ST MICROELECTRONICS TDA 7269A Datasheet

Page 1
14W+14W STEREO AMPLIFIER WITH MUTE & ST-BY
WIDE SUPPLY VOLTAGE RA NGE UP TO
+20V
SPLIT SUPPLY
HHIGH OUTPUT POWER 14+14W
@THD = 10%, R
NO POP AT TURN-ON/OFF
MUTE (POP FREE)
STAND-BY FEATURE (LOW I
SHORT CIRCUIT PROTECTION TO GND
THERMAL OVERLOAD PROTECTION
DESCRIPTION
The TDA7269A is class AB Dual Audio Power ampli­fier assembled in the Multiwatt package, specially de-
= 8, VS = ±16V
q
)
TDA7269A
Multiwatt11
ORDERING NUMBER: TDA7269A
signed for high quality sound application as Hi-Fi music centers and stereo TV sets.
Figure 1. Typical Application Circuit
+5V
15K 1µF
µP
1µF
1µF
MUTE/
ST-BY
IN (L)
18K15K
GND
IN (R)
D94AU085
+V
S
1000µF
5 7
9
11
+
-
-
+
1
1000µF
3
6
-V
S
OUT (L)
4
18K
IN- (L)
8
10 IN- (R)
OUT (R)
2
560
18K
4.7
100nF
4.7
100nF
560
RL (L)
RL (R)
June 2003
1/9
Page 2
TDA7269A
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
I
O
P
tot
T
op
T
stg
PIN CONNECTION
DC Supply Voltage ±22 V
S
Output Power Current (internally limited) 3 A Total Power Dissipation (Tamb = 70°C) 40 W Operating Temperature 0 to 70 °C
, TjStorage and Junction Temperature -40 to 150 °C
(Top view)
11 10
9 8 7 6 5 4 3 2 1
TAB CONNECTED TO PIN 6
D95AU316
IN+(1) IN-(1) GND IN-(2) IN+(2)
-V
S
MUTE OUTPUT(2) +V
S
OUTPUT(1)
-V
S
THERMAL DATA
Symbol Parameter Value Unit
R
th j-case
Thermal Resistance Junction-case Max. 2.8 °C/W
Figure 2. Sin gl e Su pply Applicati on
+V
S
C5
OUT (L)
IN- (L)
IN- (R)
OUT (R)
1000µF
R4
30K
R5 1K
R6
30K
R7 1K
3
4
8
2
10
1
6 GND
C6
0.1µF
C9 470µF
R8
4.7 C7
0.1µF
C10 470µF
R9
4.7 C8
0.1µF
D96AU444A
OUT
(L)
OUT
(R)
10KC11µF
0
MUTE
R1
PLAY
5V
C2
100µF
Q1
BSX33
R2
15K
R3
15K
C3 1µF
C4 1µF
MUTE
IN (L)
IN (R)
D1 5.1V
5 7
9
11
+
-
+
-
2/9
Page 3
TDA7269A
ELECTRICAL CHARACTERISTCS
f = 1KHz; T
= 25°C, unless otherwise specified)
amb
(Refer to the test circuit VS = ±16V; RL = 8Ω; RS = 50
Ω;
GV = 30dB,
Symbol Parameter Test Condition Min. Typ. Max. Unit
V
V
P
Supply Voltage Range RL = 8 ±5 ±20 V
S
R
= 4 ±5 ±15 V
L
I
Total Quiescent Current 60 100 mA
q
Input Offset Voltage -25 25 mV
OS
I
Non Inverting Input Bias Current 500 nA
b
Output Power THD = 10%;
O
= 8;
R
L
V
= ±12.5V; RL = 4;
S
12
8
10
14
THD = 1%;
THD Total Harmonic Distortion R
= 8;
R
L
VS = ±12.5V; RL = 4;
= 8; PO = 1W; f = 1KHz; 0.03 %
L
R
= 8; PO = 0.1 to 7W;
L
9 6
11
7.5
0.7 %
f = 100Hz to 15KHz; RL = 4; PO = 1W; f = 1KHz; 0.02 % R
= 4; VS = ±10V;
L
1% PO = 0.1 to 5W; f = 100Hz to 15KHz;
W W
W W
C
T
Cross Ta lk f = 1KHz;
f = 10KHz; 50
70 60
SR Slew Rate 6.5 10 V/µs
G
e
SVR Supply Voltage Rejection
Open Loop Voltage Gain 80 dB
OL
Total Output Noise A Curve
N
f = 20Hz to 22KHz
Input Resistance 15 20 K
R
i
f = 100Hz; V
= 0.5V 60 dB
R
3 48
(each channel) Thermal Shut-down Junction
T
j
145 °C
Temperature
MUTE FUNCTION [ref +V
VT
A
MUTE
Mute /Play threshold -7 -6 -5 V
MUTE
Mute Attenuation 60 70 dB
STAND-BY FUNCTIONS [ref: +V
VT
A
ST-BY
I
qST-BY
(*) In mute c ondition the current drawn fr om Pin 5 must be 650µA
Stand-by Mute threshold -3.5 -2.5 -1.5 V
ST-BY
Stand-by Attenuation 110 dB Quiescent Current @ Stand-by 3 6 mA
S
] (*)
] (only for Split Supply)
S
dB dB
µV µV
3/9
Page 4
TDA7269A
MUTE STAND-BY FUNCTION
The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to +VS.
– When V
are off.
– When V
the amplifier is in mute mode.
– When V
Figure 3.
higher than = +VS -2.5V the amplifier is in Stand-by mode and the final stage generators
pin5
between +VS -2.5V and +VS -6V the final stage current generators are switched on and
pin5
is lower than +VS -6V the amplifier is play mode.
pin5
+V
S
(V)
20
t
-V
S
-20
V
IN
(mV)
Vpin5
(V) V
S
VS-2.5
V
S-
VS-10
I
q
(mA)
0
VOUT
(V)
6
OFF
STDBY
PLAY STDBY PLAY OFF
STDBY
4/9
MUTE
D94AU086
MUTE
MUTE
MUTE
Page 5
Figure 4. Tes t an d A pplication Circui t (St ereo Configurat i on)
+V
S
TDA7269A
R2 C3
Q1
R1
SW1
ST-BY
DZ
SW2
MUTE
R4
C1
R3
C2
APPLICATION SUGGESTIONS
MUTE/ ST-BY
D94AU087B
IN (L)
GND
IN (R)
5 7
-
9
11
­+
(Demo Board Schematic)
+V
S
3
4+
8
10 IN- (R)
2
C7
6
-V
S
C6
1
C4
OUT (L)
R5
IN- (L)
R6
R8
OUT (R)
R10
C9
R9
C5
R7
C8
RL (L)
RL (R)
The recommended values of the exter nal components are thos e shown the demoboar d s chematic differ ent val­ues can be used, the following table can help the designer.
COMPONEN T
SUGGESTIO N
VALUE
PURPOSE
LARGER THAN
RECOMMENDED VALUE
SMALLER THAN
RECOMMENDED VALUE
R1 10K Mute Circuit Increase of Dz Biasing
Current R2 15K Mute Circuit V R3 18K Mute Circuit V R4 15K Mute Circuit V
R5, R8 18K Closed Loop Gain
#5 Shifted Downward V
pin
#5 Shifted Upward V
pin
#5 Shifted Upward V
pin
Increase of Gain
#5 Shifted Upward
pin
#5 Shifted Downward
pin
#5 Shifted Downward
pin
Setting (*)
R6, R9 560 Decrease of Gain
R7, R10 4.7 Frequency Stability Danger of Oscillations Danger of Oscillations
C1, C2 1µF Input DC Decoupling Higher Low Frequency Cutoff
C3 1µF S t-By/M ute Time
Larger On/Off Time Smaller On/Off Time
Constant C4, C6 1000µF Supply Voltage Bypass Danger of Oscillations C5, C7 0.1µF Supply Voltage Bypass Danger of Oscillations C8, C9 0.1µF Frequency Stability
Dz 5.1V Mute Circuit
(*) Closed loop gain has to be 25dB
5/9
Page 6
TDA7269A
BRIDGE APPLICATION
Another application suggestion concerns the Bridge configuration , where the two power amplifiers are connected as shown by the schematic diagrams of figure 5 “Split Power Supply” , and figure 6 “Single Power Supply”.
This application shows,however, some operative limits due to dissipation and current capability of the out­put stage.
For this reason we recommend to use the TDA7269A in BTL with the following supply voltages depending on the used load impedance (for the single supply consider double Vs) :
±Vs (V) Rload (ohm)
14 8 11 6 10 4
The detected characteristics of THD vs Pout are shown in figg: 7, 8 and 9 for the different load impedances. With Rload = 8ohm , Vs = ±14V the maximum output power obtainable is 30W at THD = 10% (fig. 9). With
Rload = 6ohm , Vs = ±12V the maximum output power obtainable is 28W at THD = 10% (fig. 8). With Rload = 4ohm , Vs = ±10V the maximum output power obtainable is 20W at THD=10% (fig. 7).
We suggest not to exceed the suggested supply voltages in order to avoid the current limiter intervention.
Figure 5. Split Power Supply Application Diagram
ST-BY/
MUTE
35
6
IN
D94AU190
C1
1µF
C2
1µF
7
9
11
-
-
+
1
C5
0.1µF
C3
0.1µF
4+
8
10
2
C6
1000µF
+V
C4
1000µF
R5 4.7
R1
36K
R2
560
R4
560
R3
36K
R6
4.7
-V
S
C9
0.1µF
S
C7
0.1µF
RL
C8
5.6nF
6/9
Page 7
Figure 6. Single Power Supply Application Diagram
5.1V
+V
TDA7269A
S
10K 1µF
15K
MUTE
0
MUTE
PLAY
5V
BSX33
15K
100µF
1µF
1µF
IN (L)
IN (R)
Figure 7. Disto rti on v s Output Power
THD(%)
THD(%)
10
10
5
5 2
2 1
1
0.5
0.5
0.2
0.2
0.1
0.1
0.05
0.05
0.02
0.02
0.01
0.01 600m 40123456789 2030
600m 40123456789 2030
Vs =+/- 10V
Vs =+/- 10V Rload =4 ohm
Rload =4 ohm f=1KHz
f=1KHz
Pout (W)
Pout (W)
1000µF
5 7
+
-
9
11
+
3
OUT (L)
4
30K
8
IN- (L)
1K
2
IN- (R)
0.1µF
4.7
0.1µF
OUT
­30K
OUT (R)
10
1
6
1K
4.7
0.1µF
GND
5.6nF
D03AU1518
Figure 9. Disto rti on v s Output Power
THD(%)
THD(%)
10
10
5
5
Vs =+/- 14V
2
2 1
1
0.5
0.5
0.2
0.2
0.1
0.1
0.05
0.05
0.02
0.02
0.01
0.01 600m 40123456789 2030
600m 40123456789 2030
Vs =+/- 14V Rload =8 ohm
Rload =8 ohm f=1KHz
f=1KHz
Pout (W)
Pout (W)
Figure 8. Disto rti on v s Output Power
THD(%)
THD(%)
10
10
5
5 2
2 1
1
0.5
0.5
0.2
0.2
0.1
0.1
0.05
0.05
0.02
0.02
0.01
0.01 600m 40123456789 2030
600m 40123456789 2030
Vs =+/- 12V
Vs =+/- 12V Rload =6 ohm
Rload =6 ohm f=1KHz
f=1KHz
Pout (W)
Pout (W)
7/9
Page 8
TDA7269A
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104 C 1.6 0.063 D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.88 0.95 0.035 0.037 G 1.45 1.7 1.95 0.057 0.067 0.077
G1 16.75 17 17.25 0.659 0.669 0.679 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886
L1 21.7 22.1 22.5 0.854 0.87 0.886 L2 17.4 18.1 0.685 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.73 5.08 5.43 0.186 0.200 0.214
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
OUTLINE AND
MECHANICAL DATA
Multiwatt11 V
8/9
Page 9
TDA7269A
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise under any patent or patent right s of STMicroelectronics . S pecifications mentioned i n this public ation are subj ect to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as criti cal components i n l i f e support device s or systems without express written approval o f STM i croelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2002 STMic roelectronics - All Rights Reserved
Austra lia - Brazil - Can ada - China - Finland - France - Germ any - Hong Kong - India - Israel - I taly - Japan -Ma l aysia - Malta - Morocco -
Singap ore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.s t. com
9/9
Loading...