 REV C PowerMAX SSPA System Operations Manual
C-Band: WR137 with a CPRG-137 grooved flange; X-Band: WR112 with a CPRG112 grooved flange; Ku-Band: WR75 with a circular grooved flange;Ka-Band: WR28 with a circular grooved flange.
Note: Custom frequencies may use different w aveguide sizes.
2.1.2.3 Switch Port (J3) [6-pin MS-type]
A 6 pin Molex connector header with blind insertion system guides (mates with Molex P/N 39-01-2060) is used in a 1:1 Redundancy System to provide switching for the waveguide transfer switch (RF Switch). Table 2-1 shows the pin outs for the Switch Port (J3).
2.1.2.4 Serial Main (J4) [DB9 (F)]
A DB9 female connector serves as primary remote control interface connector. The interface is re-configurable through the front panel or can be used as a RS-232 or RS-485 interface (2 or 4 wires). The RS-485 TX and RX pairs must be twisted for max­imum transmission distance. A user-configurable 120-ohm termination resistor is pro­vided on the same connector. Table 2-2 shows the Serial Main (J4) connector pin outs.
Table 2-2: Serial Main (J4) pin outs
Pin # Function / Description
1 RS485 TX+ (HPA Transmit +)
2 RS485 TX- (HPA Transmit -)/RS232 TX
3 RS485 RX- (HPA Receive -)/RS 232 RX 4 RS485 RX+ (HPA Receive +) 5 GND 6 Service Request 1 Form C relay NC contact (Closed on HPA Summary Fault) 7 Service Request Common Form C relay common contact 8 Service Request 2 Form C relay NO contact (Opened on HPA Summary Fault) 9 120 ohm termination (must be connected to pin 4 to enable termination)
Table 2-1: Switch Port (J3) pin outs
Pin # Function / Description
1 +28V Switch Drive Output. 3 Amp over current protection. 2 Switch 1 Position 2 drive 3 Switch 1 Position 1 drive 4 +28V Switch Drive Output. 3 Amp over current protection. 5 Switch 2 Position 2 drive 6 Switch 2 Position 1 drive
PowerMAX SSPA System Operations Manual 214579 REV C 27
2.1.2.5 Serial Local (J5) [DB9 (M)]
This DB9 male connector is used in advanced system integration and for system debugging purposes. Leave unconnected unless specified otherwise.
2.1.2.6 Service Port (J6) [Mini USB]
A 5-contact Mini USB connector is used to provide on field flash re-programmability for the HPA controller card. In order to reload controller board firmware, connect this port to a PC Parallel port through straight through cable. See Section 4.1.5 for a description of the firmware upgrade procedure.
2.1.2.7 Parallel I/O (J7) [DB37 (F)]
A DB37 female type connector, the Parallel I/O port contains a series of contact closures for monitoring HPA faults as well as opto-isolated inputs for controlling some HPA functions. Inputs react on the closure to ground. The minimal closure time is 50mS. See Table 2-3 on the next page for a description of this connector s pin- outs.
2.1.2.7.1 Hardware Mute (Tx Enable)
There are three ways to mute the amplifier via hardware input:
1. A 50 ms closure to ground on Port J7, Pin 17 to toggle between Mute/ Unmute states;
2. Press the Main Menu key on the front panel, then select 4.Fault Setup and
press the Enter key; select 2.Auxiliary Faults and press the Enter key; select
1.Action and press the Enter key; select 4.Alert+Mute and press the Enter key. Then select 4.Fault Setup and press the Enter key; select
2.Auxiliary Faults and press the Enter key; select 2.Fault Logic and
press the Enter key; select 2.Fault on Low and press the Enter key. A contin- uous closure to ground on Port J7, Pin 18 will then mute the amplifier. See Section 5.1.4.2;
3. Press the Main Menu key on the front panel, then select 4.Fault Setup and press the Enter key; select 2.Auxiliary Faults and press the Enter key; select
1.Action and press the Enter key; select 4.Alert+Mute and press the En­ter key. Then select 4.Fault Setup and press the Enter key; select
2.Auxiliary Faults and press the Enter key; select 2.Fault Logic and
press the Enter key; select 2.Fault on High. A continuous open to ground on
Port J7, Pin 18 will mute the amplifier. See Section 5.1.4.2.
2.1.2.8 Link Port (J8) [DB9 (F)]
The 9-pin female connector J8 Link Port is used to link a SSPA with other units in a redundant system in order to pass online/standby status information between them. Leave unconnected unless specified otherwise. See Section 3.1.5.
28 214579 REV C PowerMAX SSPA System Operations Manual
Table 2-3: Parallel I/O (J7) pin outs
Pin # Function / Description
1 Closed on Power Supply Fault Form C relay NC
2 Open on Power Supply Fault Form C relay NO
20 Power Supply Fault Common
21
1. Standalone mode. Closed on Auxiliary Fault
2. 1:1 Redundancy Mode. Closed on Automatic switchover mode. Form C relay NC
22
1. Standalone Mode. Open on Auxiliary Fault
2. 1:1 Redundancy Mode. Closed on Manual switchover mode. Form C relay NO
3 Auxiliary Fault\Auto-Manual Common
4 Open on Mute. Form C Relay NC
5 Closed on Mute. Form C Relay NO
23 Mute Status Common
24 Closed on BUC Fault. Form C Relay NC
25 Open on BUC Fault. Form C Relay NO
6 BUC Fault Common
7 Closed on High Temperature Fault. Form C Relay NC
8 Open on High Temperature Fault. Form C Relay NO
26 High Temperature Fault Common
27
1. Standalone mode. Closed on Regulator Low Voltage Fault
2. 1:1 Redundancy Mode. Closed on HPA Standby. Form C relay NC
28
1. Standalone Mode. Open on Regulator Low Voltage Fault.
2. 1:1 Redundancy Mode. Closed on HPA Online Mode. Form C relay NO
9 Regulator Low Voltage Fault\Standby-Online Common
10 Closed on DC Current Low Fault. Form C Relay NC
11 Open on DC Current Low Fault. Form C Relay NO
29 DC Current Low Fault Common
30 Closed on Low Forward RF Fault. Form C Relay NC
31 Open on Low Forward RF Form C Relay NO
12 Low Forward RF Fault Common
16 Auto/Manual toggle input. 50mS Closure to isolated ground to activate
17 Mute/Unmute toggle input. 50mS Closure to isolated ground to activate
18 Auxiliary Fault & Auxiliary Mute Input (See Section 2.1.2.7.1). 50 ms min. response
35 HPA Standby input. 50mS Closure to isolated ground to activate
36 Local/Remote toggle. 50mS Closure to isolated ground to activate
37 Fault clear. 50mS Closure to isolated ground to activate
19 Isolated Signal Ground
15 +5V Isolated Power 20 mA
13, 32 +28V Auxiliary Power 1A
14, 33 Chassis Ground
PowerMAX SSPA System Operations Manual 214579 REV C 29
2.1.2.9 Ethernet Port (J9) [RJ45]
This is a RJ45 connector with integrated magnetics and LEDs. This port becomes the primary remote control interface when the Interface option is selected to IPNetas described in Section 6.6. This feature allows the user to connect the SSPA to a 10/100 Base-T office Local Area Network and have full-featured Monitor & Control functions through a web interface. See Table 2-5 for Ethernet pin outs.
Note: IP address, Gateway address, Subnet mask, IP port and IP Lock address needs to be properly selected prior to first use (see Appen- dix A for details).
LED lamps on the connector indicate network status. A steady Green light indicates a valid Ethernet link; a flashing Yellow LED indicates data transfer activity (on either the
Transmit and Receive paths).
2.1.2.10 Power Supply M&C/Alarm (J12) [DB9 (M)]
Port J12 is the Power Supply M&C/Alarm connection, which passes information between a connected N+1 Power Supply and the SSPA. Depending on the system configuration, the connected cable assembly may include connections to one or more power supplies. See Section 3.1.8.
2.1.2.11 Removable Rear Fan Assembly
Certain higher power level amplifiers include a pair of exhaust fan assemblies at the rear panel. These fans can be removed for maintenance or replacement without taking the amplifier offline. See Section 4.1.1. Each of the two rear fans operate at 24 VDC. The fans should spin when power is applied to the chassis.
Table 2-4: Ethernet Port (J9) pin outs
Pin # Function / Description
1 TX+
2 TX-
3 RX+
6 RX-
4,5,7,8 GND
30 214579 REV C PowerMAX SSPA System Operations Manual
2.1.2.12 DC Input Port
The amplifiers prime power connectors connect to the systems bus rail assembly, which provides DC input provided by the N+1 Redundant Power Supplies. See Table 2-5 for an example of system input power requirements.
Each amplifier connects to the system cabinets bus rail via a quick-connect DC cable assembly. See Figure 2-3 and Figure 2-4.
Figure 2-3: DC Input Cables with Strain Relief
Figure 2-4: Connect Power Cables Between SSPA and Bus Rail
PLUG POWER POLE QUICK CONNECTOR
INTO BUS BAR
MATING CONNECTOR
Loading...
+ 156 hidden pages