TDK-Lambda 2U GENESYS 5KW Technical Manual

TECHNICAL MANUAL FOR
2U GENESYS
TM
5
Programmable DC Power Supplies
Document: 83
-
515-000Rev B
TDK
-Lambda
A
mericas Inc.
405 Essex Road, Neptune, NJ 07753
Tel:
(732) 922
-
9300
Fax:
(732) 922
-
9334
Web: www.
US.TDK
-
Lambda.com/HP
GENESYSManual Supplement
FOR UNITS EQUIPPED WITH “IEMD” OPTION,
ALSO REFER TO MANUAL 83
-
030
-
200 IEMD.
FOR UNITS EQUIPPED WITH “LAN” OPTION,
REFER TO MANUAL 83
-
034
-
100.
TABLE OF
CONTENTS
WARRANTY…………………………………………………………………………………………….
Pg. 1
SAFETY INSTRUCTIONS……………………………………………………………………………..
Pg. 2
GERMAN SAFETY INSTRUCTIONS…………………………………………………………………
Pg. 4
CHAPTER 1 GENERAL INFORMATION
…………………………………………………………...
Pg. 6
1.1 USER MAN
UAL CONTENT……………………………………………………………………….
Pg. 6
1.2 INTRODUCTION……………………………………………………………………………………
Pg. 6
1.2.1 General description…………………………………………………………………………..
Pg. 6
1.2.2 Models covered ……………………………………………………………………………...
Pg. 6
1.2.3 Featu
res and options ………………………………………………………………………..
Pg. 6
1.2.4 Multiple output power system ………………………………………………………………
Pg. 7
1.2.5 Control via the serial communication port…………………………………………………
Pg. 7
1.2.6 Analog voltage programming and monitor
ing…………………………………………….
Pg. 7
1.2.7 Parallel operation…………………………………………………………………………….
Pg. 7
1.2.8 Output connections………………………………………………………………………….
Pg. 7
1.2.9 Cooling and mechanical construction……………………………………………………..
Pg. 8
1.3 ACCESSORIES
…………………………………………………………………………………….
Pg. 8
1.3.1 General………………………………………………………………………………………..
Pg. 8
1.3.2 Serial link cable………………………………………………………………………………
Pg. 8
1.3.3 Misc. hardware……………………………………………………………………………….
Pg. 8
1.3.4 AC cables
…………………………………………………………………………………….
Pg. 8
CHAPTER 2 SPECIFICATIONS
……………………………………………………………………...
Pg. 9
2.1 OUTPUT RATING………………………………………………………………………………….
Pg. 9
2.2 INPUT CHARACTERISTICS……………………………………………………………………...
Pg. 9
2.3 CONSTANT VOLTAGE MODE…………
………………………………………………………...
Pg. 9
2.4 CONSTANT CURRENT MODE…………………………………………………………………..
Pg. 9
2.5 ANALOG PROG
RAMM
ING AND MONITORING……………………………………………….
Pg. 9
2.6 PROGRAMMING AND READBACK……………………………………………………………..
Pg. 10
2.7 PROTECTIVE FUNCTIONS……………………………………
…………………………………
Pg. 10
2.8 FRONT PANEL…………………………………………………………………………………….
Pg. 10
2.9 ENVIRONMENTAL CONDITIONS……………………………………………………………….
Pg. 10
2.10 MECHANICAL…………………………………………………………………………………….
Pg. 10
2.11 SAFETY/EMC……………………………………………………………………………………..
Pg. 10
2.12 SUPPLEMENTAL CHARACTERISTICS……………………………………………………….
Pg. 11
2.13 OUTLINE DRAWINGS…………………………………………………………………………...
Pg. 12
CHAPTER 3 INSTALLATION
………………………………………………………………………..
Pg. 13
3.1 GENERAL…………………………………………………………………………………………...
Pg. 13
3.2 PREPA
RATION FOR USE………………………………………………………………………...
Pg. 13
3.3 INITIAL INSPECTION……………………………………………………………………………...
Pg. 13
3.4 RACK MOUNTING…………………………………………………………………………………
Pg. 13
3.4.1 To install the power supply in a rack……………………………………………………..
Pg. 14
3.4.2 Rack mount slides………………………………………………………………………….
Pg. 14
3.5 LOCATION MOUNTING AND COOLING……………………………………………………….
Pg. 14
3.6 AC SOURCE REQUIREMENTS………………………………………………………………….
Pg. 14
3.7 AC INPUT POWER CONNECTION……………………………………………………………...
Pg. 15
3.7.1 AC input connector………………….………………………………………………………
Pg. 15
3.7.2 AC input cord………………………………………………………………………………..
Pg. 15
3.7.3 AC input wire connection………………….………………………………………………..
Pg. 15
3.8 TURN
-
ON CHECKOUT PROCEDURE……………………………………………
…………….
Pg. 17
3.8.1 General……………………………………………………………………………………….
Pg. 17
3.8.2 Prior to operation…………………………………………………………………………….
Pg. 17
3.8.3 Constant voltage check……………………………………………………………………..
Pg. 17
3.8.4 Constant current check…
…………………………………………………………………..
Pg. 17
3.8.5 OVP check…………………………………………………………………………………...
Pg. 18
3.8.6 UVL check……………………………………………………………………………………
Pg. 18
3.8.7 Foldback check……………………………………………………………………………...
Pg. 18
TABLE OF CONTENTS
3.8.8 Address se
t
ting……………….……………………………………………………………..
Pg. 18
3.8.9 Baud rate se
t
ting…………………………………………………………………………….
Pg. 18
3.9 CONNECTING THE LOAD………………………………………………………………………..
Pg. 19
3.9.1 Load Wi
r
ing…………………………………………………………………………………..
Pg
. 19
3.9.2 Current Carrying Capa
c
ity………………………………………………………………….
Pg. 19
3.9.3 Wire termination…………………………………………………………………………….
Pg. 20
3.9.4 Noise and Impedance E
f
fects……………………………………………………………...
Pg. 20
3.9.5 Inductive loads………………
……………………………………………………………….
Pg. 20
3.9.6 Making the load conne
c
tions……………………………………………………………….
Pg. 21
3.9.7 Connecting single loads, local sensing (d
e
fault)…………………………………………
Pg. 24
3.9.8 Connecting single loads, remote sen
s
ing…………………………
……………………...
Pg. 24
3.9.9 Connecting multiple loads, radial distribution method…………...……………………...
Pg. 24
3.9.10 Multiple loads connection with distribution term
i
nals…………………………………..
Pg. 25
3.9.11 Grounding ou
t
puts………………………………………………………
…………………
Pg. 25
3.10 LOCAL AND REMOTE SENSING………………………………………………………………
Pg. 26
3.10.1 Sensing wi
r
ing……………………………………………………………………………...
Pg. 26
3.10.2 Local sen
s
ing……………………………………………………………………………….
Pg. 26
3.10.3 Remote sen
s
ing……………………………………
………………………………………
Pg. 27
3.10.4 J2 sense connector technical inform
a
tion………………………………………………
Pg. 27
3.11 REPACKAGING FOR SHIPMENT………………………………………………………………
Pg. 27
CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS
………………...
Pg. 28
4.1 INTRODUCT
ION……………………………………………………………………………………
Pg. 28
4.2 FRONT PANEL
CONTROLS AND INDICATORS…………………………………………….
Pg. 28
4.3 REAR PANEL
CONNECTIONS AND CONTROLS…………………………………………..
Pg. 30
4.4 REAR PANEL SW1 SETUP SWITCH……………………………………………………………
Pg. 31
4.4.1 SW1
positions fun
c
tions……………………………………………………………………
Pg. 32
4.4.2 Resetting the switch…………………………………………………………………………
Pg. 32
4.5 REAR PANEL J1 PROGRAMMING AND MONITORING CONNECTOR……………………
Pg. 33
4.5.1 Making J1 conne
c
tions…………………………………………………………………….
.
Pg. 33
CHAPTER 5 LOCAL OPERATION
………………………………………………………………….
Pg. 35
5.1 INTRODUCTION…………………………………………………………………………………..
Pg. 35
5.2 STANDARD OPERATION…………………………………………………………………………
Pg. 35
5.2.1 Constant Voltage Mode…………………………………………………………………….
Pg.355.2.2 Constant Current Oper
a
tion………………………………………………………………..
Pg. 35
5.2.3 Automatic Cros
s
over………………………………………………………………………..
Pg. 36
5.3 OVER VOLTAGE PROTECTION (OVP)………………………………………………………...
Pg. 36
5.3.1 Setting the OVP level…………………
…………………………………………………….
Pg. 36
5.3.2 Activated OVP protection indic
a
tions……………………………………………………..
Pg. 36
5.3.3 Resetting the OVP ci
r
cuit…………….. …………………………………………………...
Pg. 36
5.4 UNDER VOLTAGE LIMIT……………………………………………………………………….. .
Pg. 37
5.4.1 Setting the UVL level………………………………………………………………………..
Pg. 37
5.5 FOLDBACK PROTECTION……………………………………………………………………….
Pg. 37
5.5.1 Setting the Foldback prote
c
tion…………………………………………………………….
Pg. 37
5.5.2 Resetting activated Foldback prote
c
tion………
…………………………………………..
Pg. 37
5.6 OUTPUT ON/OFF CONTROL…………………………………………………………………….
Pg. 37
5.7 OUTPUT SHUT
-
OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR………………
Pg. 37
5.8 ENABLE/DISABLE CONTROL VIA………………………………………………………………
Pg. 38
5.9 CV/CC SIGNAL……………………………………
………………………………………………..
Pg. 38
5.10 PS OK SIGNAL……………………………………………………………………………………
Pg. 38
5.11 SAFE START AND AUTO
-
RESTART MODES………………………………………………..
Pg. 39
5.11.1 Automatic start mode………………………………………………………………………
Pg. 39
5.11.2 Safe start mode……………
………………………………………………………………..
Pg. 39
5.12 OVER TEMPERATURE PROTECTION (OTP)………………………………………………..
Pg. 39
5.13 LAST SETTING MEMORY………………………………………………………………………
Pg. 39
5.14 SERIES OPERATION…………………………………………………………………………….
Pg. 39
5.14.1 Series connection for
increased output vol
t
age…………………………………………
Pg. 40
5.14.2 Series connection for positive and negative output vol
t
age……………………………
Pg. 41
5.15 PARALLEL OPERATION……………………………………………………………………….
Pg. 42
TABLE OF CONTENTS
5.15.1 Basic parallel operati
on……………………………………………………………………..
Pg. 42
5.15.2 Advanced parallel operation………………………………………………………………..
Pg. 42
5.16 DAISY
-
CHAIN SHUT
-
OFF CONNECTION…………………………………………………….
Pg. 45
5.17 FRONT PANEL LOCKING……………………………………………………………………….
Pg. 45
5.17.1 Unlo
cked front panel……………………………………………………………………….
Pg. 45
5.17.2 Locked front panel………………………………………………………………………….
Pg. 45
CHAPTER 6 REMOTE ANALOG PROGRAMMING………………………………………………
Pg. 46
6.1 INTRODUCTION……………………………………………………………………………………
Pg. 46
6.2 LOCAL/RE
MOTE ANALOG CONTROL…………………………………………………………
Pg. 46
6.3 LOCAL/REMOTE ANALOG INDICATION……………………………………………………….
Pg. 46
6.4 REMOTE VOLTAGE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT………..
Pg. 47
6.5 RESISTIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT…………………..
Pg
. 48
6.6 REMOTE MONITORING OF OUTPUT VOLTAGE AND CURRENT………………………...
Pg. 49
CHAPTER 7 RS232 & RS485 REMOTE CONTROL
……………………………………………...
Pg. 50
7.1 INTRODUCTION……………………………………………………………………………………
Pg. 50
7.2 CONFIGURATION………………………………………………………………………………….
Pg. 50
7.2.1 Default se
t
ting………………………………………………………………………………...
Pg. 50
7.2.2 Address se
t
ting……………………………………………………………………………….
Pg. 50
7.2.3 RS232 or RS485 sele
c
tion………………………………………………………………….
Pg. 50
7.2.4 Baud rate se
t
ting………………………………
……………………………………………..
Pg. 50
7.2.5 Setting the unit into Remote or Local mode……………………………………………….
Pg. 50
7.2.6 RS232/458 port at Local mode……………………………………………………………..
Pg. 51
7.2.7 Front panel in Remote mode……………………………………………………………….
Pg. 51
7.3 REAR PANEL RS232/485 CONNECTOR……………………………………………………….
Pg. 51
7.4 MD MODE OPTION (Factory Installed)………………………………………………………….
Pg. 52
7.4.1 MD Mode Description……………………………………………………………………….
Pg. 52
7.4.2 MD Mode enable
-
Serial communication mod
e…………………………………………
Pg. 52
7.4.3 MD Mode SRQ………………………………………………………………………………
Pg. 52
7.4.4 Communication Collisions………………………………………………………………….
Pg. 52
7.4.5 MD Mode SRQ Retransmission……………………………………………………………
Pg. 52
7.5 CONNECTING POWER SUPPLI
ES TO RS232 OR RS485 BUS…………………………….
Pg. 53
7.5.1 Single power su
p
ply………………………………………………………………………….
Pg. 53
7.5.2 Multi power supply connection to RS232 or RS485 BUS………………………………..
Pg. 54
7.6 COMMUNICATION INTERFACE PROTOCOL…………………………………………………
Pg. 54
7.6.1 Data fo
r
mat…………………………………………………………………………………...
Pg. 54
7.6.2 Addres
s
ing……………………………………………………………………………………
Pg. 54
7.6.3 End of message……………………………………………………………………………..
Pg. 54
7.6.4 Command r
e
peat………………………………………………………………………
…….
Pg. 54
7.6.5 Chec
k
sum…………………………………………………………………………………….
Pg. 54
7.6.6 Acknow
l
edge………………………………………………………………………………….
Pg. 54
7.6.7 Error me
s
sage………………………………………………………………………………..
Pg. 55
7.6.8 Bac
k
space…………………………………………………………………………………
….
Pg. 55
7.7 ERROR MESSAGES………………………………………………………………………………
Pg. 55
7.8 COMMAND SET DESCRIPTION…………………………………………………………………
Pg. 55
7.8.1 General guides……………………………………………………………………………….
Pg. 55
7.8.2 Command set categ
o
ries……………………………………………………………………
Pg. 55
7.8.3 Initialization control co
m
mands……………………………………………………………..
Pg. 56
7.8.4 ID control co
m
mands………………………………………………………………………..
Pg. 56
7.8.5 Output control co
m
mands…………………………………………………………………..
Pg. 56
7.9 GLOBAL OUTPUT COMMANDS……………
……………………………………………………
Pg. 58
7.9.1 General……………………………………………………………………………………….
Pg. 58
7.10 SINGLE BYTE COMMANDS……………………………………………………………………
Pg. 59
7.10.1 General……………………………………………………………………………………..
Pg. 59
7.10.2 Global commands without respo
nse…………………………………………………….
Pg. 59
7.10.3 Global commands with response………………………………………………………..
Pg. 60
7.10.4 Addressed commands with response…………………………………………………..
Pg. 60
7.10.5 Addressed commands without response……………………………………………….
Pg 61
TABLE OF CONTENTS
7.10.6 Status Control Co
m
mands………………………………………………………………...
Pg. 63
7.11 STATUS, ERROR AND SRQ REGISTERS……………………………………………………
Pg. 63
7.11.1 General Description……………………………………………………………………….
Pg. 63
7.11.2 Condition
al regi
s
ters……………………………………………………………………….
Pg. 64
7.11.3 Service Request Enabled and Event Regi
s
ters………………………………………..
Pg. 65
7.12 SERIAL COMMUNICATION TEST SET
-
UP………………………………………………….
Pg. 68
CHAPTER 8 ISOLATED ANALOG PROGAMMING
OPTION
………………………………
….
Pg. 69
8.1 INTRODUCTION……………………………………………………………………………………
Pg. 69
8.2 SPECIFICATIONS………………………………………………………………………………….
Pg. 69
8.2.1 0
-
5V/0
-
10V o
p
tion…………………………………………………………………………...
Pg. 69
8.2.2 4
-
20mA o
p
tion……………………………………………………………………………..
P
g. 69
8.3 ISOLATED PROGRAMMING & MONITORING CONNECTOR………………………………
Pg. 70
8.4 SETUP AND OPERATING INSTRUCTIONS……………………………………………………
Pg. 71
8.4.1 Setting up the power supply for 0
-
5/0-10V Isolated Programming and Monito
r
ing……
Pg. 71
8.4.2 Settin
g up the power supply for 4
-
20mA Isolated Programming and Monito
r
ing……..
Pg. 71
9.1 INTRODUCTION……………………………………………………………………………………
Pg. 72
9.2 UNITS UNDER WARRANTY……………………………………………………………………...
Pg. 72
9.3 PERIODIC MAINTENANCE……………………………………………………………………….
Pg. 72
9.4 ADJUSTMENT AND CALIBRATION……………………………………………………………..
Pg. 72
9.5 PARTS REPLACEMENT AND REPAIRS………………………………………………………..
Pg. 72
9.6 TROUBLESHOOTING……………………………………………………………………………..
Pg. 72
9.7 FUSE RATING……………………………………………………………………………………...
Pg. 73
83-000-016 Rev.
F
WARRANTY
This
TDK
-
Lambda
Americas Inc.
product is warranted against defects in materials and workmanship for
a period of five years from date of shipment. During the warranty period,
TDK
-
Lambda
Americas Inc.
will, at it’s option, either repair or replace
products which prove to be defective.
LIMITATION OF WARRANTY
The warranty shall not apply to defects resulting from improper or inadequate usage or maintenance by
the buyer, buyer supplied products or
interfacing. The warranty shall not apply to defects resulting from
unauthorized modifications, or from operation exceeding the environmental specifications of the
product, or if the QA seal has been removed or altered by anyone other than
TDK
-
Lambda
Ameri
cas
Inc.
authorized personnel.
TDK
-
Lambda
Americas Inc.
does not warrant the buyer’s circuitry or
malfunctions of
TDK
-
Lambda
Americas Inc.
products resulting from the buyer’s circuitry. Furthermore,
TDK
-
Lambda
Americas Inc.
does not warrant any damage occu
rring as a result of the buyer’s circuitry
or the buyer’s
-
supplied products. THIS LIMITED WARRANTY IS IN LIEU OF, AND
TDK
-
LAMBDA
AMERICAS INC
DISCLAIMS AND EXCLUDES, ALL OTHER WARRANTIES, STATUTORY, EXPRESS
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE, OR OF CONFORMITY TO MODELS OR SAMPLES.
WARRANTY SERVICE
This product must be returned to an authorized
TDK
-
Lambda
Americas Inc.
service facility for repairs or
other warranty service. For p
roducts returned to
TDK
-
Lambda
Americas Inc.
for warranty service, the
buyer shall prepay shipping charges to
TDK
-
Lambda
Americas Inc
. If the unit is covered under the
foregoing warranty then
TDK
-
Lambda
Americas Inc.
shall pay the shipping charges to retu
rn the
product to the buyer. Refer to Section 3.11 for repackaging for shipment.
DISCLAIMER
The information contained in this document is subject to change without notice.
TDK
-
Lambda
Americas
Inc.
shall not be liable for errors contained in this document
or for incidental or consequential damages
in connection with the furnishing, performance or use of this material. No part of this document may be
photocopied, reproduced or translated into another language without the prior written consent of
TDK
-
Lambda
A
mericas Inc
.
TRADEMARK INFORMATION
Genesys
power supply is a trademark of
TDK
-
Lambda
Americas Inc.
Microsoft
and Windows
are trademarks of Microsoft Corporation.
THE FCC WANTS YOU TO KNOW
This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment.
This equipment generates, uses and can radiate radio frequency energy
and, if not installed and used in
accordance with the instructions, may cause harmful interference to radio communications.
Operation of this equipment i
n a residential area is likely to cause harmful interference, in which case
the user will be required to correct the interference at his own expense.
FCC WARNING
Modifications not expressly approved by manufacturer could void the user authority to ope
rate the
equipment under FCC Rules.
1
83-515-000
Rev.
B
2
SAFETY INSTRUCTIONS
CAUTION
The following safety precautions must be observed during all phases of operation, service and r
e
pair of
this equipment. Failure to comply with the safety p
recautions or warnings in this document violates
safety standards of design, manufacture and intended use of this equipment and may i
m
pair the built
-
in prote
c
tions within.
TDK
-
Lambda
Americas Inc. shall not be liable for user’s failure to comply with these
requirements.
INSTALLATION CATEGORY
The Genesys
TM
power supply series has been evaluated to INSTALLATION CATEGORY II. Install
a
tion
category (over voltage category) II: local level, appliances, portable equipment etc. With smaller tra
n-
sient over voltage th
an Installation Category (over voltage category) III.
GROUNDING
This product is a Safety Class 1 instrument. To minimize shock hazard, the instrument chassis must be
connected to an electrical ground
(Safety ground)
. The instrument must be connected to the
AC power
supply mains through a three conductor power cable, with the ground wire firmly connected to an ele
c-
trical ground (safety ground) at the power outlet.
For instruments designed to be hard
-
wired to the supply mains, the protective earth terminal mu
st be
connected to the safety electrical ground before another connection is made. Any interruption of the
protective ground conductor, or disconnection of the protective earth terminal will cause a potential
shock hazard that might cause personal injury.
FUSES
Fuses must be changed by authorized
TDK
-
Lambda
Americas Inc. service personnel only. For conti
n-
ued prote
c
tion against risk of fire, replace only with the same type and rating of fuse. Refer to Chapter
9 for fuse ra
t
ings.
INPUT RATINGS
Do not us
e AC supply, which exceeds the input voltage and frequency rating of this instrument. The
input voltage and frequency rating of the Genesys
TM
power supply series is: 190
-
240V, 50/60Hz for
three phase 200V models and 380
-
415, 50/60 Hz for three phase 400V m
odels. For safety reasons,
the mains supply voltage fluctu
a
tions should not exceed +/
-
10% of nominal voltage.
LIVE CIRCUITS
Operating personnel must not remove the instrument cover. No internal adjustment or component r
e-
placement is allowed by
TDK
-
Lambda
A
mericas Inc. qualified personnel. Never replace components
with power cable connected. To avoid injuries, always disconnect power, discharge circuits and remove
external voltage source before touching components.
PARTS SUBSTITUTIONS & MODIFICATIONS
Parts s
ubstitutions and modifications are allowed by authorized
TDK
-
Lambda
Americas Inc. service
perso
n
nel only. For repairs or modifications, the instrument must be returned to an authorized
TDK
-
Lambda
Americas Inc. service faci
l
ity.
WA
RNING
OUTPUT TERMINALS GROUNDING
There is a potential shock hazard at the RS232/RS485 and the IEEE ports when using power su
p
plies
with rated or combined voltage greater than 400V and the Positive Output of the Power Supply is
grounded. Do Not connect the
Positive Output to ground when using the RS232/RS485 or IEEE.
83-515-000
Rev.
B
3
SAFETY INSTRUCTIONS
ENVIRONM
ENTAL CONDITIONS
The Genesys
TM
power supply series safety approval applies to the following operating cond
i
tions:
*Indoor use
*Ambient temperature: 0°C to 50°C
*Maximum relative humidity: 90% (no condensation)
*Altitude: up to 3000m
*Pollution degree 2
Do not use this product in environments with strong Electromagnetic field, corrosive
gas and conductive materials.
CAUTION Risk of Electrical Shock
On (Supply)
Instruction manual symbol. The instr
u
ment
will be mark
ed with this symbol when it is
necessary for the user to refer to the i
n-
struction manual.
-
-
-
Direct Current (DC)
Indicates hazardous voltage.
Alternating
Current (AC)
Indicates ground terminal.
Three
-
Phase Alternatin
g Cu
r
rent
Protective Ground Conductor Terminal
Standby (Supply)
Off (Supply)
The WARNING sign denotes a hazard. An attention to a procedure is called.
Not fo
l
lowing procedure correctly could re
sult in personal injury.
A WARNING sign should not be skipped and all indicated conditions must be
fully understood and met.
The CAUTION sign denotes a hazard. An attention to a procedure is called. Not follo
w-
ing
theprocedure correctly could result in damage to the equipment. Do not proceed
beyond a CAUTION sign until all indicated conditions are fully understood and met.
FCC COMPLIANCE NOTICE:
Note: This equipment has been tested and found to comply with the limits f
or a Class A
digital device, pursuant to part 15 of the FCC Rules. These limits are designed to pr
o-
vide reasonable protection against harmful interference when the equipment is ope
r-
ated in a commercial environment. This equipment generates electro
-
magnetic
fields,
and can radiate radio frequency energy and, if not installed and used in accordance
with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful i
nterference
in which case the user will be required to correct the interference at his own expense.
3
~
83-515-000
Rev.
B
4
SICHERHEITS
-
INSTALLATIONS ANWEISUNGEN
Vorsicht
Vor Anschluss an das Netz ist die Aufstellanleitung wie nachstehend beschrieben zu beachten. Die
nachstehen
den Sicherheitsanweisugen mussen während aller Phasen des Betriebes, des Services
und der Reparatur dieser Ausrustung beachtet werden. Alle notwendigen Bedingungen die
sicherstellen, dass die Einrichtung zu keiner Gefahr im Sinne dieser Norm führen kann, s
ind in diesem
Handbuch beschrieben.
TDK
-
Lambda Americas Inc.
ist nich verantwortlich fur Fehler, die bei der Inbetriebnahme des Gerates
auf Grundlage dieser Sicherheitsanweisungen durch den Betreiber entstehen können.
Betriebsbedingungen
Die Genesys
TM
Str
omversorgungs
-
Reihe ist zur installation gemass Uberspannungs
-
Kategorie 2
entwickelt worden.
Installatios Kategorie (Uberspannungs
-
Kategories) 2 bedeutet: Kleinindustrie, Geräte, bewegliche
Ausrustung etc.. mit Uberspannungen kleiner als Installation Kateg
orie 3.
Erdungskonzep
t
Dieses Produkt ist ein Gerat mit Schutzklasse1. Damit gefahrliche Energieinhalte und Spannungen
vermieden werden, ist das Geratechassis an eine Schutzerde anzuschliessen. Das Gerat muss an die
AC-Wechselspannungsversorgung mit 3 Leit
ern (L, N, PE) angeschlossen werden. Der PE
-
Anschluss ist an einen festen Erder anzuschliessen. Bei Festverdrahtung des Gerates ist
sicherzustellen, dass der PE Anschluss als erstes durchgefuhrt wird.
Jede mogliche Unterbrechung des PE
-
Leiters oder
Trennung der PE Masses kann einen moglichen
elektrischen Schlag hervorrufen, der Personenschaden zur Folge hatte.
Vorsicht
Erdung des DC
-
Ausgangs
Es besteht Energiegefahr am RS232/RS485 und IEEE Anschluss, falls die Ausgangsspannung des
Gera
tes grosser ist als 400V und der positive Ausgangsanschluss des Netzteiles geerdet wird. Dies gilt
insbesondere auch bei Reihenschaltungen von unterschiedlichen Netzteilen. Wird die RS232/485 oder
IEEE Schnittstelle verwendet, ist darauf zu achten, dass de
r Plus
-
Ausgangsanschluss nicht geerdet
wird.
Absicherung
Sicherungen durfen nur durch autorisierte
TDK
-
Lambda Americas Inc.
Service Personen ausgetauscht
werden. Um Brandgefahr vorzubeugen, sind nur Sicherungen zu verwenden mit gleicher Bauart und
Auslosec
harakteristik. Siehe hierzu Wartungsanweisungen in Kapitel 6 bezuglich Sicherungen.
Anschluss an Versorgungsstromkreis
Der Betrieb des Gerates ist nur fur den dafur spezifizierten Wechselspannungsbereich und der
angegebenen Frequenz erlaubt.
Der Nominalein
gangsspannungsbereich der Genesys
TM
Serie liegt bei 100
-
240VAC mit 50/60Hz. Fur
einen sicheren Betrieb des Gerates ist eine Abweichung von max. +/
-
10% der Nominalspannung
erlaubt.
Spannungsfuhrende Teile
Die Gerateabdeckung darf nur im stromlosen Zustand g
eoffnet werden. Interne Modifikationen, sowie
Bauteileaustausch ist nur durch
TDK
-
Lambda Americas Inc.
qualifiziertes Personal erlaubt. Vor
Austausch von Bauteilen ist das Netzkabel bzw. Die Versorgungsspannung zu trennen.
Energieversorgungsanschlusse sind
immer zu trennen um Personenverletzungen durch gefahrliche
Energieinhalte und Spannungen auszuschliessen. Die Stromkreise sind zu entladen, extreme
Spannunsquellen sind zu entfernen bevor Bauteile bzw. Komponenten getauscht werden.
83-515-000
Rev.
B
5
Anderungen and Bauteileersatz
Ersatzteilaustausch
und Anderungen durfen nur von autorisiertem
TDK
-
Lambda Americas Inc.
SERVICE
-
PERSONEN durchgefuhrt werden. Fur Reparaturen oder Anderungen ist das
Gerat zur
TDK
-
Lambda Americas Inc.
Service
-
Niederlas
sung zu retournieren.
SICHERHEITS
-
HINWEISE
Umweltbedingungen
Die Genesys
TM
Stromversorgungs
-
Serie ist gemassden Sicherheitsabnahmen fur folgende
Betriebsbedingungen zugelassen.
*Stationare Einrichtungen in Gebauden.
*Umgebungstemperaturebereich: 0
-50°C.*M
aximale Relative Luftfeuchtigkeit: 90% (nicht kondensierend).
*Betriebshohe: bis zu 3000m.
*Verschmutzungsgrad 2.
Sicherheits
-
und Warnsymbole
VORSICHT Spannungsfuhrende Teile
-
Gefahr durch elektrischen Schlag bzw.
Energieinhalte
Handbuch
-
Symbol. Das Ge
rat bzw. Gerateteile werden mit diesem Symbol
gekennzeichnet, wenn es fur den Benutzer notwendig ist, sich auf die Anweisungen im
Handbuch zu beziehen.
Zeigt
"
spannungsfuhrende Teile“ mit gefahrlicher Spannung an.
Zeigt Masse
-
Anschluss an, keine Schu
tzerde. (z.B. Masseanschlussan einenVerbraucher).
Schutzleiter
-
Anschlussklemme.
Symbol fur Schalter oder Drucknopfe
-
Zeigt die
Symbol fur Schalter oder Drucknopfe
-
Zeigt die
-
-
-
Gleichspannung (DC)
Wechselspann
ung (AC)
3-phasen Wechselspannung
Symbol fur Bereitschaft (Standby)
Dieses Warnaufschrift weist auf eine Gefahr hin, die eine Uberprufunganweisung nach
sich ziecht. Nichteinhaltung kann zu Personenschaden fuhren. Dieser Warnhinweis darf
nicht ub
ersprungen werden und die beschriebene Vorgehensweise musstrikt verstanden
werden und dementsprechend umgesetzt werden.
Diese „Vorsichtswarnung“ weist auf eine Gefahr hin, die einer Vorkehrung bedarf.
Nichteinhaltung kann
zur Zerstorung der Anlage oder des Gerates fuhren. Bitte
berucksichtigen Sie alle Anweisungen, die dort beschreiben sind, bevor Sie mit Benutzung
der Anlage bzw. des Gerates fortfahren.
3
~
83
-515-000Rev.
B
6
CHAPTER 1 GENERAL INFORMATION
1.1 USER MANUAL CONTENT
This User’s
Manual contains the operating instructions, installation instructions and specifications of
the Genesys
TM
50
00W power supply series. The instructions refer to the standard power supplies,
including the built
-
in RS232/RS485 serial communication. For inform
ation related to operation with the
optional IEEE programming, refer to User Manual for Power Supply IEEE Programming Inte
r
face.
1.2 INTRODUCTION
1.2.1
General Description
Genesys
TM
power supplies are wide output range, high performance switching power supplies
. The
Genesys
TM
series is power factor corrected and operates from AC voltage range of 190
-
240VAC
three phase for 200V models and 380
-415
VAC three phase for 400VAC models. Output Voltage and
Current are continuously displayed and LED indicators show the co
mplete operating status of the
power supply. The Front panel controls allow the user to set the output parameters, the protections
levels (Over
-
Voltage protection, Under
-
Voltage limit and Foldback) and preview the se
t
tings. The rear
panel includes the nece
ssary connectors to control and monitor the power supply operation by remote
analog signals or by the built
-
in serial communication (RS232/RS485).GPIB programming
, LXI cert
i-
fied LAN and
Isolated
-
Analog programming/monitoring
are optional.
1.2.2
Models covered by
this Manual
Models with rated output from 0
-
8VDC/0
-
600A to 0
-
600VDC/0
-
8.5A.
Model
Voltage range
(V)
Current
range (A)
GEN 8
–6000-80-600GEN 10
-5000-100-500GEN 1
6-3100-160-310GEN 20
-2500-200-250GEN 30
-1700-300-170GEN 40
-1250-400-125GEN 60
-850-600-85GEN 80
-650-800-65GEN 100
-500-100
0-50
GEN 150
-340-150
0-34
GEN 300
-170-300
0-17GEN 600
-
8.50-
600
0-8
.5
1.2.3
Features and options
Constant Voltage / Constan
t Current with automatic crossover.
Active power factor correction.
Embedded Microprocessor Controller.
Built
-
in RS232/485 Interface.
Voltage & Current high resolution adjustment by digital encoders.
High accuracy programming/readback
-
16 bit.
Software Cali
bration (no internal trimmers / potentiometers).
Last Setting Memory.
Independent Remote ON/OFF (opto
-
isolated) and remote Enable/Disable.
Parallel operation (Master/Slave) with Active current sharing.
Remote sensing to compensate for voltage drop of power
leads.
External Analog Programming and Monitoring standard (0
-
5V or 0
-
10V, user selectable).
83
-515-000Rev.
B
7
Cooling fan speed control for low noise and extended fan life.
Zero stacking
-
no ventilation holes at the top and bottom surface of the power supply.
Optional GPIB
interface (SCPI compatible).
Optional Isolated Analog programming/monitoring (0
-
5V or 0
-
10V, user selectable and 4
-
20mA).
1.2.4
Multiple output power system
The Genesys
TM
power supplies series can be configured into a programmable power system of up to
31 units
using the built
-
in RS232/RS485 communication port and the RS485 linking cable provided
with each power supply.
In a GPIB system, each power supply can be controlled using the optional GPIB controller (factory
installed).
1.2.5
Control via the serial communicati
on port
The following parameters can be programmed /
monitored
via the serial communication port:
1.
Output Voltage setting.
2.
Output Current setting.
3.
Output Voltage measurement.
4.
Output On/Off control.
5.
Output Current measurement.
6.
Foldback protection setting
7.
Ove
r-voltage protection setting and readback.
8.
Under
-
Voltage limit setting and readback.
9.
Power
-
supply start up mode (last setting or safe mode).
1.2.6
Analog voltage programming and monitoring
Analog inputs and outputs are provided at the rear panel for analog contr
ol of the power supply. The
Output Voltage and the Current can be programmed by analog voltage or by resistor, and can be
monitored by analog voltage. The power supply output can be remotely set to On or Off and analog
signals monitor the proper operation
of the power supply and the mode of operation (CV/CC).
1.2.7
Parallel operation
Genesys
TM
power supplies of the same Output Voltage and Current rating can be paralleled in a
master
-
slave configuration with automatic current sharing to i
n
crease power availabl
e.
1.2.8
Output connections
Output connections are made to rear panel bus
-
bars for models up to 100V and to a 4
-
terminal wire
clamp connector for models above 100V rated output voltage. Either the positive or negative terminal
may be grounded or the output may b
e floated. Models up to 60VDC Rated Output shall not float ou
t-
puts more than +/
-
60VDC above/below chassis ground. Models >60VDC Rated Output shall not float
outputs more than +/
-
600VDC above/below chassis ground. Contact factory for assistance with higher
float vol
t
age applications.
Local or remote sense may be used. In remote sense, the voltage drop on the load wires should be
minimized. Refer to the specifications for the maximum vol
t
age drop value.
83
-515-000Rev.
B
8
1.2.9
Cooling and mechanical construction
The Genesys
TM
series is cooled by internal fans. At the installation, care must be taken to allow free
airflow into the power supply via the front panel and out of the power supply via the rear panel. The
Gen
e
sysTMpower supplies have a compact and lightweight packag
e, which allows easy installation
and space saving in the application equipment.
1.3 ACCESSORIES
1.3.1
General
Accessories are delivered with the power supply or separately upon ordering. The list below shows
the possible accessories and ordering n
umbers.
1.3.2
Serial Link Cable
Serial link cable, for linking power supplies by RS485 communication is provided with the power su
p-
ply.
Cable description: 0.5m length, shielded, RJ
-
45 type plugs, 8 contacts (P/N:GEN/RJ
-
45).
1.3.3
Misc. hardware
DB25 plug (AMP, 749809
-
9).Strain relief for AC cord.
Output terminal shield
Output bus bar connection hardware.
1.3.4
AC cables
AC cables are not provided with the power supply.
Refer to Table 1
-1for recommended AC input cables (customer supplied). Add a non
-
locking plug
approved b
y the national safety standards of the county of usage.
AC Input Range
AC Input Cable
190-240V
~
, Three Phase
4 x 1
2
AWG (3 wire plus safety ground), stranded
copper, 300V, 60
°
C minimum, rated for
2
5A. 3m max.
length, outer diameter: 9
~
11mm.
380-415V
~
, Th
ree Phase
4 x 1
4
AWG (3 wire plus safety ground), stranded
copper, 600V, 60
°
C minimum, rated for 1
5
A. 3m max.
length, outer diameter: 9
~
11mm.
Table 1
-1: Recommended AC input cable
CAUTION
Observe all torque guidelines within this manual. Over
-
torquing may da
m
age
Unit or accessories. Such damage is not covered under manufacturers warranty.
83
-515-000Rev.
B
9
CHAPTER 2 SPECIFICATIONS
83
-515-000Rev.
B
10
83
-515-000Rev.
B
11
NOTES:
*1: Minimum voltage is guarantee
d to maximum 0.2% of the rated output voltage.
*2: Minimum cu
r
rent is guaranteed to maximum 0.4% of the rated output current.
*3: For cases where conformance to various safety standards (UL, IEC etc.) is required, to be
described as 190
-
240Vac (
50/60Hz)
for3-
Phase 200V models
and 380
~
415Vac (50/60Hz) for 3
-
Phase 400V mo
d
els.
*4: 3
-
Phase 200V models: at 200Vac input voltage
3
-
Phase 400V: at 380Vac input voltage. With rated output power.
*5: Not including EMI fil
t
er inrush cu
r
rent, less than
0.2mSec.
*6: 3
-
Phase 200V mo
d
els: 170
~
265Vac, constant load.
3
-
Phase 400V models: 342
-
460Vac, constant load.
*7: From No
-
load to Full
-
load, constant input voltage. Measured at the
sensing point in Remote
Sense.
*8: For 8V
~
300V models: measured with J
EITA RC
-
9131A (1:1) probe.
For 600V model: measured with 10:1 probe.
*9: From 10% to 90%
or 90%
to 10% of rated output voltage, with rated, resistive load.
*10: From 90% to 10% of rated output voltage.
*11: For load voltage change, equal to the unit v
oltage rating, constant input voltage.
*12: For 8V
~16
V models the ripple is measured at 2V rated output voltage and rated output current.
For other models, the ripple is measured at 10
~
100% of rated output voltage and rated output
current.
*13: The constan
t C
urrent programming readback and monitoring accuracy does not include the
warm-
up a
nd load regulation thermal drift
.
2.12 SUPPLEMENTAL CHARACTERISTICS
The supplemental characteristics give typical but non
-
warranted performance characteristics. Th
e
supplemental characteristics are useful in a
s
sessing applications for the power supply. Several kinds
of supplemental characteristics are listed below.
1.
Evaluation Data: Typical performance of the power supply.
2.
Reliability Data: Reliability Performance of
the power supply.
3.
EN61000 Data: Performance of the power supply under EN61000 test conditions.
4.
EMI Data: Typical EMI (conducted and radiated) performance of the power su
p
ply.
The supplemental characteristics data is held in each
TDK
-
Lambda Americas Inc.
s
ales and service
facility. For further d
e
tails please contact the
TDK
-
Lambda Americas Inc.
office nearest you.
83
-515-000Rev.
B
12
2.13
GENESYS
TM
50
00W POWER SUPPLIES OUTLINE DRAWINGS
83
-515-000Rev.
B
13
NOTE
Gene
sysTMpower supplies generate magnetic fields, which might affect
the operation of other instruments. If your equipment is su
s
ceptible to
magnetic fields, do not position it adj
a
cent to the power supply.
WARNING
To avoid electric shock hazard, do not insert co
nductive parts
through the front panel slits.
CHAPTER 3 INSTALLATION
3.1 GENERAL
This Chapter contains instructions for initial inspection, preparation for use and repackaging for shi
p-
ment. Connection to PC, setting the communication port and linking Genesys
TM
power supplies are
described in Chapter 7.
3.2 PREPARATION FOR USE
In order to be operational the power supply must be connected to an appropriate AC source. The AC
source voltage should be within the power supply specification. Do not apply power before reading
Section 3.3, 3.6 and 3.
7.
Table 3
-
1 below, describes the basic setup procedure. Follow the instructions in Table 3
-
1 in the s
e-
quence given to prepare the power supply for use.
Step no.
Item
Description
Reference
1
Inspection
Initial physical inspection of the power su
p
ply
Secti
on 3.3
2
Installation
Installing the power supply,
Ensuring ad
e
quate ventilation.
Section 3.4
Section 3.5
3
AC source
AC source requirements
Connecting the power supply to the AC source
Section 3.6
Section 3.7
4
Test
Turn
-
on checkout procedure.
Section 3.8
5
Load conne
c
tion
Wire size selection. Local/Remote sensing. Single
or multiple loads.
Section 3.9
6
Default setting
The power supply setting at shipment.
Section 7.2.1
Table 3
-
1: Basic setup procedure
3.3 INITIAL INS
PECTIONS
Prior to shipment this power supply was inspected and found free of mechanical or electrical defects.
Upon unpacking of the power supply, inspect for any damage, which may have occurred in transit.
The inspection should confirm that there is no ex
terior damage to the power supply such as broken
knobs or connectors and that the front panel and meters face are not scratched or cracked. Keep all
packing material until the inspection has been completed. If damage is detected, file a claim with ca
r-
rier
immediately and notify the
TDK
-
Lambda Americas Inc.
sales or authorized service facility nearest
you.
WARNING
The Genesys
TM
series is intended only for installation in Restricted
Access Location (RAL). Access to Hazardous parts (rear side of
the power supply) shall be prevented after i
n
stallation.
83
-515-000Rev.
B
14
CAUTION
Ensure that the screws used to attach the slides to the unit do
not penetrate
m
ore than 6mm into the sides of the unit.
3.4 RACK MOUNTING
The Genesys
TM
power supply series is designed to fit in a standard 19” equipment rack.
3.4.1 To install the Power Supply in a rack:
1.Use the front panel rack
-
mount brackets to install the power supply in the rack.
2.
Use a support bar to provide adequate support for the rear of the power supply. Do not o
b-
struct the air exhaust at the rear panel of the unit.
3.4.2 Rack Mount Slides (optional
):
Use rack mount slides: General Devices P/N: CC3001
-00-
S160 or equivalent to install the unit in a
standard 19” equipment rack. Refer to Fig. 3
-
1 for slides assembly instructions. Use three #10
-
32x0.38”(max.) screws at each side. To prevent internal
damage, use the specified screw length only.
3.4.3 Plastic Supporting legs
Use the four plastic legs supplied with the unit, when the power supply is mounted on a surface or
when units are stacked without rack support. When using the plastic l
egs, maximum three units can
be stacked.
3.5 LOCATION, MOUNTING AND COOLING
This power supply is fan cooled. The air intake is at the front panel and the exhaust is at the rear
panel. Upon installation, allow cooling air to reach the front panel ventilatio
n inlets. Allow a minimum
of 10cm (4 Inch) of unr
e
stricted air space at the front and the rear of the unit.
The power supply should be used in an area that the ambient temperature does not exceed +50
°
C.
3.6 AC SOURCE REQUIREMENTS
The Genesys
TM
series desig
ned for use in TN, TT and IT power distribution systems.
Depending on its
input option, the Genesys
TM
5000
W series can be operated from a nominal 190V to 240V. three
phase
, 47~63Hz
or from
a nominal
380
-
415V, three phase
47~63Hz.
T
he input voltage range
and cu
r-
rent required for each model is specified in Chapter 2. Ensure that under heavy load, the AC voltage
supplied to the power supply does not fall below the specifications d
e
scribed in Chapter 2.
83
-515-000Rev.
B
15
WARNING
The AC input cord is not provided with the power supply
3.7 AC INPUT POWER CONNECTION
The power supply shall
be connected to the AC source via protective device (circuit br
eaker, fuses,
etc.) rated 30A max..
The power supply ON/OFF switch is not the main disconnect device and does not completely disco
n-
nect all the circuits from the AC source.
An appropriat
ely rated disconnect device such as circuit breaker, type B plug on power cord,…etc.,
shall be provided in the final installation. The disconnect device shall comply with UL/IEC 60950
-
1 re-quirements and shall be easily accessible.
3.7.1 AC Input Connector
The AC input connector is a
header (Phoenix Contact P/N:PC6
-
16/4
-GF-
10,16)
with a screw plug in
connector (
Phoenix Contact P/N:PC 6/4
-
STF
-
10,16), located on the rear panel.
Use suitable wires and tigh
t
ening torque as follows:
1.
Wire diameter:.
1
2
AWG for three
-
phase 200V models and
1
4
AWG for three
-
phase 400V models. Refer to Table 1
-1for details.
2.
Tightening torque:
10.7
-
13.4
Lb-inch. (
1.2-1.5
Nm).
3.7.2 AC Input Cord
Refer to Section 1.3.4 for d
etails of the AC input cords and to section 3.
7
for disconnected device
requirement.
3.7.3
AC Input Wire Connection
1.
Strip the outside insulation of the AC cable approx. 10cm (3.94 inches). Trim the wires so that
the ground wire is 10mm longer than the other wir
es. Strip 10mm (0.4 inches) at the end of
each of the wires.
CAUTION
Connection of this power supply
to an AC power source
should be made by an electrician or other qualified perso
n
nel
WARNING
There is a potential shock hazard if the power supply chassis
(with cover in place) is not connected to an electrical safety
ground via the safety ground in the AC input connector.
WARNING
Some components inside the power supply are at AC vol
t
age
even when the On/Off switch is in the “Off” position. To avoid
electric shock hazard, dis
connect the line cord and load and
wait two minutes before removing cover.
83
-515-000Rev.
B
16
2.
Unscrew the base of the strain relief from the helix
-
shaped body. Insert the base through the
outside opening in the AC i
n
put cover and screw the locknut securely (11
-
14 Lb
-
inch.) (1.3
-
1.6Nm)
intothe base, from the i
n
side.
3.
Slide the helix
-
shaped body onto the AC cable. Insert the stripped wires through the strain r
e-
lief base until the outer cable jacket is flush with the edge of the base. Tighten (16
-
18 Lb
-
inch.)
(18-20Nm) the body to the base
while holding the cable in place. Now the cable is securely
fastened inside the strain relief. R
e
fer to Fig. 3
-
2.
4.
Connec
t
the AC wires to the terminals of the input plug supplied with the unit. To connect the wires,
loosen the terminal screw, insert th
e stripped wire into the terminal and tighten the screw securely (
10.7-13.4Lb-
inch). (
1.21–1.5
Nm) Refer to Fig. 3
-
3 for details. Pay attention to connect the wires according to
the polarity marking on the plug.
Fig.3
-
3: AC Input plug (3
-
Phase shown)
5.Connect the AC input plug to the AC input connector at the power supply rear panel. Fasten the plug to
the connector using the two screws at each side of the plug.
(Tightening torque: 10.7
-
13.4Lb inch)
Route the wires inside the cover to prevent pinching. F
asten the cover to the unit using the M3x8 Flat
Head screws are provided. Refer to Fig.3
-
4 for details. Tighten screws securely (4.8
-
4.9LB
-
inch, 0.54
--0.55 Nm)
Fig.3-2: Stripped Wires installed in Strain Relief
Screw-on
Locknut
83
-515-000Rev.
B
17
1 Remote (+) sense
2 Local (+) sense
3 Not connected
4 Local (-) sense
5 Remote (-) sense
3.8 TURN
-
ON CHECKOUT PROCEDURE
3.8.1
General
The following procedure ensures that the power supp
ly is operational and may be used as a basic
incoming inspection check. Refer to Fig. 4
-
1 and fig. 4
-
2 for the location of the controls indicated in
the procedure.
3.8.2
Prior to Operation
1.
Ensure that the power supply is configured to the default setting:
AC On/
Off switch at Off position.
Dip switch: All positions at Down (“Off”) position.
J2 Sense connector: Configured to Local Sense as shown in Fig. 3
-5:Fig.3
-
5: Sense connector default connection
For units equipped with IEEE option, ensure that the IEE
E_En switch is in Up (default) position (R
e-
fer to Fig.4
-
2, item 9 for location), if checkout is to be done in IEEE mode.
2.
Connect the unit to an AC source as described in Section 3.7.
3.
Connect a DVM with appropriate cables for the rated voltage to the output
terminals.
4.
Turn the front panel AC power switch to On.
3.8.3
Constant Voltage Check
1.
Turn on the output by pressing the OUT pushbutton so the OUT LED illuminates.
2.
Observe the power supply VOLT display and rotate the Voltage encoder. Ensure that the Ou
t
put
Voltag
e varies while the VOLT encoder is rotated. The minimum control range is from zero to the
maximum rated output for the power su
p
ply model.
Compare the DVM reading with the front panel VOLT display to verify the accuracy of the VOLT
display. Ensure that the
front panel VOLT LED is On.
3.
Turn Off the front panel AC power switch.
3.8.4
Constant Current Check
1.
Ensure that the front panel AC power switch is at the Off position and the DVM connected to the
output terminals shows zero voltage.
2.
Connect a DC shunt across the
output terminals. Ensure that the shunt and the wire current ra
t-
ings are higher than the power supply rating. Connect a DVM to the shunt.
3.
Turn the front panel AC power switch to the On position,
4.
Turn On the output by pressing OUT pushbutton so the OUT LED
illuminates.
5.
Observe the power supply CURRENT display and rotate the CURRENT encoder. E
n
sure that the
Output Current varies while the CURRENT encoder is rotated. The minimum control range is from
zero to the maximum rated ou
t
put for the power supply model
.
Compare the DVM reading with the front panel CURRENT display to verify the accuracy of the
CURRENT display. Ensure that the front panel CURRENT LED is On.
6.
Turn Off the front panel AC power switch.
7.
Remove the shunt from the power supply output terminals.
3.8.5
OVP Check
Refer to Section 5.3 for explanation of the OVP function prior to performing the procedure below.
1.
Turn the front panel AC power switch to the On position and turn on the output by pressing OUT
pushbutton.
2.
Using the VOLT encoder, adjust the Output
Voltage to approx. 10% of the unit voltage rating.
Plug P/N: MC1, 5/5
-ST-
3, 81
(Phoenix)
83
-515-000Rev.
B
18
3.
Momentarily press the OVP/UVL button so that the CURRENT display shows “OUP”. The
VOLTAGE display will show the last se
t
ting of the OVP level.
4.
Rotate the VOLT encoder CCW to adjust the OVP setting to 50
% of the unit voltage rating.
5.
Wait a few seconds until the VOLT display returns to show the Output Voltage.
6.
Adjust the Output Voltage toward its maximum and check that the Output Voltage cannot be i
n-
creased more than the OVP setting.
7.
Adjust OVP limit to th
e maximum by repea
t
ing Step 3 and rotating the VOLT encoder CW.
3.8.6
UVL Check
Refer to Section 5.4 for explanation of the UVL function prior to performing the procedure below.
1.
Press the OVP/UVL button TWICE so that the CURRENT display shows “UUL”. The VOLTAGE
display will show the last setting of the UVL level.
2.
Rotate the VOLT encoder to adjust the UVL level to approx. 10% of the unit voltage rating.
3.
Wait a few seconds until the VOLT display returns to show the output voltage.
4.
Adjust the output voltage toward i
ts minimum and check that the output voltage cannot be d
e-
creased below the UVL setting.
5.
Adjust the UVL limit to the minimum by repeating Step 1 and rotating the VOLT encoder CCW.
3.8.7
Foldback Check
Refer to Section 5.5 for explanation of the FOLD function pr
ior to performing the procedure below.
1.
Ensure that the Output Voltage is set to approx. 10% of the unit rating.
2.
Adjust the CURRENT encoder to set the Output Current setting to approx. 10% of the unit rating.
3.
Momentarily press the FOLD button. Ensure that t
he FOLD LED illuminates. The Output Voltage
remains unchanged.
4.
Short the output terminals momentarily (approx. 0.5 sec.). Ensure that the Output Voltage falls to
zero, the VOLT display shows “Fb” and the ALARM LED blinks.
5.
Press the FOLD button again to can
cel the protection. The Output Voltage remains zero.
6.
Press the OUT button. Ensure that the Output Voltage returns to its last setting.
7.
Turn the output off by pressing the OUT button. Ensure that the VOLT display shows “OFF”.
3.8.8
Address Setting
1.
Press and hold
the REM/LOC button for approx. 3 sec. The VOLT display will show the commun
i-
cation port address.
2.
Using the VOLT adjust encoder, check that the address can be set within the range of 0 to 30.
3.8.9
Baud Rate Setting (RS
-
232 and RS
-
485 only)
1.
Press and hold the RE
M/LOC button for approx. 3 sec. The CURRENT display will show the
communication port Baud Rate.
Using The CURRENT adjust encoder, check that the Baud Rate can be set to 1200, 2400, 4800,
9600 and 19200.
WARNING
Shorting the output may expose the user to hazar
d
ous
voltages. Observe proper safety procedures.
83
-515-000Rev.
B
19
3.9 CONNECTING THE LOAD
3.9.1
Load Wiring
Th
e following considerations should be made to select wiring for connecting the load to the power
supply:Current carrying capacity of the wire (refer to Section 3.9.2)
Insulation rating of the wire should be at least equivalent to the maximum output volta
ge of the
power supply.
Maximum wire length and voltage drop (refer to Section 3.9.2)
Noise and impedance effects of the load wiring (refer to Section 3.9.4).
3.9.2
Current Carrying Capacity
Two factors must be considered when selecting the wire size:
1.
Wires shou
ld be at least heavy enough not to overheat while carrying the power supply load
current at the rated load, or the current that would flow in the event the load wires were
shorted, whic
h
ever is greater.
2.
Wire size should be selected to enable voltage drop p
er lead to be less than 1.0V at the rated
current. Although units will compensate for up to 5V in each load wire, it is recommended to
minimize the voltage drop (1V typical maximum) to prevent excessive output power consum
p-
tion from the power supply and po
or dynamic response to load changes. Please refer to T
a-
bles 3
-
2 and 3
-
3 for maximum wire length (to limit voltage drop) in American and European
dimensions respectively.
Maximum length in Feet to limit
voltage drop to 1
V or less
Wire size
AWG
Resistivity
OHM/1000ft
10A
20A
50A
100A
200A
400A
14
2.526
4020842
---121.589
60301263
---100.9994
100502010528
0.6285
160803215846
0.3953
250
125502512640.2486
400
2008040201020.1564
600
300
1256030150
0.0983
1000
500
200
1005025
Table 3
-
2: Maximum wire length for 1V drop on lead (in feet)
WARNING
Turn Off the AC input power before making or changing any
rear panel connection. Ensure that all connections are s
e-
curely tig
htened before applying power. There is a potential
shock hazard when using a power supply with a rated ou
t
put
greater than 40V.
83
-515-000Rev.
B
20
CAUTION
When local sensing, a short from
+LS or +S to
-
V or
-
S or
-
LS,
will cause damage to the power supply. Reversing the sense
wires might cause damage to the power supply in local and
remote sensing. (Do not connect
-
S to +V or +S to
-
V).
Maximum length in meters to limit
voltage drop to 1V or less
Cross sect.
area
(mm
²)Resistivity
OHM/Km
10A
20A
50A
100A
200A
400A
2.5
8.21
12.0
6.0
2.4
1.2
0.6
0.345.09
18.6
9.8
4.021.0
0.563.39
29.4
14.8
5.8
2.9
1.45
0.7101.95
51.2
25.6
10.2
5.1
2.5
1.25
16
1.24
80.0
40.0
16.0
842250.795
125.0
62.0
25.2
12.6
6.3
3.1350.565
177.0
88.0
35.4
17.7
8.8
4.4
Table 3
-
3: Maximum wire length for 1 V drop on
lead (in meters)
For currents not shown in Table 3
-
2 and 3
-
3, use the formula:
Maximum length=1000/(current x resistivity)
Where current is expressed in Amperes and resistivity in ohms/km or ohms/1000ft.
3.9.3
Wire termination
The wires should be properly termi
nated with terminals securely attached. DO NOT use unterm
i
nated
wires for load connection at the power supply.
3.9.4
Noise and Impedance Effects
To minimize the noise pickup or radiation, the load wires and remote sense wires should be twisted
pairs to th
e shortest possible length. Shielding of sense leads may be necessary in high noise env
i-
ronments. Where shielding is used, connect the shield to the chassis via a rear panel Ground screw.
Even if noise is not a concern, the load and remote sense wires shou
ld be twisted
-
pairs to reduce
coupling, which might impact the stability of power supply. The sense leads should be separated from
the power leads.
Twisting the load wires reduces the parasitic inductance of the cable, which could produce high fr
e-
quency v
oltage spikes at the load and the output of the power supply, because of current variation in
the load itself.
The impedance introduced between the power supply output and the load could make the ripple and
noise at the load worse than the noise at the pow
er supply rear panel output. Additional filtering with
bypass capacitors at the load term
i
nals may be required to bypass the high frequency load current.
3.9.5
Inductive loads
Inductive loads can produce voltage spikes that may be harmful to the power supply. A diode should
be connected across the output. The diode voltage and current rating shou
ld be greater than the
power supply maximum output voltage and cu
r
rent rating. Connect the cathode to the positive output
and the anode to the negative output of the power supply.
Where positive load transients such as back EMF from a motor may occur, conn
ect a surge suppre
s-
sor across the output to protect the power supply. The breakdown voltage rating of the suppressor
must be approximately 10% higher than the max
i
mum output voltage of the power supply.
83
-515-000Rev.
B
21
3.9.6
Making the load connections
8V to 100V Models
Ref
er to Fig.3
-
6 for connection of the load wires to the power supply bus
-
bars and to Fig.3
-
7 for
mounting the bus
-
bars shield to the chassis.
WARNING
Hazard
ous voltages may exist at the outputs and the load conne
c-
tions when using a power supply with a rated output greater than 40V.
To protect personnel against accidental contact with hazardous vol
t-
ages, ensure that the load and its connections have no accessi
ble live
parts. Ensure that the load wiring insulation rating is greater than or
equal to the maximum output voltage of the power supply.
CAUTION
Ensure that the load wiring mounting hardware does not short the ou
t
put
terminals. Heavy connec
ting cables must have some form of strain relief
to prevent loosening the connections or bending the bus
-
bars.
83
-515-000Rev.
B
22
WARNING
Hazardous voltages exist at the outputs and the load connections. To
protect personnel against accidental contact with hazardous voltages,
ensure that the load
and its connections have no accessible live parts.
Ensure that the load wiring insulation rating is greater than or equal to
the maximum output voltage of the power supply.
Shield
M10x25 screw(2places)
Hex Nut(2places)
Flat washer (2 places)
Spring washer(2 places)
Wire terminal lug (2 places)
Flat washer
(2 places)
Screws tightening torque: 290-310Lb-inch.
Fig. 3
-
6: Load wires connection, 8V to 100V models
Fig. 3
-
7: Bus
-
bars shield mounting
150V to 600V Models
The 150V to 600V models have a four terminal wire clamp output connector. The two left terminals
are the positive outputs and the two right terminals are the negative outputs. Max. 30A per terminal.
The connector r
e
quirements are as follows:
83
-515-000Rev.
B
23
1.
Wires: AWG18 to AWG10.
2.
Tightening torque: 4.4
-
5.3 Lb
-
inch. (0.5
-
0.6Nm).
Follow the instructions below for connection of the load wires to the power supply:
1.
Strip approx. 10mm at the end of each of the wi
res.2.Loosen the connector terminal screws.
3.
Insert the stripped wires into the terminal and tighten the terminal screw securely (see Fig.3
-8)4.
Loosen the two chassis screws marked “A” halfway as shown in Fig.3
-9.5.
Assemble the protective shield to the chass
is and tighten the two screws to fix the shield to the
chassis (see Fig.3
-9). Screws tightening torque: 4.8
-
5.3 Lb
-
inch.
(0.5-0.6Nm)
6.
Tighten the wires to one of the shield sides using ty
-
wrap or equivalent. Refer to Fig.3
-
10.
Ensure that the wire leng
th inside the shield is long enough to provide proper strain relief.
83
-515-000Rev.
B
24
3.9.7
Connecting single loads, local sensing (default).
Fig.3
-
11 shows recommended load and sensing connections for a single load. The local sense lines
shown are default connections at th
e rear panel J2 sense connector. Local sensing is suitable for a
p-
plications where load regulation is less crit
i
cal.
3.9.8
Connecting single loads, remote sensing
Fig.3
-
12 shows recommended remote sensing connection for single loads. Remote sensing is used
whe
n, in Constant Voltage mode, the load regul
a
tion is important at the load terminals. Use twisted or
shielded wires to minimize noise pick
-
up. If shielded wires are used, the shield should be co
n
nected
to the ground at one point, either at the power supply
chassis or the load ground. The optimal point
for the shield ground should be determined by e
x
perimentation.
3.9.9
Connecting multiple loads, radial distribution method
Fig.3
-
13 shows multiple loads connected to one supply. Each load should be connected to th
e power
supply’s output terminals using separate
p
airs of wires. It is recommended that each pair of wires will
be as short as possible and twisted or shielded to minimize noise pick
-
up and radiation. The sense
wires should be connected to the power supply
output terminals or to the load with the most critical
load reg
u
lation requirement.
-
-
Rem.sense
Local sense
Local sense
Rem.sense
+
+
Loadlines, twisted
pair, shortest length
possible.
+V
-V
Load
+
Power
Supply
Fig.3-11: Single load connection, local sensing
-
-
Rem.sense
Local sense
Local sense
Rem.sense
+
+
Sense lines. Twisted
pair or shielded.
+V
-V
Load
+
Power
Supply
Load lines. Twisted pair
shortest length possible.
Fig.3-12: Remote sensing, single load
83
-515-000Rev.
B
25
-
-
Rem.sense
Local sense
Local sense
Rem.sense
+
+
Loadlines, twisted pair,
shortest lengthpossible.
+V
-V
Load#1
+
Load#3
+
Load#2
+
Power
Supply
Fig.3-13: Multiple loads connection, radial distribution, local sense
3.9.10
Multiple load connection with distribution terminals
If remotely located output distribution terminals are used, the power supply output terminals should be
connected to the distribution term
i
nals by pair of twisted and/or shielded wires. Each load should be
separately connected to the remote distribution terminals (see Fig.3
-
14).
If remote sensing is required, the sensing wires should be connected to the dis
tribution terminals or at
the most critical load.
3.9.11
Grounding outputs
Either the positive or negative output terminals can be grounded. To avoid noise prob
l
ems caused by
common
-
mode current flowing from the load to ground, it is recommended to ground the
output
terminal as close as possible to the power supply chassis ground.
Always use two wires to connect the load to the power supply regardless of how the system is
grounded.
WARNING
Models up to 60VDC Rated Output shall not float outputs more
than +/
-
60VDC above/below chassis ground. Models > 60VDC
Rated Output shall
not float outputs more than +/
-
600VDC
above/below chassis ground.
-
-
Rem.sense
Local sense
Local sense
Rem.sense
+
+
Distributionterminal
+V+V-V
-V
Load#1
+
Load#3
+
Load#2
+
Power
Supply
Fig.3-14: Multiple loads connection with distribution terminal
83
-515-000Rev.
B
26
WARNING
OUTPUT TERMINAL GROUNDING
There is a potential shock hazard at the RS232/RS485 and the IEEE
ports when
using power supplies with rated or combined voltage greater than 400V with the
Positive Output of the power supplies grounded. Do not connect the Positive ou
t-
put to ground when using the RS232/RS485 or IEEE under the above conditions.
3.10 LOCAL AND REMOTE SENSING
The rear panel J2 sense connector is u
sed to configure the power supply for local or remote sensing
of the Output Voltage. Refer to Fig.3
-
15 for sense conne
c
tor location
3.10.1
3.10.1 Sense wiring
3.10.2 Local sensing
The power supply is shipped with the rear panel J2 sense connector wired fo
r local sensing of the
Output Voltage. See Table 3
-
4 for J2 terminals assignment. With local sensing, the Output Voltage
regul
a
tion is made at the output terminals. This method does not compensate for voltage drop on the
load wires, therefore it is recomme
nded only for low load current applications or where the load reg
u-
lation is less critical.
Terminal
Function
J2-1
Remote positive sense (+S)
J2-2
Local positive sense. Connected internally to the positive output terminal (+LS).
J2-3
Not connected (NC
)J2-4Local negative sense. Connected internally to the negative output terminal (
-
LS).
J2-5
Remote negative sense (
-
S).
Table 3
-
4: J2 terminals
WARNING
There is a potential shock hazard at the sense connector when using a power
supply with a rated Output Voltage greater than 40V. Local sense and remote
sense wires s
hould have a minimum insulation rating equivalent or greater than
the maximum Output Voltage of the power supply. Ensure that the connections at
the load end are shielded to prevent accidental contact with hazardous voltages.
Fig.3-15: Sense connector location
J2
OFFONSW1
83
-515-000Rev.
B
27
3.10.3
Remote sensing
Use remote sense where the load regulation at the load end is critical. In remote sense,
the power
supply will compensate for voltage drop on the load wires. Refer to the power supply specific
a
tions for
the maximum voltage drop on load wires. The voltage drop is subtracted from the total voltage avai
l-
able at the output. Follow the instructions
below to configure the power supply for remote sensing:
1.
Ensure that the AC On/Off is in the Off position.
2.
Remove the local sense jumpers from J2.
3.
Connect the negative sense lead to terminal J2
-
5 (-S) and the positive sense lead to term
i
nal J2
-
1(+S) of the
J2 mating connector. Ensure that the J2 mating connector is plugged securely into
the rear panel sense connector, J2.
4.
Turn On the power supply.
Notes:
1.
If the power supply is operating in remote sense and either the positive or negative load wire is not
co
nnected, an internal protection circuit will activate and shut down the power supply. To resume
operation, turn the AC On/Off to the Off position, connect the open load wire, and turn On the
power supply.
2.
If the power supply is operated without the remote
sense lines or local sense jumpers, it will co
n-
tinue to work, but the output voltage regulation will be degraded. Also, the OVP circuit may act
i-
vate and shut down the power supply.
3.10.4 J2 sense connector technical information
-
J2 connector type: MC 1.5/
5-G-3.81, Phoenix.
-
Plug type: MC 1.5/5
-ST-
3.81, Phoenix.
-
Wire AWG; 28 up to 16.
-
Stripping length: 7mm.
-
Tightening torque: 1.95
-
2.21Lb
-
Inch. (0.22
-
0.25Nm)
3.11 REPACKAGING FOR SHIPMENT
To ensure safe transportation of the instrument, contact the
TDK
-
Lambda
Americas Inc.
sales or se
r-
vice facility near you for Return Authorization and shipping information. Please attach a tag to the
power supply describing the problem and specifying the owner, model number and serial number of
the power supply. Refer to Wa
rranty Information for further instructions.
WARNING
There is a potential shock hazard at the sense point when using a power supply
with a rated Output Voltage greate
r than 40V. Ensure that the connections at the
load end are shielded to prevent accidental contact with hazardous voltages.
CAUTION
When using shielded se
nse wires, ground the shield in
one place only. The location can be the power supply
chassis or one of the output terminals.
83
-515-000Rev.
B
28
CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS
4.1 INTRODUCTION
The Genesys
TM
Power Supply series has a full set of controls, indicators and connectors that allow
the user to easily setup and operate the
unit. Before starting to operate the unit, please read the fo
l-
lowing Sections for explanation of the functions of the controls and connectors terminals.
-
Section 4.2: Front Panel Controls and Indicators.
-
Section 4.3: Rear Panel Connections and Controls.
4.2 FRONT PANEL CONTROLS AND INDICATORS
See Fig.4
-
1 to review the controls, indicators and meters located on the power supply front panel.
Table 4
-
1: Front Panel controls and indicators
Number
Control/Indicator
Description
Section
1
VOLTAGE contr
ol
High resolution rotary encoder for adjusting the
Output Voltage. Also adjusts the OVP/UVL levels
and selects the Address
5.2.1
5.3.1
5.4.1
7.2.2
2
VOLTAGE indicator
Green LED, lights for constant
-
Voltage mode o
p-
eration.
3
VOLTAGE display
4 digit, 7
-segment LED display. Normally displays
the Output Voltage. When the PREV button is
pressed, the display indicates the programmed
setting of the Output Voltage. When the OVP/UVL
button is pressed, the Voltage display indicates
the OVP/UVL setting.
VOLTAGE
ALARM
FINE
PREV/
OVP
UVL
FOLD
REM/LOC
OUT
DC AMPS
CURRENT
DC VOLTS
123
456181417151613101112978
19
POWER
Fig.4-1: Front panel controls and indicators
83
-515-000Rev.
B
29
Table
4-1: Front Panel Controls and Indicators
Number
Control/Indicator
Description
Section
4
CURRENT display
4 digit, 7 segment LED display. Normally displays the ou
t
put
Current. When the PREV button is pressed, the display i
n-
dicates the programmed setting of
Output Cu
r
rent.
5
CURRENT indic
a
tor
Green LED, lights for Constant
-
Current mode o
p
eration
6
CURRENT control
High resolution rotary encoder for adjusting the Output Cu
r-
rent. Also selects the Baud
-
Rate of the communic
a
tion port.
5.2.2
7.2.4
7
OUT b
utton
Main function:
Output ON/OFF control. Press OUT to set
the output On or Off. Press to reset and turn On the ou
t
put
after OVP or FOLD alarm events have occurred.
Auxiliary function:
Selects between “Safe
-
Start” and
“Auto
-
Restart” modes. Pr
ess and hold OUT button to toggle
between “Safe
-
Start” and “Auto
-
Restart”. The VOLT display
will cycle between “SAF” and “AUT”. Releasing the OUT
button while one of the modes is displayed, selects that
mode.
5.6
5.11
8
OUT indicator
Green LED, lights wh
en the DC output is enabled.
9
REM/LOC button
Main function
: Go to local. Press REM/LOC to put the unit
into Local mode (REM/LOC button is disabled at Local
Lockout mode).
Auxiliary function:
Address and Baud Rate setting. Press
and hold REM/LOC for
3 sec. to set the Address with the
VOLTAGE encoder and the Baud Rate with the CURRENT
encoder.
7.2.5
7.2.2
7.2.4
10
REM/LOC indicator
Green LED, lights when the unit is in Remote mode.
11
FOLD button
Foldback protection control.
-
Press FOLD to set Fo
ldback protection to On.
-
To release Foldback alarm event, press OUT to e
n
able the
output and re
-
arm the protection.
-
Press FOLD again to cancel the Foldback protection.
5.512FOLD indicator
Green LED, lights when Foldback protection is On.
13
OVP/UV
L button
Over Voltage Protection and Under Voltage limit se
t
ting.
-
Press once to set OVP using VOLTAGE encoder (the cu
r-
rent display shows “OUP”)
-
Press again to set the UVL using VOLTAGE encoder (the
current display shows “UUL”).
5.3
5.414PREV/ button
M
ain function:
Press PREV to display the Output Voltage
and Current setting. For 5 sec. the display will show the se
t-
ting and then it will return to show the actual Output Voltage
and Current.
Auxiliary function:
Front Panel Lock. Press and hold
PREV button
to toggle between “Locked front panel” and
“Unlocked front panel”. The display will cycle b
e
tween “LFP”
and “UFP”. Releasing the PREV button while one of the
modes is displayed selects that mode.
5.17
83
-515-000Rev.
B
30
Table 4
-
1: Front Panel Controls and Indicators (con
tinued)
Number
Control/Indicator
Description
Section
15
PREV indicator
Green LED, lights when PREV button is pressed
16
FINE button
Voltage and Current Fine/Coarse adjustment control.
Operates as a toggle switch. In Fine mode, the
VOLTAGE and CURRENT
encoders operate with high
resolution and in Coarse mode with lower resolution
(approx. 6 turns).
Auxiliary function:
Advanced Pa
r
allel Operation Mode
setting
.
5.15.2
17
FINE indicator
Green LED, lights when the unit is in Fine mode.
18
ALARM indica
tor
Red LED, blinks in case of fault detection. OVP, OTP
Foldback, Enable and AC fail detection will cause the
ALARM LED to blink.
19
AC Power switch
AC On/Off control.
4.3 REAR PANEL CONNECTIONS AND CONTROLS
See Fig.4
-
2 to review the connections and
controls located on the power supply rear panel. Refer to
Table 4
-
2 for explanations about the rear panel connections and controls.
Table 4
-
2: Rear panel connections and controls
Number
Item
Description
Section
1
AC input
conne
c
torHeader w/
a screw
plug connector (Phoenix
contact PC6
-
1614
-GF-
10, 16).
3.72DC output
Bus-bars for 8V to 100V models.
Wire clamp connector for 150V to 600V models.
3.9.6
3
Remote
-Inconnector
RJ-45 type connector, used for connecting power supplies to
RS232 or RS485 port
of computer for remote control purposes.
When using several power supplies in a power system, the first
unit Remote
-
In is connected to the computer and the remaining
units are daisy
-
chained, Remote
-
In to Remote
-
Out.
7.3
7.4
83
-515-000Rev.
B
31
Table 4
-
2: Rear panel Connecti
ons and Controls (continued)
Number
Item
Description
Section
4
Remote Out
connector
RJ-45 type connector, used for daisy
-
chaining power supplies to
form a serial communication bus.
7.3
7.45J1 Analog pr
o-
gramming and
monitoring co
n-
nector
Connector for r
emote analog interface. Includes Output Voltage
and Current programming and monitoring signals, Shut
-
off control
(electrical signal), Enable/Disable control (dry
-
contact), Power
Supply OK (PS_OK) signal and operation mode (CV/CC) si
g
nal.
4.56SW1 Setup
s
witch
Nine position DIP
-
switch for selecting remote programming and
monitoring modes for Output Voltage, Output Current and other
control functions.
4.4
4.4.1
4.4.2
7
J2 Remo
te
sense
conne
c
tor
Connector for making remote sensing connections to the load fo
r
regulation of the load voltage and compensation of load wire
drop.
3.8.2
3.10.2
3.10.3
8
Blank Sub
-
plate
Blank sub
-
plate for standard units. Isolated Remote Analog pr
o-
gramming connector for units equipped with Isolated Analog co
n-
trol option. IEEE conne
ctor for units equipped with IEEE pr
o-
gramming option (shown).
9
IEEE switch
Two position DIP
-
switch for selecting IEEE mode or
RS232/RS485 mode when IEEE option is installed.
10
Ground
stud
M4 stud and hardware for chassis ground conne
c
tion.
4.4 RE
AR PANEL SW1 SETUP SWITCH
The SW1 Setup switch (see Fig.4
-
3) is a 9
-
position DIP
-
switch that allows the user to choose the fo
l-
lowing:
Internal or remote programming for Output Voltage and Output Current.
Remote voltage or resistive programming of Output Vo
ltage and Output Current.
Select range of remote voltage and resistive programming.
Select range of output Voltage and Output Current monitoring.
Select the Remote Shut
-
Off control logic.
Select between RS232 and RS485 communication interface.
Enable or d
isable the rear panel Enable/Disable control (dry contact).
Fig.4-3: SW1 setup DIP-switch
123456789
83
-515-000Rev.
B
32
4.4.1
SW1 position function
Refer to Table 4
-
3 for description of SW1 position functions. The factory default setting is Down
for all positions.
Table 4
-
3: SW1 Positions Functions
Position
Func
tion
DOWN (Factory default)
UP
SW1
-1Output Voltage
Remote Analog Programming
Output Voltage
Programmed by
Front Panel
Output Voltage
Programmed by remote an
a
log
External Voltage or External Resi
s
tor
SW1
-2Output Curr
ent
Remote An
a
log programming
Output Current
Programmed by
Front Panel
Output Current
programmed by remote an
a
log
External Voltage or External Resi
s
tor
SW1
-3Programming Range Selec
t(Re
mote voltage/resistive)
0-5V/(0
-
5Kohm)
0-10V/(0
-
10Kohm)
SW1
-4Output Voltage and
Current Monitoring Range
0-5V0-
10V
SW1
-5Shut
-
Off Logic select
On: High (2
-
15V) or Open
Off: Low (0
-
0.6V) or Short
On: High (0
-
0.6V) or Short
Off:
Low (2
-
15V) or Open
SW1
-6RS232/485 select
RS232 interface
RS485 interface
SW1
-7Output Voltage
Resistive Pr
o
gramming
Output Voltage
programmed by
Front Panel
Output Voltage
progra
mmed by
External resi
s
tor
SW1
-8Output Current
Resistive Pr
o
gramming
Output Current Limit
Programmed by
Front Panel
Output Current Limit
Programmed by
External Resi
s
tor
SW1
-9Enable/Disable control
Rear panel
Enable/Disable control is
not Active
Rear panel
Enable/Disable co
n
trol
is Active
4.4.2
Resetting the SW1
switch
Before making any changes to the SW1 switch setting, disable the power supply output by pres
s-
ing the front panel OUT button. Ensure that the Output Voltage falls to zero and the OUT LED is
off. Then use any small flat
-
bladed screwdriver to change th
e SW1 switch setting.
83
-515-000Rev.
B
33
4.5 REAR PANEL J1 PROGRAMMING AND MONITORING CONNECTOR
The J1 Programming and Monitoring connector is a DB25 subminiature connector located on the
power supply rear panel. Refer to Table 4
-
4 for description of the connect
or functions. The power
supply default configuration is Local operation, which does not require connections to J1. For remote
oper
a
tion using J1 signals, use the plug provided with power supply (or equivalent type). It is essential
to use a plastic body pl
ug to conform to Safety Agency requirements. If a shield is r
e
quired for the J1
wires, connect the shield to a power supply chassis ground screw.
4.5.1 Making J1 connections
-
J1 Connector type: AMP, P/N:
5
747461
-3-
J1 plug description: AMP, P/N:745211
-7-Wire dimension range: AWG26
-22-
Extraction tool: AMP, 91232
-
1 or equivalent.
-
Manual Pistol grip tool:
Handle:AMP, P/N:58074
-
1
Head:AMP, P/N:58063
-2Before making any connection, turn the AC On/Off switch to the Off position a
nd wait until the front
panel display has turned Off.
CAUTION
The programming return terminals (12, 22 and 23) are re
f-
erenced internally to the
-
V potential of the power supply. Do
not attempt to bias a
ny of these terminals relative to the
negative sense. Use the Isolated Programming interface
option to allow control from a programming source at a di
f-
ferent potential relative to the power supply negative output.
CAUTION
To prevent ground loops and to maintain power supply isol
a
tion
when programming from J1, use an ungrounded pr
o
gramming
source.
WARNING
There is a potential shock hazard at the output when using a
power supply with rated output greater than 4
0V. Use wires
with minimum insulation rating equivalent to the maximum
output voltage of the power supply.
83
-515-000Rev.
B
34
J1con
tact
Signal
name
Function
Reference
J1-1
ENA_IN
Enable/Disable the power supply output by dry
-
contact
(short/open) with ENA_OUT.
Sec. 5.8
J1-2J1-3IF_COM
Isolated Interface Common. Return for the SO control,
PS_OK signal and for the optional IEEE interface.
Sec.5.7, 5.10
J1-47
N/C
No Connection
J1-8
LOCAL/
REMOTE
Input for selecting between Local or Remote analog pr
o-
gramming of Output Volt
age and Output Current.
Sec. 6.2
J1-9
VPGM
Input for remote analog voltage/resistance progra
m
ming
of the Output Voltage.
Sec. 6.1
6.4J1-10IPGM
Input for remote analog voltage/resistance programming
of the Output Current.
Sec. 6.1
6.4J1-11VMON
Output
for monitoring the power supply Output Voltage.
Sec. 6.6
J1-12
COM
Control Common. Return for VMON, IMON, CV/CC,
LOC/REM.
Connected internally to the negative sense potential (
-
S).
J1-13
CV/CC
Output for Constant
-
Voltage/Constant
-
Current mode
indica
tion.
Sec. 5.9
J1-14
ENA_OUT
Enable/Disable the power supply output by dry
-
contact
(short/open) with ENA_IN.
Sec. 5.8
J1-15SOInput for Shut
-
Off control of the power supply output.
Sec. 5.7
J1-16
PS_OK
Output for indication of the power supply status.
Sec. 5.10
J1-1720
N/C
No Connection.
J1-21
LOC/REM
SIGNAL
Output for indicating if the unit is in Local or Remote
analog programming mode.
Sec. 6.3
J1-22
VPGM_RTN
Return for VPGM input. Connected internally to the “
-
S”.
Sec. 6.1, 6.4,
6.5J1-23IPGM_
RTN
Return for IPGM input. Connected internally to the “
-
S”.
Sec. 6.1, 6.4,
6.5J1-24IMON
Output for monitoring the power supply Output Current.
Sec. 6.6
J1-25POutput for current balance in parallel operation.
Sec. 5.15
83
-515-000Rev.
B
35
CHAPTER 5 LOCAL OPERATION
5.1
INTRODUCTION
This Chapter describes the operating modes that are not involved in programming and monitoring the
power supply via its serial communication port (RS232/RS485) or by remote analog signals. E
n
sure
that the REM/LOC LED on the front panel is Of
f, indicating Local mode. If the REM/LOC LED is On,
press the front panel REM/LOC button to change the operating mode to Local.
-
For information regarding Remote Analog Programming, refer to Chapter 6.
-
For information regarding usage of the Serial Communi
cation Port, refer to Chapter 7.
5.2 STANDARD OPERATION
The power supply has two basic operating modes: Constant Voltage Mode and Constant Current
Mode. The mode in which the power supply operates at any given time depends on the Output Vol
t-
age setting, O
utput Current setting and the load resistance.
5.2.1 Constant Voltage Mode
1.
In constant voltage mode, the power supply regulates the Output Voltage at the selected value,
while the load current varies as required by the load.
2.
While the power supply operate
s in constant voltage mode, the VOLTAGE LED on the front panel
illuminates.
3.
Adjustment of the Output Voltage can be made when the power supply output is enabled (Output
On) or disabled (Output Off). When the output is enabled, simply rotate the VOLTAGE enc
oder
knob to program the output voltage. When the output is disabled, press the PREV button and
then rotate the VOLTAGE encoder knob. The VOLTAGE meter will show the programmed Output
Voltage for 5 seconds after the adjustment has been completed. Then the
VOLTAGE meter will
display “OFF”.
4.
Adjustment resolution can be set to coarse or fine resolution. Press FINE button to select b
e
tween
the lower and higher resolution. The FINE LED turns On when the resolution is set to FINE.
5.2.2 Constant Curre
nt Mode
1.
In constant current mode, the power supply regulates the Output Current at the selected value,
while the voltage varies with the load requirement.
2.
While the power supply is operating in constant current mode, the CURRENT LED on the front
panel illu
minates.
3.
Adjustment of the Output Current setting can be made when the power supply output is enabled
(Output On) or disabled (Output Off).
-
Disabled output (Off): Press PREV button and then rotate the Current encoder knob. The
CURRENT meter will show the
programmed Output Current limit for 5 seconds after the adjus
t-
ment has been completed. Then the VOLTAGE meter will display “OFF”.
NOTE
If after completing the adjustment,
the display shows a different value
than the setting, the power supply may be at current limit. Check the
load condition and the power supply Output Current setting.
NOTE
The maximum and minimum setting v
alues of the output voltage are
limited by the Over Voltage protection and Under Voltage limit se
t
ting.
Refer to Sections 5.3 and 5.4 for more details.
83
-515-000Rev.
B
36
-
Enabled output, power supply in Constant Voltage mode: Press the PREV button and then r
o-
tate the CURRENT encoder knob. The C
URRENT meter will show the programmed Output
Current for 5 seconds after the adjustment has been completed, and then will return to show
the a
c
tual load current.
-
Enabled output, power supply in Constant Current mode: Rotate the CURRENT encoder
knob to adj
ust the Output Current.
4.
Adjustment resolution can be set to Coarse or Fine adjustment. Press the FINE button to select
between the Coarse and Fine resolution. The FINE LED turns On when the resolution is set to
FINE.
5.2.3 Automatic Crossover
If the power
supply operates in Constant Voltage mode, while the load current is increased to greater
than the current limit setting, the power supply will automatically switch to Constant Cu
r
rent mode. If
the load is decreased to less than the current limit setting, t
he power supply will automatically switch
back to Constant Voltage mode.
5.3
OVER VOLTAGE PROTECTION (OVP)
The OVP circuit protects the load in the event of a remote or local programming error or a power su
p-
ply failure. The protection circuit monitors the volt
age at the power supply sense points and thus pr
o-
vides the protection level at the load. Upon detection of an Over Voltage condition, the power supply
output will shut down.
5.3.1
Setting the OVP level
The OVP can be set when the power supply output is Enabled (
On) or Disabled (Off). To set the OVP
level, press the OVP/UVL button, so that the CURRENT meter shows “OUP”. The VOLTAGE meter
shows the OVP setting level. Rotate the VOLTAGE encoder knob to adjust the OVP level. The display
will show “OUP” and the settin
g value for 5 seconds after the adjustment has been co
m
pleted, and
then will return to its previous state.
The minimum setting level is approximately 105% of the
set Output Voltage, or the value in Table 7
-
6, whichever is
higher. The maximum setting level is shown in Table 5
-1.To preview the OVP setting, press the OVP/UVL pushbu
t-
ton so that the CU
RRENT display will show “OUP”. At this
time, the VOLTAGE display will show the OVP setting. A
f-
ter 5 seconds, the display will return to its previous state.
Table 5
-
1: Maximum OVP s
etting levels
5.3.2
Activated OVP protection indications
When the OVP is activated the power supply output shuts down. The VOLTAGE display shows “OUP”
and the ALARM LED blinks.
5.3.3
Resetting the OVP circuit
To reset the OVP circuit after it activates:
1.
Reduce the pow
er supply Output Voltage setting below the OVP set level.
2.
Ensure that the load and the sense wiring are connected properly.
3.
There are four methods to reset the OVP circuit.
3.1
Press the OUT button.
3.2
Turn the power supply Off using the AC On/Off switc
h, wait until the front panel display
turns Off, then turn the power supply On using the AC On/Off switch.
3.3
Turn the power supply output Off and then On using the SO control (refer to Section 5.7).
In this method the power supply should be set to Auto
-
Restart mode.
3.4
Send an OUT 1command via the RS232/RS485 communication port.
Model
Max.
OVP
Model
Max.
OVP
8V
10V16V20V
30V
40V
10.0V
12.0V
1
9.0V24.0V
36.0V
44.0V
60V
80V
100V
150V
300V
600V
66.0V
88.0V
110.0V
165.0V
33
0.0V
660.0V
83
-515-000Rev.
B
37
5.4AUNDER VOLTAGE LIMIT (UVL)
The UVL prevents adjustment of the Output Vol
t
age below a certain limit. The combination of UVL
and OVP functions, allow the user to create a protec
tion window for sensitive load circuitry.
5.4.1
Setting the UVL level
Setting the UVL can be made when the power supply output is Enabled (On) or Disabled (Off). To set
the UVL level, press the OVP/UVL button TWICE, so that the CURRENT meter shows “UUL”. The
VOL
TAGE meter shows the UVL setting level. Rotate the VOLTAGE encoder knob to adjust the UVL
level. The display will show ‘UUL” and the setting value for 5 seconds after the adjustment has been
completed and then will return to its previous state.
UVL setting
values are limited at the maximum level to approximately 95% of the Output Voltage se
t-
ting. Attempting to adjust the UVL above this limit will result in no response to the adjustment attempt.
The minimum UVL se
t
ting is zero.
5.5
FOLDBACK PROTECTION
Foldback
protection will shut down the power supply output if the load current exceeds the current
limit setting level. This protection is useful when the load circuitry is sensitive to an overcurrent cond
i-
tion.
5.5.1
Setting the Foldback protection
To arm the Foldback p
rotection, the FOLD button should be pressed so that the FOLD LED illum
i-
nates. In this condition, transition from Constant Voltage to Constant Current mode will activate the
Foldback protection. Activation of the Foldback protection disables the power supp
ly output, causes
the ALARM LED to blink and displays “Fb” on the VOLTAGE meter.
5.5.2
Resetting activated Foldback protection
There are four methods to reset an activated Foldback protection.
1.
Press the OUT button. The power supply output is enabled and the Out
put Voltage and Cu
r
rent
will return to their last setting. In this method, the Foldback protection remains armed, therefore if
the load current is higher than the current limit setting, the Foldback protection will be activated
again.
2.
Press the FOLD button
to cancel the Foldback protection. The power supply output will be di
s-
abled and the VOLTAGE display will show “OFF”. Press the OUT button to enable the power su
p-
ply output.
3.
Turn the power supply output Off and then On using the SO control (refer to Sectio
n 5.7). In this
method the Foldback protection remains armed, therefore if the load current is higher than the
output current setting, the Foldback prote
c
tion will be activated.
4.
Turn the power supply Off using the AC On/Off switch, wait until the front pan
el display turns Off,
then turn the unit back ON again. The power supply output is enabled and the Output Voltage and
Current will return to their last setting. In this method, the Foldback protection remains armed,
therefore if the load current is higher
than the output current setting, the Foldback protection will
be activated again.
5.6
OUTPUT ON/OFF CONTROL
The Output On/Off Enables or Disables the power supply output. Use this function to make adjus
t-
ments to either the power supply or the load without shu
tting off the AC power. The Output On/Off
can be activated from the front panel using the OUT button or from the rear panel J1 connector. The
OUT button can be pressed at any time to Enable or Disable the power supply output. When the ou
t-
put is disabled, t
he Output Voltage and Current fall to zero and the VOLTAGE display shows “OFF”.
5.7
OUTPUT SHUT
-
OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR
Contacts 2, 3 and 15 of J1 (Fig.4
-
2, Item 5) serve as Output Shut
-
Off (SO) terminals. The SO term
i-
nals accept a 2.5V t
o 15V signal or Open
-
Short contact to disable or enable the power supply output.
The SO function will be activated only when a transition from On to Off is detected after applying AC
power to the unit. (Thus, in Auto
-
Restart mode, the output will be Enable
d after applying AC power;
even if SO is at an Off level). After an On to Off trans
i
tion it is detected, the SO will Enable or Disable
the power supply output according to the signal level or the short/open applied to J1. This function is
83
-515-000Rev.
B
38
useful for connec
ting power supplies in a “Daisy
-
chain” (refer to Section 5.16). The SO control can
also be used to reset the OVP and Fold Protection (refer to Section 5.3 and 5.5 for details).
When the unit is shut
-
off by a J1 signal, the VOLTAGE display will show “SO” to
indicate the unit
state. J1 contact 15 is the SO signal input and contacts 2 and 3, IF_COM, are the signal return (co
n-
nected internally). Co
n
tacts 2, 3 and 15 are optically isolated from the power supply output.
The SO control logic can be selected by the
rear panel SW1 Setup switch. Refer to Table 5
-
2 for
SW1 setting and SO Control Logic.
SW1
-
5 setting
SO signal level
J1-2(3), 15
Power supply
output
Display
Down (default)
2-15V or Open
0-0.6V or Short
On
Off
Voltage/Current
“SO”
Up2-
15V or Open
0-0.6V
or Short
OffOn“SO”
Voltage/Current
Table 5
-
2: SO logic selection
5.8
ENABLE/DISABLE CONTROL VIA REAR PANEL J1 CONNECTOR
Contacts 1 and 14 of J1 (Fig.4
-
2, item 5) serve as Output Enable/Disable terminals by switch or relay. This fun
c-
tion is Enabled o
r Disabled by the SW1 Setup switch position 9. Refer to Table 5
-
3 for Enable/Disable function
and SW1 setting.
SW1
-
9 setting
Enable/Disable I
n
puts
Power supply ou
t
put
Display
ALARM LED
Down (Default)
Open or Short
On
Voltage/Current
Off
Open
Off
“ENA”
Blinking
Up
Short
On
Voltage/Current
Off
Table 5
-
3: Enable/Disable function and SW1 setting
5.9 CV/CC SIGNAL
CV/CC signal indicates the operating mode of the power supply, Constant Voltage or Constant Current
.
The
CV/CC signal is an open collector out
put with a 30V parallel zener, at J1
-
13, referenced to the COM potential at
J1-12 (connected internally to the negative sense potential). When the power supply operates in Constant Vol
t-
age mode, CV/CC output is open. When the power supply operates in Const
ant Current mode, the CV/CC signal
output is low (0
-
0.6), with maximum 10mA sink current.
5.10 PS_OK SIGNAL
The PS_OK signal indicates the fault condition of the power supply. PS_OK is a TTL signal output at J1
-
16, re
f-
erenced to IF_COM at J1
-
2, 3 (Isolat
ed Interface Common). When a fault condition occurs, the PS_OK level is
low, with a maximum sink current of 1mA; when no fault condition occurs, the PS_OK level is high with a max
i-
mum source current of 2mA. The following faults will set the PS_OK to a Faul
t state:
CAUTION
To prevent possible damage to the unit, do not connect any of the
Enable/Disable inputs to the positive or negative output potential.
NOTE
Safe Start mode
-
If the Ena
ble/Disable fault condition clears when units in safe start mode
recovery is by pressing OUT button or by sending an ‘OUT 1’ serial command.
Auto R
e
start
mode
-
The output will return back ON automatically when the Enable/Disable
fault cond
i
tions clears.
CAUTION
Do not connect the CV/CC signal to a voltage source higher than 30VDC. Always
connect the CV/CC signal to vol
tage source with a series resi
s
tor to limit the sink
current to less than 10mA.
83
-515-000Rev.
B
39
*OTP
*Enable/Disable open (Power supply is disabled)
*OVP
*SO (Rear panel Shut
-
Off, Power Supply is shut off)
*Foldback
*IEEE failure (With optional IEEE interface)
*AC fail
*Output Off
5.11 SAFE
-
START AND AUTO
-
RESTART MODES
When turning On the p
ower supply AC On/Off, it can start to its last setting of Output Voltage and Current with
the output Enabled (Auto
-
restart mode) or start with the output Disabled (Safe
-
start mode). Press and hold the
OUT button to select between Safe
-
start and Auto
-
resta
rt modes. The VOLTAGE display will continuously cycle
between “SAF” and “AU7” every 3 seconds. Releasing the OUT pushbutton while one of the modes is di
s
played,
selects that mode. The default setting at shipment is Safe
-
start mode.
5.11.1 Auto
-
restart mode
In this mode, the power supply restores its last operation setting. Upon start
-
up, the output is enabled
or disabled according to its last setting.
5.11.2 Safe
-
start mode
In this mode, the power supply restores its last operation setting and sets the Outp
ut to an Off state.
At start
-
up, the output is Disabled and the Output Voltage and Current are zero. To Enable the output
and restore the last Output Voltage and Current values, momentarily press the OUT button.
5.12 OVER TEMPERATURE PROTECTON (OTP)
The OT
P circuit shuts down the power supply before the internal components can exceed their safe
internal operating temperature. When an OTP shutdown occurs, the display shows “O7P” and the
ALARM LED blinks.
Resetting the OTP circuit can be automatic (non
-
latche
d) or manual (latched) depending on the
Safe
-
start or Auto
-
restart mode.
1.
Safe
-
start mode:
In Safe
-
start mode, the power supply stays Off after the over temperature co
n-
dition has been removed. The display continues to show “O7P” and the ALARM LED cont
inues to
blink. To reset the OTP circuit, press the OUT button (or send an OUT ON command via the serial
port).
2.
Auto
-
restart mode:
In Auto
-
restart mode, the power supply recovers to its last setting automat
i-
cally when the over temperature condition is remo
ved.
5.13 LAST SETTING MEMORY
The power supply is equipped with Last Setting Memory, which stores several power supply param
e-
ters at each AC turn
-
off sequence.
STORED PARAMETERS:
1. OUT On or Off
2.
Output Voltage setting (PV setting)
3.
Output Current setting
(PC setting)
4.
OVP level
5.
UVL level
6.
FOLD setting
7.
Start
-
up mode (Safe
-
start or Auto
-
restart)
8.
Remote/Local: If the last setting was Local Lockout, (latched mode), the supply will return to
Remote mode (non
-
latched).
9.
Address setting
10.
Baud rate
11.
Locked/Unlock
ed Front Panel (LFP/UFP)
(Items 8, 9, 10 are related to Remote Digital Control operation and are explained in Chapter 7)
12. Master/Slave setting
5.14 SERIES OPERATION
Power supplies of the SAME MODEL can be connected in series to obtain increased output v
oltage.
Split connection of the power supplies gives positive and negative output voltage.
83
-515-000Rev.
B
40
+S
+
-
-S
-LS
+LS
POWER
+S
+
+
-
-
-S
-LS
+LS
POWER
SUPPLY
LOAD
+S
+
-
-S
-LS
+LS
POWER
SUPPLY
+S
+
+
-
-
-S
-LS
+LS
POWER
SUPPLY
LOAD
Fig.5-1: Series connection, local sensing
Fig.5-2: Series connection, remote sensing
(*)
(*)
(*)
(*)
(*) Diodes are
user supplied.
5.14.1 Series connection for increased output voltage
In this mode, two units are connected so that their outputs are summed. Set the Current of each
power supply
to the maximum that the load can handle without damage. It is recommended that d
i-
odes be connected in parallel with each unit output to prevent reverse voltage during start up s
e-
quence or in case one unit shuts down. Each diode should be rated to at least
the power supply rated
Output Voltage and Output Current. Refer to Fig.5
-
1 and 5
-
2 for series operation with local and r
e-
mote sensing.
Remote programming in series operation for increased output voltage:
1. Programming by external voltage:
The analog programming circuits of this power supply
are referenced to the negative output potential. Ther
e-
fore, the circuits used to control each series connected
unit must be sep
a
rated and floated from each other.
2.
Using the SO function and PS_OK signa
l: The Shut
-
Off and PS_OK circuits are refe
r
enced to the
isolated interface common, IF_COM (J1
-
2,3). The
IF_COM terminals of different units can be co
n
nected to
obtain a single control circuit for the power supplies co
n-
nected in series.
CAUTION
Do not connected power supplies from diffe
r
ent
manufacturers in series or in parallel.
WARNING
When power supplies are connected in s
eries, and
the load or one of the output terminals is grounded,
no point may be at a greater potential of +/
-
60VDC
from ground for models up to 60VDC Rated Output
and +/
-
600VDC from ground for models >60VDC
Rated Output. When using RS232/RS485 or IEEE,
ref
er to the OUTPUT TERMINALS GROUNDING
warning in Section 3.9.11.
83
-515-000Rev.
B
41
Fig.5-3: Series connection for positive/negative output voltages
+S
+
-
-S
-LS
+LS
POWER
SUPPLY
+S
+
+
-
-
-S
-LS
+LS
POWER
SUPPLY
(*)
(*)
(*) Diodes are user supplied.
3. Programming
by external resistor:
Programming by external resistor is possible. Refer to
Section 6
-
5 for details.
4. Programming via the Serial
The communication port is referenced to the IF_COM
Commun
i
cation port (RS232/RS485):
which is isolated from the power su
pply output potential.
Therefore power supplies connected in series can be
daisy
-
chained using the Remote
-
In and Remote
-
Out
conne
c
tors. Refer to Chapter 7 for details.
5.14.2 Series connection for positive and negative output voltage
In this mode, two units are co
n
figured as a positive and negative output. Set the Output Current limit
of each power supply to the maximum that the load can handle without damage. It is recommended
that diodes be connected in p
arallel with each unit output to prevent reverse voltage during start
-
up or
in case one of the units shuts down. Each diode should be rated to at least the power supply rated
output voltage and output current. Refer to Fig.5
-
3 for this o
p
erating mode.
Remote programming in series operation for positive and negative output voltage
1. Programming by external voltage:
The analog programming circuits of this power su
p-
ply are referenced to the negative output potential.
Therefore, the circuits u
sed to control each s
e
ries
connected unit must be separated and floated from
each other.
2. Using the SO function and PS_OK signal:
The Shut
-
Off and PS_OK circuits are referenced to
the isolated interface common, IF_COM (J1
-
2,3).
The IF_COM terminals of t
he units can be co
n-
nected to obtain a single control circuit for the power
supplies connected in series.
3. Programming by external resistor:
Programming by external resistor is possible. Refer
to section 6.5 for details.
4. Programming via the Serial
Communication port (RS232/RS485):
The
communication port is referenced to the
IF_COM which is isolated from the power supply
output potential. Therefore power supplies co
n-
nected in series can be chained using the Remote
-
In and Remote
-
Out connectors. Re
fer to chapter 7
for details.
83
-515-000Rev.
B
42
5.15 PARALLEL OPERATION
Up to four units of the same VOLTAGE and CURRENT rating can be connected in parallel to provide
up to four times the Output Current capability. One of the units operates as a Master and the remai
n-
ing
units are Slaves. The Slave units are analog programmed by the Master unit. In remote digital o
p-
eration, only the Master unit can be programmed by the computer, while the Slave units may be co
n-
nected to the computer for voltage, current and status readbac
k only. Follow the following procedure
to configure multiple supplies for parallel operation. Refer to Sec. 5.15
.1
and to Sec. 5.15.2 for d
e-
tailed explanation.
5.15.1
Basic parallel operation
In this method, setting the units as Master and Slaves is made by the r
ear panel J1 connections and
the setup switch SW1. Each unit displays its own output current and voltage. To program the load cu
r-
rent, the Master unit should be programmed to the total load current divided by the number of units in
the system. Refer to the
following procedure to configure multiple supplies for
basic
parallel operation.
1. Setting up the Master unit
Set the Master unit Output Voltage to the desired voltage. Program the Output Current to the d
e
sired
load current divided by the number of paral
lel units. During operation, the Master unit ope
r
ates in CV
mode, regulating the load voltage at the programmed Output Voltage. Connect the sensing circuit to
local or remote sensing as shown in Fig.5
-
4 or fig.5
-
5.
2.
Setting up the Slave units
-1.The Out
put Voltage of the Slave units should be programmed 2
-
5% higher than the Output
Voltage of the Master unit to prevent interference with the Master unit’s control. The Output Cu
r-
rent setting of each unit should be programmed to the desired load current div
ided by the number
of parallel units.
-
2. Set the rear panel setup switch SW1 position 2 to the up position.
-
3. Connect a wire jumper between J1
-
8 and J1
-
12 (refer to Table 4
-
4).-4. Connect J1 terminal 10(IPGM) of the slave unit to J1 terminal 25(P) of t
he master unit.
-
5. Connect J1 terminal 23(IPGM_RTN) of the slave unit to J1 terminal 12 (COM) of the master unit.
During operation, the Slave units operate as a controlled current source following the Master Ou
t
put
Current. It is recommended that the powe
r system be designed so that each unit supplies up to 95%
of its current rating because of the imbalance which may be caused by cabling and connection vol
t-
age drop.
3.
Daisy Chain Connection: (See Fig. 5.6)
These set up and connections are optional but is str
ongly recommended. It will shut down all
power supplies when a fault condition occurs in any one of them.
Switch SW1 position 5
s
hould be in its down position for all power supplies
.Connect J1
-
16 of the Master Supply to J1
-
15 of the ‘First’
Slave Supply (
If any).
Connect J1
-
16 of the ‘First’ Slave Supply to J1
-
15 of the ‘Second’ Slave Supply (If any).
Connect J1
-
16 of the ‘Second’ Slave Supply to J1
-
15 of the ‘Third’ Slave Supply (If any).
Connect J1
-
16 of the ‘Last’ Slave Supply to J1
-
15 of the ‘Third’ Sl
ave Supply (If any).
Connect J1
-
2 (or J1
-
3) common to all supplies (See Fig. 5.6).
4.
Setting Over Voltage protection
The Master unit OVP setting should be programmed to the desired OVP level. The OVP setting of
the slave units should be programmed to a highe
r value than the Master OVP. When the Master
unit shuts down, it programs the Slave unit to zero Output Voltage. If a Slave unit shuts down
(when its OVP is set lower than the Master Output Voltage
and, if all P/S are not daisy chained
per section 3 above
)
, only that Slave unit would shut down, and the remaining Slave units would
supply all the load cu
r
rent.
5.
Setting Foldback protection
Foldback protection, is desired, may only be used with the Master unit. When the Master unit
shuts down, it programs the Sl
ave units to zero Output Vol
t
age.
83
-515-000Rev.
B
43
6.
Connection to the load
In parallel operation, power supplies can be connected in local or remote sensing. Refer to Fig. 5
-
4 and 5
-
5 for typical connections of parallel power supplies. The figures show
connection of two
units, however the same connection method applies for up to 4 units.
5.15.2
Advanced parallel operation
In this method, multiple supplies can be configured to parallel operation as a single power su
p
ply. The
total load current and output volta
ge are displayed by the Master unit and can be readback from the
Master unit. The Slave units display only their operating status (On, Off or Fault condition).
Refer to the following procedure to configure multiple supplies for Advanced parallel operation.
1. Advanced parallel configuration.
a) SW1 position 2
-
Down in the Master Supply and up in all Slave Supplies.
Connect a short between J1
-
8 and J1
-
12 in all Slave Supplies.
Connect J1
-
25 of the Master Supply to J1
-
10 of all Slave Supplies.
Connect J
1 terminal 23 (IPGM
-
RTN) of the slave unit to J1 terminal 12 (COM) of ma
s-
ter unit.
The following set up connections are optional but are strongly recommended. These
set up and connections will shut down all the parallel power supplies when fault cond
i-
tion
occurs in any one of them.
Switch SW1 position 5 should be in its down position for all power supplies (See Fig.
5.6).
Connect J1
-
16 of the Master Supply to J1
-
15 of the ‘First’ Slave Supply.
Connect J1
-
16 of the ‘First’ Slave Supply to J1
-
15 of the ‘Secon
d’ Slave Supply (if any)
Connect J1
-
16 of the ‘Second’ Slave Supply to J1
-
15 of the ‘Third’ Slave Supply (if any)
Connect J1
-
16 of the ‘Last’ Slave Supply to J1
-
15 of the Master Supply
Connect J1
-2(or J1
-3)common to all supplies
(
See fig. 5.6).
2. Connec
tion to the Load
In parallel operation, power supplies can be connected in local or remote sensing. R
e
fer to Fig. 5
-
4 and 5
-
5 for typical connections of parallel power supplies. The figures show connection of two
units, however the same co
n
nection method a
pplies for up to 4 units.
3. Setting
the units as Master or Slave
a) Depress and hold the FINE button for 3 seconds. The Master/Slave configuration will be displayed
on the Current Display. Rotate the CURRENT encoder to obtain the desired mode. Refer to
Table 5
-4for the CURRENT display and modes of operation.
CURRENT Display
Operating Mode
H1
Single supply (default)
H2
Master supply with 1 Slave supply
H3
Master supply with 2 Slave supplies
H4
Master supply with 3 Slave supplies
S
Slave supply
Tab
le 5-4: Setting mode of operation
b) When the desired configuration is obtained, depress and release the FINE button or wait approx. 5
seconds.
4
. Master and Slave units default operation
a) When a unit is programmed to Slave mode it enters the Remote mode
with Local Lockout. In this
mode, the front panel controls are disabled to prevent accidental setting change (refer to Sec. 7.2.7
for details).
b) The Slave
unit’s
parameters will automatically set the following:
*Output voltage to approximate 102% of
rated output voltage.
*Programmed Current to zero.
*UVL to zero volts
83
-515-000Rev.
B
44
CAUTION
Make sure that the c
onnection between
V terminals is reliable to avoid disconnection
during operation. Disconnection may cause damage to the power supply.
NOTE
With local sensing it is important to minimize the wire length and resistance. Also the positive and
negative wire resistance should be
close as possible to each other to achieve current balance b
e-
tween power supplies
*OVP to its maximum value
*AST On
*OUT On
*Foldback protection Off
c) The Master and Slave modes are stored in the power su
p
ply EEPROM when the AC power is turne
d
off. The sy
s
tem will return to the Master/Slave mode upon re
-
application of AC power.
5
. CURRENT display accuracy
In the advanced parallel mode, the Master unit calculates the total current by multiplying the Master ou
t
put
current by the number of Slave
units. In this method, the CURRENT display accuracy is 2% +/
-
1 count. In
cases that higher accuracy is required, it is recommended to use the basic parallel oper
a
tion mode.
6.
To release units from Slave mode
Slave units can be released using the followin
g procedure:
a) Depress FINE button for 3 seconds. The Master/Slave configuration will be displayed on the
CURRENT display.
b) Select H1 mode using the CURRENT encoder.
c) Depress FINE button again or wait 5 seconds.
d) Turn the AC power Off to store the n
ew setting.
e) After exiting from Slave operation the unit’s parameters will be set to:
*Programmed Voltage to zero
*Programmed Current to zero
*UVL to zero volts
*OVP to its maximum value
*AST OFF
*OUT OFF
*Foldback protection
OFF
*Locked Front Panel
Fig.5-4: Parallel connection with local sensing
MASTER
POWER SUPPLY
SLAVE#1
POWER SUPPLY
J1-25
J1-10
P
IPGM
J1-12
J1-23PIPGM_RTN
+
V-V+V-V
LOAD
As shortas possible
Twisted
pair
+S
-S
J1-8
J1-12
To J1-10
SLAVE#2
POWER SUPPLY
To J1-23
SLAVE#2
POWER SUPPLY
-S
-LS
+LS+S+LS
-LS
83
-515-000Rev.
B
45
Fig.5-6: Daisy-chain connection
POWER SUPPLY
#1J1-2,3
J1-16
J1-16
J1-16
J1-15
PS_OK
POWER SUPPLY
#2J1-2,3
J1-15
PS_OK
SO
POWER SUPPLY
#3
J1-2,3
J1-15
PS_OK
SOSOIF_COM
IF_COM
IF_COM
Fig.5-5: Parallel operation with Remote sensing
MASTER
POWER SUPPLY
SLAVE#1
POWER SUPPLY
J1-25
J1-10PIPGM
J1-12
J1-23PIPGM_RTN
+
V-V+V-V+S-S
LOAD
As shortas possible
Twisted
pair
+S
-S
+S
-S
Twisted
pair
J1-8
J1-12
To J1-10
SLAVE#2
POWER SUPPLY
To J1-23
SLAVE#2
POWER SUPPLY
+S
+LS
-LS
-S
5.16 DAISY
-
CHAIN CONNECTION
It is possible to configure a multiple power supply system to shut down all the units when a fault cond
i-
tion occurs in one of the units. When the fault is removed, the syst
em recovers according to its setting
to Safe
-
start or Auto
-re
start mode.
Setup switch SW1, position 5 should be set to its DOWN position to enable the Daisy
-
chain operation.
Other SW1 pos
i
tions can be set according to the application requirements.
If a fau
lt occurs in one of the units, its PS_OK signal will be set to a low level and the display will ind
i-
cate the fault. The other units will shut off and their display will indicate “SO”. When the fault condition
is removed, the units will recover to their las
t setting according to their Safe
-
start or Auto
-
restart se
t-
ting.
Fig.5
-
6 shows connection of three units, however the same connection method applies to systems
with a larger number of units.
5.17 FRONT PANEL LOCKING
The front panel controls can b
e locked to protect from accidental power supply parameter change.
Press and hold the PREV button to toggle b
e
tween “Locked front panel’ and “Unlocked front panel”.
The display will cycle between “LFP” and “UFP”. R
e
leasing the PREV button while one of the
modes
is displayed, s
e
lects that mode.
5.17.1 Unlocked front panel
In this mode, the front panel controls are Enabled to program and monitor the power supply param
e-
ters.
5.17.2 Locked front panel
In this mode the following front panel controls are Disabled
:-VOLTAGE and CURRENT encoders.
-
FOLD button.
-
OUT button
The power supply will not respond to attempts to use these controls. The VOLT display will show
“LFP” to ind
i
cate that the front panel is locked.
OVP/ UVL button is active to preview the OVP
and UVL setting.
Use the PREV button to preview the Output Vol
t
age and Current setting or to unlock the front panel.
83
-515-000Rev.
B
46
CAUTION
COM (J1
-
12), VPGM_RTN (J1
-
22) terminals are connected AND IPGM_RTN
(J1-23) terminal of J1 is referenced internally to the
-
Vout potential (
-
V). Do
not connect these terminals to any potential other than
-
Vout (
-
V), as it may
damage the po
wer supply.
CHAPTER 6 REMOTE ANALOG PROGRAMMING
6.1 INTRODUCTION
The rear panel connector J1 allows the user to program the power supply Output Voltag
e and Cu
r
rent
with an analog device. J1 also provides monitoring signals for Output Voltage and Output Current.
The pr
o
gramming range and monitoring signals range can be selected between 0
-
5V or 0
-
10V using
the setup switch SW1. When the power supply is
in Remote Analog programming, the serial comm
u-
nication port is a
c
tive and can be used to read the power supply parameters.
6.2 LOCAL/REMOTE AN
ALOG
CONTROL
C
ontact 8 of J1 (Fig.4
-
2, Item 5) accepts TTL signal or Open
-
Short contact (referenced to J1
-
12) to
select between Local or Remote Analog programming of the Output Voltage and Current.
In Local mode, the Output Voltage and Output Current can be programmed via the front panel
VOLTAGE and CURRENT encoders or via the RS232/RS485 port. In Remote Analo
g mode, the Ou
t-
put Voltage and current can be programmed by analog voltage or by programming resistors via J1
contacts 9 and 10 (refer to Sections 6.4 and 6.5). Refer to Table 6
-
1 for Local/Remote Analog control
(J1-8) fun
c
tion and Setup switch SW1
-
1, 2 se
ttings.
SW1
-
1, 2 se
t
tingJ1-
8 function
Output Voltage/
Current setting
Down (default)
No effect
Local
“0” or Short
Remote
Analog
Up
“1” or Open
Local
Table 6
-
1: Local/Remote Analog control function
6.3 LOCAL/REMOTE ANALOG INDICATION
Contact 21
of J1 (Fig. 4
-
2, Item 5) is an open collector output that indicates if the power supply is in
Local mode or in Remote Analog mode. To use this output, connect a pull
-
up resistor to a voltage
source of 30Vdc maximum. Choose the pull
-
up resistor so that the
sink current will be less than 5mA
when the output is in a low state. Refer to table 6
-
2 for J1
-
21 function.
J1-8
SW1
-1SW1
-2J1-21 signal
Down
Down
Open
Down
Up
00.6V
Up
Down
00.6V
TTL “0” or short
UpUp00.6V
TTL “1” or open
Down or Up
Down
or Up
Open
Table 6
-
2: Local/Remote Analog indication
83
-515-000Rev.
B
47
CAUTION
To maintain the power supply isolation and to prevent ground loops, use an
isolated programming source when operating the power supply via remote
analog programming at the J1 connector.
6.4
REMOTE VOLTAGE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT
LIMIT
Perform the following procedure to set the power supply to Remote Voltage programming:
1.
Turn the power supply AC On/Off
switch to Off.
2.Set setup switch SW1
-
1 to its UP position for output voltage external programming and
SW1
-
2 to its UP position for output current.
3.
Set SW1, position 3 to select the programming voltage range according to Table 6
-3.4.
Ensure that SW1, positions
7 and 8 are at their DOWN (default) position.
5.
Connect a wire jumper between J1
-
8 and J1
-
12 (refer to Table 4
-
4).6.Connect the programming source to the mating plug of J1 as shown in Fig.6
-
1. Observe
correct polarity for the voltage source.
7.
Set the programm
ing sources to the desired levels and turn the power supply ON. Adjust
the programming sources to change the power supply output.
NOTES:
1.
SW1, positions, 4, 5, 6 and 9 are not required for remote programming. Their settings can
be determined according the
application.
2.
The control circuits allow the user to set the Output Voltage and Output Current up to 5%
over the model
-
rated maximum value. The power supply will operate within the extended
range, however it is not recommended to operate the power supply ov
er its voltage and
current ra
t
ing, and performance is not guaranteed.
SW1
-
3 setting
Output Voltage progra
m
ming
VPGM (J1
-9)Output Current progra
m
ming
IPGM (J1
-
10)UP0-10V0-
10V
DOWN
0-5V0-
5V
Table 6
-
3: SW1
-
3 setting and programming range
114132510128923
22
+
+
CURRENT LIMIT
PROGRAMMING
OUTPUT VOLTAGE
PROGRAMMING
J1 connector, rear panel view
Fig.6-1: Remote voltage programming connection
83
-515-000Rev.
B
48
114132510923
22
CURRENT LIMIT
PROGRAMMING
OUTPUT VOLTAGE
PROGRAMMING
J1 connector, rear panel view
Fig.6-2: Remote resistive programming
PROGRAMMING
RESISTOR
PROGRAMMING
RESISTOR
OPTIONAL SETS
LOWER LIMIT
OPTIONAL SETS
LOWER LIMIT
OPTIONAL SETS
UPPER LIMIT
OPTIONAL SETS
UPPER LIMIT
12
8
6.5
RESISITIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT
For resistive programming, internal current sources, for Output Voltage and/or Output Current control,
supply 1mA current through external programming resistors connected between J1
-
9 & 22 and J1
-10& 23. The voltage across the programming resistors is used as a programming voltage for the power
supply. Resistance of 0
5Kohm or 0
10Kohm can be selected to program the
o
utput
v
oltage and
o
utput
c
urrent from zero to full scale.
A variable resistor can
control the output over its entire range, or a combination of variable r
e
sistor
and series/parallel resi
s
tors can control the output over restricted portion of its range.
Perform the following procedure to set the power supply to Resistive programming:
1.Turn the AC On/Off switch to Off.
2.
Set setup switch SW1
-
1 to its UP position for output voltage external programming and SW1
-
2 to
its UP position for Output Current limit external programming.
3.
Set SW1, position 3 to select the programming resistor range acco
rding to Table 6
-4.4.
Set SW1
-
7 to its UP position for output voltage resistive programming and SW1
-
8 to its UP pos
i-
tion for Output Current limit resistive programming.
5.
Connect a short between J1
-
8, J1
-
12 and J1
-
23 (refer to Table 4
-
4).
6.
Connect the programm
ing resistors to the mating plug of J1 as shown in Fig.6
-
2.
7.
Set the programming resistors to the desired resistance and turn the power supply ON. Adjust the
resistors to change the power supply output.
NOTES:
1.
SW1, positions 4, 5, 6 and 9 are not required
for remote programming. Their settings can be d
e-
termined according to the application requirements.
2.
The control circuits allow the user to set the Output Voltage and Output Current up to 5% over the
model
-
rated maximum value. The power supply will operate
within the extended range, ho
w
ever it
is not recommended to operate the power supply over its voltage and current rating and perfor
m-
ance is not guaranteed.
3.
To maintain the temperature stability specification of the power supply, the resistors used for pr
o-gramming should be stable and low noise resistors, with temperature coefficient of less than
50ppm.
4.
When resistive programming is used, front panel and computer control (via serial communication
port) of Output Voltage and Current are disabled.
SW1
-
3 settin
g
Output Voltage pr
o
gramming
VPGM (J1
-9)Output Current programming
IPGM (J1
-
10)UP0-10Kohm
0-10Kohm
DOWN
0-5Kohm
0-5Kohm
Table 6
-
4: SW1
-
3 setting and programming range
83
-515-000Rev.
B
49
6.6 REMOTE MONITORING OF OUTPUT VOLTAGE AND CURRENT
The J1 connector
, located on the rear panel provides analog signals for monitoring the Output Vol
t-
age and Output Current. Selection of the voltage range between 0
-
5V or 0
-
10V is made by setup
switch SW1
-
4. The monitoring signals represent 0 to 100% of the power supply Out
put Vol
t
age and
Output Current. The monitor ou
t
puts have 500 ohm series output resistance. Ensure that the sensing
circuit has an input resistance of greater than 500 Kohm or accuracy will be r
e
duced.
Refer to Table 6
-
5 for the required J1 connection, SW1
-
4 setting and monitoring voltage range.
J1 co
n
nection
Signal
name
Signal function
Signal (+)
Return (
-)Range
SW1
-4VMON
Vout monitor
J1-11
IMON
Iout monitor
J1-24J1-120-5V
Down
VMON
Vout monitor
J1-11
IMON
Iout monitor
J1-24J1-120-10VUpTable 6
-
5 Monitoring signals setting
Notes:
1. Radiated emissions, FCC requir
e
ments:
FCC requirements for radiated emissions; use shielded
cable for the analog control signals. If using unshielded
cable, attach an EMI ferrite suppressor to the cab
le, as
close as possible to the power supply.
2. Front panel encoders operation:
In Remote analog mode, the output voltage and current
can’t be set by the VOLTAGE and CURRENT encoders.
3. Front panel PREV button:
Use the PREV button to display the Output
Voltage and
Current setting defined by the encoders or communic
a-
tion.
4. Communication:
In Remote analog mode, all power supply parameters
can be programmed and readback via the communication
port, e
x
cept the Output Voltage and Current setting.
83
-515-000Rev.
B
50
CHAPTER 7 RS232 & RS485 REMOTE CONTROL
7.1 INTRODUCTION
This Chapter describes the operation of the Genesys
TM
50
00W power supplies via the serial comm
u-
nication port. Details of the initial set
-
up, operation via RS232 or RS485, the command set and t
he
communication protocol are described in this Chapter.
7.2 CONFIGURATION
7.2.1
Default setting
The power supply is shipped with the following settings:
-
Address
6-Output
Off-Baud
-
rate
9600
-
Start up mode
Safe
-
start
-
RS232/485
RS232
-
OVP
Maximum
-
Vout setting
0-UVL
0-Iout setting
Maximum
-
Foldback
Off-Master/Slave
H1 (Master)
-
Front panel:
Unlocked (UFP)
7.2.2
Address setting
The power supply address can be set to any address between 0 and 30. Follow the instructions d
e-
scribed below to set the uni
t address.
1.
If the unit is in Remote mode (front panel REM/LOC LED illuminated), press the REM/LOC bu
t
ton
to put the unit into Local mode.
2.
Press and hold for the REM/LOC button for approximately 3 sec. The VOLTAGE display will ind
i-
cate the unit address.
3.
Usi
ng the VOLTAGE adjust encoder, select the unit address.
To preview the power supply address at any time, press and hold the REM/LOC button for approx. 3
sec. The VOLTAGE display will indicate the power supply address.
7.2.3
RS232 or RS485 selection
To select be
tween RS232 or RS485 set the rear panel setup switch SW1
-
6 position to:
-
DOWN for RS232
-
UP for RS485
7.2.4
Baud Rate setting
Five optional Baud rates are possible: 1200, 2400, 4800, 9600 and 19200. To select the desired rate,
the fo
l
lowing steps should b
e taken:
1.
If the unit is in Remote mode (front panel REM/LOC LED illuminates), press REM/LOC button to
put the unit into Local mode.
2.
Press and hold the REM/LOC button for approximately 3 sec. The CURRENT display will show
the unit Baud Rate.
3.
Using the CURRE
NT adjust encoder, select the desired Baud Rate.
7.2.5
Setting the unit into Remote or Local mode
1.
The unit will be put into Remote mode only via serial communication command. Commands that
will put the unit into Remote mode are:
RST
PV n
OUT n
PC n
RMT n
(for
n values see Tables 7
-
5 and 7
-
6)
83
-515-000Rev.
B
51
NOTE
Tx and Rx are used for RS232 communication. Txd +/
-
and Rxd +/
-
are used for RS485
communication. Refer to RS
-
232 and RS
-
485 cabling and connection d
e
tails.
2.
There are two Remote modes:
1. Remote:
In this mode, return to local can be made by the front panel REM/LOC or via
serial port command RMT 0. Set the unit into Remo
te mode via serial port
RMT 1 command.
2. Local Lockout: In this mode the unit can be returned to Remote mode via the serial port RMT 1
command or by turning off the AC power until the display turns off, and then turn
it to on
again. In local Lockout mode, the front panel REM/LOC button is not a
c-
tive. Set the unit into Local Lockout mode via serial port RMT 2 co
m
mand.
7.2.6
RS232/RS485 port in Local mode
When the power supply is in Local mode, it can receive queries or commands. If
a query is received,
the power supply will reply and remain in Local mode. If a command that affects the output is r
e-
ceived, the power supply will perform the command and change to Remote mode.
Serial commands may be sent to set the status registers and re
ad them while the unit is in Local
mode. If the Enable registers are set (refer to Section 7.11) the power supply will transmit SRQ’s
while in Local.
7.2.7
Front panel in Remote mode
Front panel control in Remote mode is Disabled except for:
1.
PREV: use to preview
the Voltage and Current setting.
2.
OVP/UVL: use to preview the OVP/UVL setting.
3.
LOC/REM: use to set the unit into Local mode.
In Local Lockout mode, only the PREV and OVP/UVL pushbuttons are active.
7.3 REAR PANEL RS232/RS485 CONNECTOR
The RS232/RS485 int
erface is accessible through the rear panel RS232/RS485 IN and RS485 OUT
connectors. The connectors are 8 contact RJ
-
45. The IN and OUT connectors are used to connect
power supplies in a RS232 or RS485 chain to a controller. Refer to Fig. 7
-
1 for IN/OUT co
nnectors.
NCNCRXNCNC
TXD
RXD
TXD
RXD
RXD
TXD
RXD
TXDSGSG
---
-
+++
+
TX
OUT
IN
Fig.7-1: Rear panel J3 IN/OUT connectors pinout
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
Shield
(connector enclosure)
83
-515-000Rev.
B
52
7.4
MD MODE OPTION (Factory Installed)
7
.4.1MD Mode Description
The GEN supply is capable of operating in a multi drop environment
-
more than 1 supply co
n
ducting
serial communications on a single serial bus. A maximum of 31 GEN suppli
es can operate in this si
n-
gle bus. Upon power up the Gen will enter the point
-to-
point mode in which it is assumed that only 1
supply will operate on a serial bus. MD Mode must be enabled
-
Ref. Section 7.10.2.2. The user must
set all Slave supplies to a u
nique address. No two supplies may have the same address.
7.
4.2
MD Mode enable
Serial comm
u
nication mode
Refer to section 7.10.2.2. MD Mode is entered into via a Single byte command. In MD Mode the Ma
s-
ter supply shall operate in one of the two serial mo
des, RS232 or RS485, depending upon the rear
panel DIP switch setting and the Slave supplies shall operate in the RS485 s
e
rial mode.
7.4.3
MD Mode SRQ
In MD Mode the SRQ generated by the supply is replaced by a single byte SRQ sent two times in s
e-
quence.
The SRQ byte, in binary, will contain the address of the supply in the least significant 5 bits
with bits 5 and 6 set to logic zero and bit 7 set to logic 1. Ref. Table 7
-
4.
7.4.4
Communication Collisions
In MD Mode it is possible to have one supply issue
an SRQ while another supply is transmitting
data/response to a command. When this happens, the HOST PC will receive garbled data and a
s-
sume that the data/response was corrupted and thus re
-
send the command
-
the SRQ will probably
be lost. The method of re
covery will be SRQ retransmission, Ref. Section 7.4.5, or polling all a
t
tached
supplies to see who issued the SRQ
-
available by reading the SEVE? Register.
7.4.5
MD Mode SRQ Retransmission
The supply can be commanded to retransmit the SRQ at regular inte
r
vals until it is answered to by the
HOST PC (Ref. Section 7.10.2.4). The retransmission interval is 10 ms plus the supply address mult
i-
plied by 20 ms.
83
-515-000Rev.
B
537.5
CONNECTING POWER SUPPLIES TO RS232 OR RS485 BUS
7.
5.1
Single power supply
1. Selec
t the desired interface RS232 or RS485 using rear panel setup switch SW1
-
6 (Section 4
-
4).-RS232: DOWN position
-
RS485: UP position
2. Connect rear panel IN connector to the controller RS232 or RS485 port using a suitable shielded
cable. Refer to F
igures 7
-
2, 7-3 and 7
-
4 for available RS232 and RS485 cables.
2371871
PIN NO.
PIN NO.
NAME
NAME
SHIELD
TXRXSG
SHIELD
RXTXSG
DB-25 CONNECTOR
8 PIN CONNECTOR
REMARKS
TWISTED
PAIR81
13
1
23578
1
PIN NO.
HOUSING
HOUSING
PIN NO.
NAME
NAME
SHIELD
RXTXSG
SHIELD
TXRXSG
DB-9 CONNECTOR
8 PIN CONNECTOR
REMARKS
TWISTED
PAIR
815
1
9
81546
315
4
PIN NO.
HOUSING
HOUSING
PIN NO.
NAME
NAME
TWISTED
PAIR
TWISTED
PAIR
SHIELD
TXD
TXDSGRXD
RXD
SHIELD
RXD
RXDSGTXD
TXD
DB-9CONNECTOR
8 PIN CONNECTOR
REMARKS
-
+++
+
---
8
151
Fig.7-2: RS232 cable with DB25 connector (P/N: GEN/232-25)
Fig.7-3: RS232 cable with DB9 connector (P/N: GEN/232-9)
Fig.7-4: RS485 cable with DB9 connector (P/N: GEN/485-9)
L=2mtyp.
L=2mtyp.
L=2mtyp.
Sockets
Sockets
Sockets
83
-515-000Rev.
B
54
NOTE
The address (ADR n) command must return an “OK
” response b
e
fore
any other commands are accepted.
7.5.2
Multi power supply co
n
nection to RS232 or RS485 bus
Up to 31 units can be connected (daisy chained) to the RS232 or RS485 bus. The first unit connects
to the co
n
troller via RS232 or
RS485 and the other units are connected via the RS485 bus.
1. First unit connection: Refer to Section 7.5.1 for connecting the first unit to the controller.
2. Other units connection: The other units on the bus are connected via their RS485 interface.
Refer to Figure 7
-
5 for typical connection.
-
Set rear panel setup switch SW1
-
6 to its UP position.
-
Using the Linking cable supplied with each unit (refer to Fig. 7
-
6), connect each unit OUT
conne
c
tor to the next unit IN connect
or.
7.6COMMUNICATION INTERFACE PROTOCOL
7.6.1 Data format
Serial data format is 8 bit, one start bit and one stop bit. No par
ity
bit.
7.6.2Addressing
The Address is sent separately from the command. It is recommended to add 100msec delay b
e-
twee
n query or sent command to next unit addressing. Refer to Section 7.8.3 for details.
7.6.3
End of Message
The end of message is the Carriage Return character (ASCII 13). The power supply ignores the Line
Feed (ASCII 10) character.
7.6.4
Command Repeat
Th
e backslash character “
\
” will cause the last command to be repeated.
7.6.5
Checksum
The user may add a checksum (optional) to the end of the command. The checksum is “$” followed
by two hex characters. If a command or a query has a checksum, the response
will also have one.
There is no CR between the command string and the “$” sign.
Example: STT?3A
STAT?$7B
7.6.6
Acknowledge
The power supply acknowledges received commands by returning an “OK” message. If an error is
detected the power s
upply will return an error message. The rules of checksum also apply to the a
c-
knowledge.
IN
OUT
POWER SUPPLY
#1
IN
OUT
POWER SUPPLY
#2
IN
OUT
POWER SUPPLY
#3
IN
OUT
POWER SUPPLY
#31
RS232/RS485
RS485
RS485
RS485
Fig7-5: Multiple power supply RS232/485 connection
811
8
163541635
4
PIN NO.
HOUSING
HOUSING
PIN NO.
NAME
NAME
SHIELD
SG
TXD
TXD
RXD
RXD
SHIELD
SG
RXD
RXD
TXD
TXD
-
+++
+
---
Serial link cable with RJ-45 shielded connectors (P/N: GEN/RJ-45)
Fig.7-6:
L=0.5m typ.
83
-515-000Rev.
B
55
7.6.7
Error message
If an error is detected in command or query, the power supply will respond with an error message.
Refer to Section 7.7 for details.
7.6.8
Backspa
ce
The backspace character (ASCII 8) clears the last character sent to the power supply.
7.7ERROR MESSAGES
The power supply will return error messages for illegal commands and illegal programming param
e-
ters. Refer to Table 7
-
1 for programming error mess
ages and Table 7
-
2 for command error me
s-
sages.
Table 7
-
1: Programming error messages
Error
Code
Description
E01
Returned when program voltage (PV) is programmed above acceptable range.
Example: PV above ‘105% of supply rating’ or PV above 95% of OVP setti
ng’.
E02
Returned when programming output voltage below UVL setting.
E04
Returned when OVP is programmed below acceptable range.
Example: OVP less than 5% of supply voltage rating’ plus ‘voltage setting’.
E06
Returned when UVL is programmed above the pr
ogrammed output voltage.
E07
Returned when programming the Output to ON during a fault shut down.
Table 7
-
2: Commands error messages
Error
Code
Description
C01
Illegal command or query
C02
Missing parameter
C03
Illegal parameter
C04
Checksum error
C05Setting out of range
7.8COMMAND SET DESCRIPTION
7.8.1
General guide
1.
Any command or argument may be in capital letters or small letters.
2.
In commands with an argument, a space must be between the command and the arg
u
ment.
3.
For any command that sets a nu
meric value, the value may be up to 12 characters long.
4.
Carriage Return: If the CR character (ASCII 13) is received by itself, the power supply will r
e-
spond with “OK” and CR.
7.8.2
Command set categories
The Genesys
TM
5000W series command set is divided i
nto four categories as follows:
1.
Initialization control
2.
ID control
3.
Output control
4.
Status control
83
-515-000Rev.
B
56
7.8.3
Initialization Control Commands
#
Command
Description
1
ADR n
ADR is followed by address, which can be 0 to 30 and is used to access the
power supply
.2CLS
Clear status. Sets FEVE and SEVE registers to zero (refer to Section 7
-
11).3RST
Reset command. Brings the power supply to a safe and known state:
Output voltage: zero, Remote: non
-
lockout remote,
Output current: zero, Auto
-
start: Off,
Output: Off, OVP: maximum,
FOLD: Off, UVL: zero
The conditional registers (FLT and STAT) are updated, the other registers are
not changed.
4
RMT
Sets the power supply to local or remote mode:
1.
RMT 0 or RMT LOC, sets
the power supply into Local mode.
2.
RMT 1 or RMT REM, sets the unit into remote mode.
3.
RMT 2 or RMT LLO, sets the unit into Local Lockout mode (latched r
e
mote mode).
5
RMT?
Returns to the Remote mode setting:
1.
“LOC”
-
The unit is in Local mode.
2.
“REM”
-
The un
it is in Remote mode.
3.
“LLO”
-
The unit is in Local Lockout (latched remote) mode.
6
MDAV?
Returns MD MODE OPTION Status. 1 indicates installed and 0 indicates not i
n-
stalled.
7\Repeat last command. If
\
<CR> is received, the power supply will repeat the
last
command.
7.8.4
ID Control Commands
#
Command
Description
1
IDN?
Returns the power supply model identification as an ASCII string:
LAMBDA, GENX
-
Y
2
REV?
Returns the software version as an ASCII string.
3
SN?
Returns the unit serial number. Up to 12
characters.
4
DATE?
Returns date of last test. Date format: yyyy/mm/dd
7.8.5
Output Control Commands
#
Command
Description
1
PV n
Sets the output voltage value in Volts. The range of voltage value is described in
Table 7
-
5. The maximum number of chara
cters is 12. See the following exa
m
ples
for PV n format: PV 12, PV 012, PV 12.0, PV 012.00, etc…
2
PV?
Reads the output voltage setting. Returns the string “n” where “n” is the exact
string sent in the PV n command. When in Local mode, returns the PREVIEW
(front panel) settings in a 5 digit string.
3
MV?
Reads the actual output voltage. Returns a 5 digits string.
Example: 60V supply sends 01.150, 15.012, 50.000, etc…
4
PC n
(See
Note 1)
Set the Output Current value in Amperes. The range of current value
s is d
e-
scribed in Table 7.6. The maximum number of characters is 12. See the following
examples for PC n format: PC n format: PC 10, PC 10.0, PC 010.00, etc…
5
PC?
Reads the Output Current setting. Returns the string “n” where “n” is the exact
string sent
in the PC n command. When in Local mode, returns the PREVIEW
(front panel) se
t
tings in a 5 digit string.
6
MC? (See
Note 2)
Reads the actual Output Current. Returns a 5 digit string.
Example: 200A supply sends 000.50, 110.12, 200.00, etc…
83
-515-000Rev.
B
57
#
Command
Desc
ription
7
DVC?
Display Voltage and Current data. Data will be returned as a string of ASCII
characters. A comma will separate the different fields. The fields, in order, are:
Measured Voltage, Programmed Voltage, Measured Current, Programmed Cu
r-
rent, Over
Voltage Set Point and Under Voltage Set Point.
Example: 5.9999,6.0000,010.02,010.00,7.500,0.000
8
FILTER
nn
Set the low pass filter frequency of the A to D Converter for Voltage and Current
Measurement where nn = 18, 23 or 46.
9
FILTER?
Returns the A to
D Converter filter frequency: 18,23 or 46 Hz.
10
OUT n
Turns the output to ON or OFF. Recover from Safe
-
Start, OVP or FLD fault.
OUT 1 (or OUT ON)
-
Turn On.
OUT 0 (or OUT OFF)
-
Turn Off
11
OUT?
Returns the output On/Off status string.
ON-output On.
OFF
-
output Off.
12
FLD n
Sets the Foldback protection to ON or OFF.
FLD 1 (or FOLD ON)
-
Arms the Foldback protection
FLD 0 (or FOLD OFF)
-
Cancels the Foldback protection.
When the Foldback protection has been activated, OUT 1 command will release
thepro
tection and re
-
arm it, while FLD 0 will cancel the protection.
13
FLD?
Returns the Foldback protection status string:
“ON”
-
Foldback is armed. “OFF”
-
Foldback is cancelled.
14
FBD nn
Add (nn x 0.1) seconds to the Fold Back Delay. This delay is
in addition to the
standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC
power down and recovered at AC power up.
15
FBD ?
Supply returns the value of the added Fold Back Delay.
16
FBDRST
Reset the added Fold Back Delay to zero.
17
OVP n
Sets the OVP level. The OVP setting range is given in Table 7
-
7. The number of
characters after OVP is up to 12. The minimum setting level is approximately
105% of the Output Voltage setting, or the value in Table 7
-
7, whichever is
higher. The m
aximum OVP setting level is shown in Table 5
-
1. Attempting to
program the OVP below this level will result in an execution error response
(“E04”). The OVP setting stays u
n
changed.
18
OVP?
Returns the setting “n” where “n” is the exact string in the user’s
“OVP n”. When
in Local mode, returns the last setting from the front panel in a 4 digit string.
19
OVM
Sets OVP level to the maximum level. Refer to Table 7
-7.20
UVL n
Sets Under Voltage Limit. Value of “n” may be equal to PV setting, but returns
“E06”
if higher. Refer to Table 7
-
8 for UVL programming range.
21
UVL?
Returns the setting “n” where “n” is the exact string in the user’s “UVL n”. When
in Local mode, returns the last setting from the front panel in a 4 digit string.
22
AST n
Sets the Auto
-restart mode to ON or OFF.
AST 1 (or AST ON): Auto restart On.
AST 0 (or AST OFF): Auto restart Off.
23
AST?
Returns the string auto
-
restart mode status.
24
SAV
Saves present settings. The settings are the same as power
-
down last setting.
These se
t
tings a
re erased when the supply power is switched Off and the new
“last settings” are saved.
25
RCL
Recalls last settings. Settings are from the last power
-
down or from the last
“SAV” command.
83
-515-000Rev.
B
58
26
MODE?
Returns the power supply operation mode. When the power
supply is On (OUT
1) it will return “CV” or “CC”. When the power supply is OFF (OUT 0 or fault
shutdown) it will r
e
turn “OFF”.
27
MS?
Returns the Master/Slave setting. Master: n= 1, 2, 3, or 4 Slave: n=0
NOTES:
1. In Advanced parallel mode (refer to S
ec. 5.15.2), “n” is the total system current.
2. In Advanced parallel mode, “MC?” returns the Master unit current multiplied by the number of slave
units +1.
7.9
GLOBAL OUTPUT COMMANDS
7.9.1
GENERAL
All supplies, even if not the currently addressed su
pply, receiving a global
comm.
and will execute
the command. No response to the PC issuing the command will be returned to the PC. The PC iss
u-
ing the command will be responsible to delay and any other communications until the command is
execute. 200 Ms
minimum is the suggested delay.
If the command contains an error, out of range values for example, no error report will be sent to the
issuing PC.
Table 7
-31.
GRST
Reset. Brings the power supply to a safe and known state:
Output voltage: 0V, output curr
ent: 0A, OUT: Off, Remote: RMT 1,
AST: Off OVP: Max, UVL: 0.
The conditional register (FLT and STAT) are updated. Other registers are
not
changed.
Non
-
Latching faults (FB, OVP, SO) are cleared, OU
T fault stays
2.
GPV n
Sets the output voltage value in volts. The range of voltage values is shown in
Table 7
-
5. ‘n’ may be up to 12 char plus dec. pt
3.
GPC n
Program the output current value in amperes. The range of current values is
shown in Table 7
-
6. ‘n’ may be up to 12 char plus dec. pt
4.
GOUT
Turns the output to ON or OFF:
“OUT 1/ON” = turn on
“OUT 0/OFF” = turnoff, clears CV and CC bits in the Status Condition (STAT).
OUT ON will respond with “E07’ if the output cannot be turned on because of a
latching fault (OTP< AC, ENA, SO) shutdown.
5.
GSAV
Save present settings. Same settings as power
-
down last settings listed in E
r-
ror!
Reference source not found. Except the address and Baud rate are not saved
Saves to the RAM. These settings are erased
when the supply power is
switched off and the new ‘last settings’ are saved.
6.
GRCL
Recall last settings. Settings are from last power
-
down or from last ‘SAV’ or
‘GSAV’ command. Address and Baud rate are not recalled so comm
u
nication is
not interrupted.
83
-515-000Rev.
B
59
7.10
SINGLE BYTE COMMANDS
7.10.1
General
Single byte commands are commands in which all the necessary data for the supply to act upon is
contained in a single byte. Single byte commands will be executed immed
i
ately by the supply. If the
command require
s data to be sent to the HOST PC or IEEE Board (see se
c
tions 7.10.4 and 7.10.3.1)
that response will be transmitted immediately with no delay due to any software overhead. With the
exception of the Disconnect from communications command, section 7.10.3.1,
commands must be
sent by the HOST PC or IEEE Board 2 times in s
e
quence for verification. All
have the most significant
bit, D7, set to a logic 1. A CR, carriage r
e
turn, character is not included in a single byte command.
The RST command will not change any
setting made by a single byte command.
All Single Byte commands will be executed in 1 ms or less. This does not include any r
e
sponse sent
to the HOST/IEEE Board, which is dependent upon the response length and the serial transmission
speed (Baud rate).
7.
10.2
Global commands without response
7.10.2.1
Disable MD Mode (MD MODE OPTION REQUIRED)
Disable is the default condition upon power up. The Hex value of the command is 0xA0. Send it two
times in sequence. All supplies, both the currently addressed suppl
y and all non
-
addressed su
p
plies,
will disable MD Mode as a result of this command.
7.10.2.2
Enable MD Mode (MD MODE OPTION REQUIRED)
Send to enable Multi Drop Mode. The Hex va
lue of the command is 0xA1. Send
it two times in s
e-
quence. When this command is
sent, the supply will set SRQ retransmission to the disable state; if
you wish it to be enabled you must send the enable command. All supplies, both the currently a
d-
dressed supply and all non
-
addressed supplies, will enable MD Mode as a result of this com
mand.
7.10.2.3
Disable SRQ retransmission (MD MODE OPTION REQUIRED)
Disable is the default condition upon power up. The Hex va
lue of the command is 0xA2. Send
it two
times in sequence. If the supply sends an SRQ it will only sent it 1 time. All supplies,
both the cu
r-
rently addressed supply and all non
-
addressed supplies, will disable SRQ retransmission as a result
of this command. All status registers will retain their data when this command is sent.
7.10.2.4
Enable SRQ retransmission (MD MODE OPTION REQU
IRED)
Enable retransmission of SRQs. This is only available when the Multi Drop Mode is enabled in the
supply. The Hex value of the command is 0xA3. Send it two times in s
e
quence. If the supply sends an
SRQ it will be repeated on a timely basis, 10 ms plus
20 ms times the supply address, until answered.
All supplies, both the currently addressed supply and all non
-
addressed supplies, will enable SRQ r
e-
transmission as a result of this co
m
mand.
7.10.2.5
Enable FLT Bit in the SENA Register
The Hex value of th
e command is 0xA4. Send it two times in sequence.
7.10.3
Global commands with response
7.10.3.1
Disconnect from communications
Command the supply to end all data transmissions to the HOST PC/IEEE Board and cease its role as
the active addressed supply.
The HOST PC/IEEE Board will be required to re
-
send the ‘ADR nn’
command to reestablish communications with the supply. After r
e
ceiving the first command the supply
will respond with an OK<CR>. The Hex value of the co
m
mand is 0xBF. All supplies, both the cu
rrently
83
-515-000Rev.
B
60
addressed supply and all non
-
addressed supplies, will respond to this command; but only the cu
r-
rently a
d
dressed supply (if any) will respond with the ‘OK’.
7.10.4
Addressed commands with response
7.10.4.1
Read registers
Send (0x80 + Address) (1 b
yte binary
-
send 2 times sequentially). The supply will return the contents
of the Status Condition Register, the Status Enable Register, the Status Event Register (SEVE?), the
Fault Condition Register, the Fault Enable Register and the Fault Event Regist
er IFEVE/). All registers
will be represented in two Hex bytes. Following the register data, a single dollar sign, $, will be added
to signal the end of data and the start of a checksum. The checksum will be the sum of all register
data and will be represe
nted in two Hex bytes. The transmission will end with the CR character. If r
e-
petitive sending of SRQs was active and the supply was sending them, the supply will stop sen
d
ing
repetitive SRQs but leave the function active. The contents of the registers will
not be destro
yed. Note
that the supply does
not have to be the active addressed su
p
ply.
Note that this command will not execute if another command is being processed.
7.10.4.2
Print Power On Time
Print the total time the supply has operated under AC pow
er. Send 2 bytes in sequence, A6 Hex and
the address of the supply in binary. A 32 bit integer will be returned in 8 Hex bytes. The data will be
the number of minutes that power has been ‘ON’ in the supply in binary. A ‘$’ sign and 2 byte Hex
checksum will
be appended to the data. There is no method provided to reset this number.
Retransmit last message.
Send (0xC0 + Address) (1 byte binary
-
send 2 times sequentially). The supply will return the last
message sent. Note that the supply does not have to be t
he active addressed su
p
ply.
This command will not execute if another command is being processed.
Note that Single byte commands do not load data into the supply’s data output buffer.
Thus this command will not cause the supply to retransmit data obtained f
rom any prev
i
ous Single
Byte Command.
7.10.4.3
Retransmit Last Message
Send (0xC0 + Address) (1 byte binary
-
send 2 times sequentially). The supply will return the last
message sent. Note that the supply does not have to be the active addressed su
p
ply.
This command will not execute if another command is being processed.
Note that Single byte commands do not load data into the supply’s data output buffer. Thus this
command will not cause the supply to retransmit data obtained from any previous Single Byte
Com-mand.
7.10.4.4
Test if MD Mode is Installed
Send AA Hex followed by the address of the supply in binary. If not installed, the supply will return a
‘1’. If installed, the supply will return a ‘0’.
7.10.5
Addressed commands without response
7.10.5.1
Acknowledge SRQ
Send (0xE0 + Address) (1 byte binary
-
send 2 times sequentially).
The supply will stop re
-
sending
SRQ.
If Enable SRQ retransmission is active, it will remain active.
7.10.5.2
Re-enable SRQ with out reading/clearing the SEVE Register
Send
A5 Hex followed by the address of the supply in binary and new SRQ’s generated by new
events in the Fault Event will be enabled without reading and clearing the Status Event Register. All
events previously recorded in the Fault Event Register must have be
en serviced by the user’s sof
t-
ware prior to this command to take affect.
83
-515-000Rev.
B
61
Table 7
-
4. SINGLE BYTE COMMANDS
Name
Bit Positions
Response
Description
Global
Commands
Disable MD Mode
1010 0000
None
Set supplies out of MD Mode (d
e
fault)
Enable
MD Mode
1010 0001
None
Set supplies into MD Mode
Disable SRQ
retransmission
1010 0010
None
Disable retransmission of SRQs by su
p-
plies (default)
Enable SRQ
retransmission
1010 0011
None
Enable retransmission of SRQs by supplies
Enable FLT Bit
1010 01
00
None
Enable the FLT bit in the SENA Re
g
ister
Disconnect serial
communications
1011 1111
OK
All supplies will halt transmission and enter
the non
-
addressed state.
Addressed
Commands
Read Registers
100x xxxx
Register
data
Non destructive read of
all register. x xxxx
is the address of the supply in binary.
Re-enable SRQ
Byte 1
1010 0101
Byte 2
xxxx xxxx
None
Re-enable SRQ without reading or clearing
the SEVE Register. xxxx xxxx is the a
d-
dress of the supply in binary. Works only in
MD Mode.
Print Power On
Time
Byte 1
1010 0110
Byte 2
xxxx xxxx
Power On
time in
minutes
Read the time the supply is active under
AC Power. xxxx xxxx is the address of the
supply in binary. R
e
turns a 32 Bit integer as
8 Hex bytes. A ‘$’ sign is appended to the
data
followed by a 2 byte check
-
sum. A t
o-
tal of 11 bytes are returned.
Retransmit last
message
110x xxxx
Last me
s-
sage
Retransmit last response from a command.
x xxxx is the address of the supply in b
i-
nary.
Acknowledge
SRQ
111x xxxx
None
Acknowledge SRQ. If r
etransmission of
SRQ is enabled, it will remain e
n
abled for
the next SRQ. X xxxx is the address of the
supply in binary.
Test if MD Mode
is Installed
Byte 1
1010 1010
Byte 2
xxxx xxxx
0 or 1
Returns a 0 if not installed or a 1 if i
n-
stalled. A ‘$’ sign fol
lowed by a 2 bytes
checksum and Carriage Return is a
p-
pended to the data. xxxx xxxx is the a
d-
dress of the supply in binary.
Supply Initiated
Communications
SRQ
100x xxxx
N/A
SRQ from supply when in MD Mode. X xxxx
is the address of the supply in binary
.
83
-515-000Rev.
B
62
Table 7
-
5: Voltage programming range
NOTE:
The power supply can accept values higher 5%
than the table values, however it is not reco
m-
mended to program the power supply beyond the
rated values.
Table 7
-
6: Current pr
ogramming range
Model
Minimum
(A)
Maximum
(A)
GEN8
-600
000.00
600.00
GEN1
0-500000.00
500
.00
GEN1
6-310
000.00
310
.00
GEN20
-
250
00.00
250
.00
GEN30
-170
00.00
170
.00
GEN40
-
125
00.00
125
.00
GEN60
-8500.000
85
.00
GEN80
-6500.000
65
.00
GEN1
00-50
00.000
50
.00
GEN150
-3400.000
34
.00
GEN300
-17
0.000
17
.00
GEN600
-
8.5
0.000
8.5
00
NOTE:
The power supply can accept values higher 5% than the table values, however it is not reco
m
mended to
program the power supply over the rated values.
Tabl
e 7-7: OVP programming range
Table 7
-
8: UVL programming range
Model
Rated Output Vol
t
age (V)
Minimum
(V)
Maximum
(V)
Model
Rated Output Voltage (V)
Minimum
(V)
Maximum
(V)
8
0.5
10.080
7.60
10
0.5
12.0100
9.5016
1.019.0160
14.3201.0
24.0200
19.0302.0
36.0300
28.5402.0
44.0400
38.0605.0
66.0600
57.0805.0
88.0800
76.0
100
5.0
110.0
100095.0
150
5.0
165.0
1500142
300
5.0
330.0
3000285
600
5.0
660.0
6000570
Model
Rated output Voltage (V)
Minimum
(V)
Maximum
(V)810162030406080100150300600
0.000
00.000
00.000
00.000
00.000
00.000
00.000
00.00
00.00
0
000.00
000.00
000.00
8.000
10.000
16.000
20.000
30.000
40.00060.0008
0.00100.0015
0.00300.00600.00
83
-515-000Rev.
B
63
7.10.6
Status Contro
l Commands
Refer to Section 7
-
8 for definition of the registers.
#
Command
Description
1
STT?
Reads the complete power supply status.
Returns ASCII characters representing the following data, separated by commas:
MV<actual (measured) voltage>
PC<programmed (set) current>
PV<programmed (set) voltage> SR<status register, 2
-
digit hex>
MC<actual (measured) current> FR<fault register, 2
-
digit hex>
Example response: MV(45.201),PV(45), MC(4.3257), PC(10), SR(30), F
R(00)
2
FLT?
Reads Fault Conditional Register. Returns 2
-
digit hex.
3
FENA
Set Fault Enable Register using 2
-
digit hex.
4
FENA?
Reads Fault Enable Register. Returns 2
-
digit hex.
5
FEVE?
Reads Fault Event Register. Returns 2
-
digit hex. Clears bits of Fa
ult Event Register.
6
STAT?
Reads Status Conditional Register. Returns 2
-
digit hex.
7
SENA
Sets Status Enable Register using 2
-
digit hex.
8
SENA?
Reads Status Enable Register. Returns 2
-
digit hex.
9
SEVE?
Reads Status Event register. Returns 2
-
digit he
x. Clears bits of Status Event register.
7.11 STATUS, ERROR AND SRQ REGISTERS
7.11.1 General Description
This Section describes the various status error and SRQ registers structure. The registers can be
read or set via the RS232/RS485 commands. When usin
g the IEEE option, refer to the User’s Manual
for Genesys
TM
Power Supply IEEE Programming Interface.
Refer to Fig. 7
-
7 for the Status and Error Registers Diagram.
83
-515-000Rev.
B
64
SRQ
Messages
Response
messages
Command Error (”Cnn”)
ExecutionError (”Enn”)
Query Response (”message”)
Command Response (”OK”)
CVCCNFLT
FLT
AST
FDE0LCLCVCC
NFLT
FLT000LCL00
0
Status Registers
Condition
Enable
Event
ConstantVoltage
ConstantCurrent
No Fault
Fault
Auto Start
Fold Enabled
Spare
Local Mode
0123456
7
“STAT?”
“SENA xx”
“SENA?”
“SEVE?”
0ACOTP
FLD
OVPSOOFF
ENA
Fault Registers
Condition
Enable
Spare
AC Fail
Over Temperature
Foldback(tripped)
Over VoltProt
Shut Off (rear panel)
OutputOff (front panel)
EnableOpen
0123456
7
“FLT?”
“FENA xx”
“FENA?”
0ACOTP
FLD
OVPSOOFF
ENA
Event
“FEVE?”
MSB
MSB
LSB
TXD
LSB
One response for everycommand
or query received.
One SRQ when SEVE goes
from all zeroes to any bit set.
Setting more SEVE bits does
notcausemoreSRQs.
PositiveLogic:
0 = No Event
1 = Event Occured
Fig.7-7: Status and Error Registers Diagram
“Inn” and CR
7.11.2 Conditional Registers
The fault Condition Register
and the Status Condition Register are read only registers that the user
may read to see the condition of the Power supply. Refer to Table 7
-
9 for description of the Fault
Cond
i
tion Register bits and Table 7
-
10 for the Status Condition register bits.
83
-515-000Rev.
B
65
7.1
1.2 Conditional Registers (continued)
Table 7
-
9: Fault Condition Register
BIT
Fault name
Fault symbol
Bit Set condition
Bit Reset condition
0 (LSB)
Spare bit
SPARE
Fixed to zero
Fixed to zero
1
AC Fail
AC
AC fail has occurred.
The AC input returns to nor
mal.2Over
temper
a
ture
OTP
OTP shutdown has
occurred.
The power supply cools down.
3
Foldback
FOLD
Foldback shutdown
has occurred
The supply output is turned On by front
panel button or OUT 1 command.
4
Over vol
t
age
OVP
OVP shutdown has
d.
The supply output is turned ON by front
panel button or OUT 1 command.
5
Shut Off
SO
Rear panel J1 “Shut
Off” condition has o
c-
curred.
Rear panel J1 “Shut Off” condition has
been r
e
moved.
6
Output Off
OFF
Front panel OUT bu
t-
ton pressed to Off.
The supp
ly output is turned On by front
panel button or OUT 1 command.
7(MSB)
Enable
ENA
Rear panel J1 Enable
terminal (J1
-
1&J1
-
14)
opened.
Rear panel J1 Enable terminals closed.
Table 7
-
10: Status Condition Register
BIT
Fault name
Fault symbol
Bit Set condition
Bit Reset condition
0 (LSB)
Constant
Voltage
CV
Output is On and the
supply in CV.
Output is ON and the supply is not in
CV.1Constant
Current
CC
Output is ON and the
supply in CC.
Output is ON and the supply is not in
CC.2No Fault
NFLT
The power su
pply is
operating normally or
fault reporting is not
enabled.
See “OUT n” co
m-
mand in Section 7.7.5.
One or more faults are active and fault
reporting is enabled (using “FENAxx”).
3
Fault active
FLT
One or more faults are
enabled and occur.
Fault Event Re
gister cleared (FEVE?).
4
Auto
-
Restart
Enabled
AST
Supply is in Auto
-
Restart mode (from
Front Panel or serial
command).
Supply is in Safe
-
Start mode (from
Front Panel or serial command).
5
FoldEn
abled
FDE
Fold protection is
enabled (from Fro
nt
Panel or serial
command).
Fold protection disabled (from Front
Panel or serial command).
6
Spare bit
SPARE
Fixed to zero.
Fixed to zero.
7(MSB)
Local Mode
LCL
Supply in Local mode.
Supply in Remote mode or Local
-
Lockout mode.
83
-515-000Rev.
B
66
7.11.3
Service Request:
Enable and Event Registers
The conditional Registers are continuously monitored. When a change is detected in a register bit
which is enabled, the power supply will generate an SRQ message.
The SRQ message is: “Inn” terminated by CR, where the nn is the p
ower supply address. The SRQ
will be generated either in Local or Remote mode.
Refer to Tables 7
-
11 to 7
-
14 for details of the Enable and Event registers.
1.
Fault Enable Register
The Fault Enable Register is set to the enable faults SRQs.
Table 7
-
10: Fault
Enable Register
BIT
Enable
bit name
Fault symbol
Bit Set condition
Bit reset condition
0 (LSB)
Spare bit
SPARE
1
AC Fail
AC2Over Temperature
OTP
3
Foldback
FOLD
4
Over Voltage
OVP
5
Shut Off
SO6Output Off
OFF
7(MSB)
Enable
ENA
User command:
“FENA nn” where
nn is hexadecimal
User command: “FENA nn”
where nn is hexadecimal (if
nn=”00”, no fault SRQs will
be generate
d).
2.
Fault Event Register
The Fault Event will set a bit if a condition occurs and it is Enabled. The register is
cleared when
FEVE?, CLS or RST commands are received.
Table 7
-
12: Fault Event Register
BIT
Enable
bit name
Fault symbol
Bit Set condition
Bit reset condition
0 (LSB)
Spare bit
SPARE
1
AC Fail
AC2Over Temperature
OTP
3
Foldback
FOLD
4
Over Voltage
OVP
5
Shut Off
SO6Output Off
OFF
7(MSB)
Enable
ENA
Fault condition
occurs and it is
enabled.
The fault can set a
bit, bu
t when the
fault clears the bit
remains set.
Entire Event Register is
cleared when user sends
“FEVE?” command to read
the register.
“CLS” and power
-
up also
clear the Fault Event Regi
s-
ter. (The Fault Event Regi
s-
ter is not cleared by RST)
83
-515-000Rev.
B
67
3.
Status Enable Register
The Status Enable Register is set by the user to Enable SRQs for changes in power supply status.
Table 7
-
13: Status Enable Register
BIT
Status name
Status sy
m
bol
Bit Set cond
i
tion
Bit reset condition
0 (LSB)
Constant Voltage
CV1Constant Current
CC2No Fault
NFLT
3
Fault active
FLT
User command:
“SENA nn” is
received, where
nn is hexadec
i
mal
bits.
User command: “SENA nn”
is received, where nn is
hexadecimal
bits.
If “nn”=00, no SRQ is sent
when there is a change in
Status Condition Register.
4
Auto
-
Restart e
n
abled
AST
Always zero
Always zero
5
Fold enabled
FDE
Always zero
Always zero
6
SpareSpare
Always zero
Always zero
7 (MSB)
Local Mode
LCL
“SENA nn”
command
“SENA nn”
command
4.
Status Event Register
The Status Event Register will set a bit if a change in the power supply status occurs and it is e
n-
abled. The regist
er is cleared when the “SEVE?” or “CLS” commands are received. A change in this
register will generate SRQ.
Table 7
-
14: Status Event Register
BIT
Status name
Status sy
m
bol
Bit Set cond
i
tion
Bit reset condition
0 (LSB)
Constant Voltage
CV1Const
ant Current
CC2No Fault
NFLT
3
Fault active
FLT
Changes in statu
s
occur and it is
Enabled.
The change can
set a bit, but when
the change clears
the bit remains
set.
4
Auto
-
Restart e
n
abled
0
Always zero
5
Fold enabled
0
Always zero
6
Spare
0
Always zero
7 (MSB)
Local Mode
LCL
Unit is set to L
o
cal
by pressing front
panel REM/LOC
button.
Entire Event Register is
cleared when user sends
“SEVE?” command to read
the register.
“CLS” and power
-
up also
clear the Status Event
Register.
83
-515-000Rev.
B
68
7.12 SERIAL CO
MMUNICATION TEST SET
-
UP
Use the following instructions as basic set
-
up to test the serial communication operation.
1.Equipment
: PC with Windows Hyper Terminal, software installed, Genesys
TM
Power supply, RS232 cable.
2. PC set
-
up
:
2.1 Open Hyper Termina
l…………………….
New Connection.
2.2 Enter a name
2.3 Connect to…………………………………
Direct to Com 1 or Com 2
2.4 Configure port properties:
Bits per second……9600
Data bits……………8
Parity……………….None
Stop bits……………1
Flow control……….None
2.5 Open
Properties in the program
File………………….Properties
2.6 Setting:
ASCII Set Up
Select Echo characters locally, select send line ends with line feed.
On some PC systems, pressing the number keypad “Enter” will distort
displayed messages. Use the alphabet
ic “E
n
ter” instead.
3. Power supply set
-
up:
3.1
Connect the power supply to the PC using the RS232 cable.
3.2
Set via the front panel: Baud Rate: 9600, Address: 06 (default).
3.3
Set via the rear panel: RS232/RS485 to RS232 (refer to Section 4
-
4).
4.
Communication Test:
4.1
Model identification:
PC:write: ADR 06
Power supply response: “OK”
4.2
Command test:
PC write: OUT1
Power supply response: “OK”
PC write: PVn
Power supply response: “OK”
PC write: PCn (for values of n see Tables 7
-
4, 7-5 a
nd 7
-6)Power supply response: “OK”
The power supply should turn on and the display will indicate the actual Output Vol
t
age
and the actual Output Current.
83
-515-000Rev.
B
69
CHAPTER 8 ISOLATED ANALOG PROGRAMMING OPTION
8.1 INTRODUCTION
Isolated Analog Programming
is an internal Option Card for analog programming of the Genesys
TM
power supply series. The option is factory installed and cannot be obtained with a GPIB (IEEE
-
488)
Interface. Output Voltage and Output Current can be programmed and readback through optica
lly is
o-
lated si
g
nals which are isolated from all other ground references in the power supply.
There are two types of Isolated Analog programming cards:
1.0-
5V/0
-
10V option (PN: IS510): Using 0
-
5V or 0
-
10V signals for programming and readback.
2.4-
20mA option (
PN: IS420): Using current signals for programming and readback.
8.2 SPECIFICATIONS
8.2.1
0-5V/0
-
10V OPTION (PN: IS510)
Output Voltage programming accuracy
%+/-
1
Output Current programming accuracy
%+/-
1
Output Voltage programming temper
ature coefficient
PPM/
°C+/-100
Output Current programming temperature coefficient
PPM/
°C+/-100
Input impedance
Ohm
1M
Absolute maximum voltage
Vdc0-15Progra
m
ming
Inputs
Max. voltage between program inputs and supply outputs
Vdc
600
Output Volt
age monitoring accuracy
%+/-
1.5
Output Current monitoring accuracy
%+/-
1.5
Output Impedance (see Note)
Ohm
100
Monitoring
Outputs
Max. voltage between monitoring outputs and supply ou
t
puts
Vdc
600
NOTE:
Use 100Kohm minimum input impedance for the monitoring circuit
s to minimize the readback error.
8.2.2
4-20mA option (PN: IS420)
Output Voltage programming accuracy
%+/-1Output Current programming accuracy
%+/-1Output Voltage programming temperature coefficient
PPM/
°C+/-200
Output Current progr
amming temperature coefficient
PPM/
°C+/-200
Input impedance
Ohm
50
Absolute maximum input current
Vdc0-30Progra
m
ming
Inputs
Max. voltage between program inputs and supply outputs
Vdc
600
Output Voltage monitoring accuracy
%+/-
1.5
Output Curren
t monitoring accuracy
%+/-
1.5
Maximum load impedance
Ohm
500
Monitoring
Outputs
Max. voltage between monitoring outputs and supply ou
t
puts
Vdc
600
83
-515-000Rev.
B
70
CAUTION
When the Isolated Analog Option is installed, do not apply any signals to the
non-isolated VPGM and IPGM (J1
-
9 an
d J1
-
10) pins. All other J1 features may
be used normally. Refer to Section 4.5 for a description of J1 features.
8.3 ISOLATED PROGRAMMING & MONITORING CONNECTOR
Refer to Table 8
-
1 for detailed description of the rear panel Isolate
d Programming & Monitoring
connector. To provide the lowest noise performance, it is recommended to use shielded
-
twisted pair
wiring.
Refer to Fig.8
-
1 for description of the Isolated Analog Programming & Monitoring connector.
Isolated programming
plug P/N: MC1.5/8
-ST-
3.81, Phoenix.
Table 8
-
1: Detailed description of Isolated programming & Monitoring connector
Terminal
Signal name
Function
Range 0
-
5/0-10V
IS510 option
Range 4
-
20mA
IS420 option
1
SHLD
Shield, connected internally to
chassis of th
e power supply.
Chassis ground
2
+VPROG_ISO
Output Voltage programming i
n-
put0-
5V/0
-
10V4-
20mA
3
+IPROG_ISO
Output Current programming i
n-
put0-
5V/0
-
10V4-
20mA
4
GND
Ground for programming signals.
Ground
Ground
5
GND
Ground for programming signals.
Gro
und
Ground
6
+VMON_ISO
Output voltage monitoring output
0-5V/0
-
10V4-
20mA
7
+IMON_ISO
Output current monitoring output
0-5V/0
-
10V4-
20mA
8
SHLD
Shield, connected internally to
chassis of the supply.
Chassis ground
1
2345678
Shield
+VPROG_ISO
+IPROG_ISO
GND_ISO
Shield
+IMON_ISO
+VMON_ISO
GND_ISO
Fig.8-1: Isolated Programming & Monitoring connector
83
-515-000Rev.
B
71
CAUTION
To prevent damage to the unit, do not program the output voltage
and
current to higher than the power supply rating.
NOTE
J1-8 and J1
-
12 must be shorted together with a wire jumper.
NOTE
J1-8 and J1
-
12 must be shorted together with a wire jumper.
NOTE
SW1 position 3 and 4 must be in the Up position for operation
with 4
-
20mA Isolated Pro
gramming and Monitoring.
8.4 SETUP AND OPERATING
INSTRUCTIONS
8.4.1 Setting up the power supply for 0
-
5V/0
-
10V Isolated Programming and Monitoring
Perform the following procedure to configure the power supply:
1.
Turn the power supply AC power switch to Off.
2.
Connect a wire jumper between J1
-
8 and J1
-
12 (refer to Table 4
-
4).3.Set the Setup switch SW1, positions 1 and 2 to the UP position.
4.
Set SW1, position 3 to select the Programming Voltage Range: Down=0
-
5V, Up=0
-
10V.
5.
Set SW1, position 4 to select the Monitoring Range: Down=0
-
5V, Up=0
-
10V.
6.
Ensure that
SW1, positions 7 and 8 are in the Down position.
7.
Connect the programming sources to the mating plug of the Isolated Programming connector.
Observe for correct polarity of the voltage source.
8.
Set the programming sources to the desired levels and turn t
he power supply ON.
8.4.2
Setting up the power supply for 4
-
20mA Isolated Programming and Monitoring
Perform the following procedure to configure the power supply:
1.
Turn the power supply AC power switch to Off.
2.
Connect a wire jumper between J1
-
8 and J1
-
12 (refer
to Table 4
-
4).3.Set the Setup switch SW1, positions 1 and 2 to the Up position.
4.
Set SW1, position 3 to the Up position.
5.
Set SW1, position 4 to the Up position.
6.
Ensure that SW1 positions 1 and 2 to their Up position.
7.
Connect the programming source to the ma
ting plug of the Isolated Programming connector.
Observe for correct polarity of the voltage source.
8.
Set the programming sources to the desired levels and turn the power supply ON.
83
-515-000Rev.
B
72
CHAPTER 9 MAINTENANCE
9.1 INTRODUCTION
This Chapter pr
ovides information about maintenance, calibration and troubleshooting.
9.2 UNITS UNDER WARRANTY
Units requiring repair during the warranty period should be returned to a
TDK
-
Lambda Americas Inc
authorized service facility. Refer to the addresses listing on
the back cover of this User’s Manual. U
n-
authorized repairs pe
r
formed by other than the authorized service facilities may void the warranty.
9.3 PERIODIC MAINTENANCE
No routine maintenance of the power supply is required except for periodic cleaning. To cl
ean,
disconnect the unit from the AC supply and allow 30sec. For discharging internal voltages. The front
panel and the metal surfaces should be cleaned using a mild solution of detergent and water. The
solution should be applied onto a soft cloth, and not
directly to the surface of the unit. Do not use
aromatic hydocarbons or chlorinated solvents for cleaning. Use low pressure compressed air to blow
dust from the unit.
9.4 ADJUSTMENTS AND CALIBRATION
No internal adjustment or calibration is required. There
is NO REASON to open the power supply
cover.
9.5 PARTS REPLACEMENT AND REPAIRS
As repairs are made only by the manufacturer or by authorized service facilities, no parts replac
e
ment
information is provided in the manual. In case of failure, unusual or err
atic operation of the unit, co
n-
tact a
TDK
-
Lambda Americas Inc.
sales or service facility nearest you. Please refer to the
TDK
-
Lambda Americas Inc.
sales offices addresses lis
t
ing on the back cover of this User’s Manual.
9.6 TROUBLESHOOTING
If the power sup
ply appears to be operating improperly, use the Troubleshooting Guide (Table 9
-
1) to
determine whether the power supply, load or external control circuit are the cause.
Configure the power supply for basic front panel operation and perform the tests of Sec
tion 3.8 to d
e-
termine if the problem is with the supply.
Table 9
-
1 provides the basic checks that can be performed to diagnose problems, with references to
Sections of this User’s Manual for further information.
Table 9
-
1: Troubleshooting guide
SYMPTOM
CH
ECK
ACTION
REF
Is the AC power cord
defective?
Check continuity, replace if
necessary.
3.7
No output. All displays and
indicators are blank.
Is the AC input voltage
within range?
Check AC input voltage.
Connect to appropriate
voltage source.
3.6
3.7Output is present momentarily
but shuts Off quickly. The
display indicates “AC”.
Does the AC source
voltage sag when load is
applied?
Check AC input voltage.
Connect to appropriate
voltage source.
3.6
Output is present momentarily
but shuts off quickly.The
display indicates “OUP”.
Is the power supply
configured to Remote
sense?
Check if the positive or
negative load wire is loose.
3.9.6
3.9.8
83
-515-000Rev.
B
73
SYMPTOM
CHECK
ACTION
REF
Output Voltage will not adjust.
Front panel CC LED is On.
Is the unit in constant current
mode?
Check Output Current
setting and load current.
5.2.1
5.2.2
Output Voltage will not adjust
Front panel CV Led is On.
Check if output voltage is
adjusted above OVP setting
or below UVL setting.
Set OVP or UVL so they will
not limit the output.
5.35.4
Output Current will not adjust.
Front panel CV LED is on.
Is the unit in constant voltage
mode?
Check Output Current and
voltage setting
5.2
Large ripple present in output.
Is the power supply in
remote sense?
Is the voltage drop on the
load wire high?
Check load and sense
wires connection for noise
and impedance effects.
Minimize the drop on the
load wires.
3.9.4
3.9.8
No output. Display indicates
“OUP”
Overvoltage Protection
circuit is tripped.
Turn off the AC power
switch. Check load
connections. If
Analog
Programming is used,
check if the OVP is set
lower than the output.
5.3
No output. Front panel
ALARM LED is blinking.
Check rear panel J1
ENABLE connection.
5.8
Display indicates “ENA”
Setup switch SW1 setting.
4.4
Display indicates “SO”
Chec
k rear panel J1 Output
Shut
-
Off connection.
5.7
Display indicates “OTP”
Check if air intake or
exhaust are blocked.
Check if the unit is
installed adjacent to heat
generating equipment.
Display indicates “Fb”
Check Foldback setting and
load current
.
5.5
Poor Load regulation.
Front panel CV LED is on.
Are sensing wires connected
properly?
Connect the sense wires
according to User’s Manual
instructions.
3.9.8
The front panel controls are
non-functional.
Is the power supply in
Local
-
Lockout
mode?
Turn Off the AC power
and wait until the display
turns off. Turn on the AC
power and press front
panel REM/LOC button.
7.2.5
9.7 FUSE RATING
There are no user replaceable fuses in the power supply. Internal fuses are sized for fault protection
and if a fuse was opened, it would indicate that service is required. Fuse replacement should be made
by qualified technical personnel. Refer to Table 9
-
2 for a listing of the fuses.
Table 9
-
2: Internal fuses
Fuse designation
3-Phase, 190
-
240Vac
3-Phase, 3
80-415Vac
INPUT FUSE
F301, F302, F303:
30A, 250VAC, Fast
-
Acting
F651, F652, F653:
15A, 600VAC, Fast
-
Acting
F401, F402
5A, 400VDC, Normal
-
Blow
Loading...