TDK-Lambda CC15-xxxx-Sxx-E Series, CC30-xxxxSxxx-E Series Instruction Manual

CC15
CC15----xxxxSxx
CC15CC15
xxxxSxx----E , CC30
xxxxSxxxxxxSxx
E , CC30----xxxxSxxx
E , CC30E , CC30
xxxxSxxx----E Series Instruction Manual
xxxxSxxxxxxxSxxx
1. Standard Connection Method
1. Standard Connection Method
1. Standard Connection Method1. Standard Connection Method
The connection method shown in Figure 1.
E Series Instruction Manual
E Series Instruction ManualE Series Instruction Manual
DC
Input
Fuse
+Vin
-Vin
SW
+Vout
Load
-Vout
PO RC
ALM
Fig. 1 Connection Method
When not using the Remote Control function, use it with either the RC terminal open or connected to the –Vin terminal.
When not using the Alarm function, use it with the ALM terminal in an open condition.
Use the PO terminal for controling multiple unit operation (series, parallel operation etc.).
For single unit operation, use the PO terminal in an open condition.
The converter is to be operated exclusively on DC input. Use of AC input will cause damage.
2. Block Diagram
2. Block Diagram
2. Block Diagram2. Block Diagram
The block diagram is shown in Figure 2.
+Vin +Vin
-Vin
-Vin PO RC
ALM
Voltage detecyion
(Hysteresis type)
Delay circuit
(20ms50ms)
Control circuit
OVPLVP
Auxiliary power
DRIVE
OCP
Voltage
detection
Fig. 2 Block Diagram
+Vout
+Vout +Vout
-Vout
-Vout
DRIVE
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
3. Inp
3. Input / Output Line Connection
ut / Output Line Connection
3. Inp3. Inp
ut / Output Line Connectionut / Output Line Connection
3-1 Fuse
Because there is no built-in fuse, use an external fuse in accordance with Table 3-1.
In addition, when supplying input voltage from one DC power supply to multiple DC/DC converters,
attach a fast breaking fuse to the input of each converter upon use.
Put the fuse on the +Vin side when the –Vin side is used for GND, and on the -Vin side when the +Vin side is used for GND.
When a fuse breaks, the Alarm Signal does not operate.
Table 3-1 Recommended Fuse Capacity
Converter Type CC15-24xxSxx-E CC30-24xxSxx-E
Fuse Capacity 2A 4A
Converter Type CC15-48xxSxx-E CC30-48xxSxx-E
Fuse Capacity 1A 2A
3-2 Input Side External Capacitor
This converter is equipped with a capacitor on the input side and does not need an external capacitor to be attached to the input
terminal side when the length of the line connection from the DC power source is short (less than 1 meter is estimated).
However, when the line to the input terminal is long, or when the inductance increases, operation may become unstable, therefore
insert external capacitor Cin between the +Vin and –Vin terminals.
Lin
+Vin
DC
Input
Cin
-Vin
Fuse
Fig. 3-2-1 Cin is necessary when an inductance filter is inserted in the input line.
+Vin
DC
Input
Cin
-Vin
Fuse
Fig. 3-2-2 Cin is necessary when the input line is long.
Table 3-2 Recommended External Capacitor Cin Values
Converter Type CC15-24xxSxx-E CC30-24xxSxx-E
Recommended Cin Value 33μF 68μF
Converter Type CC15-48xxSxx-E CC30-48xxSxx-E
Recommended Cin Value 10μF 22μF
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
3-3 Input Ripple Noise Voltage Reduction (Noise Terminal Voltage Reduction)
This converter has a built-in input filter circuit, in addition, by connecting an input filter as shown in Figure 3-3,
input ripple noise voltage (noise terminal voltage) can be decreased.
L1
+Vin
DC
Input
C1
-Vin
Fuse
Fig. 3-3 Connection Diagram for Input Ripple Noise Reduction Filter
3-4 Prevention of Reverse Connection
This converter does not have a protection circuit to protect against an input voltage reverse polarity connection. Damage may
occur if reverse polarity voltage is applied to the input terminal. When the possibility of the application of reverse polarity voltage
exits, attach an external protection circuit as shown in Figure 3-4.
+Vin
DC
Input
-Vin
Fuse
Fig. 3-4 Reverse Connection Prevention Circuit
3-5 Output Side External Capacitor
When connecting a pulse load to this converter, connect capacitor Cout between the +Vout and –Vout terminals.
+Vout
Pulse
Cout
-Vout
Fig. 3-5 Output Side External Capacitor Connection Method
Table 3-5 Recommended External Capacitor Cout Values
CCxx-xx03Sxx-E
Converter Type
Recommended Cout Value
CCxx-xx05Sxx-E
(3.3V/5.0V 出力)
22 ~ 4700μF 0.1 ~ 2200μF
load
CCxx-xx12Sxx-E CCxx-xx15Sxx-E
(12V/15V 出力)
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
3-6 Output Ripple Noise Voltage Measurement Method
When measuring the output ripple noise voltage of this converter, the value differs greatly, depending on the measurement method.
Measurement is to be made close to the output terminal, do not make a loop when connecting the probe in order to avoid
picking up magnetic flux. Also, note that the measured value will vary greatly as a result of the frequency band of the ripple
voltmeter or oscilloscope used for measuring. The TDK ripple noise measurement is made according to the method shown in
Figure 3-6.
3.3V,5V output : Cout=22μF
+Vin
+Vout
12V,15V output : Cout=0.1μF
DC
Input
-Vin
Cout
-Vout
Load
25mm
Oscilloscope
Bw:100MHz
R
1.5m 50Ω Coaxial Cable
C
JEITA attachment R=50Ω C=0.1μF
Fig. 3-6 Ripple Noise Voltage Measurement Circuit
【Caution when Adding External Capacitor Cout】
External capacitor Cout may influence the output ripple voltage by the ESR and ESL and inductance of the wiring. In particular,
caution is required if low ESR ceramic capacitors, etc. are connected, resonance will occur between the capacitor and the wiring
inductance and the ripple component may increase.
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
4. Terminal Function / Protection Function / Series
4. Terminal Function / Protection Function / Series Connection
4. Terminal Function / Protection Function / Series4. Terminal Function / Protection Function / Series
Connection・・・・Parallel Connection
Connection Connection
Parallel Connection
Parallel ConnectionParallel Connection
4-1 Remote Control (RC Terminal)
When the input voltage is in an ON condition, the RC terminal can be used to control output ON/OFF.
When not using the Remote Control function, either open the RC terminal or connect it to the –Vin terminal.
We recommend connection to the –Vin terminal in order to prevent malfunction caused by noise.
Table 4-1-1 RC Terminal Specifications
Logic
L Level
H Level 10 +Vin OFF
※ When the –Vin terminal is used for GND.
If the RC terminal is set at L Level or open condition, the output is ON.
If the RC terminal is set at H Level, the output is OFF.
When the converter is in a latch stop condition because of a protection function, after removing the abnormal factor, use the
Remote Control to turn the output OFF, then turn ON after the lapse of 1 second minimum for recovery to occur.
+Vin
RC Terminal Voltage
Min. [V] Max. [V]
0 1.2
or Open
Output Condition
ON
+Vin
RC
DC
Input
Control
Signal
RC
R2
Qrc
DC
Input
Control
RC
Signal
R1
RC
R2
Qrc
-Vin
Fig. 4-1-1 RC Terminal Connection Method 1 Fig. 4-1-2 RC Terminal Connection Method 2
Table 4-1-2 Recommended Value of External Resistor R1 when using the RC Terminal
Converter Type CCxx-24xxSxx-E CCxx-48xxSxx-E
R1 Recommended Value 22kΩ 220kΩ
R2 (Typical) 91kΩ 194kΩ R3 (Typical) 15kΩ 47kΩ
When a connection method as shown in Fig. 4-1-1 is used, and if capacitance exists between the +Vin and RC terminals, there is
the possibility of the RC terminal voltage becoming unstable because of the capacitance in the case when the input voltage is
changed suddenly (it becomes a factor causing malfunction). In that case, we recommend the connection method shown in Fig.
4-1-2. In addition, the rating of the external transistor used is as follows: Vce: greater than the Vin, Ic: minimum 10mA.
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
R3
-Vin
R3
4-2 Alarm (ALM Terminal)
By means of the ALM terminal the presence / absence of an abnormal state can be monitored.
When not using the alarm output function, set the ALM terminal in the open condition.
Sink current
10mA(max)
ALM
8V
(typ)
-Vin
Fig. 4-2 Alarm Terminal Internal Circuit
When the output turns OFF as a result of over-current protection, low-voltage protection, over-voltage protection, the
Alarm Signal will operate. At that time, the ALM terminal voltage is L level (the –Vin terminal is 0.3V or less).
When multiple units are operated in series or in parallel, etc., and the ALM terminals are connected together, when an
abnormality occurs and the alarm signal operates in 1 unit, the other connected units can be stopped.
Converters having different output voltages can be connected. (This applies only to converters belonging to this series).
Use the ALM terminal at a maximum sink current of 10mA.
The maximum number of units to which the ALM terminal can be connected is 20 units.
4-3 Simultaneous Start-Up / Stop (PO Terminal)
By means of the PO terminal, the start-up / stop timing of multiple converter units can be synchronized.
To do so, connect the PO terminals to each other.
When not using the simultaneous start-up / stop function, set the PO terminal in the open position.
Converters having different output voltages can be connected. (This applies only to converters belonging to this series).
The maximum number of units to which the PO terminal can be connected is 20 units.
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
4-4 Over-Current Protection (OCP) & Low-Voltage Protection (LVP)
These converters are equipped with built-in over-current protection and low-voltage protection circuits.
When the output current exceeds the over-current setting point the over-current protection circuit operates and the output
voltage begins to fall. When the output voltage falls below 90% of the rated voltage, the low-voltage protection circuit
operates and shuts down the output.
There is a time lag of approx. 100 ms from the time the LVP circuit detects an abnormality until the output is shut down.
When the output shuts down, the Alarm signal operates.
When the output shuts down and operation stops, after the cause of the over-current or low-voltage is removed, recovery
can be achieved either by restarting the input power source or by using the remote control function.
4-5 Over-Voltage Protection
These converters are equipped with a built-in over-voltage protection circuit.
When the output voltage becomes 115%~145% of the rated voltage, the over-voltage protection circuit operates.
When the output current is less than 50% of the rated current, depending on the failure mode, operation at voltage exceeding
the upper limit may occur.
When the output shuts down, the Alarm signal operates.
When the output shuts down and operation stops, after the cause of the over-current or low-voltage is removed, recovery
can be achieved either by restarting the input power source or by using the remote control function.
4-6 Operation Sequence
The input voltage, output voltage, RC, PO, ALM terminal operation sequence of these converters is shown in Figure 4-6.
20~50ms
Vin
Vout
Start-up
PO
ALM
100ms typ
OCP set
LVP set
ALM set ALM reset
RC
Fig. 4-6 Sequence Chart
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
RC:OFF RC:ON
4-7 Series Operation
For this converter series, it is possible to operate models of the same type in series.
The maximum number of converters which can be operated in series is 2.
When using series operation, connect the +Vin terminal , -Vin terminal ,PO terminal and ALM terminal of each converter to
the same terminal of the other.
DC
Input
Fuse SW
LED
Fuse
+Vin
-Vin
PO RC
ALM
+Vin
-Vin
PO RC
ALM
+Vout
-Vout
Load
+Vout
-Vout
Fig. 4-7 Example Series Operation Connection
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
4-8 Parallel Operation
For this converter series, it is possible to operate models of the same type in parallel.
The maximum number of converters which can be operated in parallel is 10.
When using parallel operation, connect the PO terminal and ALM terminal of each converter to the same terminal of the
other.
As much as possible, insure that the width, length and material of the wiring used for connecting each converter to the load
are identical. There is the possibility that the current balance will collapse if there is a difference in the wiring from each
respective converter to the load.
DC
Input
Fuse SW
LED
Fuse
+Vin
-Vin
PO RC
ALM
+Vin
-Vin
PO RC
ALM
+Vout
Load
-Vout
+Vout
-Vout
Fig. 4-8 Example Parallel Operation Connection
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
5. Soldering Conditions / Cleaning Condi
5. Soldering Conditions / Cleaning Conditions / Installation Method
5. Soldering Conditions / Cleaning Condi5. Soldering Conditions / Cleaning Condi
tions / Installation Method
tions / Installation Methodtions / Installation Method
5-1 Soldering Conditions
【DIP Model】
Perform soldering of the converter to the board according to the conditions shown in Table 5-1.
Soldering is to be performed only one time per pin.
Table 5-1 Solder Conditions for DIP Models
Method Condition
Solder Dip 260℃ 10 sec Max.
Solder Iron 380℃ 3 sec Max.
【SMD Model】
Lead free solder / high temperature reflow process conditions are shown in Figure 5-1.
The number of times permitted for reflow is 1 time.
TP
225
Ty2 Ty1
部品表面温度(℃)
A 'A B B ' C
ハンダ付け時間(s)
Fig. 5-1 Reflow Process Conditions for SMD Models
A
A '
B
B '
C
1.0~3.0℃/sec
Ty1:150±10℃ Ty2:170±10℃
Ty1~Ty2:20~100sec
1.0~4.0℃/sec
TP:MAX 245℃
225℃以上:20~40sec
-1.0~-5.0℃/sec
5-2 Washing Conditions
We do not recommend board cleaning after soldering, we recommend not performing cleaning, but when cleaning becomes
necessary, perform it according to the conditions shown in Table 5-2
Table 5-2 Cleaning Fluid and Test Conditions
Cleaning Fluid Cleaning Method Time
Isopropyl Alcohol
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
Ultrasonic Wave 60℃ 60 sec.
Cold Bath Cleaning R.T 60 sec.
Vapor Cleaning 83℃ 60 sec.
5-3 Installation Method
When installing the converter on the board, avoid having trace pattern, etc. in the slanted line area shown in Figure 5-3 because
there is the possibility of an insulation defect occurring.
34.71.75
38.2
CC15-xxxxxSx-E CC30-xxxxxSx-E
(1.75)
29.6
Out line
34.71.75
38.2
Fig. 5-2 Trace Pattern Prohibited Area
(1.75)
33.5
Out line
※Contact TDK-Lambda concerning items not mentioned or items which are not clear.
Loading...