Tektronix OM5110 Datasheet

46 GBaud Multi-Format Optical Transmitter
OM5110 Datasheet
100G / 400G / 1Tb/s Coherent Optical Test System
The OM5110 Multi-Format Optical Transmitter is a C-and L-Band transmitter capable of modulating the most common coherent optical modulation formats such as PM-QPSK and PM-16QAM up to 46 GBaud. When combined with a signal source, such as the Tektronix AWG70001A
The OM5110 Multi-Format Optical Transmitter is a C-and L-Band transmitter capable of providing the most common coherent optical modulation formats such as PM-QPSK and PM-16QAM up to 46 GBaud. When combined with a signal source, such as the Tektronix AWG70001A Arbitrary Waveform Generator or the Tektronix PPG3204 32 Gb/s Programmable Pattern Generator, the OM5110 offers a complete coherent optical test signal generation system.
Features and benefits
Multi-format optical transmitter supports modulation of formats such as BPSK, PM-QPSK, and PM-16QAM
Excellent linearity supports modulation of multi-level signals
Modulates single or dual-polarization signals
Built-in C or L-band lasers for setup convenience
Supports external laser sources
Arbitrary Waveform Generator or the Tektronix PPG3204 32 Gb/s Programmable Pattern Generator, the OM5110 offers a complete coherent optical test signal generation system.
For coherent optical transmitter or transceiver manufacturers, the OM5110 may be used as a golden reference against which to compare module designs. The OM4106D optical modulation analyzer can be used to measure the performance of a transmitter under development and then compared against the OM5110 reference transmitter. The flexibility to automatically or manually set all amplifier and modulator bias points provides the user the freedom to simulate less-than-ideal performance of their own device.
Coherent optical receiver manufacturers can also use the OM5110 as the ideal transmitter with which to test their receiver’s performance and prove functionality under best-case conditions. Then, using an instrument such as the AWG70001A Arbitrary Waveform Generator, optical impairments can be added to the signal to test the receiver under a wide range of real-world scenarios.
Supports manual and automatic bias control of amplifiers and modulator
Remotely control all setup and operations over Ethernet
Applications
Testing coherent optical receivers
Golden reference coherent optical transmitter
Transmitter for multi-carrier superchannel systems
www.tektronix.com 1
OM5110
As the demand for network bandwidth has increased, new transmission schemes such as multi-carrier “superchannels” are under investigation. The OM5110 can function as the heart of a superchannel system. Multiple optical carriers can be externally combined and used as the laser source to the OM5110 using the external signal input. Tektronix offers external laser sources, such as the OM2012 Tuneable Laser Source, which can be used to create a superchannel system. With such a configuration, systems with aggregate data rates such as 400G, 1Tb/s, and beyond, can be created.
The OM5110 offers the convenience of built-in laser sources, either C-band or L-band. Setup and operation of the laser, such as wavelength and optical power, can all be controlled remotely over Ethernet. Alternatively, an external laser source may be connected to the front panel of the instrument in place of the built-in lasers.
2 www.tektronix.com
Datasheet
The data from the external signal generator is first amplified by four, high­linearity amplifiers. The bias points for these amplifiers can be monitored and automatically controlled by the included Tektronix control software. The user may also take control of the bias points and set the amplifier bias voltages manually. The high-linearity of these amplifiers makes them ideal for multi-level signals such as 16QAM. For two-level signals, such as QPSK, the amplifiers can be can be driven into saturation so that the modulator drive is less sensitive to input drive level variations due to external rf cable losses.
The output of either the on-board laser, or a customer-supplied external laser is passed through a beam splitter and then fed to each of the four internal Mach-Zehnder modulators. Like the amplifiers, each Mach-Zehnder modulator has bias controls that can be automatically controlled or manually set by the user. The amplified signals feed these four modulators whose outputs are optically combined to create a complex, dual-polarized optical signal available on the front-panel of the instrument.
www.tektronix.com 3
Loading...
+ 7 hidden pages