Supero H8DA3-2, H8DAi-2 User Manual

®
SUPER
H8DA3-2 H8DAi-2
Revision 1.0c
The information in this User’s Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this
manual, please see our web site at www.supermicro.com.
Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.
IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.
Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.
FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer’s instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.
California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. “Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate”
WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.
Manual Revision 1.0c Release Date: January 9, 2008
Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.
Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.
Copyright © 2008 by Super Micro Computer, Inc. All rights reserved.
Printed in the United States of America
Preface
Preface
About This Manual
This manual is written for system integrators, PC technicians and
knowledgeable PC users. It provides information for the installation and use of the
H8DA3-2/H8DAi-2 serverboard. The H8DA3-2/H8DAi-2 is based on the nVidia®
MCP55 chipset and supports single or dual AMD Socket F type processors and up
to 32 GB of DDR2-667/533/400 registered ECC SDRAM.
Please refer to the serverboard specifi cations pages on our web site for updates on
supported processors (http://www.supermicro.com/aplus/). This product is intended
to be professionally installed.
Manual Organization
Chapter 1 includes a checklist of what should be included in your serverboard
box, describes the features, specifi cations and performance of the serverboard and
provides detailed information about the chipset.
Chapter 2 begins with instructions on handling static-sensitive devices. Read this
chapter when installing the processor(s) and memory modules and when installing
the serverboard in a chassis. Also refer to this chapter to connect the fl oppy and
hard disk drives, the parallel and serial ports, the mouse and keyboard and the
twisted wires for the power and reset buttons and the system LEDs.
If you encounter any problems, see Chapter 3, which describes troubleshooting
procedures for the video, the memory and the setup confi guration stored in CMOS.
For quick reference, a general FAQ (Frequently Asked Questions) section is pro-
vided. Instructions are also included for contacting technical support. In addition,
you can visit our web site for more detailed information.
Chapter 4 includes an introduction to BIOS and provides detailed information on
running the CMOS Setup utility.
Appendix A provides BIOS Error Beep Code Messages.
Appendix B lists BIOS POST Checkpoint Codes.
iii
H8DA3-2/H8DAi-2 User’s Manual
Table of Contents
Chapter 1: Introduction
1-1 Overview ......................................................................................................... 1-1
Checklist .................................................................................................... 1-1
Contacting Supermicro ............................................................................. 1-2
H8DA3-2/H8DAi-2 Image ......................................................................... 1-3
H8DA3-2/H8DAi-2 Serverboard Layout .................................................... 1-4
H8DA3-2/H8DAi-2 Quick Reference ......................................................... 1-5
Serverboard Features .............................................................................. 1-6
Chipset: System Block Diagram ............................................................... 1-8
1-2 Chipset Overview ........................................................................................... 1-9
1-3 PC Health Monitoring ................................................................................... 1-10
1-4 Power Confi guration Settings ....................................................................... 1-11
1-5 Power Supply ............................................................................................... 1-12
1-6 Super I/O ........................................................................................................ 1-13
Chapter 2: Installation
2-1 Static-Sensitive Devices ................................................................................. 2-1
2-2 Processor and Heatsink Installation ............................................................... 2-2
2-3 Mounting the Serverboard into a Chassis ...................................................... 2-5
2-4 Installing Memory ........................................................................................... 2-5
2-5 I/O Port and Control Panel Connections ........................................................ 2-8
2-6 Connector Defi nitions ..................................................................................... 2-9
ATX Power Connector ............................................................................ 2-9
Processor Power Connector ..................................................................... 2-9
Auxiliary Power Connector ........................................................................ 2-9
Power LED ............................................................................................... 2-9
HDD LED .............................................................................................. 2-10
NIC1 LED ................................................................................................ 2-10
NIC2 LED ................................................................................................ 2-10
Overheat/Fan Fail LED ......................................................................... 2-10
Power Fail LED ....................................................................................... 2-11
Reset Button ............................................................................................ 2-11
Power Button ........................................................................................ 2-11
Universal Serial Bus Ports (USB0/1/2/3) ............................................... 2-11
USB Ports ................................................................................................ 2-11
USB Headers ......................................................................................... 2-12
iv
Table of Contents
Serial Ports .............................................................................................. 2-12
Fan Headers .......................................................................................... 2-12
LAN1/2 (Ethernet Ports) .......................................................................... 2-12
Power LED/Speaker ............................................................................. 2-13
ATX PS/2 Keyboard/Mouse Ports ......................................................... 2-13
Overheat LED .......................................................................................... 2-13
CD IN Header .......................................................................................... 2-13
Wake-On-LAN ......................................................................................... 2-14
Wake-On-Ring ......................................................................................... 2-14
Power Supply I
2
C Header ....................................................................... 2-14
Power Fail Alarm Reset Header ............................................................ 2-15
Compact Flash Power Header ............................................................... 2-15
SGPIO .................................................................................................... 2-15
Chassis Intrusion .................................................................................... 2-16
Audio Output Header ............................................................................. 2-16
Audio Ports ............................................................................................. 2-17
2-7 Jumper Settings ............................................................................................ 2-18
Explanation of Jumpers ......................................................................... 2-18
CMOS Clear ........................................................................................... 2-18
3rd Power Supply Fail Signal Enable/Disable ........................................ 2-19
2
I
C to PCI Enable/Disable ....................................................................... 2-19
Watch Dog Enable/Disable ..................................................................... 2-19
Power LED/Speaker ............................................................................... 2-20
USB Power Select ................................................................................. 2-20
Compact Flash Master/Slave ................................................................. 2-20
SAS Controller Enable/Disable .............................................................. 2-21
2-8 Onboard Indicators ........................................................................................ 2-21
LAN1/LAN2 LEDs .................................................................................... 2-21
+3.3V Standby LED ................................................................................ 2-21
2-9 Floppy, IDE, Parallel Port, SAS and SATA Drive Connections .................... 2-22
Floppy Connector .................................................................................... 2-22
IDE Connector ......................................................................................... 2-23
Parallel Port Connector ........................................................................... 2-24
SATA Ports .............................................................................................. 2-24
SAS Ports ............................................................................................... 2-25
2-10 Enabling SATA RAID .................................................................................... 2-26
2-11 Installing Drivers ........................................................................................... 2-29
v
H8DA3-2/H8DAi-2 User’s Manual
Chapter 3: Troubleshooting
3-1 Troubleshooting Procedures ........................................................................... 3-1
Before Power On ....................................................................................... 3-1
No Power ................................................................................................... 3-1
No Video .................................................................................................. 3-1
Memory Errors ........................................................................................... 3-2
Losing the System’s Setup Confi guration ................................................ 3-2
3-2 Technical Support Procedures ....................................................................... 3-2
3-3 Frequently Asked Questions .......................................................................... 3-3
3-4 Returning Merchandise for Service ................................................................. 3-4
Chapter 4: BIOS
4-1 Introduction ...................................................................................................... 4-1
4-2 Main Menu ...................................................................................................... 4-2
4-3 Advanced Settings Menu ............................................................................... 4-2
4-4 Boot Menu ..................................................................................................... 4-18
4-5 Security Menu ................................................................................................ 4-18
4-6 Exit Menu ...................................................................................................... 4-19
Appendices:
Appendix A: BIOS Error Beep Codes
Appendix B: BIOS POST Checkpoint Codes
vi
Chapter 1: Introduction
Chapter 1
Introduction
1-1 Overview
Checklist
Congratulations on purchasing your computer serverboard from an acknowledged
leader in the industry. Our boards are designed with the utmost attention to detail
to provide you with the highest standards in quality and performance.
Please check that the following items have all been included with your serverboard.
If anything listed here is damaged or missing, contact your retailer.
Included with retail box only
One (1) H8DA3-2/H8DAi-2 serverboard
One (1) IDE cable (CBL-036L-03)
One (1) fl oppy cable (CBL-022L)
H8DA3-2: Four (4) SATA cables (CBL-044L)
H8DAi-2: Six (6) SATA cables (CBL-044L)
One (1) USB 2.0 port cable (CBL-083L)
Two (2) iPass SATA cables, H8DA3-2 only (CBL-0097L-02)
Two (2) heatsink retention modules with four (4) screws (BKT-0012L)
One (1) I/O shield for chassis (MCP-260-00004-00)
One (1) CD containing drivers and utilities
1-1
H8DA3-2/H8DAi-2 User’s Manual
Contacting Super Micro
Headquarters
Address: Super Micro Computer, Inc. 980 Rock Ave. San Jose, CA 95131 U.S.A. Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008 Email: marketing@supermicro.com (General Information) support@supermicro.com (Technical Support) Web Site: www.supermicro.com
Europe
Address: Super Micro Computer B.V. Het Sterrenbeeld 28, 5215 ML 's-Hertogenbosch, The Netherlands Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525 Email: sales@supermicro.nl (General Information) support@supermicro.nl (Technical Support) rma@supermicro.nl (Customer Support)
Asia-Pacifi c
Address: Super Micro, Taiwan 4F, No. 232-1, Liancheng Rd. Chung-Ho 235, Taipei, Taiwan, R.O.C. Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3991 Web Site: www.supermicro.com.tw Technical Support: Email: support@supermicro.com.tw Tel: 886-2-8228-1366, ext.132 or 139
1-2
Figure 1-1. H8DA3-2/H8DAi-2 Image
Chapter 1: Introduction
Note: the H8DA3-2 is pictured. The H8DAi-2 shares the same layout but does not
include SAS components.
1-3
H8DA3-2/H8DAi-2 User’s Manual
Figure 1-2. H8DA3-2/H8DAi-2 Serverboard Layout
(not drawn to scale)
Kb/Mse
COM1
Parallel
Port
COM2
USB0/1/2/3
LAN1/2
Audio
J42
FAN5
2
C1
JI
2
JI
C2
Slot #5: PCI-Exp x4
Slot #4: PCI-Exp x4
SUPER H8DA3-2
Audio_FP
CD IN
JWOL
JPW2
FAN6
CPU2 Fan/FAN8
SIMLP
Slot #6: PCI-Exp x16
Slot #3: PCI-Exp x16
Slot #2: PCI 33 MHz
JPX2A JPX1A
Slot #1: PCI-Exp x8
JPUSB
J1B1
CPU2
CPU2 / DIMMB 2A
CPU2 / DIMMB 2B
CPU2 / DIMMB 1A
CPU2 / DIMMB 1B
USB6/7
USB4/5
MCP55 Pro
Battery
SATA1 SATA3
SATA4SATA2SATA0
nVidia
IO55
JBT1
SATA5
CPU1 / DIMMA 1B
CPU1 / DIMMA 1A
CPU1 / DIMMA 2B
CPU1 / DIMMA 2A
CPU1 FAN/FAN7
JL1JAR
JWOR
CPU1
Speaker
JWD
LSI
1068E
JPW1
BIOS
T-SGPIO1 T-SGPIO2
J3P
JPWF
JOH1
FAN2
FAN3
FAN4
JPI2C
JF1
JF2
DP2
JCF1
JWF1
Floppy
SAS4~7
SAS0~3
FAN1
IDE#1
JPS1
Notes:
Jumpers not indicated are for test purposes only.
The H8DAi-2 does not include SAS components.
1-4
Chapter 1: Introduction
H8DA3-2/H8DAi-2 Quick Reference
Jumpers Description Default Setting
J3P 3rd Power Fail Detect En/Dis Closed (Enabled)
JBT1 CMOS Clear See Section 2-7
JCF1 Compact Flash Master/Slave Closed (Master)
JF2 Onboard Speaker Pins 5-7 (Enabled)
JI2C1/2 I2C to PCI Enable/Disable Pins 2-3 (Disabled)
JPS1* SAS Controller Enable/Disable Pins 1-2 (Enabled)
JPUSB USB Power Select Pins 1-2 (Dual Pwr)
JWD Watch Dog Pins 1-2 (Reset)
Connectors Description
Audio_FP Audio Output
CD IN Audio In for CD
COM1, COM2 COM1/COM2 Serial Ports
FAN 1-8 System Fan Headers
Floppy Floppy Disk Drive Connector
IDE#1 IDE Drive Connector
J1B1 24-Pin ATX Power Connector
J42 Audio Ports
JAR Power Fail Alarm Reset Header
JF1 Front Panel Connector
JF2 Onboard Speaker/Keylock/Power LED
JL1 Chassis Intrusion Header
JOH1 Overheat Warning Header
2
JPI
C Power Supply I2C Header
JPW1 8-Pin Processor Power Connector
JPW2 4-pin Auxiliary Power Connector
JWF1 Compact Flash Card Power Connector
JWOL Wake-On-LAN Header
JWOR Wake-On-Ring Header
LAN1/2 Gigabit Ethernet (RJ45) Ports
SAS0 ~ 3/SAS4 ~ 7* Serial Attached SCSI Ports
SATA0 ~ SATA5 Serial ATA Ports
SIMLP Low Profi le IPMI 2.0 Card Slot
T-SGPIO1/T-SGPIO2 SGPIO Headers
USB0/1/2/3 Universal Serial Bus (USB) Ports 0/1/2/3
USB4/5, USB6/7 USB Headers
LEDs Description
DP2 Onboard Power LED
*H8DA3-2 only
1-5
H8DA3-2/H8DAi-2 User’s Manual
Serverboard Features
CPU
• Single or dual AMD 64-bit Socket F, Opteron 2000 type processors
Memory
• Eight dual/single channel DIMM slots supporting up to 32 GB of DDR2-
667/533/400 registered ECC ECC SDRAM
Note: Memory capacities are halved for single CPU systems. Refer to Section 2-4 before installing.
Chipset
• nVidia MCP55 Pro
• nVidia IO-55
Expansion Slots
• Two (2) PCI-Express x16
• One (1) PCI-Express x8 (in PCI-Express x16 slot)
• Two (2) PCI-Express x4 (in PCI-Express x8 slots)
• One (1) 32 MHz PCI
• One (1) low-profi le SIMLP slot (for IPMI card)
BIOS
• 8 Mb AMIBIOS
• DMI 2.3, PCI 2.2, ACPI 2.0, SMBIOS 2.3, Plug and Play (PnP)
®
LPC Flash ROM
PC Health Monitoring
• Onboard voltage monitors for two CPU cores, 3.3V, +5Vin, +12Vin, 5V standby
and battery voltage
• Fan status monitor with fi rmware/software on/off and speed control
• Watch Dog
• Environmental temperature monitoring via BIOS
• Power-up mode control for recovery from AC power loss
• System resource alert (via included utility program)
• Pulse Width Modulated (PWM) fan connectors
• Auto-switching voltage regulator for the CPU core
1-6
Chapter 1: Introduction
ACPI Features
• Microsoft OnNow
• LED for suspend state indication
• BIOS support for USB keyboard
• Main switch override mechanism
• Internal/external modem ring-on
• Suspend to RAM (STR)
Onboard I/O
• On-chip SATA controller for six (6) SATA ports (RAID 0, 1, 0+1 and 5)
• LSI 1068E SAS controller for eight (8) SAS ports, H8DA3-2 only (RAID 0, 1,
10 and JBOD, optional RAID 5 support with iButton installed)
• One (1) UltraDMA (ATA) 133/100 IDE port
• One (1) fl oppy port interface (up to 2.88 MB)
• Two (2) Fast UART 16550 compatible serial ports
• On-chip (nVidia MCP55) Ethernet controller supports two Gigabit LAN ports
• PS/2 mouse and PS/2 keyboard ports
• Eight (8) USB (Universal Serial Bus) 2.0 ports/headers
• Realtek ALC-883 HD Audio for 7.1 sound
Other
• Wake-on-Ring (JWOR)
• Wake-on-LAN (JWOL)
• Onboard power LED (DP2)
• Chassis intrusion detection
CD Utilities
• BIOS fl ash upgrade utility
Dimensions
• Extended ATX form factor, 12" x 13.05" (305 x 332 mm)
1-7
H8DA3-2/H8DAi-2 User’s Manual
DDR2-667/533 DDR2-667/533
DIMM 1A
DIMM 1B
DIMM 2A
DIMM 2B
Slot #1: PCI-E x8
Slot #3: PCI-E x16
Slot #4: PCI-E x4
128-bit data + 16-bi t ECC
AMD Socket F
Processor (CPU2)
PCI- E
PCI- E
nVidia IO-55
PCI-E
16 x 16 HT link (1 GHz)
AMD Socket F
Processor (CPU1)
16 x 16 HT lin k (1 GHz)
nVidia MCP55 Pro
128-bit data + 16-bi t ECC
16 x 16 HT lin k (1 GHz)
ALC-883 Audio
SATA Por ts (6)
IDE: AT A133 (1)
USB Ports (8)
GLAN Ports (2)
Slot #2: PCI
Slot #5: PCI- E x4
Slot #6: PCI-E x16
PCI32
PCI-E
PCI-E
LPC
SAS Ports (8)
S I/O BIOS
Floppy
Kybd/
Mouse
Serial Ports
(2)
Parallel
Port
DIMM 1B
DIMM 2B
SIMLP
IPMI
DIMM 1A
DIMM 2A
Figure 1-3. nVidia MCP55 Pro/IO-55 Chipset:
System Block Diagram
Note: This is a general block diagram and may not exactly represent
the features on your serverboard. See the previous pages for the
actual specifi cations of your serverboard.
1-8
Chapter 1: Introduction
1-2 Chipset Overview
The H8DA3-2/H8DAi-2 serverboard is based on the nVidia MCP55 Pro/IO-55
chipset. The nVidia MCP55 Pro functions as Media and Communications Proces-
sor (MCP) and the IO-55 as a PCI-X Bridge. Controllers for the system memory
are integrated directly into the AMD Opteron processors.
MCP55 Pro Media and Communications Processor
The MCP55 Pro is a single-chip, high-performance HyperTransport peripheral con-
troller. It includes a 28-lane PCI Express interface, an AMD Opteron 16-bit Hyper
Transport interface link, a six-port Serial ATA interface, a dual-port Gb Ethernet
interface, a single ATA133 bus master interface and a USB 2.0 interface. This hub
connects directly to CPU#1 and through that to CPU#2.
IO-55
This hub connects directly to CPU1 via a 16 x 16 1 GHz Hyper Transport link. The
IO-55 includes an interface for three PCI-Express slots.
HyperTransport Technology
HyperTransport technology is a high-speed, low latency point to point link that was
designed to increase the communication speed by a factor of up to 48x between
integrated circuits. This is done partly by reducing the number of buses in the
chipset to reduce bottlenecks and by enabling a more effi cient use of memory in
multi-processor systems. The end result is a signifi cant increase in bandwidth
within the chipset.
1-9
H8DA3-2/H8DAi-2 User’s Manual
1-3 PC Health Monitoring
This section describes the PC health monitoring features of the H8DA3-2/H8DAi-2.
The serverboard has an onboard System Hardware Monitor chip that supports PC
health monitoring.
Onboard Voltage Monitors for two CPU cores, 3.3V, +5Vin, +12Vin, 5V standby and battery voltage
The onboard voltage monitor will scan these voltages continuously. Once a voltage
becomes unstable, it will give a warning or send an error message to the screen.
Users can adjust the voltage thresholds to defi ne the sensitivity of the voltage moni-
tor. Real time readings of these voltage levels are all displayed in BIOS.
Fan Status Monitor with Firmware/Software Speed Control
The PC health monitor can check the RPM status of the cooling fans. The onboard
fans are controlled by thermal management via BIOS.
CPU Overheat/Fan Fail LED and Control
This feature is available when the user enables the CPU overheat/Fan Fail warning
function in the BIOS. This allows the user to defi ne an overheat temperature. When
this temperature is exceeded or when a fan failure occurs, then, the Overheat/Fan
Fail warning LED is triggered.
Auto-Switching Voltage Regulator for the CPU Core
The 4-phase-switching voltage regulator for the CPU core can support up to 80A and
auto-sense voltage IDs ranging from 0.8 V to 1.55V. This will allow the regulator
to run cooler and thus make the system more stable.
1-10
Chapter 1: Introduction
1-4 Power Confi guration Settings
This section describes the features of your serverboard that deal with power and
power settings.
Microsoft OnNow
The OnNow design initiative is a comprehensive, system-wide approach to system
and device power control. OnNow is a term for a PC that is always on but appears
to be off and responds immediately to user or other requests.
Slow Blinking LED for Suspend-State Indicator
When the CPU goes into a suspend state, the chassis power LED will start blinking
to indicate that the CPU is in suspend mode. When the user presses any key, the
CPU will wake-up and the LED will automatically stop blinking and remain on.
BIOS Support for USB Keyboard
If a USB keyboard is the only keyboard in the system, it will function like a normal
keyboard during system boot-up.
Main Switch Override Mechanism
When an ATX power supply is used, the power button can function as a system
suspend button. When the user depresses the power button, the system will enter
a SoftOff state. The monitor will be suspended and the hard drive will spin down.
Depressing the power button again will cause the whole system to wake-up. Dur-
ing the SoftOff state, the ATX power supply provides power to keep the required
circuitry in the system alive. In case the system malfunctions and you want to turn
off the power, just depress and hold the power button for 4 seconds. The power
will turn off and no power will be provided to the serverboard.
Wake-On-LAN (JWOL)
Wake-On-LAN is defi ned as the ability of a management application to remotely
power up a computer that is powered off. Remote PC setup, up-dates and access
tracking can occur after hours and on weekends so that daily LAN traffi c is kept
to a minimum and users are not interrupted. The serverboard has a 3-pin header
(JWOL) to connect to the 3-pin header on a Network Interface Card (NIC) that has
WOL capability. Wake-On-LAN must be enabled in BIOS. Note that Wake-On-LAN
can only be used with an ATX 2.01 (or above) compliant power supply.
1-11
H8DA3-2/H8DAi-2 User’s Manual
Wake-On-Ring Header (JWOR)
Wake-up events can be triggered by a device such as the external modem ringing
when the system is in the SoftOff state. Note that external modem ring-on can only
be used with an ATX 2.01 (or above) compliant power supply.
1-5 Power Supply
As with all computer products, a stable power source is necessary for proper and
reliable operation. It is even more important for processors that have high CPU
clock rates.
The H8DA3-2/H8DAi-2 accommodates 12V ATX power supplies. Although most
power supplies generally meet the specifi cations required by the CPU, some are
inadequate. Important: a 3A or greater current supply on the 5V Standby rail is
required.
It is strongly recommended that you use a high quality power supply that meets
12V ATX power supply Specifi cation 1.1 or above. Additionally, in areas where
noisy power transmission is present, you may choose to install a line fi lter to shield
the computer from noise. It is recommended that you also install a power surge
protector to help avoid problems caused by power surges.
Warning: To prevent the possibility of explosion, do not use the wrong type of
onboard CMOS battery or install it upside down.
1-12
Chapter 1: Introduction
1-6 Super I/O
The disk drive adapter functions of the Super I/O chip include a fl oppy disk drive
controller that is compatible with industry standard 82077/765, a data separator,
write pre-compensation circuitry, decode logic, data rate selection, a clock genera-
tor, drive interface control logic and interrupt and DMA logic. The wide range of
functions integrated onto the Super I/O greatly reduces the number of components
required for interfacing with fl oppy disk drives. The Super I/O supports two 360
K, 720 K, 1.2 M, 1.44 M or 2.88 M disk drives and data transfer rates of 250 Kb/s,
500 Kb/s or 1 Mb/s.
It also provides two high-speed, 16550 compatible serial communication ports
(UARTs), one of which supports serial infrared communication. Each UART in-
cludes a 16-byte send/receive FIFO, a programmable baud rate generator, complete
modem control capability and a processor interrupt system. Both UARTs provide
legacy speed with baud rate of up to 115.2 Kbps as well as an advanced speed
with baud rates of 250 K, 500 K, or 1 Mb/s, which support higher speed modems.
The Super I/O supports one PC-compatible printer port (SPP), Bi-directional Printer
Port (BPP) , Enhanced Parallel Port (EPP) or Extended Capabilities Port (ECP).
The Super I/O provides functions that comply with ACPI (Advanced Confi guration
and Power Interface), which includes support of legacy and ACPI power manage-
ment through a SMI or SCI function pin. It also features auto power management
to reduce power consumption.
The IRQs, DMAs and I/O space resources of the Super I/O can be fl exibly adjusted
to meet ISA PnP requirements, which support ACPI.
1-13
H8DA3-2/H8DAi-2 User’s Manual
Notes
1-14
Chapter 2: Installation
Chapter 2
Installation
2-1 Static-Sensitive Devices
Electrostatic Discharge (ESD) can damage electronic com ponents. To prevent dam-
age to your system board, it is important to handle it very carefully. The following
measures are generally suffi cient to protect your equipment from ESD.
Precautions
• Use a grounded wrist strap designed to prevent static discharge.
• Touch a grounded metal object before removing the board from the antistatic
bag.
• Handle the board by its edges only; do not touch its components, peripheral
chips, memory modules or gold contacts.
• When handling chips or modules, avoid touching their pins.
• Put the serverboard and peripherals back into their antistatic bags when not in
use.
• For grounding purposes, make sure your computer chassis provides excellent
conductivity between the power supply, the case, the mounting fasteners and
the serverboard.
• Use only the correct type of CMOS onboard battery as specifi ed by the manufac-
turer. Do not install the CMOS onboard battery upside down, which may result
in a possible explosion.
Unpacking
The serverboard is shipped in antistatic packaging to avoid static damage. When
unpacking the board, make sure the person handling it is static protected.
Installation Procedures
Follow the procedures as listed below to install the serverboard into a chassis:
1. Install the processor(s) and the heatsink(s).
2. Install the serverboard in the chassis.
3. Install the memory and add-on cards.
4. Finally, connect the cables and install the drivers.
2-1
H8DA3-2/H8DAi-2 User's Manual
2-2 Processor and Heatsink Installation
Exercise extreme caution when handling and installing the proces-
!
Installing the CPU Backplates
Two CPU backplates (BKT-0011L) have been preinstalled to the serverboard to
prevent the CPU area of the serverboard from bending and to provide a base for
attaching the heatsink retention modules.
sor. Always connect the power cord last and always remove it be-
fore adding, removing or changing any hardware components.
Installing the Processor (install to the CPU#1 socket fi rst)
1. Begin by removing the cover plate
that protects the CPU. Lift the lever
on CPU socket #1 until it points straight
up. With the lever raised, lift open the
silver CPU retention plate.
Triangles
2. Use your thumb and your index
fi nger to hold the CPU. Locate and
align pin 1 of the CPU socket with pin
1 of the CPU. Both are marked with
a triangle.
2-2
3. Align pin 1 of the CPU with pin 1
of the socket. Once aligned, carefully
place the CPU into the socket. Do not
drop the CPU on the socket, move the
CPU horizontally or vertically or rub the
CPU against the socket or against any
pins of the socket, which may damage
the CPU and/or the socket.
Chapter 2: Installation
4. With the CPU inserted into the
socket, inspect the four corners of the
CPU to make sure that it is properly in-
stalled and fl ush with the socket. Then,
gently lower the silver CPU retention
plate into place.
5. Carefully press the CPU socket
lever down until it locks into its reten-
tion tab. For a dual-processor system,
repeat these steps to install another
CPU into the CPU#2 socket.
Note: if using a single processor, only
the CPU1 DIMM slots are addressable
for a maximum of 16 GB memory.
2-3
H8DA3-2/H8DAi-2 User's Manual
Installing the Heatsink Retention Modules
Two heatsink retention modules (BKT-0012L) and four screws are included in the
retail box. Once installed, these are used to help attach the heatsinks to the CPUs.
To install, align the module with the standoffs of the preinstalled CPU backplate and
with the four feet on the module contacting the serverboard. Secure the retention
module to the backplate with two of the screws provided. See Figure 2-1. Repeat
for the second CPU socket.
Note: BKT-0012L is included for use with non-Super Micro heatsinks only. When
installing Super Micro heatsinks, only BKT-0011L (the CPU backplate) is needed.
The BKT-0012L retention module was designed to provide compatibility with clip-
and-cam type heatsinks from third parties.
Figure 2-1. CPU Heatsink Retention Module Installation
Installing the Heatsink
The use of active type heatsinks (except for 1U systems) are recommended. Con-
nect the heatsink fans to the appropriate fan headers on the serverboard. To install
the heatsinks, please follow the installation instructions included with your heatsink
package (not included).
2-4
Chapter 2: Installation
2-3 Mounting the Serverboard into a Chassis
All serverboards and motherboards have standard mounting holes to fi t different
types of chassis. Make sure that the locations of all the mounting holes for both
the serverboard and the chassis match. Although a chassis may have both plastic
and metal mounting fasteners, metal ones are highly recommended because they
ground the serverboard to the chassis. Make sure that the metal standoffs click in
or are screwed in tightly.
1. Check the compatibility of the serverboard ports and the I/O shield
The H8DA3-2/H8DAi-2 serverboard requires a chassis that can support extended
ATX boards of 12" x 13.05" in size. Make sure that the I/O ports on the serverboard
align with their respective holes in the I/O shield at the rear of the chassis.
2. Mounting the serverboard onto the mainboard tray in the chassis
Carefully mount the serverboard onto the mainboard tray by aligning the serverboard
mounting holes with the raised metal standoffs in the tray. Insert screws into all
the mounting holes in the serverboard that line up with the standoffs. Then use a
screwdriver to secure the serverboard to the mainboard tray - tighten until just snug
(if too tight you might strip the threads). Metal screws provide an electrical contact
to the serverboard ground to provide a continuous ground for the system.
2-4 Installing Memory
CAUTION
Exercise extreme care when installing or removing memory modules
to prevent any possible damage.
1. Insert each memory module vertically into its slot, paying attention to the notch
along the bottom of the module to prevent inserting the module incorrectly (see
Figure 2-2). See support information below.
2. Gently press down on the memory module until it snaps into place.
Note: each processor has its own built-in memory controller, so the CPU2 DIMMs
cannot be addressed if only a single CPU is installed. 512 MB, 1 GB, 2 GB and 4
GB memory modules are supported. It is highly recommended that you remove the
power cord from the system before installing or changing any memory modules.
2-5
H8DA3-2/H8DAi-2 User's Manual
Support
The H8DA3-2/H8DAi-2 supports single or dual-channel, DDR2-667/533/400 regis-
tered ECC SDRAM.
Both interleaved and non-interleaved memory are supported, so you may populate
any number of DIMM slots (see note on previous page and charts on following
page). The CPU2 DIMM slots can only be accessed when two CPUs are installed
(however, the CPU2 DIMM slots are not required to be populated when two CPUs
are installed).
Populating two adjacent slots at a time with memory modules of the same size and
type will result in interleaved (128-bit) memory, which is faster than non-interleaved
(64-bit) memory. See charts on following page.
Optimizing memory performance
If two processors are installed, it is better to stagger pairs of DIMMs across both
sets of CPU DIMM slots, e.g. fi rst populate CPU1 slots 1A and 1B, then CPU2 slots
1A, and 1B, then the next two CPU1 slots, etc. This balances the load over both
CPUs to optimize performance.
Maximum memory: DDR2-667/533/400: 32 GB. If only one CPU is installed,
maximum supported memory is halved (16 GB).
Figure 2-2. Side and Top Views of DDR Installation
To Install:
Insert module vertically and press down until it snaps into place. The release tabs should close - if they do not you should close them yourself.
Notch
Release
Tab
Note: Notch
should align
with its
receptive point
on the slot
Note the notch in the slot and on the bottom of the DIMM. These prevent the DIMM from being installed incorrectly.
Notch
Release
Tab
To Remove:
Use your thumbs to gently push each re­lease tab outward to release the DIMM from the slot.
2-6
Chapter 2: Installation
Populating Memory Banks for 128-bit Operation
CPU1
DIMM1A
XX
XX XX
XX XX
XX XXXX
XXXX
XXXXXX
XXXX XX
XXXXXXXX
CPU1
DIMM1B
CPU1
DIMM2A
XX
XXXX
XX XX
XXXXXX
CPU1
DIMM2B
CPU2
DIMM1A
CPU2
DIMM1B
CPU2
DIMM2A
CPU2
DIMM2B
Notes: X indicates a populated DIMM slot. If adding at least four DIMMs (with two CPUs installed), the confi gurations with DIMMs spread over both CPUs (and not like the con­fi guration in row 5) will result in optimized performance. Note that the fi rst two DIMMs must be installed in the CPU1 memory slots.
Populating Memory Banks for 64-bit Operation
CPU1
DIMM1A
X
XX
XX
X X
CPU1
DIMM1B
CPU1
DIMM2A
X
XX
XX
CPU1
DIMM2B
CPU2
DIMM1A
CPU2
DIMM1B
CPU2
DIMM2A
CPU2
DIMM2B
2-7
H8DA3-2/H8DAi-2 User's Manual
2-5 I/O Port and Control Panel Connections
The I/O ports are color coded in conformance with the PC99 specifi cation to make
setting up your system easier. See Figure 2-3 below for the colors and locations
of the various I/O ports.
Figure 2-3. I/O Port Locations and Defi nitions
Front Control Panel
JF1 contains header pins for various front control panel connectors. See Figure 2-4
for the pin defi nitions of the various connectors. Refer to Section 2-6 for details.
Figure 2-4. JF1: Front Control Panel Header (JF1)
20 19
Ground
x (key)
Power LED
HDD LED
NIC1
NIC2
OH/Fan Fail LED
Power Fail LED
Ground
NMI
x (key)
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Reset
Ground
Power
2 1
2-8
Chapter 2: Installation
2-6 Connector Defi nitions
ATX Power Connector
The primary ATX power supply con-
nector (J1B1) meets the SSI (Super-
set ATX) 24-pin specifi cation. Refer to
the table on the right for the pin defi ni-
tions of the ATX 24-pin power connec-
tor. This connection supplies power to
the chipset, fans and memory.
Note: You must also connect the 8-
pin (JPW1) and 4-pin (JPW2) power
connectors to your power supply (see
below).
Processor Power Connector
In addition to the primary ATX power
connector (above), the 12v, 8-pin
processor power connector at JPW1
must also be connected to your power
supply. This connection supplies
power to the CPUs. See the table on
the right for pin defi nitions.
ATX Power 24-pin Connector
Pin Defi nitions (J1B1)
Pin# Defi nition Pin # Defi nition
13 +3.3V 1 +3.3V
14 -12V 2 +3.3V
15 COM 3 COM
16 PS_ON 4 +5V
17 COM 5 COM
18 COM 6 +5V
19 COM 7 COM
20 Res (NC) 8 PWR_OK
21 +5V 9 5VSB
22 +5V 10 +12V
23 +5V 11 +12V
24 COM 12 +3.3V
Processor Power
Connector
Pin Defi nitions (JPW1)
Pins Defi nition
1 through 4 Ground
5 through 8 +12V
Required Connection
Auxiliary Power Connector
The 4-pin auxiliary power connector
at JPW2 must also be connected to
your power supply. This connection
supplies extra power that may be
needed for high loads. See the table
on the right for pin defi nitions.
Power LED
The Power LED connection is located
on pins 15 and 16 of JF1. Refer to the
table on the right for pin defi nitions.
Auxiliary Power
Connector
Pin Defi nitions (JPW2)
Pins Defi nition
1 & 2 Ground
3 & 4 +12V
Required Connection
Power LED
Pin Defi nitions (JF1)
Pin# Defi nition
15 Vcc
16 Control
2-9
H8DA3-2/H8DAi-2 User's Manual
HDD LED
The HDD (IDE Hard Disk Drive) LED
connection is located on pins 13 and
14 of JF1. Attach the IDE hard drive
LED cable to display disk activity.
Refer to the table on the right for pin
defi nitions.
NIC1 LED
The NIC1 (Network Interface Control-
ler) LED connection is located on pins
11 and 12 of JF1. Attach the NIC1
LED cable to display network activity.
Refer to the table on the right for pin
defi nitions.
HDD LED
Pin Defi nitions (JF1)
Pin# Defi nition
13 Vcc
14 HD Active
NIC1 LED
Pin Defi nitions (JF1)
Pin# Defi nition
11 Vcc
12 NIC1 Active
NIC2 LED
The NIC2 (Network Interface Control-
ler) LED connection is located on pins
9 and 10 of JF1. Attach the NIC2
LED cable to display network activity.
Refer to the table on the right for pin
defi nitions.
Overheat/Fan Fail LED
Connect an LED to the OH connection
on pins 7 and 8 of JF1 to provide ad-
vanced warning of chassis overheat-
ing. Refer to the table on the right for
pin defi nitions and status indicators.
OH/Fan Fail LED
Pin Defi nitions (JF1)
Pin# Defi nition
7 Vcc
8 Control
NIC2 LED
Pin Defi nitions (JF1)
Pin# Defi nition
9Vcc
10 NIC2 Active
OH/Fan Fail LED Status
State Indication
Solid Overheat
Blinking Fan fail
2-10
Power Fail LED
Chapter 2: Installation
The Power Fail LED connection is
located on pins 5 and 6 of JF1. Refer
to the table on the right for pin defi ni-
tions. This feature is only available
for systems with redundant power
supplies.
Reset Button
The Reset Button connection is lo-
cated on pins 3 and 4 of JF1. Attach
it to the hardware reset switch on the
computer case. Refer to the table on
the right for pin defi nitions.
Power Button
Power Fail LED
Pin Defi nitions (JF1)
Pin# Defi nition
5 Vcc
6 Control
Reset Button
Pin Defi nitions (JF1)
Pin# Defi nition
3 Reset
4 Ground
The Power Button connection is
located on pins 1 and 2 of JF1. Mo-
mentarily contacting both pins will
power on/off the system. This button
can also be confi gured to function
as a suspend button (see the Power
Button Mode setting in BIOS). To turn
off the power when set to suspend
mode, depress the button for at least
4 seconds. Refer to the table on the
right for pin defi nitions.
Universal Serial Bus Ports (USB0/1/2/3)
Four Universal Serial Bus ports
(USB2.0) are located on the I/O back
panel. See the table on the right for
pin defi nitions.
Power Button
Pin Defi nitions (JF1)
Pin# Defi nition
1PW_ON
2 Ground
Universal Serial Bus Ports
Pin Defi nitions (USB0/1/2/3)
USB0 Pin # Defi nition
1 +5V 1 +5V
2 PO- 2 PO-
3 PO+ 3 PO+
4 Ground 4 Ground
USB1 Pin # Defi nition
2-11
H8DA3-2/H8DAi-2 User's Manual
USB Headers
Four additional USB2.0 headers
(USB4/5 and USB6/7) are included on
the serverboard. These may be con-
nected to provide front side access.
A USB cable (not included) is needed
for the connection. See the table on
the right for pin defi nitions.
Serial Ports
The COM1 and COM2 serial ports are
located under the parallel port. Refer
to Figure 2-3 for locations and the
table on the right for pin defi nitions.
Universal Serial Bus Headers
Pin Defi nitions (USB4/5/6/7)
USB4/6 Pin # Defi nition
1 +5V 1 +5V
2 PO- 2 PO-
3 PO+ 3 PO+
4 Ground 4 Ground
5 Key 5 No connection
Serial Port Pin Defi nitions
Pin # Defi nition Pin # Defi nition
1 DCD 6 DSR
2RXD 7RTS
3TXD 8CTS
4DTR 9 RI
5 Ground 10 NC
USB5/7 Pin # Defi nition
(COM1/COM2)
Fan Headers
The H8DA3-2/H8DAi-2 has eight fan
headers, which are designated FAN1
through FAN8. Fans are Pulse Width
Modulated (PWM) and their speed is
controlled via Thermal Management
with a BIOS setting. See the table on
the right for pin defi nitions.
Note: when using active heatsinks
(those with fans), connect the heatsink
fan for CPU1 to the FAN7 header and
the heatsink fan for CPU2 to the FAN8
header.
Note: NC indicates no connection.
Fan Header
Pin Defi nitions
(FAN1-8)
Pin# Defi nition
1 Ground (Black)
2 +12V (Red)
3 Tachometer
4 PWM Control
LAN1/2 (Ethernet Ports)
Two Gigabit Ethernet ports (desig-
nated LAN1 and LAN2) are located
beside the COM2 port. These Ether-
net ports accept RJ45 type cables.
Notes: LAN1 is the top port and LAN2 is the bot-
tom port.
2-12
Chapter 2: Installation
Power LED/Speaker
On JF2, pins 2, 4 and 6 are for the
power LED and pins 1, 3, 5 and 7 are
for the speaker. Pins 8 and 10 are for
the keylock. See the tables on the
right for pin defi nitions.
Note: The speaker connector pins are
for use with an external speaker. If
you wish to use the onboard speaker,
you should close pins 5 and 7 with a
jumper.
ATX PS/2 Keyboard and PS/2 Mouse Ports
The ATX PS/2 keyboard and the
PS/2 mouse ports are located on the
IO backplane. The mouse is the top
(green) port. See the table on the
right for pin defi nitions.
PWR LED Connector Pin Defi nitions (JF2)
Pin# Defi nition
2 +Vcc
4 Control
6 Control
Speaker Connector
Pin Defi nitions (JF2)
Pin# Defi nition
1 Red wire, +5V
3 No connection
5 Buzzer signal
7 Speaker data
PS/2 Keyboard and
Mouse Port Pin
Defi nitions
Pin# Defi nition
1 Data
2NC
3 Ground
4 VCC
5 Clock
6NC
Overheat LED
Connect an LED to the JOH1 header
to provide warning of chassis over-
heating. See the table on the right for
pin defi nitions.
CD IN Header
The 4-pin CD IN header allows you to
use the onboard sound for audio CD
playback. Connect the audio cable
from your CD drive to this header.
See the table on the right for pin
defi nitions.
Overheat LED
Pin Defi nitions (JOH1)
Pin# Defi nition
13.3V
2 OH Active
CD IN
Pin Defi nitions
Pin# Defi nition
1 Right Signal
2 Ground
3 Ground
4 Left Signal
2-13
H8DA3-2/H8DAi-2 User's Manual
Wake-On-LAN
The Wake-On-LAN header is desig-
nated JWOL. See the table on the
right for pin defi nitions. You must
have a LAN card with a Wake-On-LAN
connector and cable to use the Wake-
On-LAN feature.
Note: Wake-On-LAN from S3, S4,
S5 states are supported by LAN1.
LAN2 supports Wake-On-LAN from
S1 state only.
Wake-On-LAN
Pin Defi nitions
(JWOL)
Pin# Defi nition
1 +5V Standby
2 Ground
3 Wake-up
Wake-On-Ring
The Wake-On-Ring header is desig-
nated JWOR. This function allows
your computer to receive and "wake-
up" by an incoming call to the modem
when in suspend state. See the table
on the right for pin defi nitions. You
must have a Wake-On-Ring card and
cable to use this feature.
Power Supply I2C Header
The JPI2C header is for I2C, which
may be used to monitor the status of
the power supply, fans and system
temperature. See the table on the right
for pin defi nitions.
Wake-On-Ring Pin Defi nitions
(JWOR)
Pin# Defi nition
1 Ground (Black)
2 Wake-up
I2C Header
Pin Defi nitions (JPI2C)
Pin# Defi nition
1 Clock
2 Data
3 PWR Fail
4Gnd
5 +3.3V
2-14
Chapter 2: Installation
Power Fail Alarm Reset Header
Connect JAR to the alarm reset but-
ton on your chassis (if available) or to
a microswitch to allow you to turn off
the alarm that sounds when a power
supply module fails. See the table on
the right for pin defi nitions.
Compact Flash Power Header
A Compact Flash Card Power header
is located at JWF1. For the Compact
Flash Card to work properly, you will
fi rst need to connect the device's power
cable to JWF1 and correctly set the
Compact Flash Jumper (JCF1).
Alarm Reset Header
Pin Defi nitions (JAR)
Pin# Defi nition
1 Ground
2 Reset Signal
Compact Flash
Power Header
Pin Defi nitions (JWF1)
Pin# Defi nition
1 +5V
2 Ground
3 Signal
SGPIO
T-SGPIO1 and T-SGPIO2 (Serial
General Purpose Input/Output) pro-
vide a bus between the SATA control-
ler and the SATA drive backplane to
provide SATA enclosure management
functions. Connect the appropriate
cables from the backplane to the
SGPIO1 and SGPIO2 header(s) to
utilize SATA management functions
on your system.
Pin Defi nitions (T-SGPIO1, T-SGPIO2)
SGPIO Header
Pin# Defi nition Pin # Defi nition
1NC 2 NC
3 Ground 4 Data
5 Load 6 Ground
7NC 8 NC
Note: NC indicates no connection.
2-15
H8DA3-2/H8DAi-2 User's Manual
Chassis Intrusion
A Chassis Intrusion header is located
at JL1. Attach the appropriate cable
to inform you of a chassis intrusion.
Audio Output Header
The Audio_FP header gives you the
option of directing the audio output to
Line In/Line Out/ Mic jacks that may
be added to the front of the chassis
(requires additional hardware, not in-
cluded). See the table on the right for
pin defi nitions.
Chassis Intrusion
Pin Defi nitions (JL1)
Pin# Defi nition
1 Battery voltage
Pin# Defi nition
1 MIC left channel
2 Ground
3 MIC right channel
4 Front panel audio detect
5 Line out right channel
6 MIC jack detect
7 Front audio jack detect
8Key
9 Line out left channel
10 Line out jack detect
2 Intrusion signal
Audio Output Header
Pin Defi nitions (Audio_FP)
Notes: NC indicates no connection. Pins 6
and 10 are not active when a header is used
for front side audio access.
2-16
Chapter 2: Installation
Audio Ports (J42)
HD (High Defi nition) audio is provided with an onboard Realtek ALC883 audio chip.
The H8DA3-2/H8DAi-2 features 6-channel (5.1) sound for front L&R, rear L&R,
center and subwoofer speakers with the use of a mic or line-in device. Without
the use of a mic or line-in device, 8-channel sound (7.1) may be used. Sound is
output through the Line In, Line Out and MIC jacks (see below). There is also a
CD1 header on the board that can be used for audio.
Refer to the diagrams below for the port defi nitions when employing 5.1 or 7.1
sound on your system.
Audio Jacks: 5.1 Sound
Orange jack: Surround L/R
Black jack: Front L/R
Gray jack: Center/Subwoofer
Audio Jacks: 7.1 Sound
Orange jack: Front Right
Black jack: Subwoofer
Gray jack: Surround Right
Audio Output Header: rev. 1.2
Pin Defi nitions (Audio_FP)
Pin# Defi nition
1 MIC left channel
2 Ground
3 MIC right channel
4 Front panel audio detect
5 Line out right channel
6 MIC jack detect
7 Front audio jack detect
8Key
9 Line out left channel
10 Line out jack detect
Blue jack: Line In
Green jack: Line Out
Pink jack: Mic
Blue jack: Front Left
Green jack: Center
Pink jack: Surround Left
2-17
H8DA3-2/H8DAi-2 User's Manual
2-7 Jumper Settings
Explanation of Jumpers
To modify the operation of the
serverboard, jumpers can be used to
choose between optional settings.
Jumpers create shorts between two
pins to change the function of the
connector. Pin 1 is identifi ed with
a square solder pad on the printed
circuit board. See the diagram at
right for an example of jumping pins
1 and 2. Refer to the serverboard
layout page for jumper locations.
Note: O n t w o - p i n j u m p e r s , " C l o s e d "
means the jumper is on and "Open"
means the jumper is off the pins.
CMOS Clear
Connector
321
Pins
Jumper
321
Setting
JBT1 is used to clear CMOS and will also clear any passwords. Instead of pins,
this jumper consists of contact pads to prevent accidentally clearing the contents
of CMOS.
To clear CMOS,
1) First power down the system and unplug the power cord(s).
2) With the power disconnected, short the CMOS pads with a metal object such as
a small screwdriver for at least four seconds.
3) Remove the screwdriver (or shorting device).
4) Reconnect the power cord(s) and power on the system.
Notes:
Do not use the PW_ON connector to clear CMOS.
The onboard battery does not need to be removed when clearing CMOS, however
you must short JBT1 for at least four seconds.
JBT1 contact pads
2-18
3rd Power Supply Fail Signal Enable/Disable
The system can notify you in the event
of a power supply failure. This feature
assumes that three redundant power
supply units are installed in the chas-
sis. If you only have one or two power
supplies installed, you should disable
the function with the J3P header to pre-
vent false alarms. See the table on the
right for jumper settings.
I2C to PCI Enable/Disable
Chapter 2: Installation
3rd Power Supply Fail Signal
Jumper Settings (J3P)
Jumper Setting Defi nition
Open Disabled
Closed Enabled
The JI2C1/2 pair of jumpers allows you
to connect the System Management
Bus to the PCI expansion slots. The
default setting is disabled (pins 2-3) for
both jumpers. Both connectors must
be set the same (JI
2
JI
C2 is for the clock). See the table on
2
C1 is for data and
right for jumper settings.
Watch Dog
JWD controls Watch Dog, a system
monitor that takes action when a soft-
ware application freezes the system.
Jumping pins 1-2 will cause WD to
reset the system if an application is
hung up. Jumping pins 2-3 will gen-
erate a non-maskable interrupt signal
for the application that is hung up.
See the table on the right for jumper
settings. Watch Dog can also be
enabled via BIOS.
I2C to PCI Enable/Disable
Jumper Settings
2
C1/2)
(JI
Jumper Setting Defi nition
Pins 1-2 Enabled
Pins 2-3 Disabled
Watch Dog
Jumper Settings (JWD)
Jumper Setting Defi nition
Pins 1-2 Reset
Pins 2-3 NMI
Open Disabled
Note: When enabled, the user needs to
write their own application software in or-
der to disable the Watch Dog timer.
2-19
H8DA3-2/H8DAi-2 User's Manual
Power LED/Speaker
On JF2, pins 2, 4 and 6 are for the
power LED and pins 1, 3, 5 and 7 are
for the speaker. Pins 8 and 10 are for
the keylock. See the tables on the
right for pin defi nitions.
Note: The speaker connector pins are
for use with an external speaker. If
you wish to use the onboard speaker,
you should close pins 5 and 7 with a
jumper.
USB Power Select
Jumper JPUSB is used to select the
power state for the USB ports. The
Standard setting means power is ap-
plied to the ports only when the system
is powered on. The Dual Power setting
will allow the USB ports to have power
whenever the system's AC power cord
is c o n nected, re g ardless of w hether the
system is powered on or not. See the
PWR LED Connector
Pin Defi nitions (JF2)
Pin# Defi nition
2 +Vcc
4 Control
6 Control
Speaker Connector
Pin Defi nitions (JF2)
Pin# Defi nition
1 Red wire, +5V
3 No connection
5 Buzzer signal
7 Speaker data
USB Power Select
Jumper Settings (JPUSB)
Jumper Setting Defi nition
Pins 1-2 Dual Power
Pins 2-3 Standard Power
table on right for jumper settings.
Compact Flash Master/Slave
The JCF1 jumper allows you to assign
either master or slave status a compact
fl ash card installed in IDE1. See the
table on the right for jumper settings.
Compact Flash
Master/Slave
Jumper Settings (JCF1)
Jumper Setting Defi nition
Closed Master
Open Slave
2-20
Chapter 2: Installation
SAS Controller Enable/ Disable (H8DA3-2 only)
JPS1 enables or disables the onboard
LSI 1068E SAS controller on the
H8DA3-2. See the table on the right
for jumper settings. The default set-
ting is enabled.
2-8 Onboard Indicators
LAN1/LAN2 LEDs
The Ethernet ports (located beside
the VGA port) have two LEDs. On
each Gb LAN port, one LED indicates
activity when blinking while the other
LED may be amber or off to indicate
the speed of the connection. See
the table on the right for the func-
tions associated with the connection
speed LED.
SAS Controller Enable
Jumper Settings (JPS1)
Jumper Setting Defi nition
Pins 1-2 Enabled
Pins 2-3 Disabled
LAN LED
(Connection Speed Indicator)
LED Color Defi nition
Off 10/100 MHz
Amber 1 GHz
Onboard Power LED
DP2 is an Onboard Power LED. When this
LED is lit, it means power is present on the
serverboard. In suspend mode this LED
will blink on and off. Be sure to turn off the
system and unplug the power cord(s) be-
fore removing or installing components
Onboard Power LED
(DP2)
State System Status
On Standby power present on
serverboard
Off No power connected
Flashing System in standby state
2-21
H8DA3-2/H8DAi-2 User's Manual
2-9 Floppy, IDE, Parallel Port, SAS and SATA Drive Connections
Use the following information to connect the fl oppy and hard disk drive cables.
The fl oppy disk drive cable has seven twisted wires.
A red mark on a wire typically designates the location of pin 1.
A single fl oppy disk drive ribbon cable has 34 wires and two connectors to provide
for two fl oppy disk drives. The connector with twisted wires always connects to
drive A, and the connector that does not have twisted wires always connects to
drive B.
The 80-wire ATA133 IDE hard disk drive cable that came with your system has
two connectors to support two drives. This special cable should be used to take
advantage of the speed this new technology offers. The blue connector connects
to the onboard IDE connector interface and the other connector(s) to your hard
drive(s). Consult the documentation that came with your disk drive for details
on actual jumper locations and settings for the hard disk drive.
Floppy Connector
The fl oppy connector is located
beside the IDE connector. See
the table on the right for pin
defi nitions.
Floppy Drive Connector Pin Defi nitions (Floppy)
Pin# Defi nition Pin # Defi nition
1 GND 2 FDHDIN
3 GND 4 Reserved
5 Key 6 FDEDIN
7 GND 8 Index-
9 GND 10 Motor Enable
11 GND 12 Drive Select B-
13 GND 14 Drive Select A-
15 GND 16 Motor Enable
17 GND 18 DIR-
19 GND 20 STEP-
21 GND 22 Write Data-
23 GND 24 Write Gate-
25 GND 26 Track 00-
27 GND 28 Write Protect-
29 GND 30 Read Data-
31 GND 32 Side 1 Select-
33 GND 34 Diskette
2-22
Chapter 2: Installation
IDE Connector
There are no jumpers to con-
fi gure the onboard IDE#1 con-
nector. See the table on the
right for pin defi nitions.
IDE Drive Connector
Pin Defi nitions (IDE#1)
Pin# Defi nition Pin # Defi nition
1 Reset IDE 2 Ground
3 Host Data 7 4 Host Data 8
5 Host Data 6 6 Host Data 9
7 Host Data 5 8 Host Data 10
9 Host Data 4 10 Host Data 11
11 Host Data 3 12 Host Data 12
13 Host Data 2 14 Host Data 13
15 Host Data 1 16 Host Data 14
17 Host Data 0 18 Host Data 15
19 Ground 20 Key
21 DRQ3 22 Ground
23 I/O Write 24 Ground
25 I/O Read 26 Ground
27 IOCHRDY 28 BALE
29 DACK3 30 Ground
31 IRQ14 32 IOCS16
33 Addr1 34 Ground
35 Addr0 36 Addr2
37 Chip Select 0 38 Chip Select 1
39 Activity 40 Ground
2-23
H8DA3-2/H8DAi-2 User's Manual
Parallel Port Connector
See the table on the right for
pin defi nitions of the parallel
(printer) port.
Parallel Port Connector
Pin Defi nitions
Pin# Defi nition Pin # Defi nition
1 Strobe- 2 Auto Feed-
3 Data Bit 0 4 Error-
5 Data Bit 1 6 Init-
7 Data Bit 2 8 SLCT IN-
9 Data Bit 3 10 GND
11 Data Bit 4 12 GND
13 Data Bit 5 14 GND
15 Data Bit 6 16 GND
17 Data Bit 7 18 GND
19 ACK 20 GND
21 BUSY 22 Write Data
23 PE 24 Write Gate
25 SLCT 26 NC
SATA Ports
There are no jumpers to confi g-
ure the Serial ATA ports, which
are designated SATA0 through
SATA5. See the table on the
right for pin defi nitions.
Pin Defi nitions (SATA0-SATA5)
SATA Ports
Pin # Defi nition
1 Ground
2TXP
3TXN
4 Ground
5RXN
6RXP
7 Ground
2-24
Chapter 2: Installation
SAS Ports
There are eight Serial Attached
SCSI ports on the H8DA3-2
(SAS0~3 and SAS4~7). See
the table on the right for pin
defi nitions.
Pin Defi nitions (SAS0~3, SAS4~7)
SAS Ports
Pin# Defi nition Pin # Defi nition
A1 Ground B1 Ground
A2 RX 0+ B2 TX 0+
A3 RX 0- B3 TX 0-
A4 Ground B4 Ground
A5 RX 1+ B5 TX 1+
A6 RX 1- B6 TX 1-
A7 Ground B7 Ground
A8 SB7 B8 SB0
A9 SB3 B9 SB1
A10 SB4 B10 SB2
A11 SB5 B11 SB6
A12 Ground B12 Ground
A13 RX 2+ B13 TX 2+
A14 RX 2- B14 TX 2-
A15 Ground B15 Ground
A16 RX 3+ B16 TX 3+
A17 RX 3- B17 TX 3-
A18 Ground B18 Ground
2-25
H8DA3-2/H8DAi-2 User's Manual
2-10 Enabling SATA RAID
Note: For SAS RAID (H8DA3-2), please refer to LSI manual on the driver CD.
Serial ATA (SATA)
Serial ATA (SATA) is a physical storage interface that employs a single cable with
a minimum of four wires to create a point-to-point connection between devices.
This connection is a serial link. The serial cables used in SATA are thinner than
the traditional cables used in Parallel ATA (PATA) and can extend up to one meter
in length, compared to only 40 cm for PATA cables. Overall, SATA provides better
functionality than PATA.
Installing the OS/SATA Driver
Before installing the OS (operating system) and SATA RAID driver, you must decide
if you wish to have the operating system installed as part of a bootable RAID array
or installed to a separate non-RAID hard drive. If on a separate drive, you may
install the driver either during or after the OS installation. If you wish to have the
OS on a SATA RAID array, you must follow the procedure below and install the
driver during the OS installation.
Note: the SATA RAID driver is supported by Windows 2000 and XP only.
Building a Driver Diskette
You must fi rst build a driver diskette from the CD-ROM that was included with the
system. (You will have to create this disk on a computer that is already running and
with the OS installed.) Insert the CD into your CD-ROM drive and start the system.
A display as shown in Figure 2-7 will appear. Click on the icon labeled "Build Driver
Diskettes and Manuals" and follow the instructions to create a fl oppy disk with the
driver on it. Once it's been created, remove the fl oppy and insert the installation
CD for the Windows Operating System you wish to install into the CD-ROM drive
of the new system you are about to confi gure.
Enabling SATA RAID in the BIOS
Before installing the Windows Operating System, you must change some settings
in BIOS. Boot up the system and hit the <Del> key to enter the BIOS Setup Utlility.
After the Setup Utility loads,
1. Use the arrow keys to move to the Exit menu. Scroll down with the arrow keys
to the "Load Optimal Defaults setting and press <Enter>. Select "OK" to confi rm,
then <Enter> to load the default settings.
2-26
Chapter 2: Installation
2. Use the arrow keys to move to Advanced > Floppy/IDE/SATA Confi guration >
nVidia RAID Setup and press the <Enter> key. Once in the submenu, enable the
"nVidia RAID Function" setting, which will cause the SATA0/1/2 Primary/Secondary
settings to appear. Enable the SATA devices and channels you will be using.
3. Hit the <F10> key to "Save Changes and Exit", then hit <Enter> to verify.
4. After exiting the BIOS Setup Utility, the system will reboot. When prompted
during the startup, press the <F10> key when prompted to run the nVidia RAID
Utility program.
Using the nVidia RAID Utility
The nVidia RAID Utility program is where you can defi ne the drives you want to
include in the RAID array and the mode and type of RAID. Two main windows are
shown in the utility (see Figure 2-5). The "Free Disks" window on the left will list all
available drives. Use the arrow keys to select and move drives to the window on
the right, which lists all drives that are to become part of the RAID array.
Once you have fi nished selecting the drives and type of RAID you wish to use for
your RAID array, press the <F7> key. You will be prompted to verify your choice; if
you want to continue with your choices, select "Yes". Note that selecting "Yes" will
clear all previous data from the drives you selected to be a part of the array. You
are then given the choice of making the RAID array bootable by pressing the the
<B> key. After you have fi nshed, press the <Ctrl> and <X> keys simultaneously.
Figure 2-6 shows a list of arrays that have been set up with the utility.
Installing the OS and Drivers
With the Windows OS installation CD in the CD-ROM drive, restart the system.
When you see the prompt, hit the <F6> key to enter Windows setup. Eventually a
blue screen will appear with a message that begins "Windows could not determine
the type of one or more storage devices . . ." When you see the screen, hit the <S>
key to "Specify Additional Device", then insert the driver diskette you just created
into the fl oppy drive. Highlight "Manufuacturer Supplied Hardware Support Disk"
and hit the <Enter> key. Highlight the fi rst "nVidia RAID" driver shown and press
the <Enter> key to install it. Soon a similar blue screen will appear again. Again hit
the <S> key, then highlight the second item, "nForce Storage Controller" and press
the <Enter> key, then <Enter> again to continue with the Windows setup.
2-27
H8DA3-2/H8DAi-2 User's Manual
Figure 2-5. SATA RAID Utility: Main Screen
Figure 2-6. SATA RAID Utility: Array List
2-28
Chapter 2: Installation
2-11 Installing Drivers
After all the hardware and operating system have been installed, you need to install
certain drivers. The necessary drivers are all included on the Supermicro CD that
came packaged with your serverboard. After inserting this CD into your CD-ROM
drive, the display shown in Figure 2-7 should appear. (If this display does not
appear, click on the My Computer icon and then on the icon representing your CD-
ROM drive. Finally, double click on the S "Setup" icon.)
Figure 2-7. Driver Installation Display Screen
Click the icons showing a hand writing on paper to view the readme fi les for each
item. Click the tabs to the right of these in order from top to bottom to install each
item one at a time. After installing each item, you must reboot the system
before moving on to the next item on the list. You should install everything here
except for the SUPER Doctor utility, which is optional. The bottom icon with a CD
on it allows you to view the entire contents of the CD.
2-29
H8DA3-2/H8DAi-2 User's Manual
Notes
2-30
Chapter 3: Troubleshooting
Chapter 3
Troubleshooting
3-1 Troubleshooting Procedures
Use the following procedures to troubleshoot your system. If you have followed all
of the procedures below and still need assistance, refer to the ‘Technical Support
Procedures’ and/or ‘Returning Merchandise for Service’ section(s) in this chapter.
Always disconnect the AC power cord before adding, changing or installing any
hardware components.
Before Power On
1. Check that the onboard power LED is lit (DP2 on the serverboard).
2. Make sure that the main ATX power connector at J1B1, the 8-pin connector at
JPW1 and the 4-pin connecor at JPW2 are all connected to your power supply.
3. Make sure that no short circuits exist between the serverboard and chassis.
4. Disconnect all ribbon/wire cables from the serverboard, including those for the
keyboard and mouse.
5. Remove all add-on cards.
6. Install a CPU and heatsink (making sure it is fully seated) and connect the in-
ternal (chassis) speaker and the power LED to the serverboard. Check all jumper
settings as well.
7. Use the correct type of onboard CMOS battery as recommended by the manufac-
turer. To avoid possible explosion, do not install the CMOS battery upside down.
8. Note that the 5VSB supplied from your power supply must provide >3 amps.
No Power
1. Make sure that no short circuits exist between the serverboard and the chas-
sis.
2. Verify that all jumpers are set to their default positions.
3. Check that the 115V/230V switch on the power supply is properly set.
4. Turn the power switch on and off to test the system.
5. The battery on your serverboard may be old. Check to verify that it still supplies
~3VDC. If it does not, replace it with a new one.
No Video
1. If the power is on but you have no video, remove all add-on cards and cables.
2. Use the speaker to determine if any beep codes exist. Refer to Appendix A for
details on beep codes.
3-1
H8DA3-2/H8DAi-2 User's Manual
NOTE
If you are a system integrator, VAR or OEM, a POST diagnostics
card is recommended. For I/O port 80h codes, refer to App. B.
Memory Errors
1. Make sure that the DIMM modules are properly and fully installed.
2. You should be using registered ECC DDR-2 memory (see next page). Also, it
is recommended that you use the same memory type and speed for all DIMMs in
the system. See Section 2-4 for memory details and limitations.
3. Check for bad DIMM modules or slots by swapping modules between slots and
noting the results.
4. Check the power supply voltage 115V/230V switch.
Losing the System’s Setup Confi guration
1. Make sure that you are using a high quality power supply. A poor quality power
supply may cause the system to lose the CMOS setup information. Refer to Sec-
tion 1-6 for details on recommended power supplies.
2. The battery on your serverboard may be old. Check to verify that it still supplies
~3VDC. If it does not, replace it with a new one.
3. If the above steps do not fi x the setup confi guration problem, contact your vendor
for repairs.
3-2 Technical Support Procedures
Before contacting Technical Support, please take the following steps. Also, note
that as a serverboard manufacturer, we do not sell directly to end-users, so it is
best to fi rst check with your distributor or reseller for troubleshooting services. They
should know of any possible problem(s) with the specifi c system confi guration that
was sold to you.
1. Please review the ‘Troubleshooting Procedures’ and 'Frequently Asked Questions'
(FAQs) sections in this chapter or see the FAQs on our web site before contacting
Technical Support.
2. BIOS upgrades can be downloaded from our web site.
Note: Not all BIOS can be fl ashed depending on the modifi cations to the boot block
code.
3-2
Chapter 3: Troubleshooting
3. If you still cannot resolve the problem, include the following information when
contacting us for technical support:
Serverboard model and PCB revision number
BIOS release date/version (this can be seen on the initial display when your
system fi rst boots up)
System confi guration
An example of a Technical Support form is posted on our web site.
4. Distributors: For immediate assistance, please have your account number ready
when contacting our technical support department by e-mail.
3-3 Frequently Asked Questions
Question: What type of memory does my serverboard support?
Answer: The H8DA3-2/H8DAi-2 supports up to 32 GB of registered ECC DDR2-
667/533/400 SDRAM with two CPUs installed. With only one CPU installed the
maximum memory support is halved. Memory can be installed in interleaved or
non-interleaved confi gurations. See Section 2-4 for details on installing memory.
Question: How do I update my BIOS?
Answer: It is recommended that you not upgrade your BIOS if you are not experi-
encing problems with your system. Updated BIOS fi les are located on our web site
(http://www.supermicro.com/aplus/support/bios). Please check our BIOS warning
message and the information on how to update your BIOS on our web site. Also,
check the current BIOS revision and make sure it is newer than your current BIOS
before downloading.
Select your serverboard model on the web page and download the corresponding
BIOS fi le to your computer. Unzip the BIOS update fi le, in which you will fi nd the
readme.txt (fl ash instructions), the afudos.exe (BIOS fl ash utility) and the BIOS
image (xxx.rom) fi les. Copy these fi les to a bootable fl oppy disk, insert the disk
into drive A and reboot the system. At the DOS prompt after rebooting, enter the
command "fl ash" (without quotation marks) then type in the BIOS fi le that you want
to update with (xxxx.rom).
Question: What's on the CD that came with my serverboard?
Answer: The supplied compact disc has quite a few drivers and programs that will
greatly enhance your system. We recommend that you review the CD and install the
applications you need. Applications on the CD include chipset drivers for Windows
and security and audio drivers.
3-3
H8DA3-2/H8DAi-2 User's Manual
Question: Why can't I turn off the power using the momentary power on/off
switch?
Answer: The instant power off function is controlled in BIOS by the Power But-
ton Mode setting. When the On/Off feature is enabled, the serverboard will have
instant off capabilities as long as the BIOS has control of the system. When the
Standby or Suspend feature is enabled or when the BIOS is not in control such
as during memory count (the fi rst screen that appears when the system is turned
on), the momentary on/off switch must be held for more than four seconds to shut
down the system. This feature is required to implement the ACPI features on the
serverboard.
Question: How do I connect the ATA133 cable to my IDE device(s)?
Answer: The 80-wire/40-pin high-density ATA133 IDE cable that came with your
system has two connectors to support two drives. This special cable must be used
to take advantage of the speed the ATA133 technology offers. Connect the blue
connector to the onboard IDE header and the other connector(s) to your hard
drive(s). Consult the documentation that came with your disk drive for details on
actual jumper locations and settings.
3-4 Returning Merchandise for Service
A receipt or copy of your invoice marked with the date of purchase is required be-
fore any warranty service will be rendered. You can obtain service by calling your
vendor for a Returned Merchandise Authorization (RMA) number. When returning
to the manufacturer, the RMA number should be prominently displayed on the
outside of the shipping carton, and mailed prepaid or hand-carried. Shipping and
handling charges will be applied for all orders that must be mailed when service
is complete.
For faster service, RMA authorizations may be requested online (http://www.
supermicro.com/support/rma/).
This warranty only covers normal consumer use and does not cover damages in-
curred in shipping or from failure due to the alteration, misuse, abuse or improper
maintenance of products.
During the warranty period, contact your distributor fi rst for any product problems.
3-4
Chapter 4: BIOS
Chapter 4
BIOS
4-1 Introduction
This chapter describes the AMIBIOS™ Setup utility for the H8DA3-2/H8DAi-2. The
AMI ROM BIOS is stored in a fl ash chip and can be easily upgraded using a fl oppy
disk-based program.
Note: Due to periodic changes to the BIOS, some settings may have been added or
deleted and might not yet be recorded in this manual. Please refer to the Manual
Download area of our web site for any changes to BIOS that may not be refl ected
in this manual.
Starting the Setup Utility
To enter the BIOS Setup Utility, hit the <Delete> key while the system is booting-up.
(In most cases, the <Delete> key is used to invoke the BIOS setup screen. There are
a few cases when other keys are used, such as <F1>, <F2>, etc.) Each main BIOS
menu option is described in this manual.
The Main BIOS screen has two main frames. The left frame displays all the options
that can be confi gured. “Grayed-out” options cannot be confi gured. The right frame
displays the key legend. Above the key legend is an area reserved for a text mes-
sage. When an option is selected in the left frame, it is highlighted in white. Often a
text message will accompany it. (Note that BIOS has default text messages built in.
We retain the option to include, omit, or change any of these text messages.) Set-
tings printed in Bold are the default values.
A "
" indicates a submenu. Highlighting such an item and pressing the <Enter>
key will open the list of settings within that submenu.
The BIOS setup utility uses a key-based navigation system called hot keys. Most of
these hot keys (<F1>, <F10>, <Enter>, <ESC>, <Arrow> keys, etc.) can be used at
any time during the setup navigation process.
4-1
H8DA3-2/H8DAi-2 User’s Manual
4-2 Main Menu
When you fi rst enter AMI BIOS Setup Utility, you will see the Main Menu screen.
You can always return to the Main Menu by selecting the Main tab on the top of
the screen with the arrow keys.
The Main Menu screen provides you with a system overview, which includes the
version, built date and ID of the AMIBIOS, the type, speed and number of the
processors in the system and the amount of memory installed in the system.
System Time/System Date
You can edit this fi eld to change the system time and date. Highlight System Time
or System Date using the <Arrow> keys. Enter new values through the keyboard.
Press the <Tab> key or the <Arrow> keys to move between fi elds. The date must
be entered in DAY/MM/DD/YYYY format. The time is entered in HH:MM:SS format.
Please note that time is in a 24-hour format. For example, 5:30 A.M. appears as
05:30:00 and 5:30 P.M. as 17:30:00.
4-3 Advanced Settings Menu
Boot Features
Quick Boot
If Enabled, this option will skip certain tests during POST to reduce the time
needed for the system to boot up. The options are Enabled and Disabled.
Quiet Boot
If Disabled, normal POST messages will be displayed on boot-up. If Enabled,
this display the OEM logo instead of POST messages.
Add-On ROM Display Mode
Set this option to display add-on ROM (read-only memory) messages. The de-
fault setting is Force BIOS. Select Force BIOS to allow the computer system
to force a third party BIOS to display during system boot. Select Keep Current
to allow the computer system to display the BIOS information during system
boot. The options are Force BIOS and Keep Current.
4-2
Chapter 4: BIOS
Boot up Num-Lock
Set this value to allow the Number Lock setting to be modifi ed during boot up.
The options are On and Off.
PS/2 Mouse Support
Set this value to modify support for a PS/2 mouse. The options are Auto, En-
abled and Disabled.
Wait for ‘F1’ If Error
Select Enable to activate the Wait for F1 if Error function. The options are
Enabled and Disabled.
Hit ‘DEL’ Message Display
Select Enabled to display message to hit the DEL key to enter Setup. The op-
tions are Enabled and Disabled.
Interrupt 19 Capture
Select Enabled to allow ROMs to trap Interrupt 19. The options are Enabled
and Disabled.
OS Installation
Change this setting if using a 64-bit Linux operating system. The available op-
tions are Other and Linux.
ACPI Confi guration
ACPI Version Features
Use this setting the determine which ACPI version to use. Options are ACPI
v1.0, ACPI v2.0 and ACPI v3.0.
ACPI APIC Support
Determines whether to include the ACPI APIC table pointer in the RSDT pointer
list. The available options are Enabled and Disabled.
AMI OEMB Table
Determines whether to include the AMI APIC table pointer in the RSDT pointer
list. The available options are Enabled and Disabled.
4-3
H8DA3-2/H8DAi-2 User’s Manual
Headless Mode
Use this setting to Enable or Disable headless operation mode through ACPI.
MCP55 ACPI HPET Table
Use this setting to either Enable or Disable the MCP55 ACPI HPET table.
Suspend Mode
This setting is used to select the ACPI state used for system suspend. The
options are S1 (POS), S3 (STR) and Auto.
Power Confi guration
Power Button Mode
Allows the user to change the function of the power button. Options are On/Off
and Suspend.
Restore on AC Power Loss
This setting allows you to choose how the system will react when power returns
after an unexpected loss of power. The options are Power Off, Power On and
Last State.
Watch Dog Timer
This setting is used to Enable or Disable the Watch Dog Timer function. It must
be used in conjunction with the Watch Dog jumper (see Chapter 2 for details).
MPS Confi guration
MPS Revision
This setting allows the user to select the MPS revision level. The options are
1.1 and 1.4.
Smbios Confi guration
Smbios Smi Support
This setting allows SMI wrapper support for PnP function 50h-54h. The options
are Enabled and Disabled.
4-4
Chapter 4: BIOS
CPU Confi guration
The submenu lists CPU information and the following settings:
GART Error Reporting
This setting is used for testing only (setting should be disabled).
Power Now
This setting is used to Enable or Disable the AMD Power Now feature.
Thermal Throttling
This setting is used to Enable or Disable Thermal Throttling.
Errata #169
The options are Enabled or Disabled. Some Linux kernals may have problems
installing, in such case try disabling this setting for a workaround.
Floppy/IDE/SATA Confi guration
Floppy A
Move the cursor to these fi elds via up and down <arrow> keys to select the fl oppy
type. The options are Disabled, 360 KB 5 1/4", 1.2 MB 5 1/4", 720 KB 3½", 1.44
MB 3½”, and 2.88 MB 3½".
Floppy B
Move the cursor to these fi elds via up and down <arrow> keys to select the fl oppy
type. The options are Disabled, 360 KB 5 1/4", 1.2 MB 5 1/4", 720 KB 3½", 1.44
MB 3½”, and 2.88 MB 3½".
Onboard Floppy Controller
Use this setting to Enable or Disable the onboard fl oppy controller.
Onboard IDE Controller
There is a single fl oppy controller on the motherboard, which may be Enabled or
Disabled with this setting.
Serial ATA Devices
This setting is used to determine if SATA drives will be used and how many. Op-
tions are Disabled, Device 0, Device 0/1 and Device 0/1/2.
4-5
H8DA3-2/H8DAi-2 User’s Manual
nVidia RAID Function
This setting is used to Enable or Disable the nVidia ROM.
Primary IDE Master/Slave
Highlight one of the items above and press <Enter> to access the submenu for
that item.
Type
Select the type of device connected to the system. The options are Not Installed,
Auto, CDROM and ARMD.
LBA/Large Mode
LBA (Logical Block Addressing) is a method of addressing data on a disk drive.
The options are Disabled and Auto.
Block (Multi-Sector Transfer)
Block mode boosts IDE drive performance by increasing the amount of data
transferred. Only 512 bytes of data can be transferred per interrupt if block mode
is not used. Block mode allows transfers of up to 64 KB per interrupt. Select
"Disabled" to allow the data to be transferred from and to the device one sec-
tor at a time. Select "Auto" to allows the data transfer from and to the device
occur multiple sectors at a time if the device supports it. The options are Auto
and Disabled.
PIO Mode
PIO (Programmable I/O) mode programs timing cycles between the IDE drive
and the programmable IDE controller. As the PIO mode increases, the cycle time
decreases. The options are Auto, 0, 1, 2, 3, and 4. Select Auto to allow AMI
BIOS to auto detect the PIO mode. Use this value if the IDE disk drive support
cannot be determined. Select 0 to allow AMI BIOS to use PIO mode 0. It has a
data transfer rate of 3.3 MBs. Select 1 to allow AMI BIOS to use PIO mode 1.
It has a data transfer rate of 5.2 MBs. Select 2 to allow AMI BIOS to use PIO
mode 2. It has a data transfer rate of 8.3 MBs. Select 3 to allow AMI BIOS to
use PIO mode 3. It has a data transfer rate of 11.1 MBs. Select 4 to allow AMI
BIOS to use PIO mode 4. It has a data transfer rate of 16.6 MBs. This setting
generally works with all hard disk drives manufactured after 1999. For other disk
drives, such as IDE CD-ROM drives, check the specifi cations of the drive.
4-6
Chapter 4: BIOS
DMA Mode
Selects the DMA Mode. Options are Auto, SWDMA0, SWDMA1, SWDMA2,
MWDMA0. MDWDMA1, MWDMA2, UDMA0. UDMA1, UDMA2, UDMA3,
UDMA4 and UDMA5. (SWDMA=Single Word DMA, MWDMA=Multi Word DMA,
UDMA=UltraDMA.)
S.M.A.R.T.
Self-Monitoring Analysis and Reporting Technology (SMART) can help predict
impending drive failures. Select "Auto" to allow BIOS to auto detect hard disk
drive support. Select "Disabled" to prevent AMI BIOS from using the S.M.A.R.T.
Select "Enabled" to allow AMI BIOS to use the S.M.A.R.T. to support hard drive
disk. The options are Disabled, Enabled, and Auto.
32-Bit Data Transfer
Select "Enabled" to activate the function of 32-Bit data transfer. Select "Disabled"
to deactivate the function. The options are Enabled and Disabled.
Serial ATA0/1/2 Primary/Secondary Channel
Highlight one of the items above and press <Enter> to access the submenu for that
item. If a drive is present, information on that drive will be displayed here.
LBA/Large Mode
LBA (Logical Block Addressing) is a method of addressing data on a disk drive.
The options are Disabled and Auto.
Block (Multi-Sector Transfer)
Block mode boosts IDE drive performance by increasing the amount of data
transferred. Only 512 bytes of data can be transferred per interrupt if block mode
is not used. Block mode allows transfers of up to 64 KB per interrupt. Select
"Disabled" to allow the data to be transferred from and to the device one sec-
tor at a time. Select "Auto" to allows the data transfer from and to the device
occur multiple sectors at a time if the device supports it. The options are Auto
and Disabled.
PIO Mode
PIO (Programmable I/O) mode programs timing cycles between the IDE drive
and the programmable IDE controller. As the PIO mode increases, the cycle time
decreases. The options are Auto, 0, 1, 2, 3, and 4. Select Auto to allow AMI
BIOS to auto detect the PIO mode. Use this value if the IDE disk drive support
4-7
H8DA3-2/H8DAi-2 User’s Manual
cannot be determined. Select 0 to allow AMI BIOS to use PIO mode 0. It has a
data transfer rate of 3.3 MBs. Select 1 to allow AMI BIOS to use PIO mode 1.
It has a data transfer rate of 5.2 MBs. Select 2 to allow AMI BIOS to use PIO
mode 2. It has a data transfer rate of 8.3 MBs. Select 3 to allow AMI BIOS to
use PIO mode 3. It has a data transfer rate of 11.1 MBs. Select 4 to allow AMI
BIOS to use PIO mode 4. It has a data transfer rate of 16.6 MBs. This setting
generally works with all hard disk drives manufactured after 1999. For other disk
drives, such as IDE CD-ROM drives, check the specifi cations of the drive.
DMA Mode
Selects the DMA Mode. Options are Auto, SWDMA0, SWDMA1, SWDMA2,
MWDMA0. MDWDMA1, MWDMA2, UDMA0. UDMA1, UDMA2, UDMA3,
UDMA4 and UDMA5. (SWDMA=Single Word DMA, MWDMA=Multi Word DMA,
UDMA=UltraDMA.)
S.M.A.R.T.
Self-Monitoring Analysis and Reporting Technology (SMART) can help predict
impending drive failures. Select "Auto" to allow BIOS to auto detect hard disk
drive support. Select "Disabled" to prevent AMI BIOS from using the S.M.A.R.T.
Select "Enabled" to allow AMI BIOS to use the S.M.A.R.T. to support hard drive
disk. The options are Disabled, Enabled, and Auto.
32-Bit Data Transfer
Select "Enabled" to activate the function of 32-Bit data transfer. Select "Disabled"
to deactivate the function. The options are Enabled and Disabled.
Hard Disk Write Protect
Select Enabled to enable the function of Hard Disk Write Protect to prevent data
from being written to HDD. The options are Enabled or Disabled.
IDE Detect Time Out (Sec)
This feature allows the user to set the time-out value for detecting ATA, ATA PI
devices installed in the system. The options are 0 (sec), 5, 10, 15, 20, 25, 30 and
35.
ATA(PI) 80Pin Cable Detection
This setting allows AMI BIOS to auto-detect the 80-Pin ATA(PI) cable. The options
are Host & Device, Host and Device.
4-8
Chapter 4: BIOS
PCI/PnP Confi guration
Clear NVRAM
Select Yes to clear NVRAM during boot-up. The options are Yes and No.
Plug & Play OS
Select Yes to allow the OS to confi gure Plug & Play devices. (This is not required
for system boot if your system has an OS that supports Plug & Play.) Select No
to allow AMIBIOS to confi gure all devices in the system.
PCI Latency Timer
This option sets the latency of all PCI devices on the PCI bus. Select a value to
set the PCI latency in PCI clock cycles. Options are 32, 64, 96, 128, 160, 192,
224 and 248.
Allocate IRQ to PCI VGA
Set this value to allow or restrict the system from giving the VGA adapter card an
interrupt address. The options are Yes and No.
Palette Snooping
Select "Enabled" to inform the PCI devices that an ISA graphics device is installed
in the system in order for the graphics card to function properly. The options are
Enabled and Disabled.
PCI IDE BusMaster
Set this value to allow or prevent the use of PCI IDE busmastering. Select "Enabled"
to allow AMI BIOS to use PCI busmaster for reading and writing to IDE drives. The
options are Disabled and Enabled.
Offboard PCI/ISA IDE Card
This option allows the user to assign a PCI slot number to an Off-board PCI/ISA
IDE card in order for it to function properly. The options are Auto, PCI Slot1, PCI
Slot2, PCI Slot3, PCI Slot4, PCI Slot5, and PCI Slot6.
IRQ3/IRQ4/IRQ5/IRQ7/IRQ9/IRQ10/IRQ11
This feature specifi es the availability of an IRQ to be used by a PCI/PnP device.
Select Reserved for the IRQ to be used by a Legacy ISA device. The options are
Available and Reserved.
4-9
H8DA3-2/H8DAi-2 User’s Manual
DMA Channel 0/Channel 1/Channel 3/Channel 5/Channel 6/Channel 7
Select Available to indicate that a specifi c DMA channel is available to be used by
a PCI/PnP device. Select Reserved if the DMA channel specifi ed is reserved for
a Legacy ISA device. The options are Available and Reserved.
Reserved Memory Size
This feature specifi es the size of memory block to be reserved for Legacy ISA
devices. The options are Disabled, 16K, 32K and 64K.
Onboard SAS Controller
This option allows the user to Enable or Disable the onboard SAS controller.
4-10
Chapter 4: BIOS
Super IO Confi guration
Serial Port1 Address
This option specifi es the base I/O port address and Interrupt Request address of
serial port 1. Select "Disabled" to prevent the serial port from accessing any system
resources. When this option is set to Disabled, the serial port physically becomes
unavailable. Select "3F8/IRQ4" to allow the serial port to use 3F8 as its I/O port
address and IRQ 4 for the interrupt address. The options are Disabled, 3F8/IRQ4,
3E8/IRQ4 and 2E8/IRQ3.
Serial Port2 Address
This option specifi es the base I/O port address and Interrupt Request address of
serial port 2. Select "Disabled" to prevent the serial port from accessing any system
resources. When this option is set to "Disabled", the serial port physically becomes
unavailable. Select "2F8/IRQ3" to allow the serial port to use 2F8 as its I/O port
address and IRQ 3 for the interrupt address. The options are Disabled, 2F8/IRQ3,
3E8/IRQ4 and 2E8/IRQ3.
Serial Port 2 Mode
Tells BIOS which mode to select for serial port 2. The options are Normal, IrDA
and ASKIR.
Parallel Port Address
This option specifi es the I/O address used by the parallel port. Select Disabled to
prevent the parallel port from accessing any system resources. When the value of
this option is set to Disabled, the printer port becomes unavailable. Select 378 to
allow the parallel port to use 378 as its I/O port address. The majority of parallel
ports on computer systems use IRQ7 and I/O Port 378H as the standard setting.
Select 278 to allow the parallel port to use 278 as its I/O port address. Select 3BC
to allow the parallel port to use 3BC as its I/O port address.
Parallel Port Mode
Specify the parallel port mode. The options are Normal, Bi-directional, EPP
and ECP.
Parallel Port IRQ
Select the IRQ (interrupt request) for the parallel port. The options are IRQ5 and IRQ7.
4-11
H8DA3-2/H8DAi-2 User’s Manual
Chipset Confi guration
NorthBridge Confi guration
Memory Confi guration
Memclock Mode
This setting determines how the memory clock is set. Auto has the memory
clock by code and Manual and Limit allow the user to set a standard value.
MCT Timing Mode
Sets the timing mode for memory. Options are Auto and Manual.
Bank Interleaving
Select Auto to automatically enable interleaving-memory scheme when this
function is supported by the processor. The options are Auto and Disabled.
Enable Clock to All DIMMs
Use this setting to enable unused clocks to all DIMMSs, even if some DIMM
slots are unpopulated. Options are Enabled and Disabled.
MemClk Tristate C3/ALTVID
Use this setting to Enable or Disable memory clock tristate during C3 and
ALT VID.
CS Sparing Enable
This setting will reserve a spare memory rank in each node when enabled.
Options are Enable and Disable.
DQS Signal Training Control
This setting is used to Enable or Disable the DQS Signal Training Mode.
Memory Hole Remapping
When "Enabled", this feature enables hardware memory remapping around
the memory hole. Options are Enabled and Disabled.
4-12
Chapter 4: BIOS
ECC Confi guration
DRAM ECC Enable
DRAM ECC allows hardware to report and correct memory errors automati-
cally. Options are Enabled and Disabled.
4-Bit ECC Mode
Allows the user to enabled 4-bit ECC mode (also known as ECC
Chipkill). Options are Enabled and Disabled.
DRAM Scrub Redirect
Allows system to correct DRAM ECC errors immediately, even with
background scrubbing on. Options are Enabled and Disabled.
DRAM BG Scrub
Corrects memory errors so later reads are correct. Options are Dis-
abled and various times in nanoseconds and microseconds.
L2 Cache BG Scrub
Allows L2 cache RAM to be corrected when idle. Options are Disabled and
various times in nanoseconds and microseconds.
Data Cache BG Scrub
Allows L1 cache RAM to be corrected when idle. Options are Disabled and
various times in nanoseconds and microseconds.
Power Down Control
Allows DIMMs to enter power down mode by deasserting the clock enable signal
when DIMMs are not in use. Options are Auto and Disabled.
Alternate VID
Specify the alternate VID while in low power states. Options are Auto and vari-
ous voltages from .800V to 1.050V in increments of .025V.
4-13
H8DA3-2/H8DAi-2 User’s Manual
SouthBridge Confi guration
CPU/LDT Spread Spectrum
Enables spread spectrum for the CPU/LDT. Options are Center Spread, Down
Spread or Disabled.
PCIE Spread Spectrum
Allows you to Enable or Disable spread spectrum for PCI-Express..
SATA Spread Spectrum
Enables spread spectrum for the SATA. Options are Enabled and Disabled.
PCI Bus Scan Order
Options are High Low and Low High.
MAC0 LAN0
Settings are Auto and Disabled for MAC0 LAN0.
MAC1 LAN1
Settings are Auto and Disabled for MAC1 LAN1.
USB 1.1 Controller
Enable or disable the USB 1.1 controller.
USB 2.0 Controller
Enable or disable the USB 2.0 controller.
Legacy USB Support
Select "Enabled" to enable the support for USB Legacy. Disable Legacy support
if there are no USB devices installed in the system. "Auto" disabled Legacy
support if no USB devices are connected. The options are Disabled, Enabled
and Auto.
USB 2.0 Controller Mode
Select the controller mode for your USB ports. Options are HiSpeed and
FullSpeed. (HiSpeed=480 Mbps, FullSpeed=12 Mbps).
BIOS EHCI Hand-Off
Enable or Disable a workaround for OS's without EHCI hand-off support.
4-14
Chapter 4: BIOS
USB Mass Storage Device Confi guration
USB Mass Storage Reset Delay
Set the USB mass storage reset delay to 10 sec., 20 sec., 30 sec. or 40 sec.
Device #1 Emulation Type
If set to Auto, USB devices < 530MB will be emulated as a fl oppy drive and
the remaining as hard drives. The Forced FDD setting forces a formatted hard
drive to boot as a fl oppy disk drive. Options are Auto, Floppy, Forced FDD,
Hard Disk and CD-ROM.
Event Log Confi guration
View Event Log
Highlight this item and press <Enter> to view the contents of the event log.
Mark All Events as Read
Highlight this item and press <Enter> to mark all events as read.
Clear Event Log
Select Yes and press <Enter> to clear all event logs. The options are Yes and No
to verify.
PCI Express Confi guration
Active State Power Management
Used to Enable or Disable the PCI-Express L0 and L1 link power states.
Remote Acess Confi guration
Remote Access
Allows you to Enable or Disable remote access. If enabled, the following
settings will be displayed.
Serial Port Number
Selects the serial port to use for console redirection. Options are COM1 and
COM2.
Serial Port Mode
Selects the serial port settings to use. Options are (115200 8, n, 1), (57600 8,
n, 1), (38400 8, n, 1), (19200 8, n, 1) and (09600 8, n, 1).
4-15
H8DA3-2/H8DAi-2 User’s Manual
Flow Control
Selects the fl ow control to be used for console redirection. Options are None,
Hardware and Software.
Redirection After BIOS POST
Options are Disable (no redirection after BIOS POST), Boot Loader (redirection
during POST and during boot loader) and Always (redirection always active).
Note that some OS's may not work with this set to Always.
Terminal Type
Selects the type of the target terminal. Options are ANSI, VT100 and VT-
UTF8.
VT-UTF8 Combo Key Support
Allows you to Enable or Disable VT-UTF8 combination key support for ANSI/
VT100 terminals.
Sredir Memory Display Delay
Use this setting to set the delay in seconds to display memory information. Op-
tions are No Delay, 1 sec, 2 secs and 4 secs.
4-16
Chapter 4: BIOS
System Health Monitor
CPU Overheat Alarm
Use the "+" and "-" keys to set the CPU temperature threshold to between 65o
o
and 90
sis will light up and an alarm will sound. The LED and alarm will turn off once
the CPU temperature has dropped to 5 degrees below the threshold set. The
default setting is 72
The submenu includes monitor displays for the following information:
CPU1 Temperature, CPU2 Temperature (for dual CPU systems), System Tem-
perature, CPU1Vcore, CPU2Vcore (for dual CPU systems), 3.3V, +5Vin, +12Vin,
5V standby and battery voltage.
C. When this threshold is exceeded, the overheat LED on the chas-
o
C.
System Fan Monitor
Fan Speed Control Modes
This feature allows the user to determine how the system will control the speed
of the onboard fans. Select "Workstation" if your system is used as a Worksta-
tion. Select "Server" if your system is used as a Server. Select "Disable" to
disable the fan speed control function to allow the onboard fans to continuously
run at full speed (12V). The options are 1) Disabled (Full Speed) 2) Server
Mode 3) Workstation Mode 4) Workstation Quiet Mode and 5) Workstation
Super Quiet Mode.
FAN1 Speed through FAN8 Reading
The speeds of the onboard fans (in rpm) are displayed here.
4-17
H8DA3-2/H8DAi-2 User’s Manual
4-4 Boot Menu
This menu allows the user to confi gure the following items:
Boot Device Priority
This feature allows the user to prioritize the boot sequence from the available
devices.
Hard Disk Drives
This feature allows the user to specify the Boot sequence from available hard disk
drives.
Removable Drives
This feature allows the user to specify the Boot sequence from available remov-
able drives.
CD/DVD Drives
This feature allows the user to specify the Boot sequence from available CD/DVD
drives.
4-5 Security Menu
AMI BIOS provides a Supervisor and a User password. If you use both passwords,
the Supervisor password must be set fi rst.
Change Supervisor Password
Select this option and press <Enter> to access the sub menu, and then type in
the password.
Change User Password
Select this option and press <Enter> to access the sub menu, and then type in
the password.
Boot Sector Virus Protection
This option is near the bottom of the Security Setup screen. Select "Disabled" to
deactivate the Boot Sector Virus Protection. Select "Enabled" to enable boot sector
protection. When "Enabled", AMI BIOS displays a warning when any program (or
virus) issues a Disk Format command or attempts to write to the boot sector of the
hard disk drive. The options are Enabled and Disabled.
4-18
Chapter 4: BIOS
4-6 Exit Menu
Select the Exit tab from AMI BIOS Setup Utility screen to enter the Exit BIOS Setup
screen.
Save Changes and Exit
When you have completed the system confi guration changes, select this option
to leave BIOS Setup and reboot the computer, so the new system confi guration
parameters can take effect. Select Save Changes and Exit from the Exit menu
and press <Enter>.
Discard Changes and Exit
Select this option to quit BIOS Setup without making any permanent changes to
the system confi guration and reboot the computer. Select Discard Changes and
Exit from the Exit menu and press <Enter>.
Discard Changes
Select this option and press <Enter> to discard all the changes and return to AMI
BIOS Utility Program.
Load Optimal Defaults
To set this feature, select Load Optimal Defaults from the Exit menu and press
<Enter>. Then Select "OK" to allow BIOS to automatically load the Optimal Defaults
as the BIOS Settings. The Optimal settings are designed for maximum system
performance, but may not work best for all computer applications.
Load Fail-Safe Defaults
To set this feature, select Load Fail-Safe Defaults from the Exit menu and press
<Enter>. The Fail-Safe settings are designed for maximum system stability, but
not maximum performance.
4-19
H8DA3-2/H8DAi-2 User’s Manual
Notes
4-20
Appendix A: BIOS Error Beep Codes
Appendix A
BIOS Error Beep Codes
During the POST (Power-On Self-Test) routines, which are performed each time
the system is powered on, errors may occur.
Non-fatal errors are those which, in most cases, allow the system to continue the
boot-up process. The error messages normally appear on the screen.
Fatal errors are those which will not allow the system to continue the boot-up pro-
cedure. If a fatal error occurs, you should consult with your system manufacturer
for possible repairs.
These fatal errors are usually communicated through a series of audible beeps.
The numbers on the fatal error list, on the following page, correspond to the number
of beeps for the corresponding error. All errors listed, with the exception of Beep
Code 8, are fatal errors.
POST codes may be read on the debug LEDs located beside the LAN port on the
serverboard backplane. See the description of the Debug LEDs (LED1 and LED2)
in Chapter 5.
A-1 AMIBIOS Error Beep Codes
Beep Code Error Message Description
1 beep Refresh Circuits have been reset.
(Ready to power up.)
5 short, 1 long Memory error No memory detected in
system
8 beeps Video error Video adapter disabled or
missing
A-1
H8DA3-2/H8DAi-2 User’s Manual
Notes
A-2
Appendix B: BIOS POST Checkpoint Codes
Appendix B
BIOS POST Checkpoint Codes
When AMIBIOS performs the Power On Self Test, it writes checkpoint codes to I/O
port 0080h. If the computer cannot complete the boot process, diagnostic equipment
can be attached to the computer to read I/O port 0080h.
B-1 Uncompressed Initialization Codes
The uncompressed initialization checkpoint codes are listed in order of execution:
Checkpoint Code Description
D0h The NMI is disabled. Power on delay is starting. Next, the initialization code check-
D1h Initializing the DMA controller, performing the keyboard controller BAT test, starting
D3h Starting memory sizing next.
D4h Returning to real mode. Executing any OEM patches and setting the Stack next.
D5h Passing control to the uncompressed code in shadow RAM at E000:0000h. The
sum will be verifi ed.
memory refresh and entering 4 GB fl at mode next.
initialization code is copied to segment 0 and control will be transferred to segment
0.
B-1
H8DA3-2/H8DAi-2 User’s Manual
B-2 Bootblock Recovery Codes
The bootblock recovery checkpoint codes are listed in order of execution:
Checkpoint Code Description
E0h The onboard fl oppy controller if available is initialized. Next, beginning the base
E1h Initializing the interrupt vector table next.
E2h Initializing the DMA and Interrupt controllers next.
E6h Enabling the fl oppy drive controller and Timer IRQs. Enabling internal cache mem-
Edh Initializing the fl oppy drive.
Eeh Looking for a fl oppy diskette in drive A:. Reading the fi rst sector of the diskette.
Efh A read error occurred while reading the fl oppy drive in drive A:.
F0h Next, searching for the AMIBOOT.ROM fi le in the root directory.
F1h The AMIBOOT.ROM fi le is not in the root directory.
F2h Next, reading and analyzing the fl oppy diskette FAT to fi nd the clusters occupied
F3h Next, reading the AMIBOOT.ROM fi le, cluster by cluster.
F4h The AMIBOOT.ROM fi le is not the correct size.
F5h Next, disabling internal cache memory.
FBh Next, detecting the type of fl ash ROM.
FCh Next, erasing the fl ash ROM.
512 KB memory test.
ory.
by the AMIBOOT.ROM fi le.
FDh Next, programming the fl ash ROM.
FFh Flash ROM programming was successful. Next, restarting the system BIOS.
B-2
Appendix B: BIOS POST Checkpoint Codes
B-3 Uncompressed Initialization Codes
The following runtime checkpoint codes are listed in order of execution.
These codes are uncompressed in F0000h shadow RAM.
Checkpoint Code Description
03h The NMI is disabled. Next, checking for a soft reset or a power on condition.
05h The BIOS stack has been built. Next, disabling cache memory.
06h Uncompressing the POST code next.
07h Next, initializing the CPU and the CPU data area.
08h The CMOS checksum calculation is done next.
0Ah The CMOS checksum calculation is done. Initializing the CMOS status register for
0Bh The CMOS status register is initialized. Next, performing any required initialization
0Ch The keyboard controller input buffer is free. Next, issuing the BAT command to the
0Eh The keyboard controller BAT command result has been verifi ed. Next, performing
0Fh The initialization after the keyboard controller BAT command test is done. The key-
10h The keyboard controller command byte is written. Next, issuing the Pin 23 and 24
11h Next, checking if <End or <Ins> keys were pressed during power on. Initializing
12h Next, disabling DMA controllers 1 and 2 and interrupt controllers 1 and 2.
13h The video display has been disabled. Port B has been initialized. Next, initializing
14h The 8254 timer test will begin next.
19h Next, programming the fl ash ROM.
1Ah The memory refresh line is toggling. Checking the 15 second on/off time next.
date and time next.
before the keyboard BAT command is issued.
keyboard controller.
any necessary initialization after the keyboard controller BAT command test.
board command byte is written next.
blocking and unblocking command.
CMOS RAM if the Initialize CMOS RAM in every boot AMIBIOS POST option was set in AMIBCP or the <End> key was pressed.
the chipset.
2Bh Passing control to the video ROM to perform any required confi guration before the
video ROM test.
2Ch All necessary processing before passing control to the video ROM is done. Look-
ing for the video ROM next and passing control to it.
2Dh The video ROM has returned control to BIOS POST. Performing any required pro-
cessing after the video ROM had control
23h Reading the 8042 input port and disabling the MEGAKEY Green PC feature next.
Making the BIOS code segment writable and performing any necessary confi gura­tion before initializing the interrupt vectors.
24h The confi guration required before interrupt vector initialization has completed. In-
terrupt vector initialization is about to begin.
B-3
H8DA3-2/H8DAi-2 User’s Manual
Checkpoint Code Description
25h Interrupt vector initialization is done. Clearing the password if the POST DIAG
27h Any initialization before setting video mode will be done next.
28h Initialization before setting the video mode is complete. Confi guring the mono-
2Ah Bus initialization system, static, output devices will be done next, if present. See the
2Eh Completed post-video ROM test processing. If the EGA/VGA controller is not
2Fh The EGA/VGA controller was not found. The display memory read/write test is
30h The display memory read/write test passed. Look for retrace checking next.
31h The display memory read/write test or retrace checking failed. Performing the alter-
32h The alternate display memory read/write test passed. Looking for alternate display
34h Video display checking is over. Setting the display mode next.
37h The display mode is set. Displaying the power on message next.
38h Initializing the bus input, IPL, general devices next, if present. See the last page of
39h Displaying bus initialization error messages. See the last page of this chapter for
switch is on.
chrome mode and color mode settings next.
last page for additional information.
found, performing the display memory read/write test next.
about to begin.
nate display memory read/write test next.
retrace checking next.
this chapter for additional information.
additional information.
3Ah The new cursor position has been read and saved. Displaying the Hit <DEL> mes-
3Bh The Hit <DEL> message is displayed. The protected mode memory test is about
40h Preparing the descriptor tables next.
42h The descriptor tables are prepared. Entering protected mode for the memory test
43h Entered protected mode. Enabling interrupts for diagnostics mode next.
44h Interrupts enabled if the diagnostics switch is on. Initializing data to check memory
45h Data initialized. Checking for memory wraparound at 0:0 and fi nding the total sys-
46h The memory wraparound test is done. Memory size calculation has been done.
47h The memory pattern has been written to extended memory. Writing patterns to the
48h Patterns written in base memory. Determining the amount of memory below 1 MB
49h The amount of memory below 1 MB has been found and verifi ed.
4Bh The amount of memory above 1 MB has been found and verifi ed. Checking for a
sage next.
to start.
next.
wraparound at 0:0 next.
tem memory size next.
Writing patterns to test memory next.
base 640 KB memory next.
next.
soft reset and clearing the memory below 1 MB for the soft reset next. If this is a power on situation, going to checkpoint 4Eh next.
B-4
Checkpoint Code Description
Appendix B: BIOS POST Checkpoint Codes
4Ch The memory below 1 MB has been cleared via a soft reset. Clearing the memory
4Dh The memory above 1 MB has been cleared via a soft reset. Saving the memory size
4Eh The memory test started, but not as the result of a soft reset. Displaying the fi rst
4Fh The memory size display has started. The display is updated during the memory
50h The memory below 1 MB has been tested and initialized. Adjusting the displayed
51h The memory size display was adjusted for relocation and shadowing.
52h The memory above 1 MB has been tested and initialized. Saving the memory size
53h The memory size information and the CPU registers are saved. Entering real mode
54h Shutdown was successful. The CPU is in real mode. Disabling the Gate A20 line,
57h The A20 address line, parity, and the NMI are disabled. Adjusting the memory size
58h The memory size was adjusted for relocation and shadowing. Clearing the Hit
59h The Hit <DEL> message is cleared. The <WAIT...> message is displayed. Starting
above 1 MB next.
next. Going to checkpoint 52h next.
64 KB memory size next.
test. Performing the sequential and random memory test next.
memory size for relocation and shadowing next.
information next.
next.
parity, and the NMI next.
depending on relocation and shadowing next.
<DEL> message next.
the DMA and interrupt controller test next.
60h The DMA page register test passed. Performing the DMA Controller 1 base register
62h The DMA controller 1 base register test passed. Performing the DMA controller 2
65h The DMA controller 2 base register test passed. Programming DMA controllers 1
66h Completed programming DMA controllers 1 and 2. Initializing the 8259 interrupt
67h Completed 8259 interrupt controller initialization.
7Fh Extended NMI source enabling is in progress.
80h The keyboard test has started. Clearing the output buffer and checking for stuck
81h A keyboard reset error or stuck key was found. Issuing the keyboard controller
82h The keyboard controller interface test completed. Writing the command byte and
83h The command byte was written and global data initialization has completed. Check-
84h Locked key checking is over. Checking for a memory size mismatch with CMOS
85h The memory size check is done. Displaying a soft error and checking for a password
test next.
base register test next.
and 2 next.
controller next.
keys. Issuing the keyboard reset command next.
interface test command next.
initializing the circular buffer next.
ing for a locked key next.
RAM data next.
or bypassing WINBIOS Setup next.
B-5
H8DA3-2/H8DAi-2 User’s Manual
Checkpoint Code Description
86h The password was checked. Performing any required programming before WIN-
87h The programming before WINBIOS Setup has completed. Uncompressing the
88h Returned from WINBIOS Setup and cleared the screen. Performing any necessary
89h The programming after WINBIOS Setup has completed. Displaying the power on
8Ch Programming the WINBIOS Setup options next.
8Dh The WINBIOS Setup options are programmed. Resetting the hard disk controller
8Fh The hard disk controller has been reset. Confi guring the fl oppy drive controller
91h The fl oppy drive controller has been confi gured. Confi guring the hard disk drive
95h Initializing the bus option ROMs from C800 next. See the last page of this chapter
96h Initializing before passing control to the adaptor ROM at C800.
97h Initialization before the C800 adaptor ROM gains control has completed. The adap-
98h The adaptor ROM had control and has now returned control to BIOS POST. Perform-
BIOS Setup next.
WINBIOS Setup code and executing the AMIBIOS Setup or WINBIOS Setup utility next.
programming after WINBIOS Setup next.
screen message next.
next.
next.
controller next.
for additional information.
tor ROM check is next.
ing any required processing after the option ROM returned control.
99h Any initialization required after the option ROM test has completed. Confi guring the
9Ah Set the timer and printer base addresses. Setting the RS-232 base address next.
9Bh Returned after setting the RS-232 base address. Performing any required initializa-
9Ch Required initialization before the Coprocessor test is over. Initializing the Coproces-
9Dh Coprocessor initialized. Performing any required initialization after the Coproces-
9Eh Initialization after the Coprocessor test is complete. Checking the extended keyboard,
A2h Displaying any soft errors next.
A3h The soft error display has completed. Setting the keyboard typematic rate next.
A4h The keyboard typematic rate is set. Programming the memory wait states next.
A5h Memory wait state programming is over. Clearing the screen and enabling parity
A7h NMI and parity enabled. Performing any initialization required before passing control
A8h Initialization before passing control to the adaptor ROM at E000h completed. Passing
timer data area and printer base address next.
tion before the Coprocessor test next.
sor next.
sor test next.
keyboard ID, and Num Lock key next. Issuing the keyboard ID command next.
and the NMI next.
to the adaptor ROM at E000 next.
control to the adaptor ROM at E000h next.
B-6
Checkpoint Code Description
Appendix B: BIOS POST Checkpoint Codes
A9h Returned from adaptor ROM at E000h control. Performing any initialization required
Aah Initialization after E000 option ROM control has completed. Displaying the system
Abh Uncompressing the DMI data and executing DMI POST initialization next.
B0h The system confi guration is displayed.
B1h Copying any code to specifi c areas.
00h Code copying to specifi c areas is done. Passing control to INT 19h boot loader
after the E000 option ROM had control next.
confi guration next.
next.
B-7
H8DA3-2/H8DAi-2 User’s Manual
Notes
B-8
Loading...