The TS914 is a rail-to-rail CMOS quad operational
amplifier designed to operate with a single or dual
(Plastic Micropackage)
D
SO-14
supply voltage.
The input voltage range V
supply rails V
CC
+
and V
CC
includes the two
icm
-
.
Pin Connections (top view)
The output reaches:
■ V
■ V
-
+50mV, V
CC
-
+350mV, V
CC
This product offers a broad supply voltage
operating range from 2.7V to 16V and a supply
current of only 200µA/amp (V
Source and sink output current capability is
typically 40mA (at V
+
-50mV, with RL = 10kΩ
CC
+
-350mV, with RL = 600Ω
CC
= 3V).
CC
= 3V), fixed by an internal
CC
Output 1
Inverting Input 1
Non-inverting Input 1
V
CC
Non-inverting Input 2
Inverting Input 2
Output 2
1
2
-
+
3
+
4
5
+
-
6
7
14
13
-
+
12
11
10
+
9
8
Output 4
Inverting Input 4
Non-inverting Input 4
-
V
CC
Non-inverting Input 3
Inverting Input 3
Output 3
limitation circuit.
Order Code
Part NumberTemperature RangePackagePackaging
TS914IN
TS914ID/IDTSO-4Tube or Tape & Reel
TS914AINDIP14Tube
-40, +125°C
TS914AID/AIDTSO-4Tube or Tape & Reel
TS914IYD/IYDT/ AIYD/AIYDTSO14 (automotive grade level)Tube or Tape & Reel
DIP14Tube
Rev 3
June 20051/17
www.st.com
17
1 Absolute Maximum RatingsTS914
1 Absolute Maximum Ratings
Table 1.Key parameters and their absolute maximum ratings
SymbolParameterValueUnit
(3)
(1)
(2)
CC
+
+0.3V.
18V
±18V
-0.3 to 18V
V
T
T
1. All voltages values, except differential voltage are with respect to network ground terminal.
2. Differential voltagesare non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed V
Supply voltage
CC
Vid
Differential Input Voltage
V
Input Voltage
i
I
Current on Inputs±50mA
in
I
Current on Outputs±130mA
o
Operating Free Air Temperature Range
oper
TS914I/AI-40 to + 125
Storage Temperature-65 to +150°C
stg
Table 2.Operating conditions
SymbolParameterValueUnit
V
V
Supply voltage2.7 to 16V
CC
Common Mode Input Voltage Range
icm
V
CC
-
-0.2 to V
CC
+
+0.2
°C
V
2/17
TS9142 Typical Application Information
2 Typical Application Information
Figure 1.Typical application information
V
CC
Internal
Non-inverting
Input
Inverting
Input
Vref
Output
V
CC
3/17
3 Electrical CharacteristicsTS914
3 Electrical Characteristics
Table 3.V
CC
+
= 3V, V
-
= 0V, RL, CL connected to V
cc
CC/2
, T
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
V
io
∆V
io
I
io
I
ib
I
CC
CMR
SVR
A
vd
Input Offset Voltage (Vic = Vo = V
TS914
TS914A
T
≤ T
min.
amb
≤ T
max.
TS914
TS914A
Input Offset Voltage Drift5µV/°C
Input Offset Current
T
≤ T
amb
≤ T
min.
Input Bias Current
T
≤ T
amb
≤ T
min.
(1)
max.
1)
max.
Supply Current (per amplifier, A
T
≤ T
amb
≤ T
max.
min.
Common Mode Rejection Ratio
V
= 0 to 3V, Vo = 1.5V
ic
Supply Voltage Rejection Ratio (V
V
)
CC/2
Large Signal Voltage Gain (RL = 10kΩ, Vo = 1.2V to 1.8V)
T
≤ T
amb
≤ T
max.
min.
)
CC/2
= 1, no load)
VCL
+
= 2.7 to 3.3V, Vo =
CC
1
1150
200300
70dB
80dB
3
10
2
10
5
12
7
100
200
300
400
mV
pA
pA
µA
V/mV
High Level Output Voltage (Vid = 1V)RL = 10kΩ
R
= 600Ω
L
R
V
OH
= 100Ω
L
T
min.
R
= 600Ω
L
≤ T
amb
≤ T
max.RL
= 10kΩ
2.9
2.2
2.8
2.1
Low Level Output Voltage (Vid = -1V)RL = 10kΩ
R
= 600Ω
L
V
OL
R
= 100Ω
L
T
min.
R
= 600Ω
L
≤ T
amb
≤ T
max.RL
= 10kΩ
2.97
2.7
2
50
300
900
100
600
mV
150
900
Output Short Circuit Current (Vid = ±1V)
Source (V
I
o
Sink (V
GBP
Gain Bandwith Product
(A
VCL
Slew Rate
SR
(A
VCL
φmPhase Margin30
Equivalent Input Noise Voltage (R
en
V
/
O1
V
1. Maximum values including unavoidable inaccuracies of the industrial test
Channel Separation (f = 1kHz)120dB
O2
= VCC)
o
+
o
= V
CC
)
= 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
= 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V)
= 100Ω, f = 1kHz)
s
40
mA
40
0.8MHz
0.5V/µs
Degree
30nV/√Hz
V
s
4/17
3 Electrical CharacteristicsTS914
Table 4.V
CC
+
= 5V, V
-
= 0V, RL, CL connected to V
cc
CC/2
, T
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
V
io
∆V
io
I
io
I
ib
I
CC
CMR
SVR
A
vd
Input Offset Voltage (Vic = Vo = V
TS914
TS914A
T
≤ T
min.
amb
≤ T
max.
TS914
TS914A
Input Offset Voltage Drift5µV/°C
≤ T
≤ T
(1)
max.
1)
max.
Input Offset Current
T
≤ T
min.
amb
Input Bias Current
T
≤ T
min.
amb
Supply Current (per amplifier, A
T
≤ T
amb
≤ T
max.
min.
Common Mode Rejection Ratio
V
= 1.5 to 3.5V, Vo = 2.5V
ic
Supply Voltage Rejection Ratio (V
Large Signal Voltage Gain (RL = 10kΩ, Vo = 1.5V to 3.5V)
T
≤ T
amb
≤ T
max.
min.
)
CC/2
= 1, no load)
VCL
+
= 3 to 5V, Vo = V
CC
CC/2
10
5
mV
12
7
100
1
200
1150
300
230350
450
pA
pA
µA
85dB
)
10
80dB
40
7
V/mV
High Level Output Voltage (Vid = 1V)RL = 10kΩ
R
= 600Ω
L
V
OH
R
= 100Ω
L
T
R
= 600Ω
L
min.
≤ T
amb
≤ T
max.RL
= 10kΩ
4.85
4.20
4.8
4.1
Low Level Output Voltage (Vid = -1V)RL = 10kΩ
R
= 600Ω
L
V
GBP
R
OL
I
o
= 100Ω
L
T
≤ T
R
= 600Ω
L
min.
amb
≤ T
max.RL
= 10kΩ
Output Short Circuit Current (Vid = ±1V)Source (Vo = VCC)
Sink (V
o
= V
CC
+
)
Gain Bandwith Product
(A
= 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
VCL
Slew Rate
SR
(A
= 1, RL = 10kΩ, CL = 100pF, Vi = 1V to 4V)
VCL
φmPhase Margin30
Equivalent Input Noise Voltage (R
en
V
/
O1
V
1. Maximum values including unavoidable inaccuracies of the industrial test
Channel Separation (f = 1kHz)120dB
O2
= 100Ω, f = 1kHz)
s
4.95
4.65
3.7
50
350
1400
100
680
V
mV
150
900
60
60
mA
1MHz
0.8V/µs
Degree
s
30nV/√Hz
5/17
3 Electrical CharacteristicsTS914
Table 5.V
CC
+
= 10V, V
= 0V, RL, CL connected to V
DD
CC/2
, T
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin. Typ. Max.Unit
∆V
V
Input Offset Voltage (Vic = Vo = V
TS914
V
TS914A
io
T
≤ T
min.
amb
≤ T
max.
TS914
TS914A
Input Offset Voltage Drift5µV/°C
io
Input Offset Current
I
io
T
≤ T
≤ T
amb
amb
≤ T
≤ T
min.
Input Bias Current
I
ib
T
min.
Common Mode Input Voltage Range
icm
(1)
max.
1)
max.
CC/2
)
10
5
12
7
100
1
200
1150
300
V
DD
- 0.2 to V
CC
+
0.2
Common Mode Rejection Ratio
V
CMR
SVR
A
vd
= 3 to 7V, Vo = 5V
ic
V
= 0 to 10V, Vo = 5V
ic
Supply Voltage Rejection Ratio (V
+
= 5 to 10V, Vo = V
CC
Large Signal Voltage Gain (RL = 10kΩ, Vo = 2.5V to 7.5V)
T
≤ T
amb
≤ T
max.
min.
CC/2
)
90
75
90dB
151060
V/mV
High Level Output Voltage (Vid = 1V)RL = 10kΩ
9.85
9.95
9
9.35
7.8
9.8
9
50
650
2300
60mA
400600
1.4MHz
1V/µs
180
800
150
900
700
V
OH
V
OL
I
o
I
CC
GBP
SR
R
= 600Ω
L
R
= 100Ω
L
T
≤ T
R
= 600Ω
L
min.
amb
≤ T
max.RL
= 10kΩ
Low Level Output Voltage (Vid = -1V)RL = 10kΩ
R
= 600Ω
L
R
= 100Ω
L
T
≤ T
R
= 600Ω
L
min.
amb
≤ T
max.RL
= 10kΩ
Output Short Circuit Current (Vid = ±1V)
Supply Current (per amplifier, A
T
≤ T
amb
≤ T
max.
min.
= 1, no load)
VCL
Gain Bandwith Product
= 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
(A
VCL
Slew Rate
(A
= 1, RL = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V)
VCL
φmPhase Margin40Degrees
Equivalent Input Noise Voltage (R
en
= 100Ω, f = 1kHz)
s
30nV/√Hz
Total Harmonic Distortion
THD
= 1, RL = 10kΩ, CL = 100pF, Vo = 4.75V to 5.25V, f =
VCL
0.02%
(A
1kHz)
C
Input Capacitance1.5pF
in
R
Input Resistance>10Tera Ω
in
V
O1/VO2
1. Maximum values including unavoidable inaccuracies of the industrial test
Channel Separation (f = 1kHz)120dB
mV
pA
pA
V
dB
V
mV
µA
6/17
3 Electrical CharacteristicsTS914
Table 6.V
+
= 3V, VCC- = 0V, RL, CL connected to V
CC
CC/2
, T
= 25°C (unless otherwise
amb
specified)
SymbolConditionsValueUnit
V
A
I
CC
V
icm
V
OH
V
OL
I
sink
I
source
GBP
SR
io
vd
RL = 10kΩ
No load, per operator100µA
RL = 600Ω
RL = 60Ω
VO = 3V
VO = 0V
= 10kΩ, CL = 100pF
R
L
R
= 10kΩ, CL = 100pF
L
0mV
10V/mV
-0.2 to 3.2V
2.96V
300mV
40mA
40mA
0.8MHz
0.3V/µs
φmPhase Margin30Degrees
7/17
3 Electrical CharacteristicsTS914
Figure 2.Supply current (each amplifier)
vs supply voltage
600
A)
m
CC
500
T = 25°C
amb
A = 1
VCL
V = V / 2
O CC
400
300
200
SUPPLY CURRENT, I (
100
0 4 8 12 16
SUPPLY VOLTAGE, V (V)
CC
Figure 4.Low level output voltage vs low level
output current
5
T = 25 C
amb
4
OL
V = -100mV
°
id
V = +5V
CC
Figure 3.High level output voltage vs high
level output current
5
T = 25 C
amb
OH
4
V = 100mV
id
°
V = +5V
CC
3
2
V = +3V
1
OUTPUT VOLTAGE, V (V)
CC
0
-70 -40 -20 0
OUTPUT CURRENT, I (mA)
OH
Figure 5.Input bias current vs temperature
100
V = 10V
CC
V = 5V
ib
i
No load
3
V = +3V
CC
2
1
OUTPUT VOLTAGE, V (V)
0 30 50 70 90
OUTPUT CURRENT, I (mA)
OL
Figure 6.High level output voltage vs high
level output current
T = 25 C
20
16
OH
12
8
4
OUTPUT VOLTAGE, V (V)
0
amb
V = 100mV
°
id
V = +16V
CC
V = +10V
CC
-70 -40 -20 0
OUTPUT CURRENT, I (mA)
OH
10
INPUT BIAS CURRENT, I (pA)
1
25 50 75 100 125
TEMPERATURE, T ( C)
amb
°
Figure 7.Low level output voltage vs low level
output current
10
T = 25 C
amb
8
OL
6
4
2
OUTPUT VOLTAGE, V (V)
0
V = -100mV
°
id
V = 16V
CC
V = 10V
CC
30 50 70 90
OUTPUT CURRENT, I (mA)
OL
8/17
3 Electrical CharacteristicsTS914
6
6
Figure 8.Gain and phase vs frequencyFigure 9.Gain bandwidth product vs supply
voltage
50
40
30
PHASE
20
T = 25°C
V = 10V
GAIN (dB)
R = 10k
10
C = 100pF
A = 100
0
-10
23
10
amb
CC
L
L
VCL
W
10
Gain
Bandwidth
Product
4
10510
FREQUENCY, f (Hz)
GAIN
10
Phase
Margin
6
10
7
0
45
90
135
180
PHASE (Degrees)
1800
1400
T = 25°C
amb
R = 10k
L
C = 100pF
L
W
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 16
SUPPLY VOLTAGE, V (V)
CC
Figure 10. Phase margin vs supply voltageFigure 11. Gain and phase vs frequency
60
T = 25°C
amb
R = 10k
50
f
40
L
C = 100pF
W
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC
50
40
30
T = 25°C
20
V = 10V
GAIN (dB)
R = 600
10
C = 100pF
A = 100
0
-
10
23
10
PHASE
amb
CC
L
L
VCL
10
GAIN
W
Gain
Bandwidth
Product
10
4
10
5
FREQUENCY, f (Hz)
Phase
Margin
10
6
10
7
0
45
90
135
180
PHASE (Degrees)
Figure 12. Gain bandwidth product vs supply
voltage
1800
T = 25°C
amb
1400
R = 600
C = 100pF
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 16
9/17
W
L
L
SUPPLY VOLTAGE, V (V)
CC
Figure 13. Phase margin vs supply voltage
60
T = 25°C
amb
R = 600
50
f
40
L
C = 100pF
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
W
SUPPLY VOLTAGE, V (V)
CC
3 Electrical CharacteristicsTS914
Figure 14. Input voltage noise vs frequency
150
100
50
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
0
10100
V
CC
T
amb
R
S
1000
FREQUENCY (Hz)
= 10V
= 25°C
= 100
W
10000
10/17
4 MacromodelsTS914
4 Macromodels
Note:Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is
often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the
product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc)
or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any
way.
MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F * INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
ISTB0 5 4 500N
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.8E+03
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
HSCP 68 25
VSCP1 0.8E+08
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
= 5V)
CC
13/17
4 MacromodelsTS914
HSCN 24 69
VSCN1 0.8E+08
VSCTHP 60 61 0.0875
** VSCTHP = le seuil au dessus de vio
* 500
** c.a.d 275U-000U dus a l’offset
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
** VSCTHN = le seuil au dessous de vio
* 2000
** c.a.d -375U-000U dus a l’offset
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
14/17
5 Package Mechanical DataTS914
5 Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com
5.1 DIP-14 Package
.
Plastic DIP-14 MECHANICAL DATA
DIM.
a10.510.020
B1.391.650.0550.065
b0.50.020
b10.250.010
D200.787
E8.50.335
e2.540.100
e315.240.600
F7.10.280
I5.10.201
L3.30.130
Z1.272.540.0500.100
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
15/17
P001A
5 Package Mechanical DataTS914
5.2 SO-14 Package
SO-14 MECHANICAL DATA
DIM.
A1.750.068
a10.10.20.0030.007
a21.650.064
b0.350.460.0130.018
b10.190.250.0070.010
C0.50.019
c145˚ (typ.)
D8.558.750.3360.344
E5.86.20.2280.244
e1.270.050
e37.620.300
F3.84.00.1490.157
G4.65.30.1810.208
L0.51.270.0190.050
M0.680.026
S˚ (max.)
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
8
16/17
PO13G
6 Revision HistoryTS914
6 Revision History
DateRevisionChanges
Dec 20011First Release
Nov 20042Vio max on 1st page from 2mV to 5mV
June 20052PIPAP references inserted in the datasheet see table order code p1
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners