STMicroelectronics TS4995EIJT Schematic [ru]

Features
TS4995
1.2W fully differential audio power amplifier with selectable standby and 6db fixed gain
Differential inputs
90dB PSRR @ 217Hz with grounded inputs
1.2W rail to rail output power @ Vcc=5V,
THD+N=1%, F=1kHz, with 8 load
6dB integrated fixed gain
Ultra-low consumption in standby mode (10nA)
Selectable standby mode (active low or active
high)
Ultra-fast startup time: 10ms typ. at Vcc=3.3V
Available in 9-bump flip-chip (300mm bump
diameter)
Ultra-low pops&clicks
Description
The TS4995 is an audio power amplifier capable of delivering 1.2W of continuous RMS output power into an 8 load at 5V. Thanks to its differential inputs, it exhibits outstanding noise immunity.
An external standby mode control reduces the supply current to less than 10nA. A STBY MODE pin allows the standby pin to be active HIGH or LOW. An internal thermal shutdown protection is also provided, making the device capable of sustaining short-circuits.
The TS4995 features an internal fixed gain at 6dB which reduces the number of external components on the application board.
TS4995 - Flip-Chip9
Pin connections (top view)
Gnd
Gnd
V
V
Bypass Stdby
Bypass Stdby
V
V
765
765
O-
O-
8
8
IN+
IN+
1
1
9
9
2
2
V
V
CC
CC
V
V
O+
O+
4
4
V
V
3
3
IN-
IN-
Stdby Mode
Stdby Mode
The device is equipped with Common Mode Feedback circuitry allowing outputs to be always biased at Vcc/2 regardless of the input common mode voltage.
The TS4995 has been designed for high quality audio applications such as mobile phones and requires few external components.
Applications
Mobile phones (cellular / cordless)
PDAs
Laptop / notebook computers
Portable audio devices
Device summary table
Part Number Temperature Range Package Packing Marking
TS4995EIJT -40°C to +85°C Lead free flip-chip9 Tape & Reel 95
June 2006 Rev. 1 1/24
www.st.com
24
Contents TS4995
Contents
1 Absolute maximum ratings & operating conditions . . . . . . . . . . . . . . . 3
2 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Wake-up Time: TWU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.7 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 9-bump flip-chip package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
TS4995 Absolute maximum ratings & operating conditions

1 Absolute maximum ratings & operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol Parameter Value Unit
V
CC
V
T
oper
T
stg
T
R
thja
P
diss
ESD
i
j
Supply voltage
Input voltage
Operating free air temperature range -40 to + 85 °C
Storage temperature -65 to +150 °C
Maximum junction temperature 150 °C
Thermal resistance junction to ambient
Power dissipation Internally limited W
Machine model 200 V
Human body model 1.5 kV
Latch-up Latch-up immunity 200 mA
- Lead temperature (soldering, 10sec) 260 °C
1. All voltage values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V.
3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C.

Table 2. Operating conditions

Symbol Parameter Value Unit
V
Supply voltage 2.5 to 5.5 V
CC
Standby Mode Voltage Input:
V
SM
Standby Active LOW Standby Active HIGH
Standby Voltage Input:
V
STB
Device ON (V Device OFF (V
T
R
R
1. The minimum current consumption (I temperature range.
Thermal Shutdown Temperature 150 °C
SD
Load Resistor ≥ 8
L
Thermal Resistance Junction to Ambient 100 °C/W
thja
(1)
(2)
(3)
=GND) or Device OFF (VSM=VCC)
SM
=GND) or Device ON (VSM=VCC)
SM
) is guaranteed when V
STANDBY
6V
GND to V
CC
200 °C/W
=GND
V
SM
V
SM=VCC
V
STB
STB
VCC
0.4
(1)
1.5 V
G
ND
= GND or VCC (i.e. supply rails) for the whole
STB
V
V
V
3/24
Typical application schematic TS4995

2 Typical application schematic

Table 3. External components descriptions
Components Functional description
C
s
C
b
C
in
Supply Bypass capacitor which provides power supply filtering.
Bypass capacitor which provides half supply filtering.
Optional input capacitor making a high pass filter together with Rin. (fcl = 1 / (2 x Pi x Rin x Cin).

Figure 1. Typical application

TS4995
Op ti onal
Vin-
P1
P2
Vin+
Cin 1
330nF Cin 2
330nF
3
1
8
Vin-
Vin+
BYPASS
BIAS
VCC
2
Cs1
1uF
TS4995 FlipChip
Vcc
Vo -
7
Vo+
+
5
8 Ohms
1uF
Cbyp as s1
VCC
3
STD BY
2
1
4
STDBY / Operation
STB Y
STDBY M ODE
9
3
4/24
GND
6
2
STDBY MODE
1
TS4995 Electrical characteristics

3 Electrical characteristics

Table 4. VCC = +5V, GND = 0V, T
Symbol Parameter Test conditions Min. Typ. Max. Unit
I
Supply Current No input signal, no load 4 7 mA
CC
I
STANDBY
Voo
Standby Current
Differential Output Offset Voltage
Input Common Mode Voltage - 0 4.5 V
V
IC
Po Output Power THD = 1% Max, F= 1kHz, RL = 8 0.8 1.2 W
= 25°C (unless otherwise specified)
amb
No input signal, Vstdby = V No input signal, Vstdby = V
= GND, RL = 8
SM
= VCC, RL = 8
SM
10 1000 nA
No input signal, RL = 8 0.1 10 mV
THD + N
PSRR
CMRR
SNR Signal-to-Noise Ratio
GBP Gain Bandwidth Product R
Total Harmonic Distortion + Noise
Power Supply Rejection Ratio
IG
with Inputs Grounded
Common Mode Rejection Ratio
V
Output Voltage Noise
N
(1)
Po = 850mW rms, 20Hz F 20kHz, RL = 8 0.5 %
F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF Vripple = 200mV
F = 217Hz, RL = 8Ω, C Vic = 200mV
PP
PP
= 4.7µF, Cb =1µF
in
75
(2)
90 dB
60 dB
A Weighted Filter
= 8Ω, THD +N < 0.7%, 20Hz F 20kHz 100
R
L
= 8 2MHz
L
20Hz F 20kHz, R Unweighted
A weighted Unweighted, Standby A weighted, Standby
= 8
L
11
7
3.5
1.5
Zin Input impedance - 15 20 25 k
- Gain mismatch - 5.5 6 6.5 dB
T
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
WU
Wake-Up Time
(3)
Cb =1µF15mS
µV
dB
RM
S
5/24
Electrical characteristics TS4995
Table 5. VCC = +3.3V (all electrical values are guaranteed with correlation measurements at
2.6V and 5V), GND = 0V, T
Symbol Parameter Test conditions Min. Typ. Max. Unit
Supply Current No input signal, no load 3 7 mA
I
CC
I
STANDBY
Voo
THD + N
Standby Current
Differential Output Offset Voltage
Input Common Mode Voltage - 0.4 2.3 V
V
IC
Po Output Power THD = 1% Max, F= 1kHz, RL = 8 300 500 mW
Total Harmonic Distortion + Noise
= 25°C (unless otherwise specified)
amb
No input signal, Vstdby = V No input signal, Vstdby = V
= GND, RL = 8
SM
= VCC, RL = 8
SM
10 1000 nA
No input signal, RL = 8 0.1 10 mV
Po = 300mW rms, 20Hz F 20kHz, RL = 8 0.5 %
PSRR
CMRR
Power Supply Rejection Ratio
IG
with Inputs Grounded
Common Mode Rejection Ratio
(1)
SNR Signal-to-Noise Ratio
GBP Gain Bandwidth Product R
V
Output Voltage Noise
N
F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF Vripple = 200mV
F = 217Hz, RL = 8Ω, C Vic = 200mV
PP
PP
= 4.7µF, Cb =1µF
in
75
(2)
90 dB
60 dB
A Weighted Filter
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz 100
= 8 2MHz
L
20Hz F 20kHz, R Unweighted
A weighted Unweighted, Standby A weighted, Standby
= 8
L
11
7
3.5
1.5
Zin Input impedance - 15 20 25 k
- Gain mismatch - 5.5 6 6.5 dB
T
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
WU
Wake-Up Time
(3)
Cb =1µF10mS
µV
dB
RM
S
6/24
TS4995 Electrical characteristics
Table 6. VCC = +2.6V, GND = 0V, T
Symbol Parameter Test conditions Min. Typ. Max. Unit
Supply Current No input signal, no load 3 7 mA
I
CC
I
STANDBY
Voo
THD + N
Standby Current
Differential Output Offset Voltage
Input Common Mode Voltage - 0.6 1.5 V
V
IC
Po Output Power THD = 1% Max, F= 1kHz, RL = 8 200 300 mW
Total Harmonic Distortion + Noise
= 25°C (unless otherwise specified)
amb
No input signal, Vstdby = V No input signal, Vstdby = V
= GND, RL = 8
SM
= VCC, RL = 8
SM
10 1000 nA
No input signal, RL = 8 0.1 10 mV
Po = 225mW rms, 20Hz F 20kHz, RL = 8 0.5 %
PSRR
CMRR
Power Supply Rejection Ratio
IG
with Inputs Grounded
Common Mode Rejection Ratio
(1)
SNR Signal-to-Noise Ratio
GBP Gain Bandwidth Product R
V
Output Voltage Noise
N
F = 217Hz, R = 8Ω, Cin = 4.7µF, Cb =1µF Vripple = 200mV
F = 217Hz, RL = 8Ω, C Vic = 200mV
PP
PP
= 4.7µF, Cb =1µF
in
75
(2)
90 dB
60 dB
A Weighted Filter
RL = 8Ω, THD +N < 0.7%, 20Hz F 20kHz 100
= 8 2MHz
L
20Hz F 20kHz, R Unweighted
A weighted Unweighted, Standby A weighted, Standby
= 8
L
11
7
3.5
1.5
Zin Input impedance - 15 20 25 k
- Gain mismatch - 5.5 6 6.5 dB
T
1. Dynamic measurements - 20*log(rms(Vout)/rms (Vripple)). Vripple is the super-imposed sinus signal relative to Vcc.
2. Guaranteed by design and evaluation.
3. Transition time from standby mode to fully operational amplifier.
WU
Wake-Up Time
(3)
Cb =1µF10mS
µV
dB
RM
S
7/24
Electrical characteristics TS4995
Figure 2. THD+N vs. output power Figure 3. THD+N vs. output power
10
RL = 8
G = 6dB F = 20Hz Cb = 1µF BW < 125kHz
1
Tamb = 25°C
0.1
THD + N (%)
0.01 1E-3 0.01 0.1 1
Output power (W)
Vcc=5V
Vcc=3.3V
Vcc=2.6V
10
RL = 8
G = 6dB F = 20Hz Cb = 0 BW < 125kHz
1
Tamb = 25°C
0.1
THD + N (%)
0.01 1E-3 0.01 0.1 1
Output power (W)
Vcc=5V
Vcc=3.3V
Vcc=2.6V
Figure 4. THD+N vs. output power Figure 5. THD+N vs. output power
THD + N (%)
0.1
10
RL = 16 G = 6dB F = 20Hz Cb = 1µF BW < 125kHz
1
Tamb = 25°C
Vcc=5V
Vcc=3.3V
Vcc=2.6V
10
THD + N (%)
0.1
RL = 16 G = 6dB F = 20Hz Cb = 0 BW < 125kHz
1
Tamb = 25°C
Vcc=5V
Vcc=3.3V
Vcc=2.6V
0.01 1E-3 0.01 0.1 1
Output power (W)
0.01 1E-3 0.01 0.1 1
Output power (W)
Figure 6. THD+N vs. output power Figure 7. THD+N vs. output power
10
RL = 8
G = 6dB F = 1kHz Cb = 1µF BW < 125kHz
1
Tamb = 25°C
0.1
THD + N (%)
0.01 1E-3 0.01 0.1 1
Output power (W)
Vcc=5V
Vcc=3.3V
Vcc=2.6V
10
RL = 8
G = 6dB F = 1kHz Cb = 0 BW < 125kHz
1
Tamb = 25°C
0.1
THD + N (%)
0.01 1E-3 0.01 0.1 1
Output power (W)
Vcc=5V
Vcc=3.3V
Vcc=2.6V
8/24
Loading...
+ 17 hidden pages