TDK-Lambda Z+ Series, Z10-20, Z20-10, Z36-6, Z60-3.5 User Manual

...
Programmable DC Power Supplies
200W/400W/600W/800W in 2U
Built-in USB, RS-232 & RS-485 Interface
Optional Interface:
LXI Compliant LAN
IEEE488.2 SCPI (GPIB) Multi-Drop
Isolated Analog Programming
User Manual
USER MANUAL
Series
This Manual Covers Models:
Z10-20 Z20-10 Z36-6 Z60-3.5 Z100-2
Z10-40 Z20-20 Z36-12 Z60-7 Z100-4
Programmable DC Power Supplies
200W/400W
Built-in USB, RS-232 & RS-485 Interface
IA710-04-01C
Concentration Values of Toxic and Hazardous Substances/Elements (wt%) Notes
Lead (Pb)
0.1wt%
Mercury (Hg)
0.1wt%
Cadmium (Cd)
0.1wt%
Hexavalent
Chromium
(Cr6+)
0.1wt%
Polybrominated
Biphenyls (PBB)
0.1wt%
Polybrominated Diphenyl
Ethers (PBDE)
0.1wt%
Case O O O O O O
Plastic panel O O O O O O
PCB's assembly X O O O O O
Inner metal parts O O O O O O
Inner cables O O O O O O
Accessories O O O O O O Provided in the package
O : Indicates that the concentration values of toxic and hazardous substances in all "homogeneous materials" of respective parts and materials does not exceed the concentration limits
regulated by "SJ/T 11363-2006 Requirements for Concentration Limits for Certain Hazardous Substances in Electronic Information Products".
X : Indicates that the concentration value of a toxic or hazardous substance included in a "homogeneous part" of a respective part or material exceeds the concentration limit regulated by
"SJ/T 11363-2006 Requirements for Concentration Limits for Certain Hazardous Substances in Electronic Information Products".
Date of manufacture
Part Name
Z
+
Series: Z200 & Z400 POWER SUPPLY
Product Weight Z200: 1.9Kg
Product Weight Z400: 1.9Kg
Information Concerning Inclusion of Toxic and Hazardous Substances
This information sheet was prepared based on People's Republic of China "Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation"and
"SJ/T 11364—2006 Marking for Control of Pollution Caused by Electronic Information Products".
As People's Republic of China "Management Methods for Controlling Pollution Caused by Electronic Information Products Regulation" is a different legislation from EU RoHS Directive
(2002/95/EC), inquiries concerning EU RoHS Directive (2002/95/EC) information should be done separately.
Table of Contents
REGULATORY NOTICES ..............................................................................................11
SAFETY INSTRUCTIONS..............................................................................................11
CHAPTER 1: GENERAL INFORMATION
1.1 User Manual Content ...................................................................................................................... 15
1.2 Introduction ....................................................................................................................................... 15
1.2.1 General Description .............................................................................................................................................. 15
1.2.2 Models Covered by this Manual ..................................................................................................................... 15
1.2.3 Features and Options .......................................................................................................................................... 15
1.2.4 Multiple Output Power System ..................................................................................................................... 16
1.2.5 Control via the USB or RS232/485 Communication Ports ............................................................. 16
1.2.6 Analog Voltage Programming and Monitoring .................................................................................. 16
1.2.7 Parallel Operation .................................................................................................................................................. 16
1.2.8 Output Connections ............................................................................................................................................ 16
1.2.9 Cooling and Mechanical Construction ..................................................................................................... 16
1.3 Accessories ..........................................................................................................................................17
1.3.1 General .......................................................................................................................................................................... 17
1.3.2 Serial Link Cable ...................................................................................................................................................... 17
1.3.3 Misc. Hardware ........................................................................................................................................................ 17
1.3.4 AC Cables ..................................................................................................................................................................... 17
1.3.5 Serial Port Cables ..................................................................................................................................................... 17
CHAPTER 2: SPECIFICATIONS
2.1 Z
+
200 SERIES SPECIFICATIONS ..................................................................................................... 19
2.2 Z+400 SERIES SPECIFICATIONS..................................................................................................... 22
2.3 Supplemental Characteristics ......................................................................................................25
2.4 Z200W/400W Outline Drawing ................................................................................................... 26
2.5 Z200W/400W Optional IEEE, Isolated Analog Interface Outline Drawing ................... 27
2.6 Z200W/400W Front Panel Output Binding Post Outline Drawing ............................... 28
CHAPTER 3: INSTALLATION
3.1 General ................................................................................................................................................. 29
3.2 Preparation for Use ..........................................................................................................................29
3.3 Initial Inspection ............................................................................................................................... 29
3.4 Rack Mounting .................................................................................................................................. 29
3.5 Location, Mounting and Cooling................................................................................................30
3.6 AC Source Requirements ............................................................................................................... 30
3.7 AC Input Power Connection ......................................................................................................... 30
3.7.1 AC Input Connector ............................................................................................................................................... 30
3.7.2 AC Input Cord ............................................................................................................................................................ 31
3.8 Turn-On Checkout Procedure ......................................................................................................31
3.8.1 General .......................................................................................................................................................................... 31
3.8.2 Prior to Operation ................................................................................................................................................... 31
3.8.3 Constant Voltage Check ..................................................................................................................................... 32
3.8.4 Constant Current Check ......................................................................................................................................32
3.8.5 OVP Check ................................................................................................................................................................... 32
3.8.6 UVL Check ................................................................................................................................................................... 32
3.8.7 Foldback Check ........................................................................................................................................................ 33
3.9 Connecting the Load ...................................................................................................................... 33
3.9.1 Load Wiring ................................................................................................................................................................. 33
3.9.2 Current Carrying Capacity ................................................................................................................................. 34
3.9.3 Wire Termination ..................................................................................................................................................... 35
3.9.4 Noise and Impedance Effects .......................................................................................................................... 35
3.9.5 Inductive Loads ........................................................................................................................................................ 35
3.9.6 Making the Load Connections ........................................................................................................................ 35
3.9.7 Connecting Single Loads, Local Sensing (default) .............................................................................. 37
3.9.8 Connecting Single Loads, Remote Sensing ............................................................................................ 37
3.9.9 Connecting Multiple Loads, Radial Distribution Method ............................................................... 37
3.9.10 Multiple Load Connection with Distribution Terminals ................................................................ 38
3.9.11 Grounding Outputs .............................................................................................................................................38
3.10 Local and Remote Sensing .......................................................................................................... 39
3.10.1 Sense Wiring ............................................................................................................................................................. 39
3.10.2 Local Sensing ........................................................................................................................................................... 39
3.10.3 Remote Sensing .....................................................................................................................................................40
3.10.4 J2 Sense Connector Technical Information........................................................................................... 40
3.11 Repackaging for Shipment .........................................................................................................40
CHAPTER 4: FRONT/REAR PANEL CONTROLS AND CONNECTORS
4.1 Introduction........................................................................................................................................ 41
4.2 Front Panel Display and Controls .............................................................................................. 41
4.3 Rear Panel Connectors ................................................................................................................... 43
4.3.1 J1 Connector Terminal and Function .......................................................................................................... 45
4.3.2 J3 Connector Terminal and Function ......................................................................................................... 46
4.4 Front Panel Display Messages ..................................................................................................... 47
4.5 Navigating the Main Menu .......................................................................................................... 48
4.5.1 Introduction ................................................................................................................................................................ 48
4.5.2 Exiting the Main Menu ........................................................................................................................................48
4.6 Navigating Communication Menu ............................................................................................ 49
4.6.1 Introduction ................................................................................................................................................................ 49
4.6.2 Exiting the Communication Menu ..............................................................................................................50
4.7 Navigating the Protection Menu ................................................................................................ 50
4.7.1 Introduction ............................................................................................................................................................... 50
4.7.2 Exiting the Protection Menu............................................................................................................................. 50
CHAPTER 5: LOCAL OPERATION
5.1 Introduction ........................................................................................................................................ 51
5.2 Standard Operation .........................................................................................................................51
5.2.1 Constant Voltage Mode and Voltage Setting ........................................................................................ 51
5.2.2 Constant Current Mode and Current Setting ........................................................................................ 51
5.2.3 Automatic Crossover ............................................................................................................................................. 52
5.2.4 Output On/Off Control ........................................................................................................................................ 52
5.2.5 Safe Start and Auto-Restart Modes .............................................................................................................. 52
5.2.6 Viewing Software Revision ................................................................................................................................ 52
5.3 Alarms and Protective Functions ................................................................................................53
5.3.1 Introduction ................................................................................................................................................................ 53
5.3.2 Over Voltage Protection ..................................................................................................................................... 53
5.3.2.1 Setting the OVP Level ....................................................................................................................................... 53
5.3.2.2 Resetting the OVP Circuit ............................................................................................................................... 54
5.3.3 Under Voltage Protection and Under Voltage Limit ........................................................................ 54
5.3.3.1 Setting the UVP/UVL Mode and Level .................................................................................................... 54
5.3.3.2 Activated UVP Alarm ......................................................................................................................................... 54
5.3.4 Foldback Protection ............................................................................................................................................. 54
5.3.4.1 Setting the Foldback Protection ............................................................................................................... 55
5.3.4.2 Activated FOLD Alarm ...................................................................................................................................... 55
5.3.5 Protection Delay ...................................................................................................................................................... 55
5.3.5.1 Setting the Protection Delay ........................................................................................................................ 55
5.3.6 Over Temperature Protection .......................................................................................................................... 55
5.3.7 AC Fail Alarm .............................................................................................................................................................. 55
5.4 Series Operation ............................................................................................................................... 56
5.4.1 Series Connection for Increased Output Voltage ................................................................................ 56
5.4.2 Series Connection for Positive and Negative Output Voltage .................................................... 56
5.4.3 Remote Programming in Series Operation ............................................................................................. 57
5.5 Parallel Operation ............................................................................................................................ 58
5.5.1 Introduction ................................................................................................................................................................ 58
5.5.2 Basic Parallel Operation ....................................................................................................................................... 58
5.5.2.1 Master Unit Set Up .............................................................................................................................................. 58
5.5.2.2 Slave Unit Set Up ................................................................................................................................................. 59
5.5.2.3 Setting Over Voltage Protection ................................................................................................................ 59
5.5.2.4 Setting Foldback Protection ......................................................................................................................... 59
5.5.2.5 Connection to Load ........................................................................................................................................... 59
5.5.3 Advanced Parallel Operation ........................................................................................................................... 61
5.5.3.1 Setting Up of Master Unit ............................................................................................................................... 61
5.5.3.2 Setting Up of Slave Units ................................................................................................................................ 61
5.6 Daisy-Chain Connection ................................................................................................................ 62
5.7 Rear Panel (J3 Connector) Functions and Settings .............................................................. 62
5.7.1 External Shut Off Function ................................................................................................................................. 63
5.7.2 Interlock Function - Analog On/Off. (Enable/Disable) ..................................................................... 63
5.7.3 Auxiliary Programmed Function Pin 1 and Pin 2 ................................................................................. 64
5.7.4 Power Supply OK Signal ...................................................................................................................................... 65
5.8 Rear Panel (J1 Connector) Functions ......................................................................................... 65
5.8.1 CV/CC Signal ............................................................................................................................................................... 65
5.9 Parameter Setting Memory .......................................................................................................... 66
5.9.1 Default Setting .......................................................................................................................................................... 66
5.9.2 Reset ................................................................................................................................................................................ 66
5.9.3 Last Setting Memory .............................................................................................................................................66
5.9.4 Save <1..4> ................................................................................................................................................................... 67
5.9.5 Recall <1..4> ................................................................................................................................................................ 67
CHAPTER 6: REMOTE ANALOG PROGRAMMING
6.1 Introduction........................................................................................................................................69
6.2 Local/Remote Analog Control ..................................................................................................... 69
6.3 Local/Remote Analog Indication ................................................................................................ 69
6.4 Remote Voltage Programming of Output Voltage and Current ..................................... 70
6.5 Remote Resistor Programming of Output Voltage and Output Current ..................... 71
6.6 Programming Monitoring of Output Voltage (V_MON) and Current (I_MON) ........ 72
CHAPTER 7: Serial RS232/RS485 and USB Interface
7.1 Introduction ........................................................................................................................................ 73
7.2 Configuration ..................................................................................................................................... 73
7.2.1 Default Setting .......................................................................................................................................................... 73
7.2.2 Address Setting ........................................................................................................................................................ 73
7.2.3 Communication Interface Selection .......................................................................................................... 73
7.2.4 Baud Rate Setting .................................................................................................................................................... 74
7.2.5 Language Selection (RS232/RS485, USB) .................................................................................................. 74
7.2.6 Setting Unit in Remote, Local Lockout or Local Mode ..................................................................... 74
7.3 Rear Panel RS232/485 Connector ............................................................................................... 75
7.4 Connectig Power Supply To RS232 Or RS485 BUS ................................................................ 76
7.5 Rear Panel USB Connector ............................................................................................................77
7.7 GEN Protocol (GEN series communication language) ......................................................... 78
7.7.1 Dat a Fo r mat ................................................................................................................................................................. 78
7.7.2 End of Message ......................................................................................................................................................... 78
7.7.3 Command Repeat ....................................................................................................................................................78
7.7.4 C he c k s um ..................................................................................................................................................................... 78
7.7.5 Acknowledge.............................................................................................................................................................. 78
7.7. 6 Ba c k s pa c e ..................................................................................................................................................................... 78
7.7.7 Error Messages ........................................................................................................................................................... 78
7.8 GEN Command Set Description .................................................................................................. 79
7.8.1 General guides .......................................................................................................................................................... 79
7.8.2 Command Set Categories .................................................................................................................................. 79
7.8.3 Identification Commands ................................................................................................................................... 79
7.8.4 Initialization Commands .................................................................................................................................... 80
7.8.5 Output Commands ................................................................................................................................................ 80
7.8.6 Global Output Commands ................................................................................................................................ 82
7.8.7 Auxiliary Commands ............................................................................................................................................. 83
7.8.8 Status Commands ................................................................................................................................................... 84
7.9 Serial Communication Test Set-Up .............................................................................................85
7.10 SCPI Protocol ....................................................................................................................................85
7.10.1 Dat a Format ............................................................................................................................................................... 85
7.10.2 End of Message ...................................................................................................................................................... 85
7.10.3 End of Command ................................................................................................................................................. 85
7.10.4 Checksum .................................................................................................................................................................. 86
7.10.5 SCPI Requirements ............................................................................................................................................... 86
7.10.6 SCPI Command Hierarchy ................................................................................................................................ 86
7.10.7 Header .......................................................................................................................................................................... 86
7.10.8 Data Formats ............................................................................................................................................................ 87
7.10.9 Character Data ......................................................................................................................................................... 87
7.10.10 Commands Notes ............................................................................................................................................... 87
7.11 SCPI Common Commands ........................................................................................................... 87
7.12 SCPI Subsystem Commands ....................................................................................................... 92
7.12.1 Output Subsystem ................................................................................................................................................ 92
7.12.2 Instrument Subsystem ....................................................................................................................................... 95
7.12.3 Voltage Subsystem ............................................................................................................................................... 96
7.12.4 Current Subsystem................................................................................................................................................ 98
7.12.5 Measure Subsystem ............................................................................................................................................ 100
7.12.6 DISPlay Subsystem ............................................................................................................................................... 100
7.12.7 INITiate Subsystem............................................................................................................................................... 101
7.12.8 LIST Subsystem ......................................................................................................................................................102
7.12.9 STATus Subsystem ................................................................................................................................................ 104
7.12.10 SYSTem Subsystem ...........................................................................................................................................106
7.12.11 TRIGger Subsystem ............................................................................................................................................108
7.12.12 WAVE Subsystem ................................................................................................................................................ 109
7.12.13 Global Subsystem ............................................................................................................................................... 111
CHAPTER 8: ADVANCED FUNCTIONS
8.1 Introduction ...................................................................................................................................... 112
8.2 FIX Mode ............................................................................................................................................ 112
8.3 LIST Mode .......................................................................................................................................... 113
8.4 WAVE Mode ....................................................................................................................................... 114
8.5 Trigger ................................................................................................................................................. 115
8.5.1 Input Trigger .............................................................................................................................................................. 115
8.5.2 Output Trigger ......................................................................................................................................................... 115
8.6 Transient Waveform Example ..................................................................................................... 115
8.6.1 Wave Programing................................................................................................................................................... 115
8.6.2 Wave Execution via Communication PC ................................................................................................. 116
8.6.3 Wave Execution via Front Panel ...................................................................................................................116
8.7 Additional Examples ...................................................................................................................... 116
8.7.1 List Example ............................................................................................................................................................... 116
8.7.2 Waveform Example ............................................................................................................................................... 116
CHAPTER 9: STATUS, FAULT AND SRQ REGISTERS
9.1 General ................................................................................................................................................ 118
9.2 Power Supply Status Structure ................................................................................................... 119
9.3 Condition Registers ........................................................................................................................ 119
9.3.1 Fault Register ............................................................................................................................................................119
9.4 Conditional, Enable and Event Registers ................................................................................ 120
9.4.1 Conditional Registers. ..........................................................................................................................................120
9.4.2 Event Registers. ........................................................................................................................................................120
9.4.3 Enable Register ........................................................................................................................................................ 120
9.5 Service Rrequest ............................................................................................................................. 120
9.3.2 Status Register .......................................................................................................................................................... 120
9.6 Standard Event Status Group ...................................................................................................... 121
9.6.1 Register Functions ................................................................................................................................................. 121
9.6.2 Register Commands ............................................................................................................................................. 121
9.6.3 Status Byte Register .............................................................................................................................................. 122
9.6.4 Determining the Cause of a Service Interrupt ......................................................................................122
9.6.5 Output Queue..........................................................................................................................................................12 3
9.6.6 Error Messages ......................................................................................................................................................... 12 3
CHAPTER 10: ISOLATED ANALOG PROGRAMMING OPTION
10.1 Introduction .................................................................................................................................... 125
10.2 Specifications ................................................................................................................................. 125
10.2.1 0-5V/0-10V Option (PN: IS510) ....................................................................................................................... 12 5
10.2.2 4-20mA Option (PN: IS420) ............................................................................................................................125
10.3 Isolated Programming & Monitoring Connector ..............................................................126
10.4 Setup and Operating Instructions ..........................................................................................127
10.4.1 Setting Up Power Supply for 0-5/0-10V Isolated Programming and Monitoring ......... 127
10.4.2 Setting Up Power Supply for 4-20mA Isolated Programming and Monitoring ............ 127
CHAPTER 11: MAINTENANCE
11.1 Introduction ..................................................................................................................................... 128
11.2 Units Under Warranty .................................................................................................................. 128
11.3 Periodic Maintenance .................................................................................................................. 128
11.4 Adjustments and Calibration .................................................................................................... 128
11.5 Parts Replacement and Repairs ...............................................................................................128
11.6 Troubleshooting ............................................................................................................................ 128
11.7 Fuse Rating .......................................................................................................................................129
USER MANUAL INDEX ............................................................................................... 132
WARRANTY
This TDK-Lambda product is warranted against defects in materials and workmanship for a period of five years from date of shipment. During the warranty period, TDK-Lambda will, at it’s option, either repair or replace products which prove to be defective.
Limitation of Warranty
The warranty shall not apply to defects resulting from improper or inadequate usage or maintenance by the buyer, buyer supplied products or interfacing. The warranty shall not apply to defects resulting from unauthorized modifications or from operation exceeding the environmental specifications of the product or if the QA seal has been removed or altered by anyone other than TDK-Lambda authorised personnel. TDK-Lambda does not warrant the buyers circuitry or malfunctions of TDK-Lambda products resulting from the buyer’s circuitry. Furthermore, TDK-Lambda does not warrant any damage occurring as a result of the buyer’s circuitry or the buyer’s supplied products. No other warranty is expressed or implied.
Warranty Service
This product must be returned to an authorized TDK-Lambda service facility for repairs or other warranty service. For products returned to TDK-Lambda for warranty service, the buyer shall prepay shipping charges to TDK-Lambda and TDK-Lambda shall pay the shipping charges to return the product to the buyer. Refer to section 3.11 for Repackaging for Shipment.
Disclaimer
The information contained in this document is subject to change without notice. TDK-Lambda shall not be liable for errors contained in this document or for incidental or consequential damages in connection with the furnishing, performance or use of this material. No part of this document may be photocopied, reproduced or translated into another language without the prior written consent of TDK-Lambda.
Trademark Information
Z+ power supply is a trademark of TDK-Lambda, Microsoft™ and Windows™ are trademarks of Microsoft Corporation.
11
REGULATORY NOTICES
FCC Notice
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
NOTE:
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
WARNING:
Modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment under FCC Rules.
CE NOTICE (European Union)
Marking by the CE Symbol indicates compliance to the Low Voltage Directive (2006/95/EC) of the European Union. Such marking is indicative that the Z+ series meet the following technical standard: EN 601010-1 - “Electrical Equipment For Measurement, Control and Laboratory Use; Part 1: General Requirements.” A “Declaration of Conformity” in accordance with the preceding directives and standards has been made and is on file at our EU representative TDK-Lambda UK, located at Kingsley Avenue, Ilfracombe, Devon EX34 8ES, UK.
SAFETY APPROVALS
UL 61010-1 and CSA-C22.2 No. 61010-1 - UL Listed, C-UL for Canada, IEC/EN 61010-1 - CB/TUV GS. CE marking, when applied to the Z+ series, indicates compliance with the Low Voltage Directive 2006/95/EC in that it complies with EN 61010-1.
OTHER
Z200 and Z400 series are comply with the following Directives:
• RoHS Directive (2002/95/EC);
• WEEE Directive (2002/96/EC).
SAFETY INSTRUCTIONS
CAUTION:
The following safety precaution must be observed during all phases of operation, service and repair of this equipment. Failure to comply with the safety precautions or warnings in this document violates safety standards of design, manufacture and intended use of this equipment and may impair the built-in protections within. TDK-Lambda shall not be liable for user’s failure to comply with these requirements.
VORSICHT:
Die folgenden Sicherheitsvorschriften müssen vor Inbetriebnahme und in jedem Betriebszustand bei Service oder Reparatur beachtet werden. Missachtung der Sicherheitsvorschriften und Warnhinweise aus diesem Handbuch führen zur Verletzung der bestehenden Sicherheitsstandards. Bei Betrieb des Gerätes außerhalb des bestimmungsgemäßen Einsatzes können die im Gerät integrierten Schutzfunktionen beeinträchtigt werden. TDK-Lambda ist nicht haftbar für Schäden, die durch Missachtung dieser Sicherheitsvorschriften entstehen können.
12
CAUTION:
Z
+
series units are not authorized for use as critical component in nuclear control systems, life support systems or equipment for use in hazardous environments without the express written approval of the managing director of TDK-Lambda.
VORSICHT:
Die Geräte der
Z+ Serie sind ohne ausdrückliche schriftliche Genehmigung des Geschäftsführers von TDK-Lambda nicht für die Benutzung als kritische Komponente in nuklearen Steuerungssystemen, lebenserhaltenden Systemen oder Geräten für den Einsatz in gefährlichen Umgebungen zugelassen.
OVERVOLTAGE CATEGORY AND ENVIRONMENTAL CONDITIONS
The Z
+
series units have been evaluated to Overvoltage category II. The Z+ series units are intended for use in the following operation conditions: * Indoor use * Pollution degree 2 * Max. operational altitude: 3000m above sea level * Ambient temperature: 0°C-50°C.
ÜBERSPANNUNGSKATEGORIE UND UMWELTBEDINGUNGEN
Die Geräte der Z
+
Serie wurden hinsichtlich der Überspannungskategorie II ausgewertet. Die Geräte der Z+ Serie sind zur Benutzung unter folgenden Betriebsbedingungen vorgesehen: * Benutzung in Innenräumen * Verschmutzungsgrad 2 * Maximale geografische Höhe für den Betrieb: 3000 m über Null * Umgebungstemperatur: 0 °C – 50 °C.
GROUNDING
Z
+
series units are Class I product. To minimize electrical shock hazard, the Z+ series units must be connected to an electrical ground. The instruments must be connected to the AC power supply mains through a standard certified three-wire power cable, with the ground wire firmly connected to an electrical ground (safety ground) at the power outlet. Any interruption of the protective ground conductor or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury.
ERDUNG
Geräte der Z
+
Serie sind Produkte der Klasse I. Zur Minimierung der Stromschlaggefahr müssen die Geräte der Z+ Serie an eine elektrische Erdung angeschlossen werden. Die Geräte müssen über ein standardmäßiges, zugelassenes dreiadriges Stromkabel an den Netzstrom angeschlossen werden, wobei der Erdungsdraht fest mit einer Erdungsleitung im Wandstecker verbunden sein muss. Jede Unterbrechung der Erdungsleitung oder Ablösung des Erdungsanschlusses stellt eine potenzielle Stromschlaggefahr her, die zu Körperverletzung führen kann.
LIVE CIRCUITS
Operating personnel must not remove the Z
+
series unit cover. No internal adjustment or component replacement is allowed by non-TDK-Lambda qualified service personnel. Never replace components with power cable connected. To avoid injuries, always disconnect power, discharge circuits and remove external voltage sources before touching components.
SPANNUNGSFÜHRENDE SCHALTUNGEN
Das Gehäuse von Geräten der Z
+
Reihe darf nicht vom Betriebspersonal geöffnet werden. Änderungen des Innenaufbaus sowie der Austausch von Bauteilen ist ausschließlich qualifizierten Mitarbeitern der TDK-Lambda erlaubt. Vor dem Austausch von Bauteilen ist das Netzkabel bzw. die Versorgungsspannung zu trennen. Zur Vermeidung von Körperverletzung sind vor der Berührung von Bauteilen stets die Stromanschlüsse zu trennen, Schaltungen zu entladen und Fremdspannungsquellen zu entfernen.
13
PARTS SUBSTITUTIONS & MODIFICATIONS
Parts substitutions and modifications are by authorized TDK-Lambda service personnel only. For repairs or modifications, the instrument must be returned to TDK-Lambda service facility.
AUSWECHSELN UND VERÄNDERUNG VON BAUTEILEN
Das Auswechseln sowie die Veränderung von Teilen darf nur von zugelassenen TDK-Lambda Servicemitarbeitern durchgeführt werden. Für Reparaturen oder Veränderungen muss das Gerät an den TDK-Lambda Kundendienst zurückgeschickt werden.
AC INPUT
Do not connect Z
+
series unit to mains supply exceeding the input voltage and frequency rating. The input voltage and frequency rating is: 100-240V~, 50/60Hz. For safety reasons, the mains supply voltage fluctuations should not exceed +/-10% of nominal voltage.
NETZSTROMEINGANG
Geräte der Z
+
Serie nicht an einen Netzanschluss anschließen, dessen Eingangsspannung und Frequenz über die Gerätewerte hinausgehen. Eingangsspannung und Frequenz betragen: 100-240 V~ 50/60 Hz. Für sicheren Betrieb des Gerätes ist eine Abweichung von maximal
+/-10 %
von der Nominalspannung erlaubt.
ENERGY HAZARD
The main output of Z
+
series units is capable of providing hazardous energy. Due to hazardous energy level the output and connections therefore must not be user accessible. Manufacturer's final equipment must provide protection to service personnel against inadvertent contact with output bus bars.
GEFÄHRLICHE ENERGIELEISTUNG
Der Hauptausgang der Geräte der Z+ Serie könnte gefährliche Energiestufen erzeugen. Auf Grund der gefährlichen Energiestufe dürfen der Ausgang und die Verbindungen nicht für Benutzer zugänglich sein. Die Endgeräte des Herstellers müssen den Schutz des Bedienungspersonals gegen versehentlichen Kontakt mit Ausgangsstromschienen gewährleisten.
FUSE
Internal fuse is sized for fault protection and if a fuse was opened it would indicate that service is required. Fuse replacement should be made by qualified technical personnel. Refer to maintenance instructions in Chapter 11 for fuse ratings.
SICHERUNG
Die innen befindliche Sicherung ist als Fehlerschutz angepasst. Wurde eine Sicherung geöffnet weist dies auf die Notwendigkeit der Wartung hin. Die Sicherung darf nur durch qualifizierte technische Fachkräfte ausgetauscht werden. Die Stäkre der Sicherungen entnehmen Sie der Wartungsanleitung in Kapitel 11.
WARNING:
There is electric shock hazard when the power supply output is adjusted above 42.4V Ensure that there is no possibility to touch simultaneously one of the output pins and earth (including the power supply’s metal enclosure) nor to touch simultaneously one of the output pins and metal parts of any external products supplied by the power supply when the output is adjusted above 42.4V.
WARNUNG:
Beim Anpassen eines Netzteils, mit einer Nenn-Ausgangsspannung von mehr als 42.4V, besteht Stromschlaggefahr. Stellen Sie sicher, dass die gleichzeitige Berührung, einer der Ausgangsanschlüsse und Ausgangserdungen, (einschließlich des Netzteils Metallgehäuse) nicht möglich sind, noch das gleichzeitige Berühren eines der Ausgangsanschlüsse und Metallteile von beliebigen aüßerlichen Produkten, die vom Netzteil versorgt werden, möglich ist, wenn die Ausgangsspannung, auf die oben genannten 42,4 V eingestellt wird.
14
MASCHINENLAERM
Maschinenlaerm informations - Verordnung - 3. GPSGV, der hoechste Schalldruckpegel betraegt 70 dB(A) oderweniger gemass EN ISO7779.
SYMBOLS
Caution, risk of danger. Instruction manual symbol. The instrument will be marked with this symbol when it is necessary for the user to refer to the instruction manual. Achtung Gefahr. Symbol im Benutzerhandbuchs Das Gerät wird mit diesem Symbol gekennzeichnet, wenn sich der Benutzer auf die Anweisungen im Handbuch beziehen muss.
Indicates ground terminal. Zeigt einen Erdungsanschluss an.
Protective Conductor Terminal. Schutzleiterklemme.
ON (Supply). EIN (Zufuhr).
OFF (Supply). AUS (Zufuhr).
Standby (Supply) . Standby (Zufuhr) .
Direct current (DC). Gleichstrom (DC).
Alternate current (AC). Wechselstrom (AC).
Denotes hazard. An attention to a procedure is called. Not following the procedure correctly could result in personal injury. A WARNING sign should not be skipped and all indicated conditions must be fully understood and met. Bezeichnet Gefahren. Es wird die Beachtung eines Verfahrens empfohlen. Nichteinhaltung des Verfahrens kann zu Körperverletzung führen. Ein WARN-Hinweis darf nicht ignoriert und alle angeführten Verfahren müssen eindeutig verstanden und umgesetzt werden.
Denotes hazard. An attention to a procedure is called. Not following the procedure correctly could result in damage to the equipment. Bezeichnet Gefahren. Es wird die Beachtung eines Verfahrens empfohlen. Mangelhafte Einhaltung des Verfahrens kann zu Beschädigung der Geräte führen.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V besteht Stromschlaggefahr. Schalten Sie ein Netzteil mit einer Nenn-Ausgangsspannung von über 42.4VDC nicht auf EIN, wenn die Sammelschienen oder der Ausgangsschutz nicht montiert sind. Bevor ein Anschluss an der Geräterückseite erstellt oder verändert wird, schalten Sie die Stromversorgung auf AUS oder trennen Sie das Netzteil vom Netzstrom.
WARNING:
There is a potential shock hazard when using a power supply with output voltage greater than 42.4V. Do not turn ON power supply when output voltage above 42.4VDC without output bus-bars or output connector protection assembled. Turn OFF power supply or disconnect power supply from AC mains before making or changing any rear panel connection.
15
CHAPTER 1: GENERAL INFORMATION
1.1 User Manual Content
This user's manual contains the operating instructions, installation instructions and specifications of the Z+ Series 200W and 400W power supply series. The instructions refer to the standard power supplies, including the built-in USB and RS232/485 serial communication. For information related to operation with the optional LAN and IEEE, refer to User Manual for power supply LAN and IEEE.
1.2 Introduction
1.2.1 General Description
Z
+
Series power supplies are wide output range, high performance switching power supplies. The
Z
+
Series is power factor corrected and operates from worldwide AC voltage range continuously. Output voltage and current are continuously displayed and LED indicators show the complete operating status of the power supply. The Front Panel controls allow the user to set the output parameters, the protection levels (Over-Voltage protection, Under-Voltage protection and Foldback) and preview the settings. The rear panel includes the necessary connectors to control and monitor the power supply operation by remote analog signals or by the built-in serial communication USB and RS232/485. LAN, IEEE and Isolated-Analog programming/monitoring are optional.
1.2.2 Models Covered by this Manual
Model Voltage range (V) Current range (A) Z10-20 0-10 0-20 Z10-40 0-10 0-40 Z20-10 0-20 0-10 Z20-20 0-20 0-20 Z36-6 0-36 0-6 Z36-12 0-36 0-12 Z60-3.5 0-60 0-3.5 Z60-7 0-60 0-7 Z100-2 0-100 0-2 Z100-4 0-100 0-4
1.2.3 Features and Options
• Constant Voltage / Constant Current with automatic crossover.
• Active Power Factor correction.
• Universal Input Voltage 85-265Vac, continuous operation.
• Embedded Microprocessor Controller.
• Built in USB & RS232/485 Interface.
• Voltage & Current high resolution adjustment by digital Encoders.
• High resolution 16 bit ADCs & DACs.
• Software Calibration (no internal trimmers / potentiometers).
• Last Setting Memory.
• Independent Remote ON/OFF (Opto-Isolated) and Remote Enable/Disable.
• Parallel operation (Master/Slave) with Active current sharing.
• Remote sensing to compensate for voltage drop of power leads.
• External Analog Programming and Monitoring (0-5V or 0-10V, user selectable).
• Cooling fan speed control for low noise and extended fan life.
• Optional LAN interface (SCPI compatible).
• Optional IEEE interface (SCPI compatible).
• Optional Isolated Analog programming/monitoring (0-5V or 0-10V, user selectable and 4-20mA).
16
1.2.4 Multiple Output Power System
The Z
+
Series power supplies series can be configured into a programmable power system of up to 31 units using the built-in USB or RS232/RS485 communication port in the power supply and the RS485 linking cable provided with each power supply. In a LAN system, each power supply can be controlled using the optional LAN controller (factory installed). In an IEEE system, each power supply can be controlled using the optional IEEE controller (factory installed).
1.2.5 Control via the USB or RS232/485 Communication Ports
The following parameters can be programmed via the serial communication port:
• Output voltage setting.
• Output current setting.
• Output voltage measurement.
• Output current measurement.
• Output on/off control.
• Foldback protection setting.
• Over-voltage protection setting and readback.
• Under-Voltage protection setting and readback.
• Under-Voltage limit setting and read back.
• Power-supply start up mode (last setting or safe mode).
1.2.6 Analog Voltage Programming and Monitoring
Analog inputs and outputs are provided at the rear panel for analog control of the power supply. The output voltage and the current limit can be programmed by analog voltage or by resistor, and can be monitored by analog voltage. The power supply output can be remotely set to On or Off and analog signals monitor the proper operation of the power supply and the mode of operation (CV/CC).
1.2.7 Parallel Operation
Up to six Z
+
Series power supplies of the same output voltage and current rating can be paralleled
in master-slave configuration with automatic current sharing to increase available power.
1.2.8 Output Connections
Output connections are made to rear panel bus-bars. Either the positive or negative terminal may be grounded or the output may be floated. Models up to 100VDC rated output shall not float outputs more than +/- 100VDC above/below chassis ground. Contact factory for assistance with higher float voltage applications. Local or remote sense may be used. In remote sense, the voltage drop on the load wires should be minimized. Refer to the specifications for the maximum voltage drop value.
1.2.9 Cooling and Mechanical Construction
The Z
+
Series is cooled by an internal fan. At installation, care must be taken to allow free air flow into the power supply via the front panel, and out of the power supply via the rear panel. The Z+ Series power supply is a compact and lightweight unit which allows for easy installation and gives a space saving solution for customer applications.
17
CAUTION:
Observe all torque guidelines within this manual. Over torque may damage unit or accessories. Such damage is not covered under manufacturers warranty.
1.3 Accessories
1.3.1 General
Accessories are delivered with the power supply or separately upon ordering, The list below shows the possible accessories and ordering numbers.
1.3.2 Serial Link Cable
Serial link cable, for linking power supplies by RS485 communication is provided with the power supply. Cable description: 0.5m length, shielded, RJ-45 type plugs, 8 contacts (P/N: GEN/RJ45).
1.3.3 Misc. Hardware
• Bus bars protection
• Connector protection
• Connector housing IPD1-06-D-K(SAMTEC)
• Connector housing IPD1-04-D-K(SAMTEC)
• Connector housing IPD1-02-D-K(SAMTEC)
• Contact pins P/N: CC79R-2024-01-L(SAMTEC)
1.3.4 AC Cables
AC cables are not provided with the power supply. If an AC cable is required, it should be ordered according to the following:
Part no. Market Description Z-U USA 13A 125V, non shielded, 2m typical length, with IEC60320-1, type C15
connector on one end and NEMA-5-15P type plug on the other end.
Z-E Europe 10A 250V, non shielded, 2m typical length, with IEC60320-1, type C15
connector on one end and IEC60884-1 type plug on the other end.
Z-J Japan 15A 125V, non shielded, 2m typical length, with IEC60320-1, type C15
connector on one end and Japan JIS C8303 type plug on the other end.
Z-GB UK 10A 250V non shielded, 2m typical length, with IEC60320-1, type C15
connector on one end and UK BS 1363 type plug on the other end.
Z-O GENERAL 10A 250V, non shielded, 2m typical length, with IEC60320-1, type C15
connector on one end and non-terminated stripped wires on the other end. Use the cable only with plug approved by the national safety standards of the country of usage.
1.3.5 Serial Port Cables
If a serial port cable is required, it should be ordered according to the description in section 7.2 * USB cables are not provided with the power supply.
18
CHAPTER 2: SPECIFICATIONS
2.1 Z
+
200 SERIES SPECIFICATIONS
MODEL Z 10-20 20-10 36-6 60-3.5 100-2
1. Rated output voltage(*1) V 10 20 36 60 100
2. Rated output current (*2) A 20 10 6 3.5 2
3. Rated output power W 200 200 216 210 200
CONSTANT VOLTAGE MODE V 10-20 20-10 36-6 60-3.5 100-2
1. Max. Line regulation (*6) --- 0.01% of rated output voltage+2mV
2. Max. Load regulation (*7) --- 0.01% of rated output voltage+2mV
3. Ripple and noise (p-p, 20MHz) (*8) mV 50 50 50 50 80
4. Ripple r.m.s. 5Hz~1MHz mV 5 6 6 7 8
5. Temperature coefficient PPM/°C 30PPM/°C from rated output voltage, following 30 minutes warm-up.
6. Temperature stability --- 0.02% of rated Vout over 8hrs. interval following 30 minutes warm-up. Constant line, load & temp.
7. Warm-up drift --- Less than 0.05% of rated output voltage+2mV over 30 minutes following power on.
8. Remote sense compensation/wire V 1 1 2 3 5
9. Up-prog. Response time, 0~Vomax.(*9) mS 15 30 30 50 50
10. Down-prog.response time:
Full load (*9) mS 10 25 30 40 50
Time delay (*17) 210 250 320 380 1200
No load (*10) (*15)(*17) 40 65 85 100 250
No load (*10) (*16)(*17) 200 200 290 310 1100
11. Transient response time mS
Time for output voltage to recover within 0.5% of its rated output for a load change 10~90% of rated
output current. Output set-point: 10~100%, Local sense
Less than 1mS, for models up to and including 100V
12. Hold-up time (*19) --- 15mSec Typical. 16mSec Typical. wRated output power
CONSTANT CURRENT MODE V 10-20 20-10 36-6 60-3.5 100-2
1. Max. Line regulation (*6) --- 0.01% of rated output current+2mA
2. Max. Load regulation (*11) --- 0.01% of rated output current+5mA
3. Load regulation thermal drift --- Less than 0.05% of rated output current over 30 minutes following load change.
4. Ripple r.m.s. 5Hz~1MHz (*12) mA 25 15 8 4 3
5. Temperature coefficient PPM/°C 100PPM/°C from rated output current, following 30 minutes warm-up.
6. Temperature stability --- 0.05% of rated Iout over 8hrs. interval following 30 minutes warm-up. Constant line, load & temperature.
7. Warm-up drift --- Less than +/-0.1% of rated output current over 30 minutes following power on.
PROTECTIVE FUNCTIONS V 10-20 20-10 36-6 60-3.5 100-2
1. Foldback protection ---
Output shut-down when power supply change mode from CV to CC or CC to CV. User presetable.
Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE, or by communication port.
2. Over-voltage protection (OVP) ---
Inverter Shut down method. Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE, or by
communication port.
3. Over -voltage trip point V 0.5-12 1~24 2~40 5~66 5~110
4. Output under voltage limit (UVL) --- Preset by front panel or communication port. Prevents from adjusting Vout below limit. Does not affect in analog programming.
5. Output under voltage protection (UVP) ---
Output shut-down when power supply output voltage goes below UVP programming. User presetable.
Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE, or by communication port.
6. Over temperature protection --- User selectable, latched or non latched.
ANALOG PROGRAMMING AND MONITORING
1. Vout voltage programming --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-0.5% of rated Vout.
2. Iout voltage programming (*13) --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-1% of rated Iout.
19
ANALOG PROGRAMMING AND MONITORING
1. Vout voltage programming --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-0.5% of rated Vout.
2. Iout voltage programming (*13) --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-1% of rated Iout.
3. Vout resistor programming --- 0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: +/-1% of rated Vout.
4. Iout resistor programming (*13) --- 0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: +/-1.5% of rated Iout.
5. Shut Off (SO) control --- By electrical Voltage: 0~0.6V/2~15V or dry contact, user selectable logic.
6. Output current monitor (*13) --- 0~5V or 0~10V, user selectable. Accuracy: +/-1%.
7. Output voltage monitor --- 0~5V or 0~10V, user selectable. Accuracy: +/-1%.
8. Power supply OK signal --- 4~5V-OK, 0V-Fail. 500ohm series resistance.
9. Parallel operation (*20) --- Possible, up to 6 units in master/slave mode with single wire current balance connection.
10. Series operation --- 2 identical units (with external diodes).
11. CV/CC indicator --- Open collector. CC mode: On, CV mode: Off. Maximum voltage: 30V, maximum sink current: 10mA
12. Interlock (ILC) control ---
Enables/Disables the PS output by dry contact (Short: On, Open: Off, Source current: less than 0.5mA). Ena/Dis is activated by front panel.
13. Local/Remote mode Control --- By electrical signal or Open/Short: 0~0.6V or short: Remote, 2~15V or open: Local
14. Local/Remote mode Indicator --- Open collector (shunted by 36V zener). On (0~0.6V, 10mA sink current max.)-Remote. Off-Local (30V max.).
15.Trigger out ---
Maximum low level output = 0.8V, Minimum high level output = 2V, maximum source current = 8mA, pulse =20us Typical.
16.Trigger in ---
Maximum low level input voltage = 0.8V,minimum high level input votage = 2.0V, Maximum sink current = 8mA, possitive edge
trigger: tw=10us minimum. Tr, Tf =1us maximum.
17. Programmed signal 1 --- Open collector, maximum voltage 25V,maximum sink current 100mA. (Shunted by 27V zener)
18. Programmed signal 2 --- Open collector, maximum voltage 25V,maximum sink current 100mA. (Shunted by 27V zener)
FRONT PANEL
1. Control functions
--- Multiple options with 2 Encoders
--- Vout/Iout manual adjust
--- OVP/UVL/UVP manual adjust
--- Protection Functions - OVP, UVL,UVP, Foldback, OCP, INT, SO
--- Communication Functions - Selection of LAN,IEEE,RS232,RS485,USB
--- Communication Functions - Selection of Baud Rate, Address
--- Analog Control Functions - Selection Voltage/resistive programming, 5V/10V, 5K/10K programming
--- Analog Control Functions - Selection of Voltage/Current Monitoring 5V/10V, Output ON/OFF, Front Panel Lock.
2. Display
--- Vout: 4 digits, accuracy: 0.5% of rated output voltage+/-1 count.
--- Iout: 4 digits, accuracy: 0.5% of rated output current+/-1 count.
3. Indications
--- GREEN LED's: FINE, MENU, PREV, PROT, REM/LOC,OUT ON/OFF , CV, CC
--- RED LED's: ALRM (OVP, UVP,OTP, FOLD, AC FAIL).
4. Function buttons
--- FINE, MENU, PREV, PROT, REM/LOC, OUT ON/OFF
PROGRAMMING AND READBACK (RS232/485,USB, Optional: IEEE, LAN)
1. Vout programming accuracy --- 0.05% of rated output voltage
2. Iout programming accuracy (*13) --- 0.1% of actual +0.1% of rated output current
3. Vout programming resolution --- 0.012% of full scale
4. Iout programming resolution --- 0.012% of full scale
5. Vout readback accuracy --- 0.05% of rated output voltage
6. Iout readback accuracy (*13) --- 0.1% of actual +0.3% of rated output current
7. Vout readback resolution --- 0.012% of full scale
8. Iout readback resolution --- 0.012% of full scale
20
Z
+
200 SERIES SPECIFICATIONS
INPUT CHARACTERISTICS
V 10-20 20-10 36-6 60-3.5 100-2
1. Input voltage/freq. (*3) --- 85~265Vac continuous, 47~63Hz, single phase
2. Maximum Input current 100/200VAC (*18) --- 2.65/1.30 2.61/1.28 2.71/1.34 2.68/1.32 2.54/1.26
3. Power Factor (Typ) --- >0.99 at 100Vac, >0.98 at 200Vac,100% load
4. Efficiency (Typ) 100/200VAC (*4) (*18) % 76/78 77/79 80/82 79/81 79/81
5. Inrush current (*5) --- Less than 15A/30A
ENVIRONMENTAL CONDITIONS
1. Operating temperature --- 0~50°C, 100% load.
2. Storage temperature --- -20~85°C
3. Operating humidity % 20~90% RH (no condensation).
4. Storage humidity % 10~95% RH (no condensation).
5. Altitude ---
Maximum 3000m. Derate ambient temp above 2000m.
Operating: Maximum ambient temperature, From 2000m up to 3000m Ambient temperature 40°C.
SAFETY/EMC
1. Applicable standards:
Safety ---
UL61010-1, EN61010-1, IEC61010-1. Design to meet UL60950-1, EN60950-1
10V≤Vout≤60V: Output,J1,J2,J3,J4,USB,LAN,IEEE/ISOLATED Analog are Non Hazardous
Vout=100V:Output,J1,J2 are Hazardous J3,J4,USB, IEEE/ISOLATED Analog ,LAN are Non Hazardous
EMC --- IEC61326-1 (Built to meet EN55022/EN55024)
2. Withstand voltage ---
10≤Vout≤36V models: Input-Output&J1,J2,J3,J4,USB,LAN/IEEE/ISOLATED ANALOG: 4242VDC/1min; Input-Ground: 2828VDC/1min.
Output&J1,J2,J3,J4,USB,LAN/IEEE/ISOLATED ANALOG-Ground: 1000VDC/1min.
60V,100V models: Input-Output&J1,J2: 4242VDC/1min; Input-J3,J4,USB,LAN/IEEE/ISOLATED Analog: 4242VDC/1min; Input-Ground:
2828VDC/1min.
Output&J1,J2- J3,J4,USB,LAN/IEEE/ISOLATED ANALOG :1910VDC/1min; Output&J1,J2-Ground: 1380VDC/1min.
J3, J4, USB/LAN/IEEE/ISOLATED ANALOG - Ground: 1000VDC/1min;
3. Insulation resistance --- More than 100Mohm at 25°C, 70%RH.
4. Conducted emission --- EN55022B, FCC part 15-B, VCCI-B
5. Radiated emission --- EN55022A, FCC part 15-A, VCCI-A
MECHANICAL
1. Cooling --- Forced air cooling by internal fan.
2. Weight
STANDARD Kg
Less than 1.9Kg.
Less than 2.4Kg. Wide body with Isolated analog or Binding post or IEEE.
WIDE BODY Kg
3. Dimensions (WxHxD)
STANDARD mm
H: 83, W: 70, D: 350 (excluding bus bars, handles…). (Refer to Outline drawing).
H: 83, W: 105, D: 350 (excluding bus bars, handles…). (Refer to Outline drawing).
WIDE BODY mm
4. Vibration --- According to: IEC60068-2-64
5. Shock --- Less than 20G, half sine, 11mS. Unit is unpacked. According to: IEC60068-2-27
NOTES:
*1: Minimum voltage is guaranteed to maximum 0.1% of rated output voltage.
*2: Minimum current is guaranteed to maximum 0.2% of rated output current.
*3: For cases where conformance to various safety standards (UL, IEC, etc…) is required, to be described as 100-240Vac (50/60Hz).
21
NOTES:
*1: Minimum voltage is guaranteed to maximum 0.1% of rated output voltage.
*2: Minimum current is guaranteed to maximum 0.2% of rated output current.
*3: For cases where conformance to various safety standards (UL, IEC, etc…) is required, to be described as 100-240Vac (50/60Hz).
*4: Ta=25°C with rated output power.
*5: Not including EMI filter inrush current, less than 0.2mSec at cold start Ta=25°C
*6: At 85~132Vac or 170~265VAC, constant load.
*7: From No-Load to Full-Load, constant input voltage. Measured at the sensing point in Remote Sense.
*8: Measured with JEITA RC-9131A (1:1) probe.
*9: From 10% to 90% or 90% to 10% of Rated Output Voltage, with rated resistive load.
*10: From 90% to 10% of Rated Output Voltage.
*11: For load voltage change, equal to the unit voltage rating, constant input voltage.
*12: For 10V model the ripple is measured at 2V to rated output voltage and rated output current. For other models, the ripple is measured at 10~100%
of rated output voltage and rated output current.
*13: The Constant Current programming, readback and monitoring accuracy do not include the warm-up and Load regulation thermal drift.
*14: Measured with JEITA RC-9131A (1:1) probe.
*15: For cases where the time interval between each down programming is longer than Td (time delay).
*16: For cases where the time interval between each down programming is shorter than Td (time delay).
*17: Td typical Minimum time between consecutive down programming cycles.
*18: PS with isolated analog option decreases efficiency by 1.5% and increases input current by 1.5%
*19: At rated output power.
*20: For Parallel operation more than 2 units 5% of toatal output current is requierd.
22
2.2 Z
+
400 SERIES SPECIFICATIONS
MODEL Z 10-40 20-20 36-12 60-7 100-4
1. Rated output voltage(*1) V 10 20 36 60 100
2. Rated output current (*2) A 40 20 12 7 4
3. Rated output power W 400 400 432 420 400
CONSTANT VOLTAGE MODE V 10-40 20-20 36-12 60-7 100-4
1. Max. Line regulation (*6) --- 0.01% of rated output voltage+2mV
2. Max. Load regulation (*7) --- 0.01% of rated output voltage+2mV
3. Ripple and noise (p-p, 20MHz) (*8) mV 50 50 50 50 80
4. Ripple r.m.s. 5Hz~1MHz mV 5 6 6 7 8
5. Temperature coefficient PPM/°C 30PPM/°C from rated output voltage, following 30 minutes warm-up.
6. Temperature stability --- 0.02% of rated Vout over 8hrs. interval following 30 minutes warm-up. Constant line, load & temp.
7. Warm-up drift --- Less than 0.05% of rated output voltage+2mV over 30 minutes following power on.
8. Remote sense compensation/wire V 1 1 2 3 5
9. Up-prog. Response time, 0~Vomax.(*9) mS 15 30 30 50 50
10. Down-prog.response time: Full load (*9) mS 10 10 15 30 50
Time delay (*17) 210 250 320 380 1200
No load (*10) (*15) (*17) 40 65 85 100 250
No load (*10) (*16) (*17) 200 200 290 310 1100
11. Transient response time mS
Time for output voltage to recover within 0.5% of its rated output for a load change 10~90% of rated
output current. Output set-point: 10~100%, Local sense.
Less than 1mS, for models up to and including 100V
12. Hold-up time (*19) --- 15mSec Typical. 16mSec Typical. Rated output power.
CONSTANT CURRENT MODE V 10-40 20-20 36-12 60-7 100-4
1. Max. Line regulation (*6) --- 0.01% of rated output current+2mA
2. Max. Load regulation (*11) --- 0.01% of rated output current+5mA
3. Load regulation thermal drift --- Less than 0.05% of rated output current over 30 minutes following load change.
4. Ripple r.m.s. 5Hz~1MHz (*12) mA 70 40 15 8 3
5. Temperature coefficient PPM/°C 100PPM/°C from rated output current, following 30 minutes warm-up.
6. Temperature stability --- 0.05% of rated Iout over 8hrs. interval following 30 minutes warm-up. Constant line, load & temperature.
7. Warm-up drift --- Less than +/-0.1% of rated output current over 30 minutes following power on.
PROTECTIVE FUNCTIONS V 10-40 20-20 36-12 60-7 100-4
1. Foldback protection ---
Output shut-down when power supply change mode from CV to CC or CC to CV. User presetable.
Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE, or by communication port.
2. Over-voltage protection (OVP) ---
Inverter Shut down method. Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE,
or by communication port.
3. Over - voltage trip point V 0.5-12 1~24 2~40 5~66 5~110
4. Output under voltage limit (UVL) --- Preset by front panel or communication port. Prevents from adjusting Vout below limit. Does not affect in analog programming.
5. Output under voltage protection (UVP) ---
Output shut-down when power supply output voltage goes below UVP programming. User presetable.
Reset by AC input recycle in autostart mode or by OUT button or by rear panel ENABLE, or by communication port.
6. Over temperature protection --- User Selectable. Latched or non latched
ANALOG PROGRAMMING AND MONITORING
1. Vout voltage programming --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-0.5% of rated Vout.
2. Iout voltage programming (*13) --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-1% of rated Iout.
3. Vout resistor programming --- 0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: +/-1% of rated Vout.
23
ANALOG PROGRAMMING AND MONITORING
1. Vout voltage programming --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-0.5% of rated Vout.
2. Iout voltage programming (*13) --- 0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: +/-1% of rated Iout.
3. Vout resistor programming --- 0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: +/-1% of rated Vout.
4. Iout resistor programming (*13) --- 0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: +/-1.5% of rated Iout.
5. Shut Off (SO) control --- By electrical Voltage: 0~0.6V/2~15V or dry contact, user selectable logic.
6. Output current monitor (*13) --- 0~5V or 0~10V, user selectable. Accuracy: +/-1%.
7. Output voltage monitor --- 0~5V or 0~10V, user selectable. Accuracy: +/-1%.
8. Power supply OK signal --- 4~5V-OK, 0V-Fail. 500ohm series resistance.
9. Parallel operation (*21) --- Possible, up to 6 units in master/slave mode with single wire current balance connection.
10. Series operation --- 2 identical units (with external diodes).
11. CV/CC indicator --- Open collector. CC mode: On, CV mode: Off. Maximum voltage: 30V, maximum sink current: 10mA
12. Interlock (ILC) control ---
Enables/Disables the PS output by dry contact (Short: On, Open: Off, Source current: less than 0.5mA). Ena/Dis is activated by front panel.
13. Local/Remote mode Control --- By electrical signal or Open/Short: 0~0.6V or short: Remote, 2~15V or open: Local
14. Local/Remote mode Indicator --- Open collector (shunted by 36V zener). On (0~0.6V, 10mA sink current max.)-Remote. Off-Local (30V max.).
15.Trigger out ---
Maximum low level output = 0.8V, Minimum high level output = 2V, maximum source current = 8mA, pulse =20us Typical.
16.Trigger in ---
Maximum low level input voltage = 0.8V, minimum high level input votage = 2.0V, Maximum sink current = 8mA,
possitive edge trigger: tw=10us minimum. Tr, Tf =1us maximum.
17. Programmed signal 1 --- Open collector, maximum voltage 25V, maximum sink current 100mA. (Shunted by 27V zener)
18. Programmed signal 2 --- Open collector, maximum voltage 25V, maximum sink current 100mA. (Shunted by 27V zener)
FRONT PANEL
1. Control functions
--- Multiple options with 2 Encoders
--- Vout/Iout manual adjust
--- OVP/UVL /UVP manual adjust
--- Protection Functions - OVP, UVL, UVP, Foldback, OCP, INT, SO
--- Communication Functions - Selection of LAN,IEEE,RS232,RS485,USB
--- Communication Functions - Selection of Baud Rate, Address
--- Analog Control Functions - Selection Voltage/resistive programming, 5V/10V, 5K/10K programming
--- Analog Control Functions - Selection of Voltage/Current Monitoring 5V/10V, Output ON/OFF, Front Panel Lock.
2. Display
--- Vout: 4 digits, accuracy: 0.5% of rated output voltage+/-1 count.
--- Iout: 4 digits, accuracy: 0.5% of rated output current+/-1 count.
3. Indications
--- GREEN LED's: FINE, MENU, PREV, PROT, REM/LOC,OUT ON/OFF , CV, CC
--- RED LED's: ALRM (OVP,UVP, OTP, FOLD, AC FAIL).
4. Function buttons --- FINE, MENU, PREV, PROT, REM/LOC, OUT ON/OFF
PROGRAMMING AND READBACK (RS232/485,USB, Optional: IEEE(*20), LAN)
1. Vout programming accuracy --- 0.05% of rated output voltage
2. Iout programming accuracy (*13) --- 0.1% of actual +0.1% of rated output current
3. Vout programming resolution --- 0.012% of full scale
4. Iout programming resolution --- 0.012% of full scale
5. Vout readback accuracy --- 0.05% of rated output voltage
6. Iout readback accuracy (*13) --- 0.1% of actual +0.3% of rated output current
7. Vout readback resolution --- 0.012% of full scale
8. Iout readback resolution --- 0.012% of full scale
24
Z
+
400 SERIES SPECIFICATIONS
INPUT CHARACTERISTICS V 10-40 20-20 36-12 60-7 100-4
1. Input voltage/freq. (*3) --- 85~265Vac continuous, 47~63Hz, single phase
2. Maximum Input current 100/200VAC (*18) --- 5.05/2.47 4.98/2.45 5.25/2.57 5.10/2.50 4.80/2.37
3. Power Factor (Typ) --- 0.99 at 100/200Vac, 100% load
4. Efficiency (Typ) 100/200VAC (*4) (*18) % 80/82 81/83 83/85 83/85 84/86
5. Inrush current (*5) --- Less than 25A
ENVIRONMENTAL CONDITIONS
1. Operating temperature --- 0~50°C, 100% load.
2. Storage temperature --- -20~85°C
3. Operating humidity % 20~90% RH (no condensation).
4. Storage humidity % 10~95% RH (no condensation).
5. Altitude ---
Maximum 3000m. Derate ambient temp above 2000m.
Operating: Maximum ambient temperature, From 2000m up to 3000m Ambient temperature 40°C.
SAFETY/EMC
1. Applicable standards:
Safety ---
UL61010-1, EN61010-1, IEC61010-1. Design to meet UL60950-1, EN60950-1
10V≤Vout≤60V: Output,J1,J2,J3,J4,USB,LAN,IEEE/ISOLATED Analog are Non Hazardous
Vout=100V:Output,J1,J2 are Hazardous J3,J4,USB, IEEE/ISOLATED Analog ,LAN are Non Hazardous
EMC --- IEC61326-1 (Built to meet EN55022/EN55024)
2. Withstand voltage ---
10≤Vout≤36V models: Input-Output&J1,J2,J3,J4,USB,LAN/IEEE/ISOLATED ANALOG: 4242VDC/1min; Input-Ground: 2828VDC/1min.
Output&J1,J2,J3,J4,USB,LAN/IEEE/ISOLATED ANALOG-Ground: 1000VDC/1min.
60V,100V models: Input-Output&J1,J2: 4242VDC/1min; Input-J3,J4,USB,LAN/IEEE/ISOLATED Analog: 4242VDC/1min; Input-Ground:
2828VDC/1min.
Output&J1,J2- J3,J4,USB,LAN/IEEE/ISOLATED ANALOG :1910VDC/1min; Output&J1,J2-Ground: 1380VDC/1min.
J3, J4, USB/LAN/IEEE/ISOLATED ANALOG - Ground: 1000VDC/1min;
3. Insulation resistance --- More than 100Mohm at 25°C, 70%RH.
4. Conducted emission --- EN55022B, FCC part 15-B, VCCI-B
5. Radiated emission --- EN55022A, FCC part 15-A, VCCI-A
MECHANICAL
1. Cooling --- Forced air cooling by internal fan
2. Weight
STANDARD Kg Less than 1.9Kg.
WIDE BODY Kg Less than 2.4Kg. Wide body with Isolated analog or Binding post or IEEE
3. Dimensions (WxHxD)
STANDARD mm H: 83, W: 70, D: 350 (excluding bus bars, handles…). (Refer to Outline drawing)
WIDE BODY mm H: 83, W: 105, D: 350 (excluding bus bars, handles…). (Refer to Outline drawing)
4. Vibration --- According to: IEC60068-2-64
5. Shock --- Less than 20G, half sine, 11mS. Unit is unpacked. According to: IEC60068-2-27
NOTES:
*1: Minimum voltage is guaranteed to maximum 0.1% of rated output voltage.
*2: Minimum current is guaranteed to maximum 0.2% of rated output current.
*3: For cases where conformance to various safety standards (UL, IEC, etc…) is required, to be described as 100-240Vac (50/60Hz).
25
2.3 Supplemental Characteristics
The supplemental characteristics give typical but non-warranted performance characteristics.
The supplemental characteristics are useful in assessing applications for the power supply.
Several kinds of supplemental characteristics are listed below.
1. Evaluation Data: Typical performance of the power supply.
2. Reliability Data: Reliability performance of the power supply.
3. IEC61000 Data: Performance of the power supply under IEC61000 test conditions.
4. EMI Data: Typical EMI (conducted and radiated) performance of the power supply.
The supplemental characteristics data is held in each TDK-Lambda sales and service facility. For
further details please contact the TDK-Lambda office near you.
NOTES:
*1: Minimum voltage is guaranteed to maximum 0.1% of rated output voltage.
*2: Minimum current is guaranteed to maximum 0.2% of rated output current.
*3: For cases where conformance to various safety standards (UL, IEC, etc…) is required, to be described as 100-240Vac (50/60Hz).
*4: Ta=25°C with rated output power.
*5: Not including EMI filter inrush current, less than 0.2mSec.
*6: At 85~132Vac or 170~265VAC, constant load.
*7: From No-Load to Full-Load, constant input voltage. Measured at the sensing point in Remote Sense.
*8: Measured with JEITA RC-9131A (1:1) probe.
*9: From 10% to 90% or 90% to 10% of Rated Output Voltage, with rated resistive load.
*10: From 90% to 10% of Rated Output Voltage.
*11: For load voltage change, equal to the unit voltage rating, constant input voltage.
*12: For 10V model the ripple is measured at 2V to rated output voltage and rated output current. For other models, the ripple is measured at 10~100%
of rated output voltage and rated output current.
*13: The Constant Current programming, readback and monitoring accuracy do not include the warm-up and Load regulation thermal drift.
*14: Measured with JEITA RC-9131A (1:1) probe.
*15: For cases where the time interval between each down programming is longer than Td (time delay).
*16: For cases where the time interval between each down programming is shorter than Td (Time delay).
*17: Td typical Minimum time between consecutive down programming cycles.
*18: PS with isolated analog option decreases efficiency by 0.5% and increases input current by 0.5%
*19: At rated output power.
*20: Max. ambient temperature for using IEEE is 45°C
*21: For Parallel operation more than 2 units 2% of toatal output current is requierd.
26
 


 
  
 

 





































 





2.4 Z200W/400W Outline Drawing
27
 











































 



2.5 Z200W/400W Optional IEEE, Isolated Analog Interface Outline Drawing
28

  

 


 






































2.6 Z200W/400W Front Panel Output Binding Post Outline Drawing
29
CHAPTER 3: INSTALLATION
3.1 General
This chapter contains instructions for initial inspection, preparation for use and repackaging for shipment. Connection to PC, setting the communication port and linking Z+ power supplies are described in Chapter 7.
NOTE:
Z+ power supplies generate magnetic fields which might affect the operation of other instruments. If your equipment is susceptible to magnetic fields, do not position it adjacent to the power supply.
3.2 Preparation for Use
In order to be operational the power supply must be connected to an appropriate AC source. The AC source voltage should be within the power supply specification. Do not apply power before reading, Section 3.6 and 3.7. Table 3-1 below, describes the basic setup procedure. Follow the instructions in Table 3-1 in the sequence given to prepare the power supply for use.
Step no. Item Description Reference
1 Inspection Initial physical inspection of the power supply Section 3.3
2 Installation
Installing the power supply, Ensuring adequate ventilation.
Section 3.4 Section 3.5
3 AC source
AC source requirements Connecting the power supply to the AC source.
Section 3.6 Section 3.7
4 Test Turn-on checkout procedure. Section 3.8
5 Load connection Wire size selection. Local /Remote sensing. Section 3.9
6 Default setting Single or multiple loads. Section 7.2.1
Table 3-1: Basic setup procedure
3.3 Initial Inspection
Prior to shipment this power supply was inspected and found free of mechanical or electrical defects. Upon unpacking of the power supply, inspect for any damage which may have occurred in transit. The inspection should confirm that there is no exterior damage to the power supply such as broken knobs or connectors and that the front panel and meter faces are not scratched or cracked. Keep all packing material until the inspection has been completed. If damage is detected, file a claim with carrier immediately and notify the TDK-Lambda sales or service facility nearest you.
3.4 Rack Mounting
The Z+ power supply series is designed to fit in a standard 19” 2U height rack. Six units (70mm width) can be assembled into 19” 2U-rack. Refer to Fig.3-1. Four units (105mm width) can be assembled into 19” 2U-rack. Refer to Fig.3-2
Fig.3-1 Fig.3-2
30
3.5 Location, Mounting and Cooling
This power supply is fan cooled. The air intake is at the front panel and the exhaust is at the rear panel. Upon installation allow cooling air to reach the front panel ventilation inlets. Allow minimum 10cm (4”) of unrestricted air space at the front and the rear of the unit. The power supply should be used in an area that the ambient temperature does not exceed +50°C.
Standort, Montage und Kühlung
Dieses Netzgerät ist gebläsegekühlt, mit vorderseitiger Luftaufnahme und rückseitigem Luftausstoß. Bei Installation ist darauf zu achten, dass die vorderseitigen Gebläseöffnungen ungehindert Luft aufnehmen können. Dazu muss vor und hinter dem Gerät ein Abstand von mindestens 10 cm zum nächsten Hindernis eingehalten werden. Das Netzgerät darf nur in einem Bereich benutzt werden, in dem die Umgebungstemperatur +50 °C nicht übersteigt.
3.6 AC Source Requirements
The Z+ series can be operated from a nominal 100V to 240V, single phase, 47~63Hz. The input voltage range and current required for each model is specified in Chapter 2. Ensure that under heavy load, the AC voltage supplied to the power supply does not fall below the specifications described in Chapter 2.
Netzstromanforderungen
Die Geräte der Z+ Serie können aus einem einphasigen Netzstromanschluss mit nominell 100-240 V und 47-63 Hz versorgt werden. Der für jedes Modell erforderliche Bereich von Eingangsspannung und Stromstärke ist in Kapitel 2 angeführt. Es ist sicherzustellen, dass der dem Netzgerät zugeführte Netzstrom bei hoher Belastung nicht unter die in Kapitel 2 angeführten Werte fällt.
3.7 AC Input Power Connection
WARNING:
Some components inside the power supply are at AC voltage even when the On/Off switch is in the “Off” position. To avoid electric shock hazard, disconnect the line cord and load and wait two minutes before removing cover.
WARNUNG:
Manche Komponenten im Netzteil stehen auch dann unter Wechselspannung, wenn sich der Ein-/Aus-Schalter in der „Aus“-Position befindet. Zur Vermeidung von Stromschlag müssen Netzkabel und Last getrennt werden. Warten Sie dann zwei Minuten, bevor Sie die Abdeckung entfernen.
3.7.1 AC Input Connector
An IEC connector is provided on the rear panel for connecting the unit to the AC power source with an AC cord. The IEC connector also provides the safety ground connection while the AC cord is plugged into an appropriate AC.
31
1 Local (-) sense
2 (-) Sense
3 (+) Sense
4 Local (+) sense
Fig.3-3: Sense connector default connection
Plug P/N: IPD1-02-D-K (SAMTEC)
2. Ensure that the protection of output bus-bars or of output connector is mounted and properly
assembled for power supplies when the output voltage exceed 42.4VDC.
3. Connect the unit to an AC source as described in section 3.7.
4. Connect a DVM with appropriate cables for the rated voltage to the output terminals.
5. Turn the front panel AC power switch to On.
6. When power supply is turned ON the display shows “” and all LEDs illuminate momentarily. The power supply operating status is then displayed.
3.7.2 AC Input Cord
Refer to section 1.3.4 for details of the AC input cords recommended.
WARNING:
The AC input cord plug is the disconnect device of the power supply. The plug must be readily identifiable and accessible to the user. The AC input cord must be no longer than 3m.
WARNUNG:
Das Netzstromkabel dient zur Trennung des Netzgerätes vom Netzstrom. Der Stecker muss für den Benutzer leicht erkennbar und jederzeit zugänglich sein. Das Netzstromkabel darf nicht länger sein als drei Meter.
3.8 Turn-On Checkout Procedure
3.8.1 General
The following procedure ensures that the power supply is operational and may be used as a basic incoming inspection check.
3.8.2 Prior to Operation
1. Ensure that the power supply is configured to the default setting: AC On/Off switch at Off position. Sense connector : Configured to Local Sense as shown in Fig.3-3:
32
3.8.3 Constant Voltage Check
1. Turn on the output by pressing OUT push-button so the OUT LED illuminates.
2. Observe the power supply VOLT display and rotate the Voltage Encoder. Ensure that the output voltage varies while the VOLT Encoder is rotated. The minimum control range is from zero to the maximum rated output for the power supply
model. Compare the DVM reading with the front panel VOLT display to verify the accuracy of the VOLT display. Ensure that the front panel VOLT LED illuminates.
3. Turn off the front panel AC power switch.
3.8.4 Constant Current Check
Ensure that the front panel AC power switch is at Off position and the DVM connected to the output terminals shows zero voltage.
1. Connect DC shunt across the output terminals. Ensure that the shunt and the wires current
ratings are higher than the power supply rating. Connect a DVM to the shunt.
2. Turn the front panel AC power switch to On position.
3. Turn on the output by pressing OUT push-button so the OUT LED illuminates.
4. Observe the power supply CURRENT display and rotate the CURRENT Encoder. Ensure that
the output current varies while the CURRENT Encoder is rotate. The minimum control range is from zero to the maximum rated output for the power supply model. Compare the DVM reading with the front panel CURRENT display to verify the accuracy of the CURRENT display. Ensure that the front panel CURRENT LED is on.
5. Turn off the front panel AC power switch.
6. Remove the shunt from the power supply output terminals.
3.8.5 OVP Check
Refer to Section 5.3.2 for explanation of the OVP function prior to performing the procedure below.
1. Turn the front panel AC power switch to On position and turn on the output by pressing OUT
push-button.
2. Using the VOLT Encoder, adjust the output voltage to approx. 10% of the unit voltage rating.
3. Set OVP to 50% of of the unit voltage rating.
4. Adjust the output voltage toward it’s maximum and check that the output voltage cannot
be increased more than the OVP setting.
5. Adjust OVP limit to the maximum.
3.8.6 UVL Check
The UVL can be set when the power supply output is Enabled (On) or Disabled (Off). UVL setting values are limited at the maximum level to approximately 5% below the Output Voltage setting. Attempting to adjust the value above this limit will result in no response to the adjustment attempt. The minimum value setting is zero.
1. Press PROT button. PROT (GREEN) LED illuminates. Current display shows ““ message.
2. Press Current Encoder. Voltage Display shows ““ message, Current display shows setting level.
3. Rotate the Voltage Encoder to set ““.
4. Rotate the Current Encoder to adjust the level.
5. Press PROT button twice or wait 15 sec. to return display to its previous state and then PREV
LED turns OFF.
6. Adjust the output voltage toward it’s minimum and check that the output voltage cannot be
decreased below the UVL setting.
7. Adjust the UVL limit to the minimum.
33
3.8.7 Foldback Check
WARNING:
There is a potential shock hazard when checking a power supply with output voltage greater than
42.4V. Observe proper safety procedures during the checking.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V besteht Stromschlaggefahr. Beachten Sie bei der Überprügung die entsprechenden Sicherheitsvorkehrungen.
Refer to Section 5.3.4 for explanation of the FOLD function prior to performing the procedure below.
1. Ensure that the output voltage is set to approx. 10% of the unit rating.
2. Adjust the CURRENT Encoder to set the current limit to approx. 10% of the unit rating.
3. Set Foldback to CC MODE.
4. Short the output terminals momentarily (approx. 0.5 sec.). Ensure that the output voltage falls to zero, the VOLT display shows “FOd ”, CURRENT display shows “F A I” and the ALARM LED blinks.
5. Set Foldback to OFF. The output voltage remains zero.
6. Press OUT button. Ensure that the output voltage returns to it’s last setting.
7. Turn the output off by pressing OUT button. Ensure that the VOLT display shows “OFF”.
3.9 Connecting the Load
Turn off the AC input power before making or changing any rear panel connection. Ensure that all connections are securely tightened before applying power. There is a potential shock hazard when using a power supply with a rated output greater than 70V.
WARNING:
There is a potential shock hazard when using a power supply with a rated output voltage greater than
42.4V. Turn off the AC input power before making or changing any rear panel connection. Ensure that the protection of output bus-bars or of output connector is mounted and properly assembled for power supplies when output voltage exceed 42.4VDC. Ensure that all connections are securely tightened before applying power.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V besteht Stromschlaggefahr. Bevor ein Anschluss an der Geräterückseite erstellt oder verändert wird, schalten Sie die Stromversorgung auf AUS oder trennen Sie das Netzteil vom Netzstrom. Stellen Sie sicher, dass der Schutz der Ausgangssammelschiene oder des Ausgangs aufgesetzt und für Netzgeräte mit einer Nenn-Ausgangsspannung von über 42.4VDC angemessen montiert ist. Stellen Sie sicher, dass alle Anschlüsse festgemacht sind, bevor Sie das Gerät an die Stromversorgung anschließen.
3.9.1 Load Wiring
The following considerations should be made to select wiring for connecting the load to the power supply:
• Current carrying capacity of the wire (refer to 3.9.2)
• Insulation rating of the wire should be at least equivalent to the maximum output voltage of the power supply.
• Maximum wire length and voltage drop (refer to 3.9.2)
• Noise and impedance effects of the load wiring (refer to 3.9.4).
34
Wire size AWG
Resistivity Ohm/1000ft
Maximum length in feet to limit voltage drop to 1V or less
5A 10A 20A 50A 14 2.526 80 40 20 8 12 1.589 120 60 30 12 10 0.9994 200 100 50 20 8 0.6285 320 160 80 32 6 0.3953 500 250 125 50 4 0.2486 800 400 200 80 2 0.1564 1200 600 300 125 0 0.0983 2000 1000 500 200
Table 3-2: Maximum wire length for 1V drop on lead (in feet)
Cross sect. area (mm2)
Resistivity Ohm/Km
Maximum length in meters to limit
voltage drop to 1V or less
5A 10A 20A 50A
2.5 8.21 24.0 12 6 2.4 4 5.09 39.2 18.6 9.8 4 6 3.39 59.0 29.4 14.8 5.8 10 1.95 102.6 51.2 25.6 10.2 16 1.24 160.0 80 40 16 25 0.795 250.0 125 62 25.2 35 0.565 354.0 177 88 35.4
Table 3-3: Maximum wire length for 1V drop on lead (in meters)
For currents not shown in Table 3-2 and 3-3, use the formula: Maximum length=1000/(current x resistivity) Where current is expressed in amperes and resistivity in ohms/km or ohms/1000ft.
3.9.2 Current Carrying Capacity
Two factors must be considered when selecting the wire size:
1. Wires should be at least heavy enough not to overheat while carrying the power supply load current at the rated load, or the current that would flow in the event the load wires were shorted, whichever is greater.
2. Wire size should be selected to enable voltage drop per lead to be less than 1.0V at the rated current. Although units will compensate higher voltage drop in each load wire (refer to the specifications). It is recommended to minimize the voltage drop (1V maximum) to prevent excessive output power consumption from the power supply and poor dynamic response to load changes. Please refer to Tables 3-2 and 3-3 for maximum wire length to limit voltage drop in American and European dimensions respectively.
35
3.9.3 Wire Termination
The wires should be properly terminated with terminals securely attached. DO NOT use non terminated wires for load connection at the power supply.
CAUTION:
When local sensing, a short from +LS or +S to -V or -S or -LS, will cause damage to the power supply. Reversing the sense wires might cause damage to the power supply in local and remote sensing. (Do not connect -S to +V or +S to -V.)
3.9.4 Noise and Impedance Effects
To minimize the noise pickup or radiation, the load wires and remote sense wires should be twisted pairs to the shortest possible length. Shielding of sense leads may be necessary in high noise environments. Where shielding is used, connect the shield to the chassis via a rear panel Ground screw. Even if noise is not a concern, the load and remote sense wires should be twisted-pairs to reduce coupling, which might impact the stability of power supply. The sense leads should be separated from the power leads.
Twisting the load wires reduces the parasitic inductance of the cable which could produce high frequency voltage spikes at the load and the output of power supply, because of current variation in the load itself. The impedance introduced between the power supply output and the load could make the ripple and noise at the load worse than the noise at the power supply rear panel output. Additional filtering with bypass capacitors at the load terminals may be required to bypass the high frequency load current.
3.9.5 Inductive Loads
Inductive loads can produce voltage spikes that may be harmful to the power supply. A diode should be connected across the output. The diode voltage and current rating should be greater than the power supply maximum output voltage and current rating. Connect the cathode to the positive output and the anode to the negative output of the power supply. Where positive load transients such as back EMF from a motor may occur, connect a surge suppressor across the output to protect the power supply. The breakdown voltage rating of the suppressor must be approximately 10% higher than the maximum output voltage of the power supply.
3.9.6 Making the Load Connections
WARNING:
There is a potential shock hazard when using a power supply with an output voltage greater than
42.4V. To protect personnel against accidental contact with hazardous voltages, ensure that the protection of output bus-bars or of output connector is mounted and properly assembled. Ensure that the load and its connections have no accessible live parts. Ensure that the load wiring insulation rating is greater than or equal to the maximum output voltage of the power supply.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V besteht Stromschlaggefahr. Zum Schutz des Personals vor versehentlichem Kontakt mit gefährlichen Spannungen ist sicherzustellen, dass der Schutz der Ausgangssammelschiene oder des Ausgangs aufgesetzt und angemessen montiert ist. Stellen Sie sicher, dass an der Last und deren Verbindungen keine zugänglichen spannungsführenden Teile vorhanden sind. Stellen Sie sicher, dass der Isolationswert der Last höher als oder gleich der maximalen Ausgangsspannung des Netzgerätes ist.
36
CAUTION:
Ensure that the load wiring mounting hardware does not short the output terminals. Heavy connecting cables must have some form of strain relief to prevent loosening the connections or bending the bus-bars.
10V to 100V Models
Refer to Fig.3-4 for connection of the load wires to the power supply bus-bars and to Fig.3-5 for mounting the bus-bars shield to the chassis.
100V Models
WARNING:
There is a potential shock hazard when using a power supply with an output voltage greater than
42.4V. Do not turn ON power supply an output voltage above 42.4VDC without output bus-bars or output connector protection assembled. Ensure that the protection of output bus-bars or of output connector is mounted and properly assembled, and that the bus bar protection is locked by a two SEMS type screws as described in Fig. 3.5
Fig. 3-4: Load wires connection, 10V to 100V models.
Fig. 3-5: Bus-bars shield mounting
BUS BAR PROTECTION (Provided in the package)
PT SCREW KA40x8 WN1412 (2 PLACES)
BOTTOM PART MARKING
37
3.9.7 Connecting Single Loads, Local Sensing (default)
Fig.3-6 shows recommended load and sensing connections for a single load. The local sense lines shown are default connections at the rear panel J2 sense connector. Local sensing is suitable for applications where load regulation is less critical.
3.9.9 Connecting Multiple Loads, Radial Distribution Method
Fig.3-8 shows multiple loads connected to one supply. Each load should be connected to the power supply’s output terminals using separate pairs of wires. It is recommended that each pair of wires will be as short as possible and twisted or shielded to minimize noise pick-up and radiation. The sense wires should be connected to the power supply output terminals or to the load with the most critical load regulation requirement.
3.9.8 Connecting Single Loads, Remote Sensing
Fig.3-7 shows recommended remote sensing connection for single loads. Remote sensing is used when, in Constant Voltage mode, the load regulation is important at the load terminals. Use twisted or shielded wires to minimize noise pick-up. If shielded wires are used, the shield should be connected to the ground at one point, either at the power supply chassis or the load ground. The optimal point for the shield ground should be determined by experimentation.
Load
Power
Supply
+V
-V
-Rem. sense
-Local sense
+Rem. sense
+Local sense
+
-
Load lines, twisted pair, shortest length possible.
Fig.3-6: Single load connection, local sensing
Fig.3-7: Remote sensing, single load
Load
Power
Supply
+V
-V
-Rem. sense
-Local sense
+Rem. sense
+Local sense
+
-
Load lines. Twisted pair shortest length possible.
Sense lines. Twisted pair or shielded.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V besteht Stromschlaggefahr. Schalten Sie die Stromversorgung mit einer Ausgangsspannung oberhalb 42.4VDC nicht auf EIN, ohne die vorhige Montierung eines Schutzes für die Ausgangssammelschiene bzw. Ausgangsbuchse. Stellen Sie sicher, dass der Schutz der Ausgangssammelschiene oder des Ausgangs aufgesetzt und angemessen montiert ist und dass der Schutz der Sammelschiene, mittels zweier SEMS-Schrauben, wie in Abb. 3.5 beschrieben, verriegelt wurde.
38
3.9.10 Multiple Load Connection with Distribution Terminals
If remotely located output distribution terminals are used, the power supply output terminals should be connected to the distribution terminals by a pair of twisted and/or shielded wires. Each load should be separately connected to the remote distribution terminals (see Fig.3-9). If remote sensing is required, the sensing wires should be connected to the distribution terminals or at the most critical load.
3.9.11 Grounding Outputs
Either the positive or negative output terminals can be grounded. To avoid noise problems caused by common-mode current flowing from the load to ground, it is recommended to ground the output terminal as close as possible to the power supply chassis ground.
Always use two wires to connect the load to the power supply regardless of how the system is grounded.
Load lines, twisted pair, shortest length possible.
Fig.3-8: Multiple loads connection, radial distribution, local sense
Load#1
Power
Supply
+V
-V
-Rem. sense
-Local sense
+Rem. sense
+Local sense
+
-
Load#2
+
-
Load#3
+
-
Fig.3-9: Multiple loads connection with distribution terminal
Load#1
Power
Supply
+V
-V
-Rem. sense
-Local sense
+Rem. sense
+Local sense
+
-
Load#2
+
-
Load#3
+
-
+V
-V
Distribution terminal
WARNING:
Models up to 100VDC Rated Output shall not float outputs more than +/-100VDC above/below chassis ground.
WARNUNG:
Bei Modellen bis 100VDC Nennausgangsspannung darf der Potentialunterschied zwischen Ausgang und Gehäuse-Erdung nicht mehr als +/-100VDC betragen.
39
3.10 Local and Remote Sensing
The rear panel J2 sense connector is used to configure the power supply for local or remote sensing of the output voltage. Refer to Fig.3-10 for sense connector location.
3.10.2 Local Sensing
The power supply is shipped with the rear panel J2 sense connector wired for local sensing of the output voltage. Refer to Table 3-4 for J2 terminals assignment. With local sensing, the output voltage regulation is made at the output terminals. This method does not compensate for voltage drop on the load wires, therefore it is recommended only for low load current applications or where the load regulation is less critical.
3.10.1 Sense Wiring
Fig.3-10: Sense connector location
WARNING:
There is a potential shock hazard at the sense connector when using a power supply with an output voltage greater than 42.4V. Local sense and remote sense wires should have a minimum insulation rating equivalent or greater than the maximum output voltage of the power supply. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.
WARNUNG:
Bei Einsatz eines Netzteils mit einer Ausgangsspannung von mehr als 42,4 V. besteht Stromschlaggefahr. Lokale Anschlüsse und Remote-Sense-Leitungen sollten eine minimale Bemessungsisolationsspannung, entsprechend oder größer als die maximale Ausgangsspannung der Stromversorgung, haben. Stellen Sie sicher, dass die Anschlüsse an der Last abgeschirmt sind, um versehentlichen Kontakt mit gefährlichen Spannungen zu verhindern.
Terminal Function
J2-1 Local negative sense. Connected internally to the negative output terminal (-LS). J2-2 Remote negative sense (-S). J2-3 Remote positive sense (+S).
J2-4 Local positive sense. Connected internally to the positive output terminal (+LS).
Table 3-4: J2 terminals
40
3.10.3 Remote Sensing
WARNING:
There is a potential shock hazard at the sense point when using power supply with an output voltage greater than 42.4V. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.
WARNING:
Do not operate the Power Supply with remote sense wire connected to the load without connecting load wire to the output terminal. Make sure that the connection is reliable to avoid disconnection during operation. Disconection may cause damage to the power supply.
CAUTION:
When using shielded sense wires, ground the shield in one place only. The location can be the power supply chassis or one of the output terminals.
Use remote sense where the load regulation at the load end is critical. In remote sense, the power supply will compensate for voltage drop on the load wires. Refer to the specifications for the maximum voltage drop on load wires. The voltage drop is subtracted from the total voltage available at the output. Follow the instructions below to configure the power supply for remote sensing:
1. Ensure that the AC On/Off is in the Off position.
2. Remove the local sense jumpers from J2.
3. Connect the negative sense lead to terminal J2-2 (-S) and the positive sense lead to terminal J2-3(+S) of the J2 mating connector. Ensure that the J2 mating connector is plugged securely into the rear panel sense connector, J2.
4. Turn On the power supply.
NOTES:
1. If the power supply is operating in remote sense and either the positive or negative load wire is not connected, an internal protection circuit will activate and shut down the power supply. To resume operation, turn the AC On/Off to the Off position, connect the open load wire, and turn On the power supply.
2. If the power supply is operated without the remote sense lines or local sense jumpers, it will continue to work, but the output voltage regulation will be degraded. Also, the OVP circuit may activate and shut down the power supply.
3.10.4 J2 Sense Connector Technical Information
- J2 connector type: IPL1-102-01-S-D-RA-K, SAMTEC.
- Plug type: IPD1-02-D-K, SAMTEC.
- Contact pins: CC79R-2024-01-L, SAMTEC.
- Wire AWG: 24 up to 20
3.11 Repackaging for Shipment
To ensure safe transportation of the instrument, contact the TDK-Lambda sales or service facility near you for Return Authorization and shipping information. Please attach a tag to the power supply describing the problem and specifying the owner, model number and serial number of the power supply. Refer to Warranty Information for further instructions.
WARNUNG:
Wird ein Netzgerät mit einer Nenn-Ausgangsspannung von über 42.4V verwendet, besteht am Fühlpunkt potentielle Stromschlaggefahr. Es ist sicherzustellen, dass die Anschlüsse an den Last-Terminals geschützt sind, um versehentliche Berührung mit gefährlichen Spannungswerten zu verhindern.
41
CHAPTER 4: FRONT/REAR PANEL CONTROLS AND CONNECTORS
4.1 Introduction
The Z+ Power Supply series has a full set of controls, indicators and connectors that allow the user to set up and operate the unit. Before starting to operate the unit, please read the following sections for an explanation of the functions, controls and connector terminals.
- Section 4.2: Front Panel Display and Controls.
- Section 4.3: Rear Panel Controls and Connectors.
4.2 Front Panel Display and Controls
Refer to Fig4-1 and Table 4-1 for description of the Front Panel controls and indicators.
Fig. 4-1: Front panel controls and indicators
42
No. Control/Indicator Description Section
1 AC Power Switch AC ON/OFF control
2 Current Display
4 digit 7-segment LED display. Normally displays the output current. In preview mode, the display indicates the program setting of output current.
3 Voltage Display
4 digit 7-segment LED display. Normally displays the output voltage. In preview mode, the display indicates the program setting of output voltage.
4
Voltage Encoder and button
Encoder : high resolution rotary Encoder for adjusting the output voltage. Button: Auxiliary function to select between menu levels.
5.2.1
5
Constant Voltage mode indicator
Green LED, light for Constant-Voltage mode operation.
6
Current Encoder and button
Encoder: High resolution rotary Encoder for adjusting the output current. Button: Auxiliary function to select between menu levels.
5.2.2
7
Constant Current mode indicator
Green LED, light for Constant-Current mode operation.
8 OUT button/indicator
Main function: output ON/OFF control. Press OUT to set the output ON or OFF. Press to recovery after OVP, UVP or FOLD fails. Green LED, lights when the DC Output is enabled. Auxiliary function: Select between Safe Start and Auto Start modes.
5.2.4
5.2.5
9 REM button/indicator
Main function: Go to local. Press REM to put the unit into local (REM button is disabled at Local Lockout mode. Green LED, lights when the unit is in communication Remote mode. Auxiliary function: Communication menu.
10 PREV button/indicator
Main function: Press PREV to display the output voltage and current limit setting. For 5 sec. the display will show the setting and then it will return to show the actual output voltage and current. Green LED, lights when PREV button is pressed. Auxiliary function: Front Panel Lock. Press and hold PREV button to toggle between “Locked front panel” and “Unlocked front panel”. The display will cycle between F and F. Releasing the PREV button while one of the modes is displayed, selects that mode.
11 FINE button/indicator
Voltage, Current, Delay and Counter Fine/Coarse adjustment control. Operates as a toggle switch. In Fine mode, the VOLTAGE and CURRENT Encoders operate with high resolution and in Coarse mode with lower resolution (approx. 6 turns). Green LED, lights when the unit is in Fine mode.
12
PROT button/ Alarm indicator
Main function: Red LED blinks in cases of fault detection: OVP, UVP, OTP, Foldback, Interlock and AC fail. Auxiliary function: Protection menu. Green LED illuminates when the unit is in protection menu mode.
5.3
13
Main Menu button/ indicator
Used for selection between analog or digital mode control, rear panel control parameters, memory management, trigger and program setting, parallel mode settings and software version.
14 Optional Output Jack Output Jacks for modules up to 60V: 24A Max
Table 4-1: Front panel controls and indicators
43
4.3 Rear Panel Connectors
Refer to Fig.4-2 and Table 4-2 for description of the Rear Panel connectors.
No. Connection Description Section
1 AC Input Connector IEC320-16 TYPE CONNECTOR 2 DC output bus-bar Bus-bars for 10V to 100V models. Use M6 or 1/4” screws. 3.9.9
3
Analog Control and signals. J1
Connector for remote analog interface. Analog control and monitoring. Referenced internally to output potential -S.
4.3.1
4
Local/Remote sense connector J2
Connector for making remote sensing connections to the load for regulation of the load voltage and compensation of load wire drop.
3.8.1
3.10.2
5
Isolated control and signal. J3
Control and monitoring signal, isolated from the output potential. 4.3.2
6
Remote Serial Out connector
RJ-45 type connector, used for chaining power supplies to/from a serial communication bus.
7.3
7
Remote Serial In connector
RJ-45 type connector, use for connecting power supplies to RS232 or RS485 port of computer for remote control purposes. When using several power supplies in a power system, the first unit Remote-In is connected to the computer and the remaining units are chained, Remote-In to Remote-Out.
7.3
8 USB Connector USB interface connector, type B
9
LAN Connector (optional)
LAN interface connector, type RJ-45
10 Ground screw M4x10 for chassis Ground connection 11 Optional Interface Position for GPIB Interface (shown) or Isolated Analog Interface.
Table 4-2: Rear panels connecions
Fig. 4-2: Rear panel connections
44
WARNING:
Terminals 7, 9 and 12 of J1 are connected internally to the negative sense(-S) potential of the power supply. Do not attempt to bias any of these terminals relative to the negative sense. Use the Isolated Programming interface option to allow control from a programming source at a different potential relative to the power supply negative.
CAUTION:
To prevent ground loops and to maintain the isolation of the power supply when programming from J1, use an ungrounded programming source.
WARNING:
There is a potential shock hazard at the output when using a power supply with output greater than
42.4V. Use wires with minimum insulation rating equivalent to the maximum output voltage of the power supply.
WARNUNG:
Beim Einsatz eines Netzteils mit einer Nenn-Ausgangsspannung von mehr als 42.4V am Ausgang besteht Stromschlaggefahr. Es sind Drähte mit minimalem Isolierwert zu verwenden, welcher der maximalen Ausgangsspannung des Netzgerätes entspricht.
45
Fig.4-3: J1 connector terminals and functions
Table 4-3: J1 connector terminals and functions
Pin Parameter Specification Section
1 LOC/REM SELECT
Input for selecting between Local or Remote analog programming of output voltage and output current.
6.2
2 P Output for current balance in parallel operation 5.5 3 I_MON Monitoring power supply output current 6.6
4 LOC/REM MON
Output for indicating if the unit is in Local or Remote analog programming mode.
5 IPGM
Input for remote analog voltage/resistance programming of the Output Current.
6.4, 6.5
6 VPGM
Input for remote analog voltage/resistance programming of the Output Voltage.
6.4, 6.5
7 COM
Control Common. Return for VMON, IMON, CV/CC, LOC/REM. Connected internally to the negative sense potential (-S).
8 CV/CC
Output for Constant-Voltage / Constant-Current mode indication.
5.8.1
9 COM
Control Common. Return for VMON, IMON, CV/CC, LOC/REM. Connected internally to the negative sense potential (-S).
10 V_MON Output for monitoring the power supply Output Voltage. 6.6
11 IPGM_RTN Return for IPGM input.
12 VPGM_RTN Return for VPGM input. Connected internally to the “ -S”.
4.3.1 J1 Connector Terminal and Function
Control and monitoring signals are referenced to the negative sense potential (-S).
Connector Technical Information:
• Connector type: IPL1-106-01-S-D-RA-K, SAMTEC
• Receptacle type: IPD1-06-D-K, SAMTEC
• Contact pins: CC79R-2024-01-L, SAMTEC
• Hand tool: CAT-HT-179-2024-11, SAMTEC
• Wire: AWG 20-24
46
Table 4-4: J3 connector terminals and functions
Fig.4-4: J3 connector terminals and functions
4.3.2 J3 Connector Terminal and Function
Control and monitoring signals are isolated from the power supply output.
Connector Technical Information
• Connector type: IPL1-104-01-S-D-RA-K, SAMTEC
• Receptacle type: IPD1-04-D-K, SAMTEC
• Contact pins: CC79R-2024-01-L, SAMTEC
• Hand tool: CAT-HT-179-2024-11, SAMTEC
• Wire AWG 20-24
Pin Signal name Function Section
1 Programmed Signal 1 General Purpose Open collector Port 1 5.7.3 2 PS_OK Output for indication of the power supply status. High level is OK. 5.7.4 3 Trigger Out Trigger output, positive true, pulse width: Min. 10usec 8.5.2 4 ILC Enable /Disable the power supply output by dry-contact (short/open). 5.7.2 5 Shut Off (SO) Input for shut off control of the power supply output. 5.7.1 6 Programmed Signal 2 General Purpose Open collector Port 2 5.7.3 7 IFC_COM Isolated interface, common. 8 Trigger In CMOS level input for triggering power supply output. Positive edge,
minimum pulse width: Min. 10usec.
8.5.1
47
4.4 Front Panel Display Messages
Table 4-5 shows the various messages that will be shown on the display in different operating modes.
Display Text Text Description Display Text Text Description
Abor
ABORT
MAC
MAC
AC
AC
§MEMO
MEMORY
Adr
ADDRESS
OFF
OFF
ATO
AUTO[start]
ON
ON
bAD
BAUD RATE
ONCE
ONCE
BS
BUS
OT
OTP
CON
COUNTER
O
OVP
CvRR
CURRENT
iN1
PIN 1
CC
CC
iN2
PIN 2
C
CV
ROG
PROGRAM
diS
DISABLE
R
.
D
PROTECT DELAY
ENA
ENABLE
RANG
RANGE
ERES
EXT.RESISTOR
R
.
AN
REAL PANEL
Err
ERROR
REC
RECALL
eO
EXT.VOLTAGE
RST
RESET
ext
EXTERNAL
SAFE
SAFESTART
F
.
rSt
FACTORY RESET
SAE
SAVE
FAI
FAIL
SCI
SCPI
FOD
FOLDBACK
SO
SHUT OFF
F
.
AN
FRONT PANEL
SET
SET
F
.
STR
FUNCTION STROBE
SE
SLAVE
GEN
GEN LANGUAGE
SAD
SLAVE (ADVANCED)
OS
POSITIVE
S
SLAVE (BASIC)
HOST
HOST
STE
STEP
iNFo
INFORMATION
TRiG
TRIGGER
iNiT
INITIALIZE
TR
.
D
TRIGGER DELAY
INTF
INTERFACE
TR
.
IN
TRIGGER IN
IC
INTERLOCK
TR
.
Ov
TRIGGER OUT
I
IP
SB
USB
AN
LAN

UVL
ANG
LANGUAGE

UVP
NEG
NEG
OFF
OFF
Table 4-5: Front Panel display messages
48
4.5 Navigating the Main Menu
4.5.1 Introduction
The Main Menu consists of three levels: Subsystem, Function and Parameter. To enter the Menu press the Menu button. The Menu LED illuminates and the display shows the Subsystem Menu. Navigate by rotating the Voltage Encoder to scroll through the Subsystem list (first level). Repeat these actions to navigate the Functions list (second level). In the third level, the Voltage display shows the function and the Current display shows the parameter. Scroll the parameter list by rotating the Current Encoder and press to select the desired parameter. When parameter is accepted, the display blinks once and exits to the previous level.
Fig.4-5: Main Menu diagram
4.5.2 Exiting the Main Menu
There are three ways to exit from Main Menu:
1. Press MENU button three times. MENU LED turns OFF. Display shows present status of
power supply.
2. Press and hold MENU button 3sec. MENU LED turns OFF. Display shows present status
of power supply.
3. No action for 15 sec. MENU LED turns OFF. Display shows present status of power supply.
49
4.6 Navigating Communication Menu
4.6.1 Introduction
The Communication Menu consists of two /three levels: Function level and Parameter level.
To navigate the Communication Menu press REM button. The REM LED illuminates. The function menu item appears on the display. Navigate by rotating the Voltage Encoder to scroll the function level. To select the desired function, press the Encoder button next to the display. In the Parameter level, the Voltage display shows the function and the Current display shows the parameter. Scroll the parameter list by rotating the Current Encoder and press to select the desired parameter.
When parameter is accepted, the display blinks once and exits to the previous level.
Fig.4-6: Communication Menu diagram
50
4.6.2 Exiting the Communication Menu
There are three ways to exit from REM menu:
1. Press twice on REM button. REM LED turns OFF. Display shows present status of power supply.
2. Press and hold REM button 3sec. REM LED turns OFF. Display shows present status of power supply.
3. No action for 15sec. REM LED turns OFF. Display shows present status of power supply.
4.7 Navigating the Protection Menu
4.7.1 Introduction
The Protection Menu consists of two levels: Function and Parameter.
To navigate the Protection Menu press PROT button. The PROT GREEN LED illuminates. The function menu item appears on the display. Navigate by rotating the Voltage Encoder to scroll the function level. To select the desired function, press the Encoder button next to the display. Toggle the Voltage Encoder to select either UVL or UVP functions.
In the Parameter level, the Voltage display shows the function and the Current display shows the parameter. Scroll the parameter list by rotating the Current Encoder. Selection of a numerical parameter is automatic and the Encoder cannot be pressed. Press only to select Foldback parameter. When parameter is accepted the display blinks once and exits to the previous level.
4.7.2 Exiting the Protection Menu
There are three ways exit the menu:
1. Press PROT button twice. PROT LED turns OFF. Display shows present status of power supply.
2.
Press and hold Menu button 3sec. PROT LED turns OFF. Display shows present status of power supply.
3. No action for 15sec. PROT LED turns OFF. Display shows present status of power supply.
Fig.4-7: Protection Menu Navigation
Press PROT BUTTON, GREEN LED ILLUMINATES
Legend:
Function level
Parameter level
Rotate Voltage Encoder, Press Voltage/Current Encoder
Rotate Current Encoder, Press Current Encoder
Foldback
CC
OFF
CV
nnn
UVP
UVL
OVP
nnn
Protect. Delay
0.01...25.5sec
51
CHAPTER 5: LOCAL OPERATION
5.1 Introduction
This Chapter describes the operating modes that do not require programming and monitoring the power supply via its serial communication ports. USB or RS232/RS485 or by remote analog signals. Ensure that the REM/LOC LED on the front panel is Off, (indicating Local mode). If the REM/LOC LED is On, press the front panel REM/LOC button to change the operating mode to local.
- For information regarding remote analog programming refer to Chapter 6.
- For information regarding usage of the serial communication port refer to Chapter 7.
5.2 Standard Operation
The power supply has two basic operating modes: Constant Voltage mode and Constant Current mode. The mode in which the power supply operates at any given time depends on the output voltage setting, output current limit setting and the load resistance.
5.2.1 Constant Voltage Mode and Voltage Setting
1. In constant voltage mode, the power supply regulates the output voltage at the selected value, while the load current varies as required by the load.
2. While the power supply operates in constant voltage mode, the VOLTAGE LED on the front panel illuminates.
3. Adjustment of the output voltage can be made when the power supply output is enabled (Output On) or disabled (Output Off). When the output is enabled, simply rotate the VOLTAGE Encoder knob to program the output voltage. When the output is disabled, press the PREV button and then rotate the VOLTAGE Encoder to required value. The Voltage display will show the programmed output voltage for 5 seconds. Then “OFF” will appear on the Voltage display.
4. Resolution can be set to Coarse or Fine adjustment. Press FINE button to select between the lower and higher resolution. The FINE LED illuminates when the resolution is set to Fine.
NOTE:
If after completing the adjustment, the display shows a different value than the setting, the power supply may be at current limit. Check the load condition and the power supply current limit setting.
NOTE:
The maximum and minimum setting values of the output voltage are limited by the Over Voltage protection and Under Voltage limit setting. Refer to sections 5.3.2 and 5.3.3 for more details.
5.2.2 Constant Current Mode and Current Setting
1. In constant current mode, the power supply regulates the output current at the selected value, while the voltage varies with the load requirement.
2. While the power supply is operating in Constant Current mode, the Current LED illuminates.
3. Adjustment of the output current can be made when the power supply output is enabled (Output On) or disabled (Output Off). When the output is enabled, simply rotate the Current Encoder knob to program the output current. When the output is disabled, press the PREV button and then rotate the Current Encoder to required value. The Current display will show the programmed output current for 5 seconds. Then “OFF” will appear on the Voltage display.
4. Resolution can be set to Coarse or Fine adjustment. Press the FINE button to select between the Coarse and Fine adjustment. The FINE LED illuminates when the resolution is set to Fine.
52
5.2.3 Automatic Crossover
When the power supply operates in Constant Voltage mode, while the load current is increased to greater than the current limit setting, the power supply will automatically switch to Constant Current mode. If the load is decreased to less than the current limit setting, the power supply will automatically switch back to Constant Voltage mode.
5.2.4 Output On/Off Control
The Output On/Off enables or disables the power supply output. The Output On/Off can be activated from the front panel using the OUT button or from the communication interface. The OUT button can be pressed at any time (except in Front Panel Lock mode or when a Fault condition exists). When the output is disabled, the output voltage and current fall to zero and the Voltage display shows “OFF”. Press the OUT button to recover from Faults such as: OVP, UVP and FOLD faults, after the Fault conditions have been removed.
5.2.5 Safe Start and Auto-Restart Modes
At turn on, the power supply AC On/Off can start at last setting of Output Voltage and Current limit with the output enabled (Auto-restart), or it can start with the output disabled (Safe mode). Press and hold the OUT button to toggle between Safe start and Auto-restart modes. The VOLTAGE display will continuously cycle between “SAFE” and “ATO” every 3 seconds. Releasing OUT push button while one of the modes is displayed, selects that mode. The default setting at shipment is in Safe mode.
• Automatic Start Mode (ATO) The power supply is restored to last operation setting. Upon start-up, the output is enabled or disabled according to the last setting.
• Safe Start Mode (SAFE) The power supply is restored to last operation setting and sets the Output to Off state. At start-up, the output is disabled and the output voltage and current are zero. To enable the output, momentarily press OUT button.
5.2.6 Viewing Software Revision
Via the Front Panel Menu, it is possible view installed software revision.
1. Press MENU button. MENU (GREEN) LED illuminates. “et“ message appears on the Voltage display.
2. Rotate Voltage Encoder until “i o“ message appears on Voltage Display.
3. Press Voltage Encoder. The “Re“ message appears on the display, and the installed software revision number appears on the Current display.
53
5.3 Alarms and Protective Functions
5.3.1 Introduction
There are several conditions that cause alarm (RED LED blinks). All alarms affect the output. When an alarm occurs, the respective fault will appear on the display and the alarm LED illuminates. It is possible that more than one fault (alarm) may be triggered but only the first will be shown on the display. If the second fault is still active when the first fault is removed, then the second fault will be displayed. The following protective functions are incorporated in the power supply:
• OVP - Over Voltage Protection
• UVP - Under Voltage Protection
• ILC - Interlock
• FOLD - Fold Back Constant Current or Constant Voltage
• AC FAIL - AC Power shut down
• OTP - Over Temperature Protection
5.3.2 Over Voltage Protection
The OVP circuit protects the load in the event of a remote or local programming error or a power supply failure. The protection circuit monitors the voltage at the power supply sense points thus providing the protection level at the load. Upon detection of an Over Voltage condition, the power supply output will shut down.
5.3.2.1 Setting the OVP Level
The OVP can be set when the power supply output is Enabled (On) or Disabled (Off ). The minimum setting level is 5% above the output voltage, or the value in Table 5-1, whichever is higher. The maximum setting level is shown in Table 5-1.
1. Press PROT button. PROT (GREEN) LED illuminates. "O“ message appears on the Voltage display.
2. Press Voltage Encoder. "O“ message appears on the Voltage display and the Current display shows OVP setting level.
3. Rotate the Current Encoder to adjust the OVP level.
4. Press PROT button twice or wait 15 sec. to return display to its previous state and then PREV LED turns OFF.
Min. OVPMax. OVPModel
0.5V12.0V10V
1.0V24.0V20V
2.0V40.0V36V
5.0V66.0V60V
5.0V110.0V100V
Table 5-1: Maximum/Minimum OVP setting levels
54
5.3.2.2 Resetting the OVP Circuit
To reset the OVP circuit after activation:
1. Reduce the power supply Output Voltage setting below the OVP set level.
2. Ensure that the load and the sense wiring is connected properly.
3. Four methods to reset the OVP circuit.
• PressOUTbutton.
• ACrecycle.
• On/Offrecyclebyanalogcontrol(Interlock).
• Sendcommunicationcommandtoenableoutput.
5.3.3 Under Voltage Protection and Under Voltage Limit
The UVL function prevents output voltage setting below UVL set value. The UVP function prevents power supply operation if output voltage is below UVP set value. Upon detection of an Under Voltage condition, the power supply output will shut down. The UVL prevents adjustment of the output voltage below a certain limit. The combination of UVP/UVL and OVP functions, allows the user to create a protection window for sensitive load circuitry.
5.3.3.1 Setting the UVP/UVL Mode and Level
The UVP/UVL can be set when the power supply output is Enabled (On) or Disabled (Off ). UVL and UVP setting values are limited at the maximum level to approximately 5% below the Output Voltage setting. Attempting to adjust the value above this limit will result in no response to the adjustment attempt. The minimum value setting is zero.
1. Press PROT button. PROT (GREEN) LED illuminates. Current display shows "“ message.
2. Press Current Encoder. Voltage Display shows ““ or ““ message, Current display shows setting level.
3. Rotate the Voltage Encoder to set ““ or ““.
4. Rotate the Current Encoder to adjust the level.
5. Press PROT button twice or wait 15 sec. to return display to its previous state and then PREV LED turns OFF.
5.3.3.2 Activated UVP Alarm
When the UVP is activated the power supply output shuts down. The Voltage and Current display shows “ FAI” and the ALARM RED LED blinks.
5.3.4 Foldback Protection
Foldback protection will shut down the power supply output if power supply operation mode crosses over from CC to CV or from CV to CC, according to selected operation mode. There are three states of foldback protection. OFF (default), CV, CC.
55
5.3.4.1 Setting the Foldback Protection
The Foldback can be set when the power supply output is Enabled (On) or Disabled (Off ).
1.
Press PROT button. PROT (GREEN) LED illuminates. The “O“ message appears on the Voltage display.
2. Rotate Voltage Encoder until "FO D“ message appears on Voltage display.
3. Press Voltage Encoder. “FOD” message appears on Voltage Display, and on Current display shows “O FF” or “CC” or “C ” setting mode.
4. Rotate the Current Encoder to adjust required mode and press to select. Display returns to the previous level.
5. Press PROT button to return display to its previous state (PROT LED turn OFF).
5.3.4.2 Activated FOLD Alarm
When the Foldback is activated the power supply output shuts off. The Voltage and Current display shows "FOD FAI" and the PROTECTION ALARM RED LED blinks.
5.3.5 Protection Delay
A delay can be set from between the time when a fault is detected and the output is disabled. It relates only in cases of UVP and Foldback protection.
NOTE:
UVP protection delay = 500ms + delay setting.
5.3.5.1 Setting the Protection Delay
1. Press PROT button. PROT (GREEN) LED illuminates. The “O” message, appears on the Voltage display.
2. Rotate Voltage Encoder until "R.D” message appears on Voltage display, and then press the Encoder
3. The “R
.
D” message appears on the Voltage Display. The Current display shows the value in
seconds.
4. Rotate the Current Encoder to adjust the delay. Protection delay setting range is 0…25.5sec.
5. Press PROT button twice to return display to the previous state and PREV LED turns OFF.
5.3.6 Over Temperature Protection
The OTP circuit shuts down the power supply before the internal components can exceed their safe internal operating temperature. When an OTP shutdown occurs, the display shows “Ot I” and the ALARM LED blinks. Resetting the OTP circuit can be automatic (non-latched) or manual (latched) depending on if he power supply is in Safe or Automatic restart mode.
• Safe start mode: The power supply stays off after the OTP condition has been removed. The display continue to shows “Ot FAI” and the ALARM LED continues to blink. To reset the OTP circuit, press OUT button (or send Output Enable command).
• Auto-restart mode: The power supply recovers to it’s last setting automatically after the OTP condition is removed.
5.3.7 AC Fail Alarm
The AC Fail alarm indicates whether the AC input has been discounted or shut down. When any of these faults occur, the display shows “AC FAI”. Output power is disabled, and the ALARM LED blinks.
• Safe start mode: The power supply returns to “OFF”, after the AC power returns.
• Auto-restart mode: The power supply recovers to it’s last setting automatically when AC power returns.
56
5.4 Series Operation
Power supplies of the same model can be connected in series to obtain increased output voltage. Split connection of the power supplies gives positive and negative output voltage.
5.4.1 Series Connection for Increased Output Voltage
Two units are connected so that their outputs are summed. Set the current limit of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start up sequence or in case one of the units shuts down. Each diode should be rated to at least the power supply rated output voltage and output current. Refer to Fig.5-1 and Fig.5-2 for series operation with local and remote sensing.
+S
+
-
-S
-LS
+LS
+S
+
+
-
-
-S
-LS
+LS
+S
+
-
-S
-LS
+LS
+S
+
+
-
-
-S
-LS
+LS
(*)
(*)
(*)
(*)
POWER SUPPLY
POWER SUPPLY
POWER SUPPLY
POWER SUPPLY
LOAD
LOAD
(*) Diodes are user supplied.
Fig.5-1: Series connection, local sensing Fig.5-2: Series connection, remote sensing
5.4.2 Series Connection for Positive and Negative Output Voltage
In this mode, two units are configured as positive and negative output. Set the current limit of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start-up or in case one of the units shuts down. Each diode should be rated to at least the power supply rated output voltage and output current. Refer to Fig.5-3 for this operating mode.
Fig.5-3: Series connection for positive/negative output voltages
+S
+
-
-S
-LS
+LS
+S
+
+
-
-
-S
-LS
+LS
POWER SUPPLY
POWER SUPPLY
COM.
LOAD
(*) Diodes are user supplied.
57
5.4.3 Remote Programming in Series Operation
Programming by external voltage: The analog programming circuits of this power supply are referenced
to the negative Sense potential. Therefore, the circuits used to control each series connected unit must be separated and floated from each other. Refer to section 6.4
Using the SO function and PS_OK signal : The Shut Off and PS_OK circuits are referenced to the isolated interface
common, IF_COM (J3-7). The IF_COM terminals of the units can be connected to obtain a single control circuit for the power supplies connected in series.
Programming by external resistor : Programming by external resistor is possible. Refer to section 6.5 for
details.
Programming via the Serial Communication port (RS232/RS485, USB):
The Communication port is referenced to the IF_COM which is isolated from the power supply output potential. Therefore power supplies connected in series can be chained using the Remote-In and Remote­Out connectors. Refer to Chapter 7 for details.
58
5.5 Parallel Operation
5.5.1 Introduction
Up to six units of the same Voltage and Current rating can be connected in parallel to provide up to six times the output current capability. One of the units operates as a master and the remaining units are slaves. The slave units are analog programmed by the master unit. In remote digital operation, only the master unit can be programmed by the computer while the slave units may be connected to the computer for voltage, current and status readback only.
The Master and Slave modes are stored in the power supply EEPROM when the AC power is turned off. The system will return to the Master/Slave mode upon re-application of AC power. There are two methods to configure multiple supplies for parallel operation (basic and advanced). Refer to Section 5.5.2 and to Section 5.5.3 for detailed explanation. Parallel modes are selected via Front Panel menu. Refer to table 5-2.
Subsystem Level Function Level Parameter Level
Description Display Function Display Description Display
Parallel Operating Mode
r
Host /Basic Slave /
Advanced Slave
Hot
Master (Basic)
H1
Master (Advanced)
H2
..
H
Se
Slave (Basic)
S
Slave (Advanced)
SAD
Table 5-2. Parallel subsystem menu
5.5.2 Basic Parallel Operation
In this method, setting the units as Master and Slaves is made by the rear panel J1 connections and setup via Front Panel. Each unit displays its own output current and voltage. To program the load current, the Master unit should be programmed to the total load current divided by the number of units in the system. Refer to the following procedure to configure multiple supplies for simple parallel operation.
5.5.2.1 Master Unit Set Up
Set the master unit output voltage to the desired voltage. Program the current limit to the desired load current limit, divided by the number of parallel units. During operation, the master unit operates in CV mode, regulating the load voltage at the programmed output voltage. Connect the sensing circuit to local or remote sensing as shown in Fig.5-4 or Fig.5-5. Front Panel Main Menu Parallel mode is "H1” as default.
1. Press MENU button.
2. Rotate Voltage Encoder until “r” appears on Voltage display, then press Voltage Encoder.
3. Rotate Current Encoder until “H1 ” appears.
4.
Press Current Encoder to select “H1 ”, the display blinks once and returns to previous menu level.
Display Operating Mode
H1
Single Supply (default)
H2
Master Supply with 1 Slave supply
H3
Master Supply with 2 Slave supply
H4
Master Supply with 3 Slave supply
H5
Master Supply with 4 Slave supply
H
Master Supply with 5 Slave supply
S
Slave Supply
Table 5-2.1: Operation Setting Mode
59
5.5.2.2 Slave Unit Set Up
When Slave mode is selected the power supply enters Current programming mode via external Voltage. Voltage and Current programming setting values are set to 105% of range. During operation the slave units operate as a controlled current source following the master output current. It is recommended that the power system is designed so that each unit supplies up to 95% of its current rating. This helps reduce imbalance which may occur by cabling and connections voltage drop.
1. Press MENU button
2. Rotate Voltage Encoder until ”r” appears on Voltage display, then press Voltage Encoder.
3. Rotate Current Encoder until ”S” appears.
4. Press Current Encoder to select ”S”. Display blinks once and returns to previous display.
5. For wiring instructions, refer to Fig.5-4: Parallel connection with local sensing or Fig.5-5: Parallel connection with remote sensing.
5.5.2.3 Setting Over Voltage Protection
The master unit OVP should be programmed to the desired OVP level. In slave mode, the power supply is set to maximum as default.
5.5.2.4 Setting Foldback Protection
Foldback protection, if desired, may only be used with the master unit. When the master unit shuts down it programs the slave units to zero output voltage.
5.5.2.5 Connection to Load
In parallel operation, power supplies can be connected in local or remote sensing. Refer to Fig.5-4 and 5-5 for typical connections of parallel power supplies. The figures show connection of two units, however the same connection method applies for up to 6 units.
Fig.5-4: Parallel connection with local sensing
60
CAUTION:
Make sure that the connection between - Vo terminals is reliable to avoid disconnection during operation. Disconnection may cause damage to the power supply.
NOTE:
With local sensing it is important to minimize the wire length and resistance. Also the positive and negative wire resistance should be as close as possible to each other to achieve current balance between power supplies.
Fig.5-5: Parallel operation with Remote sensing
61
5.5.3 Advanced Parallel Operation
In Advanced Parallel operation the master unit displays the total current of all units connected in Parallel. The slave units display “O SE”. The master and slave units operate in a Daisy-Chain connection configuration. For further details about Daisy-chain connection refer to section 5.6.
In the Advanced Parallel mode, the total current is programmed and reported by the master unit. The Current display accuracy is 2%+/- 1 count. In cases where higher accuracy is required, it is recommended to use Basic Parallel operation mode.
5.5.3.1 Setting Up of Master Unit
Set the master unit output voltage to the desired voltage. Program the current limit to the desired load current limit, divided by the number of parallel units. During operation, the master unit operates in CV mode, regulating the load voltage at the programmed output voltage. Connect the sensing circuit to local or remote sensing as shown in Fig.5-4 or Fig.5-5.
1. Press MENU button.
2. Rotate Voltage Encoder until "r” appears on Voltage display, then press Voltage Encoder.
3. Rotate Current Encoder and select required ‘n’ value (from 2-6) for example, "H3”. The display blinks once and returns to previous level. Refer to Table 5-2.1.
4. Recycle AC power.
5.5.3.2 Setting Up of Slave Units
When Advanced Slave mode is selected the power supply enters Current programming mode via external Voltage. Voltage and Current programming setting values are set to 105% of range. During operation the slave units operate as a controlled current source following the master output current. It is recommended that the power system is designed so that each unit supplies up to 95% of its current rating. This helps reduce imbalance which may occur by cabling and connections voltage drop.
When a unit is programmed to Advanced Slave mode it enters Remote mode with Local Lockout. In this mode, Front panel controls are disabled to prevent accidental setting change except Menu parallel setting and factory reset. Communication commands are disabled. Power supply responds only upon query.
1. Press MENU button.
2. Rotate Voltage Encoder until "r” appears on Voltage display, then press Voltage Encoder.
3. Rotate Current Encoder until "SAD ” appears.
4. Press Current Encoder to select "SAD”. Display blinks once and returns to previous level.
5. Recycle AC power.
6.
For wiring instructions, refer to Fig.5-4: Parallel connection with local sensing or Fig.5-5: Parallel connection with remote sensing and Section 5.6: Daisy-Chain connection.
NOTE:
To release units from Advanced mode select “H1”.
62
5.6 Daisy-Chain Connection
It is possible to configure a multiple power supply system to shut down all units when a fault condition occurs in one of the units. When the fault is removed, the system recovers according to a preset state: Safe start mode or Automatic restart.
Set signal “SO” to positive logic via Front panel (refer to section 5.7.1) . If a fault occurs in one of the units it’s “PS_OK” signal will be set to low level and the display will indicate the fault. The other units will shut off and their displays will indicate “SO”. When the fault condition is removed, the units will recover to their last setting according to their respective Safe start or Auto-restart setting.
Fig.5-6 shows connection of three units, however the same connection method applies to systems with more units.
Fig.5-6: Daisy-Chain connection
P OW E R S UP P L Y
#1
J3 -7
J3 -2
J3 -5
IFC _C OM PS _O K
S O
P OW E R S UP P L Y
#2
J3 -7
J3 -2
J3 -5
IFC _C OM PS _O K
S O
P OW E R S UP P L Y
#3
J3 -7
J3 -2
J3 -5
IFC _C OM PS _O K
S O
5.7 Rear Panel (J3 Connector) Functions and Settings
Subsystem
Level
Display
Function
Level
Display Parameter Level Display Description
Rear Panel
R
.
AN
Interlock
IC
Enable (ON)
O
Enable/Disable
iner- lock
function (Analog
ON/OFF)
Disable (OFF)
OFF
Shut OFF
SO
Positive
OS
Positive (polarity)
same such PS_OK
signal
Negative
NEG
Programmed
PIN 1
i1
High
Hi
Open collector
Low
o
Programmed
PIN 2
i2
High
Hi
Open collector
Low
o
Table 5-3: Rear panel subsystem menu
63
5.7.1 External Shut Off Function
SO signal serves as Output Shut Off . It is an optically isolated signal from the power supply output. Connection to the signal is made via pin J3-5 (Shut Off) and pin J3-7 (IFC_COM). The SO pin accepts a 2.5V to 15V signal or Open-Short contact to disable or enable the power supply output. The SO function will be activated only when a transition from On to Off is detected after applying AC power to the unit. Thus, in Auto start mode, the output will be enabled after applying AC power, even if SO is in Off level. After On to Off transition is detected, the SO will enable or disable the power supply output according to the signal level or the short/open applied to J3. When the external SO is triggered, the power supply will display “SO“on the voltage display but the ALARM LED will not illuminate.
The external shutdown is useful when using the power supply as part of a larger test system in which digital or analog control is required or in “Daisy-Chain”. The SO control logic can be selected via the Front panel as follows:
1. Press MENU button. MENU (GREEN) LED illuminates. “et” message appears on the Voltage display and “r
.
A” message appears on the Current display.
2. Press Current Encoder. The “SO“ message appears on the Current display.
3. Press the Current Encoder again. The “SO“ message appears on the Voltage display. Parameter “OS“ or “NEG“ appears on the Current display.
4. Rotate and press the Current Encoder to select the required parameter.
5. For signal details refer to Table 5-4.
SO logic SO signal level J3-5 - J3-7) Output status
Positive (as PS_OK) (default) 2-15V or Open
0-0.6V or Short
On Off SO
Negative 2-15V or Open
0-0.6V or Short
Off SO On
Table 5-4: SO logic selection
5.7.2 Interlock Function - Analog On/Off. (Enable/Disable)
Interlock signal serves as Output Enable/Disable via switch or relay. Use the Interlock function to enable or disable the output as emergency shutoff or door open switch. It is an optically isolated signal from the power supply output. Connection to the signal is made via pin J3-4 (ILC) and pin J3-7 (IFC_COM).
The ILC control logic can be selected via the Front panel as follows:
1. Press MENU button. MENU (GREEN) LED illuminates. ”et” message appears on the Voltage display. ”r
.
A” message appears on Current display.
2. Press Current Encoder and the ”I C ” message appears on the display.
3. Press Voltage Encoder and ”IC ” message appears on the display. The parameters ”OFF” or ”ON” appear on the Current Encoder display.
4. Rotate and press the Current Encoder to select desired parameter.
5. For signal details refer to Table 5-5.
64
Front Panel ILC
Setting
ILC Input
Power Supply
Output
Display Alarm LED
OFF - Default Open or Short On Voltage/Current Off
ON
Open Off
ENA
Blinking
Short On Voltage/Current Off
Table 5-5: Interlock functions and settings
CAUTION:
To prevent possible damage to the unit, do not connect any of the Enable /Disable inputs to the positive or negative output potential.
NOTE:
Safe Start mode - If the Interlock fault condition clears while units are in safe start mode, the power supply returns to Off mode. Auto Restart mode - The output will automatically return to previous state.
5.7.3 Auxiliary Programmed Function Pin 1 and Pin 2
The programmed signal Pin 1 (J3-1) and Pin 2 (J3-6) are open collector, maximum input voltage 25V and maximum sink current 100mA, and can be controlled via Front panel or software.
Pin 1 or Pin 2 settings are made as follows:
1. Press MENU button. MENU (GREEN) LED illuminates. The “r
.
AN” message appears on the
Current display.
2. Press Current Encoder and the “I C ” message appears on the Voltage display.
3. Rotate Voltage Encoder until “i 1 / i  2” message appears on display. Press Encoder to select the desired Pin.
4. Voltage display shows the selected Pin number.
5. Rotate the Current Encoder to toggle between “Hi ” (High) or “o” (Low).
6. Press Current Encoder to select desired parameter.
7. Press MENU button twice to return display to it’s previous state. MENU LED turns OFF.
CAUTION:
Do not connect Pin 1 and Pin 2 to a voltage source higher than 25V. Always connect Pin 1 and Pin 2 to the voltage source with a series resistor to limit the sink current to less than 100mA.
65
5.7.4 Power Supply OK Signal
PS_OK signal indicates fault condition in the power supply. It is a TTL signal output at J3-2, referenced to IF_COM at J3-7 (Isolated Interface Common). When a fault condition occurs, PS_OK level is low, with maximum sink current of 1mA. When no fault condition occurs, PS_OK level is high with maximum source current of 2mA. All conditions when output status is disabled sets PS_OK to low level.
The PS_OK signal at high level can be delayed via Front panel setting or software. This function is used to prevent signal rise before output reaches set value.
PS_OK delay setting is made as follows:
1. Press MENU button. MENU (GREEN) LED illuminates. The “r
.
AN” message appears on the
Current display.
2. Press Current Encoder, “I C ” message appears on the Voltage Display.
3. Rotate Voltage Encoder until "Sd ” message appears and press Encoder.
4. Parameter delay time in mSec appears on the Current display
5. Rotate the Current Encoder to adjust the setting level. PS_OK delay range is from 0…9999mSec.
6. Press MENU button twice to return display to it’s previous state. MENU LED turns OFF.
5.8 Rear Panel (J1 Connector) Functions
5.8.1 CV/CC Signal
The CV/CC signal indicates the operating mode of the power supply. Constant Voltage or Constant Current. CV/CC signal is an open collector output with a 30V parallel zener, at J1-8, referenced to the COM at J1-7 (connected internally to the negative sense potential). When the power supply operates in Constant Voltage mode, CV/CC output is open. When the power supply operates in Constant Current mode, CV/CC signal output is low (0-0.6), with maximum 10mA sink current.
CAUTION:
Do not connect CV/CC signal to a voltage source higher than 30VDC. Always connect CV/CC signal to the voltage source with a series resistor to limit the sink current to less than 10mA.
66
5.9 Parameter Setting Memory
Power Supply has four memory configuration modes:
Subsystem
Level
Display
Function
Level
Display
Parameter
Level
Display Description
Memory
MEMo
SAVE
SAE
1…4
1
...
4
Save setting in non violate memory
RECALL
REC
1…4
1
...
4
Recall setting in non violate memory
RST
RST
YES
e
Reset setting
FRST
F
.
rt
YES
e
Set factory default setting
Table 5-6: Parameter Setting Memory
5.9.1 Default Setting
For factory default parameters refer to Table 5-7.
1. Press MENU button. MENU (green) LED illuminates. “et” message appears on the Voltage display.
2. Rotate Voltage Encoder until "MEMO" message appears on Voltage display.
3. Press Voltage Encoder. “e” message appears on Voltage Display.
4. Rotate Voltage Encoder until "F
.
r t" message appears on Voltage display.
5.
Press Voltage Encoder. “F.r t” message appears on Voltage Display, and “ e” appears on Current display .
6. Press the Current Encoder “HOd” Message appears on the display for 1sec. The display blinks once and returns to previous level.
7. Press MENU button twice to return display to previous state, MENU LED turns OFF.
NOTE:
No response for FRST command. After this command the power supply loses communication because of communication setting change.
5.9.2 Reset
For Reset parameters refer to Table 5-7.
1. Press MENU button. MENU (green) LED illuminates. “et” message appears on the Voltage display.
2. Rotate Voltage Encoder until "MEMO" message appears on Voltage display.
3. Press Voltage Encoder. “e” message appears on Voltage Display.
4. Rotate Voltage Encoder until "r t" message appears on Voltage display.
5. Press Voltage Encoder. “r t” message appears on Voltage Display. “ e” appears on the Current display .
6. Press the Current Encoder, display blinks and returns to previous level.
7. Press MENU button twice to return display to previous state, MENU LED turns OFF.
5.9.3 Last Setting Memory
Memory stores last set parameters when AC switch is turned off. For last set parameters refer to Table 5-7.
67
5.9.4 Save <1..4>
This command saves the present state of the power supply to a specified location in memory (refer to Table 5-7). Up to 4 states can be stored. Storage locations 1 through 4 are in nonvolatile memory.
Save Front panel setting:
1. Press MENU button. MENU (green) LED illuminates. “et” message appears on the Voltage display.
2. Rotate Voltage Encoder until "MEMO" message appears on Voltage display.
3. Press Voltage Encoder. “e” message appears on Voltage display.
4. Press Voltage Encoder. “SA  e” message appears on Voltage display. Numbers “1
..
4“ appear
on Current display.
5. Rotate the Current Encoder to select required number value and then press the Current Encoder. Display blinks and returns to previous level.
5.9.5 Recall <1..4>
This command recalls the present state of the power supply from a specified location in memory (refer to Table 5-7). Up to 4 states can be stored. Storage locations 1 through 4 are in nonvolatile memory.
Recall front panel setting:
1. Press MENU button. MENU (green) LED illuminates. “et” message appears on the Voltage display.
2. Rotate the Voltage Encoder until "MEMO" message appears on Voltage display.
3. Press Voltage Encoder. “ReC” message appears on Current Display.
4. Numbers “1
..
4“ appear on Current display.
5. Rotate the Current Encoder to select required number value and then press the Current Encoder. Display blinks and returns to previous level.
68
Parameter Factory Default Resetting Last setting Save & Recall
Output Status OFF OFF + + Voltage Set-point 0V 0V + + Current Set-point MAX 0A + + Fold Back mode OFF OFF + + Over Voltage Protection
OVP
MAX MAX + +
Under Voltage Level/ Protection mode
OFF (UVL) OFF (UVL) + +
Under Voltage Level/ Protection level
0V 0V + +
Auto Start Mode SAFE SAFE + + Control pin 1 High High + + Control pin 2 High High + + Input Trigger Source EXT EXT + ­Protection Delay 0mS 0mS + + Voltage Programming
Mode
Digital - + -
Current Programming Mode
Digital - + -
Programming and Monitor Range
5V - + -
Current Share Mode {Master|Slave}
(Master H1) - + -
Interlock (PROTote Inhibit) OFF (disabled) OFF (disabled) + ­Shutdown Logic 1 (positive) - + ­Remote mode LOC LOC + + Communication Mode RS232 - + ­Address 6 - + ­Baud Rate 9600 - + ­Language SCPI - + ­Lock/unlock front panel Unlock - + ­LIST and WAVE subsystems OFF OFF - ­Program Step AUTO - - ­Trigger Out OFF OFF + + PS_OK delay 0mS 0mS + + Special Voltage Under limit
SVUL
Rated - + -
Special Current Under limit SCUL
Rated - + -
Enable registers Clear Clear - ­Event registers Clear Clear - -
Table 5-7: Memory parameters.
69
CHAPTER 6: REMOTE ANALOG PROGRAMMING
6.1 Introduction
The Rear Panel connector J1 allows the user to program the power supply output voltage and current limit with an analog device. J1 also provides monitoring signals for output voltage and output current. The programming range and monitoring signals range can be selected between 0-5V or 0-10V using the Front Panel Menu Subsystem Level.
Subsystem
Level
Display
Function
Level
Display Parameter Level Display Description
SET
et
Voltage limit
source
OT
Front Panel (Digital)
F
.
AN
Parameter settings in Analog/
Digital control mode, Voltage
channel.
Ext. Voltage
E
.
O
Ext. Resist.
E
.
RES
Current limit
source
CvRR
Front Panel (Digital)
F
.
AN
Parameter settings in Analog/
Digital control mode, Current
channel.
Ext. Voltage
E
.
O
Ext. Resist.
E
.
RES
Source and
monitor range
RG
5/10 (V/KΩ) range
5
Control by external Voltage/
Resistor, Range 5/10
Table 6-1: MENU. Analog Programming Setting
CAUTION:
COM (J1-7,9) and VPGM_RTN (J1-12) terminals of J1 connect internally to the -Sense potential (-S). Do not connect these terminals to any potential other than -Sense (-S), as it may damage the power supply.
6.2 Local/Remote Analog Control
Contact J1-1 (Fig.4-3, item 1) accepts TTL signal or Open-Short contact (Referenced to J1-7,9) to select between Local or Remote Analog programming of the output voltage and current limit. In Local mode, the output voltage and current limit can be programmed via the front panel Voltage and Current Encoders or via the Communication interface. In Remote Analog mode, the output voltage and current limit can be programmed by analog voltage or by programming resistors via J1 contacts 6 and 5. Refer to Analog Programming Setting Table 6-2.
6.3 Local/Remote Analog Indication
Contact J1-4 (Fig.4-3, item 4) is an open collector output that indicates if the power supply is in Local mode or in Remote Analog mode. To use this output, connect a pull-up resistor to a voltage source of 30Vdc maximum. Choose the pull-up resistor so that the sink current will be less than 5mA when the output is in low state. J1-4 signal will be low if J1-1 is low and at least one of Analog control modes are selected. Refer to Analog Programming Setting Table 6-2.
J1-1 LOC/REM SELECT Front Panel selection Front Panel selection J1-4 LOC/REM MON
OPEN
“1”
Not applicable Not applicable Open
TTL “0” or Short
F
.
AN F.AN
Open
E
.
O or E.RES
F
.
AN
0~0.6V
.
AN
E
.
O or E.RES 0~0.6V
E
.
O or E.RES E.O or E.RES 0~0.6V
Table 6-2: Local/Remote Analog Control and Indication
70
Fig.6-1: J1-Remote Voltage Programming Connection
Output Current
Programming
Output Voltage
Programming
6.4 Remote Voltage Programming of Output Voltage and Current
Remote Programming settings are as follows:
1. For Voltage Analog Programming wiring refer to Fig.6-1.
2. Short pins J1-1 to J1-7.
3. Press MENU button. MENU (GREEN) LED illuminates. “Set” message appears on Voltage display.
4. Press Voltage Encoder. “ Ot” message appears on Voltage Display and “CRR” appears on the current display.
5. Press Voltage Encoder to select programming of the Output Voltage, or press Current Encoder to select programming of the Output Current.
6. The selected function appears on the Voltage display. Parameter “F
.
” or “E.O” or “E.re
appears on the Current display.
7. Rotate and press the Current Encoder to select “E.O”.
8. “ Ot” message appears on Voltage Display and “CRR” appears on the Current display.
9. Rotate Voltage Encoder until “r  G” appears on display. Press on the relevant Encoder.
10. “rA G” appears on Voltage display and “5” (5V) or “10” (10V) appears on Current display.
11. Rotate and press the Current Encoder to select the desired programming Voltage range.
12. Press MENU button twice to return display to it’s previous state. MENU LED turns OFF
CAUTION:
To maintain the isolation of power supply and prevent ground loops, use an isolated programming source when operating the power supply via remote analog programming at J1 connector.
71
Fig.6-2: J1-Remote Resistor Programming Connection
6.5 Remote Resistor Programming of Output Voltage and Output Current
For resistive programming, internal current sources, for output voltage and/or output current control, supply 1mA current through external programming resistors connected between J1-6 & J1-12 and J1-5 & J1-11, J7 . The voltage across the programming resistors is used as a programming voltage for the power supply. Resistance of 0~5Kohm or 0~10Kohm can be selected to program the output voltage and current limit from zero to full scale. A variable resistor can control the output over the entire range, or a combination of variable resistors and series/parallel resistors can control the output over restricted portion of the range.
Remote Programming settings as follows:
1. For Resistor Analog Programming wiring refer to Fig.6-2.
2. Short pins J1-1 to J1-7.
3. Press MENU button. MENU (GREEN) LED illuminates. “Set” message appears on Voltage display.
4. Press Voltage Encoder. “ Ot” message appears on Voltage Display and “CRR” appears on the current display.
5. Press on the Voltage Encoder to select programming the Output Voltage, or Press Current Encoder to select programming of the Output Current.
6. The selected function appears on the Voltage display. Parameter “F.” or “E.O” or “E.re” appears on the Current display.
7. Rotate and press the Current Encoder on to select “E.re”.
8. “ Ot” message appears on Voltage Display and “CRR” appears on the current display.
9. Rotate Current Encoder until “r  G” appears on the display. Press on the relevant Encoder.
10. “rA G” appears on Voltage display and “5” (5K) or “10” (10K) appears on Current display.
11. Rotate and press the Current Encoder to select the desired programming Voltage range.
12. Press MENU button twice to return display to the previous state. MENU LED turns OFF.
Output V oltage
P rogramming
Output C urrent
P rogramming
Optional sets
Lowe r limit
Optional sets
Upper limit
P rogramming
R es istor
Optional sets
Lowe r limit
Optional sets
Upper limit
P rogramming
R es istor
72
NOTES:
1. In Remote analog mode: the output voltage cannot be set by the VOLTAGE Encoder. The output voltage limit is set to 5% over the model-rated maximum value. The output Current limit is set by the Current encoder to 5% over the model-rated maximum value.
2. The power supply will operate within the extended range, however it is not recommended to operate the power supply over its voltage and current rating and performance is not guaranteed.
3. Communication: In Remote analog mode, power supply parameters can be programmed and read back via the Communication port except output voltage and current settings.
4. To maintain the temperature stability specification of the power supply, the resistors used for programming should be stable and low noise resistors, with a temperature coefficient of less than 50ppm.
5. Radiated emissions, FCC requirements: FCC requirements for radiated emissions, use a shielded cable for the analog control signals. In cases using a non shielded cable, attach an EMI ferrite suppressor to the cable, as close as possible to the power supply.
6. Front panel PREV button: Use PREV button to display the output voltage and current settings defined by the Encoders or Communication.
6.6 Programming Monitoring of Output Voltage (V_MON) and Current (I_MON)
The J1 connector, located on the rear panel provides analog signals for monitoring the output voltage and output current. Selection of the voltage range between 0-5V or 0-10V is made via Front Panel. The monitoring signals represent 0 to 100% of the power supply output voltage and output current. The monitor outputs have 500 ohm series output resistance. Ensure that the sensing circuit has an input resistance of greater than 500 Kohm or accuracy will be reduced. Range selection as follows:
1. Press MENU button. MENU (GREEN) LED illuminates. “Set” appears on Voltage display.
2. Press Voltage Encoder. “ O t” message appears on Voltage Display and “CRR” appears on the current display.
3. Rotate Voltage Encoder until “r  G” appears on display. Press on the relevant Encoder.
4. “rA  G” appears on Voltage display and “5” (5K) or “10” (10K) appears on Current display.
5. Rotate and press the Current Encoder to select the desired programming Voltage range.
6. Press MENU button twice to return display to the previous state. MENU LED turns OFF.
73
CHAPTER 7: Serial RS232/RS485 and USB Interface
7.1 Introduction
This chapter describes the set-up, operation, commands and communication protocol of Z+ power supplies via serial communication interfaces: RS232, RS485 or USB.
7.2 Configuration
Function Level Display
Parameter
Level
Display Description
Interface
It
232
232
485
45
USB
b
LAN

Available only if IEEE or LAN option installed
IEEE
IEEE
Address
ADR
1….31
1
...
31
Baud Rate
Bd
1200..57600
5.
Language
ANG
SCPI
SCI
GEN
GEN
IP Address
I
IP1---IP4
I 2 10
Available only if LAN option installedMAC Address
MC
MAC1-MAC6
MAC 3345
LAN Reset
RST
Yes
e
Table 7-1: Front panel setup
7.2.1 Default Setting
Refer to Table 5-7: Memory parameters.
7.2.2 Address Setting
The power supply address can be set to any address between 1 and 31.
1. Press REM button. The REM LED illuminates. “dr” message appears on the Current display.
2. Press Current Encoder. Voltage display shows “dr” and Current display shows present address.
3. Rotate the Current Encoder to select required address.
4. Press Current Encoder to enter selected parameter to memory.
5. When parameter is accepted the display blinks once and returns to the previous level.
7.2.3 Communication Interface Selection
Z
+
power supply can be configured for RS232, RS485 or USB communication interface.
1. Press REM button. The REM LED illuminates. “I t  ” message appears on the Voltage display.
2. Press Voltage Encoder. Voltage display shows “I t ” and Current display shows communication interface.
3. Rotate the Current Encoder to select the required interface.
4. Press Current Encoder to enter selected parameter to memory.
5. When parameter is accepted the display blinks once and returns to the previous level.
74
7.2.4 Baud Rate Setting
Seven optional rates are possible: 1200, 2400, 4800, 9600, 19200, 38400, 57600.
1. Press REM button. The REM LED illuminates. “I t ” message appears on the Voltage display.
2. Rotate Voltage Encoder until Voltage display shows “bd”.
3. Press Voltage Encoder. Voltage display shows “bd” and Current display shows baud rate.
3. Rotate the Current Encoder to select required baud rate.
4. Press Current Encoder to enter selected parameter to memory.
5. When parameter is accepted the display blinks once and returns to the previous level.
7.2.5 Language Selection (RS232/RS485, USB)
The Z
+
implements SCPI standard command line interface to remotely control the power supply. Additionally, a small subset of legacy GEN commands has been provided for ease of use and backwards compatibility.
1 Press REM button. The REM LED illuminates. “I t ” message appears on the Voltage display.
2. Rotate Voltage Encoder until Voltage display shows “AN G”.
3. Press Voltage Encoder. Voltage display shows “ANG“ and Current display shows language.
3. Rotate the Current Encoder to select required language.
4. Press Current Encoder to enter selected parameter to memory.
5. When parameter is accepted the display blinks once and returns to the previous level.
7.2.6 Setting Unit in Remote, Local Lockout or Local Mode
Local mode:
When the power supply is in local mode, it can receive queries. If a query is received, the power supply will reply and remain in Local mode. Serial commands may be sent to set and read the status registers while the unit is in Local mode. If the Enable registers are set the power supply will transmit SRQ’s while in Local mode. (refer to section 7.8.5 and section 7.12)
Remote mode:
If a command is received that affects the output or a Remote command is received, the power supply will perform the command and change to Remote mode. Set Remote command:
• GEN Language: RMT 1.
• SCPI Language: SYSTem:REMote[:STAte] REM/1.
When the power supply is in Remote mode, LED REM illuminates, Front Panel is in preview mode, and parameters cannot be changed. Return to Local mode via the front panel REM/LOC Button or via serial port command. Return to Local command:
• GEN Language: RMT 0.
• SCPI Language: SYSTem:REMote[:STAte] LOC/0.
Local Lockout mode:
When the power supply is in Local Lockout mode, LED REM illuminates, Front Panel is in preview mode, and parameters cannot be changed. Return to Remote mode via the serial port command or by turning Off the AC power until the display turns off. Then turn On AC power again. Set to Local Lockout command:
• GEN Language: RMT 2.
• SCPI Language: SYSTem:REMote[:STAte] LLO/2
75
NOTE:
Tx and Rx are used for RS232 communication. Txd +/- and Rxd +/- are used for RS485 communication. Refer to RS232 and RS485 cable descriptions for connection details.
1 SG 2 NC 3 RXD+ 4 TXD+ 5 TXD­6 RXD­7 TX 8 RX
NC 8 NC 7
TXD- 6
RXD- 5
RXD+ 4
TXD+ 3
NC 2 SG 1
INOUT
Shield
(Connector enclosure)
Fig.7-1: J4 rear panel IN/OUT connectors pinout
7.3 Rear Panel RS232/485 Connector
The RS232/485 interface is accessible through the Rear panel RS232/485 IN and RS485 OUT connectors. The connectors are 8 contact RJ-45. The IN and OUT connectors are used to connect power supplies in a RS232 or RS485 chain to a controller. Refer to Fig.7-1 for IN/OUT connectors.
76
Socket
Socket
Socket
08-25 CONNECTOR 8 PIN CONNECTOR REMARKS PIN NO. NAME PIN NO. NAME 1 SHIELD HOUSING SHIELD 2 TX 8 RX TWISTED 3 RX 7 TX PAIR 7 SG 1 SG
Fig.7-2: RS232 cable with DB25 connector (P/N: Z/232-25)
D08-9 CONNECTOR 8 PIN CONNECTOR REMARKS PIN NO. NAME PIN NO. NAME HOUSING SHIELD HOUSING SHIELD 2 RX 7 TX TWISTED 3 TX 8 RX PAIR 5 SG 1 SG
Fig.7-3: RS232 cable with DB9 connector (P/N: Z/232-9)
D08-9 CONNECTOR 8 PIN CONNECTOR REMARKS PIN NO. NAME PIN NO. NAME HOUSING SHIELD HOUSING SHIELD 9 TXD- 6 RXD- TWISTED 8 TXD+ 3 RXD+ PAIR 1 SG 1 SG 5 RXD- 5 TXD- TWISTED 4 RXD+ 4 TXD+ PAIR
Fig.7-4: RS485 cable with DB9 connector (P/N: Z/485-9)
7.4 Connectig Power Supply To RS232 Or RS485 BUS
Connect rear panel IN connector to the controller RS232 or RS485 port using a suitable shielded cable. Refer to Figures 7-2, 7-3 and 7-4 for available RS232 and RS485 cables.
77
Fig.7-6: Multi power supplies RS232/485 connection
7.5 Rear Panel USB Connector
A standard USB Series B device connector is located on Rear panel for USB control. Refer to Fig.7-5 and Table 7-2.
Fig.7-5: USB Connector
7.5.1 USB Getting Started
POWER SUPPLY
#1
POWER SUPPLY
#2
POWER SUPPLY
#3
POWER SUPPLY
#31
RS485
RS485
RS485
USB
IN IN
IN
IN
OUT OUT
OUT
OUT
POWER SUPPLY
#1
POWER SUPPLY
#2
POWER SUPPLY
#3
POWER SUPPLY
#31
RS485
RS485
RS485
RS232/485
IN IN
IN
IN
OUT OUT
OUT
OUT
Fig.7-7: Multi power supplies USB connection
1 2 3
4
Pin Designator Description
1 VBUS +3.3 VDC 2 D- Data ­3 D+ Data + 4 GND Interface com
Table 7-2: USB connector pin out
The following steps will help you quickly get started connecting your USB-enabled instrument to the Universal Serial Bus (USB):
1. Connect Z+ to the USB port on the computer.
2. Insert the software CD-ROM that is shipped with the product to your CD-ROM Drive The Z+ drivers selection menu will automatically appears. click on the ICON “USB drivers” Install the USB Driver.
7.6 Multi Power Supply Connection to RS232 Or RS485 or USB
A Daisy-chain configuration of up to 31 units can be connected to RS232, RS485 or USB . The first unit connects to the controller via RS232, RS485 or USB and other units are connected with a RS485 bus. The user must set all slave power supplies to a unique address. No two power supplies may have the same address.
1. First unit connection: Select communication Interface. Refer to section 7.2.3.
2. Other unit connections: The other units on the bus are connected via their RS485 interface.
Refer to Figures 7-6 and 7-7 for typical connections.
3. Using the Linking cable supplied with each unit (Refer to Fig.7-8), connect each unit OUT
connector to the next unit IN connector.
USB Cable
connect to USB port
78
7.7 GEN Protocol (GEN series communication language)
NOTE:
The address (ADR n) command must return an “OK” response before any other commands are accepted.
7.7.1 Data Format
Serial data format is 8 bit, one start bit and one stop bit. No parity bit.
7.7.2 End of Message
The end of message is the Carriage Return character (ASCII 13, 0x0D). The power supply ignores the Line Feed (ASCII 10, 0x0A) character.
7.7.3 Command Repeat
The backslash character “\” will cause the last command to be repeated.
7.7.4 Checksum
The user may optionally add a checksum to the end of the command. The checksum is “$” followed by two hex characters. If a command or a query has checksum, the response will also have one. There is no CR between the command string and the “$” sign. Example: STT?$3A STAT?$7B
7.7.5 Acknowledge
The power supply acknowledges received commands by returning “OK” message. If an error is detected, the power supply will return an error message. The rules for checksum also apply to the acknowledge feature.
7.7.6 Backspace
The backspace character (ASCII 8) clears the last character sent to the power supply.
7.7.7 Error Messages
The power supply will return error messages for illegal commands and illegal programming parameters. Refer to Table 7-3 for programming error messages and Table 7-4 for command error messages.
Fig.7-8: Serial link cable with RJ-45 shielded connectors (P/N: Z/RJ45)
#1
#2
#3
RS232/485
RS485
RS485
RS485
RS485 120 OHM
#31
8
1
1
8
L=0.5m typ.
8 PIN CONNECTOR (IN) 8 PIN CONNECTOR (OUT) PIN NO. NAME PIN NO. NAME HOUSING SHIELD HOUSING SHIELD 1 SG 1 SG 6 TXD- 6 RXD­3 TXD+ 3 RXD+ 5 RXD- 5 TXD­4 RXD+ 4 TXD+
NOTES:
It is recommended when using ten or more power supplies in Daisy-chain system to connect 120Ω resistive termination at the last unit’s RS-485 out connector 120Ω, 0.5W between TXD+ and TXD-. 120Ω, 0.5W between RXD+ and RXD-.
79
Error Code Description
E01 Returned when program voltage (PV) is programmed above acceptable range.
Example: PV value is above '105% of supply rating' or 'PV above 95% of OVP setting'. E02 Returned when programming output voltage below UVL setting. E04 Returned when OVP is programmed below acceptable range.
Example: OVP value is less than '5% of supply voltage rating' plus 'voltage setting'. E06 Returned when UVL value is programmed above the programmed output voltage. E07 Returned when programming the Output to ON during a fault shut down. E08 Cannot execute command via Parallel ADSN mode.
Table 7-3: Programming error messages
Error Code Description
C01 Illegal command or query C02 Missing parameter C03 Illegal parameter C04 Checksum error C05 Setting out of range
Table 7-4: Commands error messages
7.8 GEN Command Set Description
7.8.1 General guides
1. Any command or argument may be in capital letters or small letters.
2. In commands with an argument, a space must appear between the command and the argument.
3. For any command that sets a numeric value, the value may be up to 12 characters long.
4. Carriage Return: If the CR character (ASCII 13) is received by itself, the power supply will respond with “OK” and CR.
7.8.2 Command Set Categories
The command set is divided into four categories as follows:
1. Identification Commands
2. Initialization Commands
3. Output Commands
4. Global Commands
5. Auxiliary Commands
6. Status Commands
7.8.3 Identification Commands
IDN?
Returns the power supply model identification as an ASCII string: Default: “TDK­Lambda,ZX-Y” (one comma, no spaces) X = rated output voltage
Y = rated output current REV? Returns the software version as an ASCII string. Current rev: “REV:1.0” SN? Return power supply serial number. Up to 12 characters in any format. DATE? Returns date of last calibration. Format “yyyy/mm/dd”. Example “2009/12/17”
80
Command Description
PV n
Sets the output voltage value in Volts. The range of voltage value is described in Table 7-3.
The maximum number of characters is 12. See the following examples for PV n format: PV
12, PV 012, PV 12.0, PV 012.00, etc...
PV?
Reads the output voltage setting. Returns the string "n" where "n" is the exact string sent in
the PV n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5
digit string.
MV?
Reads the actual output voltage. Return 5 digit string.
Example: 60V supply sends 01.150, 15.012, 50.000, etc...
PC n (See Note 1)
Sets the output current value in Amperes. The range of current values are described in Table
7-4 and 7-5. The maximum number of characters is 12. See the following examples for PC n
format: PC 10, PC 10.0, PC 010.00, etc...
PC?
Reads the output current setting. Returns the string "n" where "n" is the exact string sent in
the PC n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5
digit string. MC?
(See Note 2)
Reads the actual output current. Returns 5 digit string.
Example: 200A supply sends 000.50, 110.12, 200.00, etc...
DVC?
Display Voltage and Current data. Data will be returned as a string of ASCII characters.
A comma will separate the different fields.
The fields, in order, are: Measured Voltage, Programmed Voltage, Measured Current,
Programmed Current, Over Voltage Set point and Under Voltage Set Point.
Example: 5.9999, 6.0000, 010.02, 010.00, 7.500, 0.000
Command Description
ADR n ADR is followed by address which can be 1 to 31 and is used to access the power supply . CLS Clear status. Sets FEVE and SEVE registers to zero (Refer to section 7.11).
RST
Reset command. Brings the power supply to a safe and known state:
Output voltage: zero, Remote: non-latched remote,
Output current: zero, Auto-start: Off,
Output: Off, OVP: maximum,
FOLD: Off, UVL: zero
The conditional registers (FLT and STAT) are updated, the other registers are not changed.
RMT
Sets the power supply to local or remote mode:
1. RMT 0 or RMT LOC, sets the power supply to Local mode.
2. RMT 1 or RMT REM, sets the unit to remote mode.
3. RMT 2 or RMT LLO, sets the unit to Local Lockout mode (latched remote mode).
RMT?
Returns the Remote mode setting:
1. "LOC"- The unit is in Local mode.
2. "REM"- The unit is in Remote mode.
3. "LLO"- The unit is in Local Lockout (latched remote) mode.
MDAV?
Returns MD MODE OPTION Status. 1 indicates installed and 0 indicates not installed. \ Repeat last command. If \<CR> is received, the power supply will repeat the last command.
7.8.5 Output Commands
7.8.4 Initialization Commands
81
Command Description
OUT n
Turns the output to ON or OFF. Recover from Safe-Start, OVP or FLD fault. OUT 1 (or OUT
ON)-Turn On.
OUT?
Returns the output On/Off status string.
ON- output on. OFF- output off.
FLD n
Sets the Foldback protection to ON or OFF.
FLD 1 (or FOLD ON) - Arms the Foldback protection.
FLD 0 (or FOLD OFF)- Cancels the Foldback protection.
When the Foldback protection has been activated, OUT 1 command will release the
protection and re-arm it, while FLD 0 will cancel the protection.
FLD?
Returns the Foldback protection status string:
“ON”- Foldback is armed, “OFF”- Foldback is canceled.
FBD nn
Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay.
The range of nn is 0 to 255. The value is stored in eprom at AC power and recovered at AC
power up. FBD? Supply returns the value of the added Fold Back Delay. FBDRST Reset the added Fold Back Delay to zero.
OVP n
Sets the OVP level. The OVP setting range is given in Table 7-8. The number of characters
after OVP is up to 12. The minimum setting level is approx. 105% of the set output voltage,
or the value in Table 7-8, whichever is higher. Attempting to program the OVP below this
level will result in execution error response (”E04”). The OVP setting stays unchanged.
OVP?
Returns the setting “n” where “n” is the exact string in the user’s “OVP n”. When in Local mode,
returns the last setting from the front panel in a 4 digit string. OVM Sets OVP level to the maximum level. Refer to Table 7-8.
UVL n
Sets Under Voltage Limit. Maximum value of “n” is 5% below PV setting, but returns “E06” if
higher. Refer to Table 7-9 for UVL programming range.
UVL?
Returns the setting “n” where “n” is the exact string in the user’s “UVL n”. When in
Local mode, returns the last setting from the front panel in a 4 digit string.
When UVP is activated, returns the setting
UVP n
Sets Under Voltage Protection. Maximum value of “n” is 5% below PV setting, but returns
“E06” if higher. Refer to Table 7-9 for UVP programming range.
UVP?
Returns the setting “n” where “n” is the exact string in the user’s “UVP n”. When in
Local mode, returns the last setting from the front panel in a 4 digit string.
AST n
Sets the auto-restart mode to ON or OFF.
AST 1 (or AST ON)- Auto restart on.
AST 0 (or AST OFF)- Auto restart off. AST? Returns the string auto-restart mode status.
SAV
Saves present settings. The settings are the same as power-down last settings.
These settings are erased when the supply power is switched off and the new “last settings”
are saved. RCL Recalls last settings. Settings are from the last power-down or from the last “SAV” command.
MODE?
Returns the power supply operation mode. When the power supply is On (OUT 1) it will
return “CV” or “CC”. When the power supply is OFF (OUT 0) it will return “OFF”.
MS? Returns the Master/Slave setting. Master: n = 1..... 6 Slave: n = 0
NOTES:
1. In Advanced Parallel mode (Refer to Sec. 5.5.3.1), “n” is the total system current.
2. In Advanced Parallel mode, “MC?” returns the Master unit current multiplied by the number of Slave units.
3. UVL? will return “C01” if UVP is activated and vice versa.
82
NOTE:
The power supply can accept values higher by 5% than the table values, however it is not recommended to program the power supply over the rated values.
GRST
Reset. Brings the Power Supply to a safe and known state: Output voltage: 0V, output current: 0A, OUT: Off, Remote: RMT 1’ AST: Off OVP:Max, UVL:0. The conditional register (FLT and STAT) are updated. Other registers are not changed. Non-Latching faults (FoldBack, OVP, SO, UVP) are cleared, OUT fault stays.
GPV n
Sets the output voltage value in volts. The range of voltage values is shown in Table 7-3. ‘n’ may be up to 12 char plus dec. pt
GPC n
Program the output current value in amperes. The range of current values is shown in Table 7-4. ‘n’ may be up to 12 char plus dec. pt
GOUT
Turns the output to ON or OFF: “OUT 1/ON” = turn on “OUT 0/OFF”= turn off, clears CV and CC bits in the Status Condition (STAT). OUT ON will respond with “E07’ if the output cannot be turned on because of a latching fault (OTP< AC, ENA, SO) shutdown.
GSAV
Save present settings. Same settings as power-down last settings listed in Error! Reference source not found. Except the address and Baud rate are not saved. Saves to the RAM. These settings are erased when the supply power is switched off and the new ‘last settings’ are saved.
GRCL
Recall last settings. Settings are from last power-down or from last ‘SAV’ or ‘GSAV’. GRCL command. Address and Baud rate are not recalled so communication is not interrupted.
7.8.6 Global Output Commands
General
Global commands can be received by all power supplies connected to the BUS, without individual address commands. All power supplies will execute the command immediately. There is no acknowledgment back to the PC when using global commands. A delay must be set of 20msec after each global command. Error messages are not reported back to the issuing PC.
Model Rated Output
Voltage (V)
Minimum (V) Maximum (V)
10 00.00 10.00 20 00.00 20.00 36 00.00 36.00 60 00.00 60.00
100 000.0 100.0
Table 7-5: Voltage programming range
83
Model Rated Output
Voltage (V)
Minimum (V) Maximum (V)
10 0.5 12.0 20 1.0 24.0 36 2.0 40.0 60 5.0 66.0
100 5.0 110
Table 7-8: OVP programming range
Model Rated Output
Voltage (V)
Minimum (V) Maximum (V)
10 0 9.5 20 0 19.0 36 0 34.2 60 0 57.0
100 0 95.0
Table 7-9: UVL/UVP programming range
Model Minimum (A) Maximum (A)
10-20 00.00 20.00 20-10 00.00 10.00
36-6 0.000 6.000
60-3.5 0.000 3.500
100-2 0.000 2.000
Table 7-6: Z200 models Current programming range
Model Minimum (A) Maximum (A)
10-40 00.00 40.00 20-20 00.00 20.00 36-12 00.00 12.00
60-7 0.000 7.000
100-4 0.000 4.000
Table 7-7: Z400 models Current programming range
NOTE:
The power supply can accept values higher by 5% than the table values, however it is not recommended to program the power supply over the rated values.
NOTE:
The UVP protection starts operating for values higher than 5% of Rated Output Voltage.
7.8.7 Auxiliary Commands
SOP Sets SO polarity “SO 1/ON” –Positive (default), “SO 0/OFF”-Negative SOP? Returns the SO polarity RIE Remote inhibit (Interlock) enable. “RIE 1/ON”-Enable, “RIE 0/OFF”-Disable” RIE? Returns the RIE polarity. “ON” –interlock enable, “OFF”-interlock disable.
FRST
Factory reset command. This command cover *RST command and additional settings. Sets factory default. This command breaks communication. Refer to Table
5-7.
MP? Reads the actual output power. Returns 5 digit string. REL1 Set auxiliary programmed pin state J3-1. “REL1 1/ON”- High, REL1 0/OFF”- Low REL1? Response auxiliary programmed pin state J3-1. REL2 Set auxiliary programmed pin state J3-6, “REL2 1/ON”- High, REL2 0/OFF”- Low
REL2? Response auxiliary programmed pin state J3-6
84
7.8.8 Status Commands
Refer to section 9.3.1, 9.3.2 for Register definitions.
# Command Description
1 STT?
Reads the complete power supply status.
Returns ASCII characters representing the following data, separated by commas:
MV<actual (measured) voltage> PC<programmed (set) current>
PV<programmed (set) voltage> SR<status register, 4-digit hex>
MC<actual (measured) current> FR<fault register, 4-digit hex>
Example response: MV(45.201),PV(45),MC(4.3257),PC(10),SR(0030),FR(0000)
2 FLT? Reads Fault Conditional Register. Return 4-digit hex. 3 FENA Set Fault Enable Register using 4-digit hex. 4 FENA? Reads Fault Enable Register. Returns 4-digit hex. 5 FEVE? Reads Fault Event Register. Returns 4-digit hex. Clears bits of Fault Event Register. 6 STAT? Reads Status Conditional Register. Returns 4-digit hex. 7 SENA Sets Status Enable Register using 4-digit hex. 8 SENA? Reads Status Enable Register. Returns 4-digit hex. 9 SEVE? Reads Status Event register. Returns 4-digit hex. Clears bits of Status Event register.
85
7.9 Serial Communication Test Set-Up
Basic set-up to test serial communication operation.
1. Equipment: PC with Windows Hyper Terminal, private edition, software installed, Z+ power supply,
RS232 cable.
2. PC set-up: 2.1 Open Hyper Terminal.......................New Connection.
2.2 Enter a name
2.3 Connect to.......................................Direct to Com1 or Com 2
2.4 Configure port properties:
Bits per second .......9600
Data bits ..................8
Parity .......................None
Stop bits....................1
Flow control..............None
2.5 Open Properties in the program File...........................Properties
2.6 Setting: ASCII Set Up
Select Echo characters locally, select send line ends with line feed. On some PC systems, pressing the number keypad "Enter" will distort displayed messages. Use the alphabetic "Enter" instead.
3. Power supply set-up:
3.1 Connect the power supply to the PC using the RS232 cable.
3.2 Set via the front panel: Baud Rate: 9600, Address: 06, RS232, GEN Language
4. Communication test:
4.1 Model identification:
PC: write: ADR 06 Power supply response: "OK"
4.2 Command test:
PC write: OUT 1 Power supply response: "OK" PC write: PV n Power supply response: "OK" PC write: PC n (for n values see Tables 7-3, 7-4 and 7-5 ) Power supply response: "OK"
The power supply should turn on and the display will indicate the output voltage and the actual output current.
7.10 SCPI Protocol
7.10.1 Data Format
Serial data format is 8 bit, one start bit and one stop bit. No parity bit.
7.10.2 End of Message
End of message is the Carriage Return character (ASCII 13) and the Line Feed (ASCII 10) character.
7.10.3 End of Command
End of command is Carriage Return character (ASCII 13) and/or the Line Feed (ASCII 10) character.
86
7.10.4 Checksum
The user may optionally add a checksum to the end of the command. The checksum is "$" followed by two hex characters. If a command or a query has checksum, the response will also have one. There is no CR between the command string and the "$" sign.
7.10.5 SCPI Requirements
The power supply conforms to the following SCPI requirements:
1. SCPI common commands.
2. SCPI Command Tree. 3 Subsystem commands.
4. The ROOT level.
5. The power supply is powered On
6. A device clear (DCL) is sent to the power supply
7. The SCPI interface encounters a root specifier (:)
8. Questionable Status Register (QSR), Condition, Event, Enable
9. Operation Status Register (OSR), Condition, Event, Enable
10. Status Byte Register (SBR)
11. Standard Event Status Register (SESR)
12. Using the MIN and MAX Parameters.
13. Suffix and Multipliers.
14. Boolean data. 1 | 0 or ON | OFF
7.10.6 SCPI Command Hierarchy
SCPI is an ASCII-based command language designed for use in test and measurement equipment. The command structure is organized around common roots, or nodes, which are the building blocks of SCPI subsystems. An example of a common root is OUTPut, and some of the commands that reside in the OUTPut subsystem are:
OUTPut [:STATe]<bool> :PON [:STATe]<bool> :PROTection :CLEar :FOLDback [:MODE] A colon (:) is used to separate a command keyword from a lower-level keyword.
7.10.7 Header
Headers are instructions recognized by the power supply. Headers (which are sometimes known as “keywords”) may be either in long or short form.
Long form The header is completely spelled out, such as VOLTAGE, STATUS, and DELAY Short form The header has only the first three or four letters, such as VOLT, STAT, and DEL.
The SCPI interface is not sensitive to case. It will recognize any case mixture, such as TRIGGER, Trigger, TRIGger. Short form headers result in faster program execution.
87
7.10.8 Data Formats
Data Formats Description
<NR1>
Digits with an implied decimal point assumed at the right of the least-significant digit.
Examples: 256 <NR2> Digits with an explicit decimal point. Example: .0253 <NR3> Digits with an explicit decimal point and an exponent. Example: 2.73E+2 <Nrf> Extended format that includes <NR1>, <NR2> and <NR3>. Examples: 273 273.1 2.73E2
<Nrf+>
Expanded decimal format that includes <Nrf> and MIN MAX. Examples: 273,273.1, 2.73E2,
MAX. MIN and MAX are the minimum and maximum limit values that are implicit in the range
specification for the parameter. <Bool> Boolean Data. Example: 0 | 1 or ON | OFF
7.10.9 Character Data
<CRD> Character Response Data. Permits the return of character strings.
7.10.10 Commands Notes
• Expressions enclosed in square brackets, [ ], are optional and entered without the [ or ].
• Expressions enclosed in greater than/less than, < >, are programming values and entered without the < or >.
• The expression <SP> represents a one character ASCII Space.
• In all commands upper case characters can be interchanged with lower case characters.
7.11 SCPI Common Commands
Common commands begin with an * and consist of three letters (command) or three letters and a ? (query). Common commands are defined by the IEEE 488.2 standard to perform some common interface functions. The power supply responds to the 11 required common commands that control SCPI Command Reference, synchronization, and internal operations. The power supply also responds to five optional common commands controlling triggers, power-on conditions, and stored operating parameters.
*CLS
Clear Status command. Clears the entire status structure.
NOTE:
Execution time for this command 150mS
Meaning and Type Clear Status Command Syntax *CLS Parameters None Query Syntax None
88
*ESE
Standard Event Status Enable command. Modifies the contents of the Event Status Enable Register.
Meaning and Type Event Status Enable Device Status
Command Syntax *ESE <NRf> Parameters 0 to 255 Power On Value 1 Query Syntax *ESE? Parameters <NR1> 3digits Query Syntax *ESR? *PSC *STB?
Bit Position 7 6 5 4 3 2 1 0 Bit Name PON 0 CME EXE DDE QYE 0 OPC Bit Weight 128 64 32 16 8 4 2 1
CME = Command error; DDE = Device-dependent error; EXE = Execution error; OPC = Operation, complete; PON Power-on; QYE = Query error
*ESR?
Standard Event Status Register query. Returns the contents of the Event Status Register.
Meaning and Type Event Status Device Status
Query Syntax *ESR? Parameters None Returned Parameters <NR1> (Register binary value) format 3 digits
*IDN?
Identification query. Returns an identification string in the following format: ‘Manufacturer, Model, Serial number, Firmware level’.
Meaning and Type Identification System Interface
Query Syntax *IDN?
Returned Parameters
Field Information TDK-Lambda Manufacturer Z Model <Vrating>-<Irating> Model ratings 25B1234 Serial number, typically 7 alpha-numeric characters
3.0-C1 Revisions, <Main firmware>–<LAN/IEEE firmware>
Example TDK-Lambda,Z20-30,25B1234, 1.0-C1
89
*OPC
Operation Complete command. Sets the Operation Complete bit in the Standard Event Status Register if all commands and queries are completed.
Meaning and Type Operation Complete Device Status
Command Syntax *OPC Parameters None
*OPC?
Operation Complete query. Returns ASCII ‘1’ as soon as all commands and queries are completed.
Meaning and Type Operation Complete Device Status
Query Syntax *OPC?
Parameters
<NR1> ASCII 1 is placed in the Output Queue when the power supply has completed operations.
*OPT?
The options (OPT) query returns a comma-separated list of all of the instrument options currently installed on the signal generator.
Parameter Option
0 NONE 1 IEEE 2 LAN 3 BOTH
Query Syntax *OPT? Returned Parameters <CRD>
*PSC
The Power-On Status Clear (PSC) command controls the automatic power-on clearing of the Service Request Enable Register, the Standard Event Status Enable Register, and device-specific event enable registers.
• ON(1) - This choice enables the power-on clearing of the listed registers.
• OFF(0) - This choice disables the clearing of the listed registers and they retain their status when a power-on condition occurs.
Meaning and Type Power-on Status Clear Device Initialization
Command Syntax *PSC <bool> Parameters 0 | 1 | OFF | ON Example *PSC 0 *PSC 1 Query Syntax *PSC? Returned Parameters <NR1> 0 | 1
90
*RCL n
Restores the power supply to a state previously stored in memory by *SAV command. Refer to Table 5-7.
Meaning and Type Recall Device State
Command Syntax *RCL <NR1> Parameters 1 to 4 Query Commands *RCL 3
Query Syntax None
*RST
This command resets the power supply to a defined state as shown in Table 5-7. *RST also forces an ABORt command.
Meaning and Type Recall Device State
Command Syntax *RST Parameters None Example None
*SAV n
The SAV command saves all applied configuration setting. Refer to Table 5-7.
Command Syntax *SAV <NRf> Parameters 1 to 4 Query Syntax None
*SRE
Service Request Enable command. Modifies the contents of the Service Request Enable Register.
Meaning and Type Service Request Enable Device Interface
Command Syntax *SRE <NRf> Parameters 0 to 255 Default Value See *PSC Example *SRE 20 Query Syntax *SRE? Returned Parameters <NR1> (Register binary value) 3digits
91
*STB?
Status Byte query. Returns the contents of the Status Byte Register.
Meaning and Type Status Byte Device Status Query Syntax *STB? Returned Parameters <NR1> (Register binary value)
Bit Position 7 6 5 4 3 2 1 0
Condition OPER MSS ESB MAV QUES 0 0 0
(RQS)
Bit Weight 128 64 32 16 8 4 2 1 ESB = Event status byte summary; M = Message available MSS = Master status summary; OPER = Operation status summary; QUES = Questionable status summary; RQS = Request for service
Table 7-10: Bit Configuration of Status Byte Register
*TRG
The Trigger command starts the waveform when the trigger source is set to BUS.
Meaning and Type Trigger Device Trigger
Command Syntax *TRG Parameters None Query Syntax None
ABORt
Resets the trigger system and places the power supply in an IDLE state without waiting for the completion of the trigger cycle.
Command Syntax ABORt Parameters None Example ABOR Query Syntax None
92
7.12 SCPI Subsystem Commands
Subsystem commands are specific to power supply functions. They can be a single command or a group of commands. Groups are comprised of commands that extend one or more levels below the root. Commands followed by a question mark (?) take only the query form. Except as noted in the syntax descriptions, all other commands take both the command and query form.
7.12.1 Output Subsystem
OUTPut [:STATe] <bool> Enable/Disable output :PON [:STATe] <bool> Set power-on state in Safe or Auto start :PROTection :CLEar Reset latched protection :FOLDback [:MODE] <CRD> Protection at transition CC<->CV modes :DELay <NRf+> Delay after programming/before protection :ILC :MODE <CRD> Set remote inhibit input (ENAble|DISable) :TTLTrg :MODE <CRD> Set or disable Function Strobe Mode :RELay [:STATe] <bool> Set optionally output relay status :MODE? Replay operation mode CV/CC/OFF
OUTPut
This command enables or disables the power supply output. When output is turned off, voltage display shows “OFF”.
SCPI Command Syntax OUTPut[:STATe] <bool> GEN Command Syntax OUT <bool> Parameters 0|OFF 1|ON *RST Value OFF Examples OUTP 1 OUTP:STAT ON Query Syntax OUTPut[:STATe]? Returned Parameters 0|1
93
OUTPut:PON[:STATe]
• AUTO - The power supply output will return to its previous value when the latching fault condition is removed or to the stored value after AC recycle.
• SAFE - The power supply output will remain Off after the fault condition is removed or after AC recycle.
SCPI Command Syntax OUTPut:PON[:STATe] <bool> GEN Command Syntax AST <bool> Parameters 0|OFF 1|ON *RST Value OFF Examples OUTPut:PON 1 Query Syntax OUTPut:PON[:STATe]? Returned Parameters 0|1
OUTPut:PROTection:CLEar
This command clears the latch that disables the output when an over voltage (OVP), under voltage (UVP), or foldback (FOLD) fault condition is detected. All conditions that generate a fault must be removed before the latch can be cleared. The output is then restored to the state before the fault condition occurred.
SCPI Command Syntax OUTPut:PROTection:CLEar GEN Command Syntax None Parameters None Examples OUTP:PROT:CLE
OUTPut:PROTection:FOLDback
Foldback mode is used to disable the output when a transition is made between the operation modes. The power supply will turn off the output after a specified delay if the power supply makes transition into CV mode or into CC mode. This feature is particularly useful for protecting current or voltage sensitive loads.
SCPI Command Syntax OUTPut:PROT:FOLDback[:MODE] <CRD> GEN Command Syntax FLD <CRD> Parameters OFF|0, CC|1, CV|2 . *RST Value OFF Examples OUTPut:PROT:FOLDback[:MODE] CC Query Syntax OUTPut:PROT:FOLDback[:MODE]? Returned Parameters <CRD>
94
OUTPut:PROTection:DELay
Sets the delay time between the programming of an output change that produces a CV or CC status condition. This command applies to UVP and Foldback functions.
SCPI Command Syntax OUTPut:PROTection:DELay <NRf+> GEN Command Syntax FBD Parameters 0.1 to 25.5|MIN|MAX (step 0.1s) Unit S (second) *RST Value 0mS Examples OUTPut:PROTection:DELay 2E-1 Query Syntax OUTPut:PROTection:DELay? Returned Parameters <NR3>
OUTPut:ILC:MODE
Selects the mode of operation of the Remote Inhibit protection. In OFF mode the power supply ignores J3-4 (ILC) status.
SCPI Command Syntax OUTPut:ILC:MODE <CRD> GEN Command Syntax RIE Parameters 0|OFF 1|ON *RST Value OFF Examples OUTPut:ILC:MODE ON Query Syntax OUTPut:ILC:MODE? Returned Parameters ON/OFF
OUTPut:TTLTrg:MODE
Sets the operation of the Trigger Out signal to either OFF, Function Strobe or Trigger mode. Programming Mode NONE, FIX:
• In TRIG mode, trigger is generated when output status changes.
• In Function Strobe mode, an output pulse is generated automatically any time an output parameter such as output, voltage or current is programmed.
Programming modes LIST or WAVE:
• In TRIG mode, trigger is generated when LIST or WAVE is completed.
• In Function Strobe mode, an output pulse is generated automatically any time a step is competed.
The power supply Trigger Out signal is available at J3-3 connector on the rear panel.
SCPI Command Syntax OUTPut:TTLTrg:MODE <CDR> GEN Command Syntax None Parameters TRIG| FSTR|OFF *RST Value OFF Examples OUTP:TTLT:MODE TRIG Query Syntax OUTP:TTLT:MODE? Returned Parameters <CRD>
95
OUTPut:RELay1(2):STATe
Sets pin J3-1 (1) and J3-6 (2) state. The ON parameter is according to low level.
SCPI Command Syntax OUTPut:RELay1(2)[:STATe] <bool> GEN Command Syntax REL1(2) <bool> Parameters 0|OFF 1|ON *RST Value 1 Examples OUTP:REL1(2) 1 OUTP:REL1(2) ON Query Syntax OUTPut:REL1(2)[:STATe]? Returned Parameters 0|1
OUTPut:MODE?
Returns the power supply to operation mode. When the power supply is On (OUT 1) it will return to “CV” or “CC”. When the power supply is OFF (OUT 0) it will return to “OFF”.
SCPI Query Syntax OUTPut:MODE? GEN Query Syntax MODE? Returned Parameters <CRD> CV|CC|OFF
7.12.2 Instrument Subsystem
The subsystem programs one or more power supplies. <NRf> from 1 to 31.
INSTrument :COUPle ALL|NONE
Couple for all
Z
+
power supplies
:NSELect <NRf> Select the power supply to program
INSTrument:COUPle
SCPI Command Syntax INSTrument:COUPle <CRD> GEN Command Syntax None Parameters ALL|NONE
INSTrument:NSELect
SCPI Command Syntax INSTrument:NSELect GEN Command Syntax ADR <NRf> single address Examples INSTrument:NSELect 6 Query Syntax INSTrument:NSELect?
96
7.12.3 Voltage Subsystem
VOLTage [:LEVel] [:IMMediate] [:AMPLitude] <NRf+> Set output voltage :TRIGger <NRf+> Set voltage value for trigger pending :PROTection [:OVER] <NRf+> Set OVP value : LOW :STATe <CRD> Set UVP|UVL mode :[LEVel] <NRF+> Set UVP|UVL value :CLEar
:MODE <CRD> Select arbitrary trigger control mode
VOLTage
Sets the output voltage value in Volts. The range of voltage values are described in Table 7-3. The maximum number of characters is 12.
SCPI Command Syntax [SOURce]:VOLTage[:LEVel] [:IMMediate][:AMPLitude] <NRf+> GEN Command Syntax PV < NRf+> PV? Default Suffix V *RST Value 0 Examples :VOLT 500 MV VOLT:LEV 234.56789
Query Syntax
[SOURce]:VOLTage[:LEVel][:IMMediate][:AMPLitude]? VOLTage? MAX VOLTage? MIN
Returned Parameters
<NR3> VOLT? returns the present programmed voltage level. VOLT? MAX and VOLT? MIN return the maximum and minimum programmable current levels.
VOLT:MODE
This command selects FIX, LIST, WAVE subsystems control over the power supply output voltage.
SCPI Command Syntax [SOURce]:VOLTage:MODE <CRD> GEN Command Syntax None Parameters NONE | FIXed | LIST | WAVE *RST Value NONE Examples VOLT:MODE LIST VOLT:MODE FIX Query Syntax [SOURce]:VOLTage:MODE? Returned Parameters NONE | FIX | LIST | WAVE
97
NOTE:
VOLT:MODE LIST and WAVE is an implied ABORT command. WAVE mode cannot be programmed simultaneously for both Voltage and Current. Only the last sent command can be accepted as WAVE. Previous mode reverts to NONE.
VOLTage:PROTection:LEVel
Sets the OVP level. The OVP setting range is given in Table 7-8. The number of characters after OVP is up to 12. The minimum setting level is approx. 105% of the set output voltage, or the value in Table 7-8, whichever is higher.
SCPI Command Syntax [SOURce]:VOLTage:PROTection:LEVel <nn.nn|MAX> GEN Command Syntax OVP < NRf+> Default Suffix V *RST Value MAX Examples VOLT:PROT:LEV 2.5
Query Syntax
[SOURce]:VOLTage:PROT:LEV? VOLT:PROT:LEVel? MIN VOLT:PROT:LEVel? MAX
Returned Parameters
<NR3> VOLT:PROT:LEV? returns presently programmed OVP level. VOLT:PROT:LEV? MAX and VOLT:PROT:LEV? MIN return the maximum and minimum programmable OVP levels.
NOTE:
VOLT:PROT:LEV MIN set OVP level 5% above voltage set value
VOLTage:PROTection:LOW:STATe
Sets the under voltage protection (UVP) status of the power supply. If the UVP status selected, then the under voltage protection is enabled.
SCPI Command Syntax [SOURce]:VOLTage:PROTection:LOW:STATe <CRD> GEN Command Syntax UVL < NRf+> , UVP < NRf+> Parameters UVL|UVP *RST Value UVL Examples VOLT:PROT:LOW:STAT UVP Query Syntax [SOURce]:VOLTage:PROTection:LOW :STATe? Returned Parameters UVP|UVL
98
VOLTage:PROTection:LOW
Sets the over voltage protection (UVP) level of the power supply.
SCPI Command Syntax [SOURce]:VOLTage:PROTection:LOW <NRf+> GEN Command Syntax UVL < NRf+> , UVP < NRf+> Default Suffix V *RST Value 0 Examples VOLT:UNDer:PROT 2.5 VOLT:UNDer:PROT:LEV MAX
Query Syntax
[SOURce]:VOLTage:PROTection:LOW [:LEVel]? VOLT:PROT:LOW? MIN; VOLT:PROT:LOW? MAX
Returned Parameters
<NR3> VOLT:PROT:UNDer? returns presently programmed UVP level. VOLT:UNDer:PROT? MAX and VOLT:PROT:OVER? MIN return the maximum and minimum programmable UVP levels.
NOTE:
VOLT:PROT:LOW MAX set UVP level maximum 5% below voltage value
VOLT:TRIG
Programs the pending triggered voltage level of the power supply. The pending triggered voltage level is a stored value that is transferred to the output terminals when a trigger occurs.
SCPI Command Syntax [SOURce]:VOLTage[:LEVel]:TRIGgered [:AMPLitude] <NRf+> GEN Command Syntax None Default Suffix V Examples VOLT:TRIG 1200 MV VOLT:LEV:TRIG 1.2
Query Syntax
[SOURce]:VOLTage[:LEVel]:TRIGgered [:AMPLitude]? :VOLTage:TRIGgered? MAX; :VOLTage:TRIGgered? MIN
Returned Parameters
<NR3> VOLT:TRIG? returns the presently programmed voltage level. If the TRIG level is not programmed, the IMM level is returned. VOLT:TRIG? MAX and VOLT:TRIG? MIN return the maximum and minimum programmable triggered voltage levels.
7.12.4 Current Subsystem
This subsystem programs the output current of the power supply.
CURRent [:LEVel]
[:IMMediate]
[:AMPLitude] <NRf+> Set output Current
:TRIGger <NRf+> Set current value for trigger pending
:MODE <CRD> Select arbitrary trigger control mode
99
CURRent
Sets the output current value in Amperes. The range of current values are described in Tables 7-4 and 7-5. The maximum number of characters is 12.
SCPI Command Syntax [SOURce]:CURRent[:LEVel] [:IMMediate][:AMPLitude] <NRf+> GEN Command Syntax PC <NRf+> PC? Default Suffix A *RST Value 0 Examples CURR 500 MA CURR:LEV .5
Query Syntax
[SOURce]:CURRent[:LEVel][:IMMediate][:AMPLitude]? [SOURce]:CURRent? MAX [SOURce]:CURRent? MIN
Returned Parameters
<NR3> CURR? returns the present programmed current level. CURR? MAX and CURR? MIN return the maximum and minimum programmable current levels.
CURR:MODE
This command selects FIX, LIST, WAVE subsystems control over the power supply output current.
SCPI Command Syntax [SOURce]:CURRent:MODE <CRD> GEN Command Syntax None Parameters NONE | FIXed | LIST | WAVE *RST Value NONE Examples CURR:MODE LIST CURR:MODE FIX Query Syntax [SOURce]:CURRent:MODE? Returned Parameters NONE | FIX | LIST | WAVE
CURRent:TRIGger
Programs the pending triggered current level of the power supply. The pending triggered current level is a stored value that is transferred to the output terminals when a trigger occurs.
SCPI Command Syntax [SOURce]:CURRent[:LEVel]:TRIGgered[:AMPLitude] <NRf+> GEN Command Syntax None Default Suffix A Examples CURR:TRIG 3200 MA CURR:LEV:TRIG 3.2
Query Syntax
SOURce]:CURRent[LEVel]:TRIGgered [:AMPLitude]? [SOURce]:CURRent? MAX [SOURce]:CURRent? MIN
Returned Parameters
<NR3> CURR:TRIG? returns the presently programmed triggered level. If no triggered level is programmed, the CURR level is returned. CURR:TRIG? MAX and CURR:TRIG? MIN return the maximum and minimum programmable triggered current levels.
NOTE:
CURR:MODE LIST and WAVE are an implied ABORt command. Only the last sent command can be accepted as WAVE or LIST. Previous mode reverts to NONE.
Loading...