STMicroelectronics TS4985EIJT Schematic [ru]

TS4985
2 X 1.2W Stereo Audio Power Amplifier with
Dedicated Standby Pins
Operating from V
1.2W output power per channel @ V
CC
CC
=5V,
THD+N=1%, RL=8
10nA standby current
62dB PSRR @ 217Hz with grounded inputs
High SNR: 106dB(A) typ.
Near zero pop & click
Lead-free 15 bumps, flip-chip package
Description
The TS4985 has been designed for top-class stereo audio applications. Thanks to its compact and power-dissipation efficient flip-chip package, it suits various applications.
With a BTL configuration, this audio power amplifier is capable of delivering 1.2W per channel of continuous RMS output power into an 8 load @ 5V.
Each output channel (left and right), has an external controlled standby mode pin (STDBYL & STDBYR) to reduce the supply current to less than 10nA per channel. The device also features an internal thermal shutdown protection.
The gain of each channel can be configured by external gain setting resistors.
Flip-chip - 15 bumps
Pin Connection (top view)
VCC2
VCC2
VCC1
VCC1
IN-L
IN-L
VO+L
VO+L
IN+L
IN+L
STDBYL
STDBYL
BYPASS
BYPASS
STDBYR
STDBYR
Applications
Cellular mobile phones
Notebook & PDA computers
LCD monitors & TVs
Portable audio devices
IN+R
IN+R
VO+R
VO+R
GND2
GND2
IN-R
IN-R
VO-RVO-L
VO-RVO-L
GND1
GND1
Order Codes
Part Number Temperature Range Package Packaging Marking
TS4985EIJT
TS4985EKIJT
-40, +85°C
May 2005 1/29
Lead free flip-chip
Lead free flip-chip +
back coating
Tape & Reel A85
Rev 2
www.st.com
29
Typical Application Schematic TS4985

1 Typical Application Schematic

Figure 1
shows a typical application schematic for the TS4985.

Figure 1. Application schematic

Cin-LInput L
100n
Cin-R
100n
Rin-L
22k
VCC
1 2 3
+
Cb 1u
Rin-R
22k
VCC
1 2 3
Input R
GND
GND
Cfeed-L
Rfeed-L
22k
A1
B2
C5
C3
D6
E5
C1
IN-L
IN+L
Standby L
Bypass
IN+R
IN-R
Standby R
VCC
+
Cs 1u
B6A5
VCC1
-
+
Bias
+
-
-
AV = -1
+
-
AV = -1
+
VO-L
VO+L
VO-R
VO+R
A3
B4
E3
D4
Neg. Output L
Pos. Output L
Neg. Output R
Pos. Output R
Cfeed-R
Rfeed-R
22k

Table 1. External component descriptions

Components Functional Description
Inverting input resistors which sets the closed loop gain in
R
IN L,R
C
IN L,R
R
FEED L,R
C
C
A
V L, R
S
B
conjunction with Rfeed. These resistors also form a high pass filter with C
(fc = 1 / (2 x Pi x RIN x CIN))
IN
Input coupling capacitors which blocks the DC voltage at the amplifier input terminal
Feedback resistors which sets the closed loop gain in conjunction with R
Supply Bypass capacitor which provides power supply filtering
Bypass pin capacitor which provides half supply filtering
Closed loop gain in BTL configuration = 2 x (R each channel
GND1
E1 D2
IN
GND2 VCC2
TS4985
FEED
/ RIN) on
2/29
TS4985 Absolute Maximum Ratings

2 Absolute Maximum Ratings

Table 2. Key parameters and their absolute maximum ratings

Symbol Parameter Value Unit
VCC
V
T
oper
T
stg
T
R
thja
(1)
(2)
i
Supply voltage
Input Voltage
Operating Free Air Temperature Range -40 to + 85 °C
Storage Temperature -65 to +150 °C
Maximum Junction Temperature 150 °C
j
Flip-chip Thermal Resistance Junction to Ambient 180 °C/W
6V
GND to V
CC
Pd Power Dissipation Internally Limited
ESD
Human Body Model
(3)
2kV
ESD Machine Model 200 V
Latch-up Immunity 200 mA
1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V
3. All voltage values are measured from each pin with respect to supplies.

Table 3. Operating conditions

Symbol Parameter Value Unit
VCC Supply Voltage 2.2 to 5.5 V
V
ICM
Common Mode Input Voltage Range
1.2V to V
CC
V
V
Standby Voltage Input:
VSTB
Device ON Device OFF
1.35 V GND ≤ V
STB
STB
V
0.4
CC
RL Load Resistor ≥ 4
ROUTGND
Resistor Output to GND (V
STB
= GND)
1M
TSD Thermal Shutdown Temperature 150 °C
RTHJA
1. When mounted on a 4-layer PCB.
Flip-chip Thermal Resistance Junction to Ambient
(1)
110
V
°C/W
3/29
Electrical Characteristics TS4985

3 Electrical Characteristics

Table 4. VCC = +5V, GND = 0V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
I
STANDBY
Voo
Po
THD + N
PSRR
Crosstalk
T
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
1. Standby mode is activated when Vstdby is tied to Gnd.
2. All PSRR data limits are guaranteed by production sapling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc
Supply Current
CC
No input signal, no load 7.4 12
Standby Current No input signal, Vstdby = GND, RL = 8
(1)
10 1000 nA
Output Offset Voltage No input signal, RL = 8 110
Output Power THD = 1% Max, F = 1kHz, RL = 8
Total Harmonic Distortion + Noise Po = 1Wrms, Av = 2, 20Hz F 20kHz, RL = 8
Power Supply Rejection Ratio
(2)
0.9 1.2 W
0.2 %
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF) 90 130 ms
WU
62 64
-107
-82
Standby Time (Cb = 1µF) 10 µs
Standby Voltage Level High 1.3 V
Standby Voltage Level Low 0.4 V
Phase Margin at Unity Gain
M
R
= 8, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
L
= 8
65 Degrees
15 dB
1.5 MHz
mA
mV
dB
dB
4/29
TS4985 Electrical Characteristics
Table 5. VCC = +3.3V, GND = 0V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
I
STANDBY
Voo
Po
THD + N
PSRR
Crosstalk
T
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
GBP
1. Standby mode is activated when Vstdby is tied to Gnd.
2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc
Supply Current
CC
No input signal, no load 6.6 12
Standby Current No input signal, Vstdby = GND, RL = 8
(1)
10 1000 nA
Output Offset Voltage No input signal, RL = 8 110
Output Power THD = 1% Max, F = 1kHz, RL = 8
Total Harmonic Distortion + Noise Po = 400mWrms, Av = 2, 20Hz F 20kHz, RL = 8
Power Supply Rejection Ratio
(2)
375 500 mW
0.1 %
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF) 110 140 ms
WU
61 63
-107
-82
Standby Time (Cb = 1µF) 10 µs
Standby Voltage Level High 1.2 V
Standby Voltage Level Low 0.4 V
Phase Margin at Unity Gain
M
R
= 8, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
L
= 8
Gain Bandwidth Product
L
= 8
R
65 Degrees
15 dB
1.5 MHz
1.5 MHz
mA
mV
dB
dB
5/29
Electrical Characteristics TS4985
Table 6. VCC = +2.6V, GND = 0V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
I
STANDBY
Voo
Po
THD + N
PSRR
Crosstalk
T
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
1. Standby mode is activated when Vstdby is tied to Gnd.
2. All PSRR data limits are guaranteed by production sampling tests. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc
Supply Current
CC
No input signal, no load 6.2 12
Standby Current No input signal, Vstdby = GND, RL = 8
(1)
10 1000 nA
Output Offset Voltage No input signal, RL = 8 110
Output Power THD = 1% Max, F = 1kHz, RL = 8
Total Harmonic Distortion + Noise Po = 200mWrms, Av = 2, 20Hz F 20kHz, RL = 8
Power Supply Rejection Ratio
(2)
220 300 mW
0.1 %
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF) 125 150 ms
WU
60 62
-107
-82
Standby Time (Cb = 1µF) 10 µs
Standby Voltage Level High 1.2 V
Standby Voltage Level Low 0.4 V
Phase Margin at Unity Gain
M
R
= 8, CL = 500pF
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product R
L
= 8
65 Degrees
15 dB
1.5 MHz
mA
mV
dB
dB
6/29
TS4985 Electrical Characteristics

Table 7. Index of graphics

Description Figure Page
Open Loop Frequency Response
Power Supply Rejection Ratio (PSRR) vs. Frequency
Power Supply Rejection Ratio (PSRR) vs. DC Output Voltage
Power Supply Rejection Ratio (PSRR) at F=217Hz vs. Bypass Capacitor
Output Power vs. Power Supply Voltage
Output Power vs. Load Resistor
Power Dissipation vs. Output Power
Clipping Voltage vs. Power Supply Voltage and Load Resistor
Current Consumption vs. Power Supply Voltage
Current Consumption vs. Standby Voltage
Output Noise Voltage, Device ON
Output Noise Voltage, Device in Standby
THD+N vs. Output Power
Figure 2
Figure 8
Figure 14
to
7 page 8
to
13 page 9
to
22
page 10
page 11
Figure 23 page 11
Figure 24
Figure 27
Figure 30
Figure 33
Figure 34
to
26
to
29 page 12
to
32
,
page 11
page 12
page 12
page 13
page 13
Figure 35 page 13
Figure 36
to
38
page 13
page 14
Figure 39 page 14
Figure 40 page 14
Figure 41
to
49
page 14
page 15
to
to
to
to
to
THD+N vs. Frequency
Crosstalk vs. Frequency
SIgnal to Noise Ratio vs. Power Supply with Unweighted Filter (20Hz to 20kHz)
SIgnal to Noise Ratio vs. Power Supply with A-weighted Filter
Power Derating Curves
Figure 50
Figure 53
to
to
Figure 56
Figure 57
Figure 58
Figure 59
52 page 16
55 page 16
,
,
page 17
page 17
Figure 60 page 17
7/29
Electrical Characteristics TS4985
0.1 1 10 100 1000 10000
-60
-40
-20
0
20
40
60
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 3.3V RL = 8
Tamb = 25°C
Phase (°)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 2.6V CL = 560pF Tamb = 25°C
Phase (°)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 5V CL = 560pF Tamb = 25°C
Phase (°)
Figure 2. Open loop frequency response Figure 3. Open loop frequency response
60
40
20
0
Gain (dB)
-20
-40
-60
0.1 1 10 100 1000 10000
Vcc = 2.6V RL = 8
Tamb = 25°C
Phase
Gain
Frequency (kHz)
0
-40
-80
-120
-160
-200
Phase (°)
Figure 4. Open loop frequency response Figure 5. Open loop frequency response
60
40
20
0
Gain (dB)
-20
-40
-60
0.1 1 10 100 1000 10000
Phase
Vcc = 5V RL = 8
Tamb = 25°C
Frequency (kHz)
Gain
0
-40
-80
-120
-160
-200
Phase (°)
Figure 6. Open loop frequency response Figure 7. Open loop frequency response
100
80
60
40
20
Gain (dB)
0
Vcc = 3.3V
-20
CL = 560pF Tamb = 25°C
-40
0.1 1 10 100 1000 10000
8/29
Gain
Phase
Frequency (kHz)
0
-40
-80
Phase (°)
-120
-160
-200
TS4985 Electrical Characteristics
Figure 8. Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp
-10
Rfeed = 22kΩ Input = Floating
-20
Cb = 0.1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
-80
Tamb = 25°C
100 1000 10000 100000
Vcc = 2.2, 2.6, 3.3, 5V
Frequency (Hz)
Figure 10. Power supply rejection ratio (PSRR)
vs. frequency
0
-10
-20
-30
PSRR (dB)
-40
-50
-60
Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1µF, Cin = 1µF RL >= 4
Tamb = 25°C
Vcc = 5, 3.3, 2.5 & 2.2V
100 1000 10000 100000
Frequency (Hz)
Figure 9. Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp
-10
Rfeed = 22kΩ Input = Floating
-20
Cb = 1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
-80
Tamb = 25°C
100 1000 10000 100000
Vcc = 2.2, 2.6, 3.3, 5V
Frequency (Hz)
Figure 11. Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp
-10
Av = 2 Input = Grounded
-20
Cb = Cin = 1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
Tamb = 25°C
100 1000 10000 100000
Vcc :
2.2V
2.6V
3.3V 5V
Frequency (Hz)
Figure 12. Power supply rejection ratio (PSRR)
vs. frequency
0
-10
-20
-30
PSRR (dB)
-40
-50
-60
Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1µF, Cin = 1µF RL >= 4
Tamb = 25°C
Vcc = 5, 3.3, 2.5 & 2.2V
100 1000 10000 100000
Frequency (Hz)
Figure 13. Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp Av = 10
-10
Input = Grounded Cb = Cin = 1µF
-20
RL >= 4
Tamb = 25°C
-30
PSRR (dB)
-40
-50
100 1000 10000 100000
Vcc :
2.2V
2.6V
3.3V 5V
Frequency (Hz)
9/29
Loading...
+ 21 hidden pages